UBIFS: fix available blocks count
[linux-2.6-block.git] / fs / ubifs / debug.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
552ff317 35#include <linux/debugfs.h>
1e51764a
AB
36
37#ifdef CONFIG_UBIFS_FS_DEBUG
38
39DEFINE_SPINLOCK(dbg_lock);
40
41static char dbg_key_buf0[128];
42static char dbg_key_buf1[128];
43
44unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
45unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
46unsigned int ubifs_tst_flags;
47
48module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
49module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
50module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
51
52MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
53MODULE_PARM_DESC(debug_chks, "Debug check flags");
54MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
55
56static const char *get_key_fmt(int fmt)
57{
58 switch (fmt) {
59 case UBIFS_SIMPLE_KEY_FMT:
60 return "simple";
61 default:
62 return "unknown/invalid format";
63 }
64}
65
66static const char *get_key_hash(int hash)
67{
68 switch (hash) {
69 case UBIFS_KEY_HASH_R5:
70 return "R5";
71 case UBIFS_KEY_HASH_TEST:
72 return "test";
73 default:
74 return "unknown/invalid name hash";
75 }
76}
77
78static const char *get_key_type(int type)
79{
80 switch (type) {
81 case UBIFS_INO_KEY:
82 return "inode";
83 case UBIFS_DENT_KEY:
84 return "direntry";
85 case UBIFS_XENT_KEY:
86 return "xentry";
87 case UBIFS_DATA_KEY:
88 return "data";
89 case UBIFS_TRUN_KEY:
90 return "truncate";
91 default:
92 return "unknown/invalid key";
93 }
94}
95
96static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
97 char *buffer)
98{
99 char *p = buffer;
100 int type = key_type(c, key);
101
102 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
103 switch (type) {
104 case UBIFS_INO_KEY:
e84461ad 105 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
1e51764a
AB
106 get_key_type(type));
107 break;
108 case UBIFS_DENT_KEY:
109 case UBIFS_XENT_KEY:
e84461ad
AB
110 sprintf(p, "(%lu, %s, %#08x)",
111 (unsigned long)key_inum(c, key),
1e51764a
AB
112 get_key_type(type), key_hash(c, key));
113 break;
114 case UBIFS_DATA_KEY:
e84461ad
AB
115 sprintf(p, "(%lu, %s, %u)",
116 (unsigned long)key_inum(c, key),
1e51764a
AB
117 get_key_type(type), key_block(c, key));
118 break;
119 case UBIFS_TRUN_KEY:
120 sprintf(p, "(%lu, %s)",
e84461ad
AB
121 (unsigned long)key_inum(c, key),
122 get_key_type(type));
1e51764a
AB
123 break;
124 default:
125 sprintf(p, "(bad key type: %#08x, %#08x)",
126 key->u32[0], key->u32[1]);
127 }
128 } else
129 sprintf(p, "bad key format %d", c->key_fmt);
130}
131
132const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
133{
134 /* dbg_lock must be held */
135 sprintf_key(c, key, dbg_key_buf0);
136 return dbg_key_buf0;
137}
138
139const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
140{
141 /* dbg_lock must be held */
142 sprintf_key(c, key, dbg_key_buf1);
143 return dbg_key_buf1;
144}
145
146const char *dbg_ntype(int type)
147{
148 switch (type) {
149 case UBIFS_PAD_NODE:
150 return "padding node";
151 case UBIFS_SB_NODE:
152 return "superblock node";
153 case UBIFS_MST_NODE:
154 return "master node";
155 case UBIFS_REF_NODE:
156 return "reference node";
157 case UBIFS_INO_NODE:
158 return "inode node";
159 case UBIFS_DENT_NODE:
160 return "direntry node";
161 case UBIFS_XENT_NODE:
162 return "xentry node";
163 case UBIFS_DATA_NODE:
164 return "data node";
165 case UBIFS_TRUN_NODE:
166 return "truncate node";
167 case UBIFS_IDX_NODE:
168 return "indexing node";
169 case UBIFS_CS_NODE:
170 return "commit start node";
171 case UBIFS_ORPH_NODE:
172 return "orphan node";
173 default:
174 return "unknown node";
175 }
176}
177
178static const char *dbg_gtype(int type)
179{
180 switch (type) {
181 case UBIFS_NO_NODE_GROUP:
182 return "no node group";
183 case UBIFS_IN_NODE_GROUP:
184 return "in node group";
185 case UBIFS_LAST_OF_NODE_GROUP:
186 return "last of node group";
187 default:
188 return "unknown";
189 }
190}
191
192const char *dbg_cstate(int cmt_state)
193{
194 switch (cmt_state) {
195 case COMMIT_RESTING:
196 return "commit resting";
197 case COMMIT_BACKGROUND:
198 return "background commit requested";
199 case COMMIT_REQUIRED:
200 return "commit required";
201 case COMMIT_RUNNING_BACKGROUND:
202 return "BACKGROUND commit running";
203 case COMMIT_RUNNING_REQUIRED:
204 return "commit running and required";
205 case COMMIT_BROKEN:
206 return "broken commit";
207 default:
208 return "unknown commit state";
209 }
210}
211
212static void dump_ch(const struct ubifs_ch *ch)
213{
214 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
215 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
216 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
217 dbg_ntype(ch->node_type));
218 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
219 dbg_gtype(ch->group_type));
220 printk(KERN_DEBUG "\tsqnum %llu\n",
221 (unsigned long long)le64_to_cpu(ch->sqnum));
222 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
223}
224
225void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
226{
227 const struct ubifs_inode *ui = ubifs_inode(inode);
228
b5e426e9
AB
229 printk(KERN_DEBUG "Dump in-memory inode:");
230 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
231 printk(KERN_DEBUG "\tsize %llu\n",
1e51764a 232 (unsigned long long)i_size_read(inode));
b5e426e9
AB
233 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
234 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
235 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
236 printk(KERN_DEBUG "\tatime %u.%u\n",
1e51764a
AB
237 (unsigned int)inode->i_atime.tv_sec,
238 (unsigned int)inode->i_atime.tv_nsec);
b5e426e9 239 printk(KERN_DEBUG "\tmtime %u.%u\n",
1e51764a
AB
240 (unsigned int)inode->i_mtime.tv_sec,
241 (unsigned int)inode->i_mtime.tv_nsec);
b5e426e9 242 printk(KERN_DEBUG "\tctime %u.%u\n",
1e51764a
AB
243 (unsigned int)inode->i_ctime.tv_sec,
244 (unsigned int)inode->i_ctime.tv_nsec);
b5e426e9
AB
245 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
246 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
247 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
248 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
249 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
250 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
251 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
252 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
253 (unsigned long long)ui->synced_i_size);
254 printk(KERN_DEBUG "\tui_size %llu\n",
255 (unsigned long long)ui->ui_size);
256 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
257 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
258 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
259 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
260 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
1e51764a
AB
261}
262
263void dbg_dump_node(const struct ubifs_info *c, const void *node)
264{
265 int i, n;
266 union ubifs_key key;
267 const struct ubifs_ch *ch = node;
268
269 if (dbg_failure_mode)
270 return;
271
272 /* If the magic is incorrect, just hexdump the first bytes */
273 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
274 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
275 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
276 (void *)node, UBIFS_CH_SZ, 1);
277 return;
278 }
279
280 spin_lock(&dbg_lock);
281 dump_ch(node);
282
283 switch (ch->node_type) {
284 case UBIFS_PAD_NODE:
285 {
286 const struct ubifs_pad_node *pad = node;
287
288 printk(KERN_DEBUG "\tpad_len %u\n",
289 le32_to_cpu(pad->pad_len));
290 break;
291 }
292 case UBIFS_SB_NODE:
293 {
294 const struct ubifs_sb_node *sup = node;
295 unsigned int sup_flags = le32_to_cpu(sup->flags);
296
297 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
298 (int)sup->key_hash, get_key_hash(sup->key_hash));
299 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
300 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
301 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
302 printk(KERN_DEBUG "\t big_lpt %u\n",
303 !!(sup_flags & UBIFS_FLG_BIGLPT));
304 printk(KERN_DEBUG "\tmin_io_size %u\n",
305 le32_to_cpu(sup->min_io_size));
306 printk(KERN_DEBUG "\tleb_size %u\n",
307 le32_to_cpu(sup->leb_size));
308 printk(KERN_DEBUG "\tleb_cnt %u\n",
309 le32_to_cpu(sup->leb_cnt));
310 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
311 le32_to_cpu(sup->max_leb_cnt));
312 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
313 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
314 printk(KERN_DEBUG "\tlog_lebs %u\n",
315 le32_to_cpu(sup->log_lebs));
316 printk(KERN_DEBUG "\tlpt_lebs %u\n",
317 le32_to_cpu(sup->lpt_lebs));
318 printk(KERN_DEBUG "\torph_lebs %u\n",
319 le32_to_cpu(sup->orph_lebs));
320 printk(KERN_DEBUG "\tjhead_cnt %u\n",
321 le32_to_cpu(sup->jhead_cnt));
322 printk(KERN_DEBUG "\tfanout %u\n",
323 le32_to_cpu(sup->fanout));
324 printk(KERN_DEBUG "\tlsave_cnt %u\n",
325 le32_to_cpu(sup->lsave_cnt));
326 printk(KERN_DEBUG "\tdefault_compr %u\n",
327 (int)le16_to_cpu(sup->default_compr));
328 printk(KERN_DEBUG "\trp_size %llu\n",
329 (unsigned long long)le64_to_cpu(sup->rp_size));
330 printk(KERN_DEBUG "\trp_uid %u\n",
331 le32_to_cpu(sup->rp_uid));
332 printk(KERN_DEBUG "\trp_gid %u\n",
333 le32_to_cpu(sup->rp_gid));
334 printk(KERN_DEBUG "\tfmt_version %u\n",
335 le32_to_cpu(sup->fmt_version));
336 printk(KERN_DEBUG "\ttime_gran %u\n",
337 le32_to_cpu(sup->time_gran));
338 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X"
339 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
340 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
341 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
342 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
343 sup->uuid[12], sup->uuid[13], sup->uuid[14],
344 sup->uuid[15]);
345 break;
346 }
347 case UBIFS_MST_NODE:
348 {
349 const struct ubifs_mst_node *mst = node;
350
351 printk(KERN_DEBUG "\thighest_inum %llu\n",
352 (unsigned long long)le64_to_cpu(mst->highest_inum));
353 printk(KERN_DEBUG "\tcommit number %llu\n",
354 (unsigned long long)le64_to_cpu(mst->cmt_no));
355 printk(KERN_DEBUG "\tflags %#x\n",
356 le32_to_cpu(mst->flags));
357 printk(KERN_DEBUG "\tlog_lnum %u\n",
358 le32_to_cpu(mst->log_lnum));
359 printk(KERN_DEBUG "\troot_lnum %u\n",
360 le32_to_cpu(mst->root_lnum));
361 printk(KERN_DEBUG "\troot_offs %u\n",
362 le32_to_cpu(mst->root_offs));
363 printk(KERN_DEBUG "\troot_len %u\n",
364 le32_to_cpu(mst->root_len));
365 printk(KERN_DEBUG "\tgc_lnum %u\n",
366 le32_to_cpu(mst->gc_lnum));
367 printk(KERN_DEBUG "\tihead_lnum %u\n",
368 le32_to_cpu(mst->ihead_lnum));
369 printk(KERN_DEBUG "\tihead_offs %u\n",
370 le32_to_cpu(mst->ihead_offs));
0ecb9529
HH
371 printk(KERN_DEBUG "\tindex_size %llu\n",
372 (unsigned long long)le64_to_cpu(mst->index_size));
1e51764a
AB
373 printk(KERN_DEBUG "\tlpt_lnum %u\n",
374 le32_to_cpu(mst->lpt_lnum));
375 printk(KERN_DEBUG "\tlpt_offs %u\n",
376 le32_to_cpu(mst->lpt_offs));
377 printk(KERN_DEBUG "\tnhead_lnum %u\n",
378 le32_to_cpu(mst->nhead_lnum));
379 printk(KERN_DEBUG "\tnhead_offs %u\n",
380 le32_to_cpu(mst->nhead_offs));
381 printk(KERN_DEBUG "\tltab_lnum %u\n",
382 le32_to_cpu(mst->ltab_lnum));
383 printk(KERN_DEBUG "\tltab_offs %u\n",
384 le32_to_cpu(mst->ltab_offs));
385 printk(KERN_DEBUG "\tlsave_lnum %u\n",
386 le32_to_cpu(mst->lsave_lnum));
387 printk(KERN_DEBUG "\tlsave_offs %u\n",
388 le32_to_cpu(mst->lsave_offs));
389 printk(KERN_DEBUG "\tlscan_lnum %u\n",
390 le32_to_cpu(mst->lscan_lnum));
391 printk(KERN_DEBUG "\tleb_cnt %u\n",
392 le32_to_cpu(mst->leb_cnt));
393 printk(KERN_DEBUG "\tempty_lebs %u\n",
394 le32_to_cpu(mst->empty_lebs));
395 printk(KERN_DEBUG "\tidx_lebs %u\n",
396 le32_to_cpu(mst->idx_lebs));
397 printk(KERN_DEBUG "\ttotal_free %llu\n",
398 (unsigned long long)le64_to_cpu(mst->total_free));
399 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
400 (unsigned long long)le64_to_cpu(mst->total_dirty));
401 printk(KERN_DEBUG "\ttotal_used %llu\n",
402 (unsigned long long)le64_to_cpu(mst->total_used));
403 printk(KERN_DEBUG "\ttotal_dead %llu\n",
404 (unsigned long long)le64_to_cpu(mst->total_dead));
405 printk(KERN_DEBUG "\ttotal_dark %llu\n",
406 (unsigned long long)le64_to_cpu(mst->total_dark));
407 break;
408 }
409 case UBIFS_REF_NODE:
410 {
411 const struct ubifs_ref_node *ref = node;
412
413 printk(KERN_DEBUG "\tlnum %u\n",
414 le32_to_cpu(ref->lnum));
415 printk(KERN_DEBUG "\toffs %u\n",
416 le32_to_cpu(ref->offs));
417 printk(KERN_DEBUG "\tjhead %u\n",
418 le32_to_cpu(ref->jhead));
419 break;
420 }
421 case UBIFS_INO_NODE:
422 {
423 const struct ubifs_ino_node *ino = node;
424
425 key_read(c, &ino->key, &key);
426 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
427 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
428 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
429 printk(KERN_DEBUG "\tsize %llu\n",
430 (unsigned long long)le64_to_cpu(ino->size));
431 printk(KERN_DEBUG "\tnlink %u\n",
432 le32_to_cpu(ino->nlink));
433 printk(KERN_DEBUG "\tatime %lld.%u\n",
434 (long long)le64_to_cpu(ino->atime_sec),
435 le32_to_cpu(ino->atime_nsec));
436 printk(KERN_DEBUG "\tmtime %lld.%u\n",
437 (long long)le64_to_cpu(ino->mtime_sec),
438 le32_to_cpu(ino->mtime_nsec));
439 printk(KERN_DEBUG "\tctime %lld.%u\n",
440 (long long)le64_to_cpu(ino->ctime_sec),
441 le32_to_cpu(ino->ctime_nsec));
442 printk(KERN_DEBUG "\tuid %u\n",
443 le32_to_cpu(ino->uid));
444 printk(KERN_DEBUG "\tgid %u\n",
445 le32_to_cpu(ino->gid));
446 printk(KERN_DEBUG "\tmode %u\n",
447 le32_to_cpu(ino->mode));
448 printk(KERN_DEBUG "\tflags %#x\n",
449 le32_to_cpu(ino->flags));
450 printk(KERN_DEBUG "\txattr_cnt %u\n",
451 le32_to_cpu(ino->xattr_cnt));
452 printk(KERN_DEBUG "\txattr_size %u\n",
453 le32_to_cpu(ino->xattr_size));
454 printk(KERN_DEBUG "\txattr_names %u\n",
455 le32_to_cpu(ino->xattr_names));
456 printk(KERN_DEBUG "\tcompr_type %#x\n",
457 (int)le16_to_cpu(ino->compr_type));
458 printk(KERN_DEBUG "\tdata len %u\n",
459 le32_to_cpu(ino->data_len));
460 break;
461 }
462 case UBIFS_DENT_NODE:
463 case UBIFS_XENT_NODE:
464 {
465 const struct ubifs_dent_node *dent = node;
466 int nlen = le16_to_cpu(dent->nlen);
467
468 key_read(c, &dent->key, &key);
469 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
470 printk(KERN_DEBUG "\tinum %llu\n",
471 (unsigned long long)le64_to_cpu(dent->inum));
472 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
473 printk(KERN_DEBUG "\tnlen %d\n", nlen);
474 printk(KERN_DEBUG "\tname ");
475
476 if (nlen > UBIFS_MAX_NLEN)
477 printk(KERN_DEBUG "(bad name length, not printing, "
478 "bad or corrupted node)");
479 else {
480 for (i = 0; i < nlen && dent->name[i]; i++)
481 printk("%c", dent->name[i]);
482 }
483 printk("\n");
484
485 break;
486 }
487 case UBIFS_DATA_NODE:
488 {
489 const struct ubifs_data_node *dn = node;
490 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
491
492 key_read(c, &dn->key, &key);
493 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
494 printk(KERN_DEBUG "\tsize %u\n",
495 le32_to_cpu(dn->size));
496 printk(KERN_DEBUG "\tcompr_typ %d\n",
497 (int)le16_to_cpu(dn->compr_type));
498 printk(KERN_DEBUG "\tdata size %d\n",
499 dlen);
500 printk(KERN_DEBUG "\tdata:\n");
501 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
502 (void *)&dn->data, dlen, 0);
503 break;
504 }
505 case UBIFS_TRUN_NODE:
506 {
507 const struct ubifs_trun_node *trun = node;
508
509 printk(KERN_DEBUG "\tinum %u\n",
510 le32_to_cpu(trun->inum));
511 printk(KERN_DEBUG "\told_size %llu\n",
512 (unsigned long long)le64_to_cpu(trun->old_size));
513 printk(KERN_DEBUG "\tnew_size %llu\n",
514 (unsigned long long)le64_to_cpu(trun->new_size));
515 break;
516 }
517 case UBIFS_IDX_NODE:
518 {
519 const struct ubifs_idx_node *idx = node;
520
521 n = le16_to_cpu(idx->child_cnt);
522 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
523 printk(KERN_DEBUG "\tlevel %d\n",
524 (int)le16_to_cpu(idx->level));
525 printk(KERN_DEBUG "\tBranches:\n");
526
527 for (i = 0; i < n && i < c->fanout - 1; i++) {
528 const struct ubifs_branch *br;
529
530 br = ubifs_idx_branch(c, idx, i);
531 key_read(c, &br->key, &key);
532 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
533 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
534 le32_to_cpu(br->len), DBGKEY(&key));
535 }
536 break;
537 }
538 case UBIFS_CS_NODE:
539 break;
540 case UBIFS_ORPH_NODE:
541 {
542 const struct ubifs_orph_node *orph = node;
543
544 printk(KERN_DEBUG "\tcommit number %llu\n",
545 (unsigned long long)
546 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
547 printk(KERN_DEBUG "\tlast node flag %llu\n",
548 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
549 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
550 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
551 for (i = 0; i < n; i++)
552 printk(KERN_DEBUG "\t ino %llu\n",
7424bac8 553 (unsigned long long)le64_to_cpu(orph->inos[i]));
1e51764a
AB
554 break;
555 }
556 default:
557 printk(KERN_DEBUG "node type %d was not recognized\n",
558 (int)ch->node_type);
559 }
560 spin_unlock(&dbg_lock);
561}
562
563void dbg_dump_budget_req(const struct ubifs_budget_req *req)
564{
565 spin_lock(&dbg_lock);
566 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
567 req->new_ino, req->dirtied_ino);
568 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
569 req->new_ino_d, req->dirtied_ino_d);
570 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
571 req->new_page, req->dirtied_page);
572 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
573 req->new_dent, req->mod_dent);
574 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
575 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
576 req->data_growth, req->dd_growth);
577 spin_unlock(&dbg_lock);
578}
579
580void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
581{
582 spin_lock(&dbg_lock);
1de94159
AB
583 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
584 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
1e51764a
AB
585 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
586 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
587 lst->total_dirty);
588 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
589 "total_dead %lld\n", lst->total_used, lst->total_dark,
590 lst->total_dead);
591 spin_unlock(&dbg_lock);
592}
593
594void dbg_dump_budg(struct ubifs_info *c)
595{
596 int i;
597 struct rb_node *rb;
598 struct ubifs_bud *bud;
599 struct ubifs_gced_idx_leb *idx_gc;
21a60258 600 long long available, outstanding, free;
1e51764a 601
21a60258 602 ubifs_assert(spin_is_locked(&c->space_lock));
1e51764a 603 spin_lock(&dbg_lock);
1de94159
AB
604 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
605 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
1e51764a
AB
606 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
607 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
608 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
609 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
610 c->freeable_cnt);
611 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
612 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
613 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
614 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
615 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
616 atomic_long_read(&c->dirty_zn_cnt),
617 atomic_long_read(&c->clean_zn_cnt));
618 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
619 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
620 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
621 c->gc_lnum, c->ihead_lnum);
622 for (i = 0; i < c->jhead_cnt; i++)
623 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
624 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
625 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
626 bud = rb_entry(rb, struct ubifs_bud, rb);
627 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
628 }
629 list_for_each_entry(bud, &c->old_buds, list)
630 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
631 list_for_each_entry(idx_gc, &c->idx_gc, list)
632 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
633 idx_gc->lnum, idx_gc->unmap);
634 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
21a60258
AB
635
636 /* Print budgeting predictions */
637 available = ubifs_calc_available(c, c->min_idx_lebs);
638 outstanding = c->budg_data_growth + c->budg_dd_growth;
639 if (available > outstanding)
640 free = ubifs_reported_space(c, available - outstanding);
641 else
642 free = 0;
643 printk(KERN_DEBUG "Budgeting predictions:\n");
644 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
645 available, outstanding, free);
1e51764a
AB
646 spin_unlock(&dbg_lock);
647}
648
649void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
650{
651 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
652 "flags %#x\n", lp->lnum, lp->free, lp->dirty,
653 c->leb_size - lp->free - lp->dirty, lp->flags);
654}
655
656void dbg_dump_lprops(struct ubifs_info *c)
657{
658 int lnum, err;
659 struct ubifs_lprops lp;
660 struct ubifs_lp_stats lst;
661
2ba5f7ae
AB
662 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
663 current->pid);
1e51764a
AB
664 ubifs_get_lp_stats(c, &lst);
665 dbg_dump_lstats(&lst);
666
667 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
668 err = ubifs_read_one_lp(c, lnum, &lp);
669 if (err)
670 ubifs_err("cannot read lprops for LEB %d", lnum);
671
672 dbg_dump_lprop(c, &lp);
673 }
2ba5f7ae
AB
674 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
675 current->pid);
1e51764a
AB
676}
677
73944a6d
AH
678void dbg_dump_lpt_info(struct ubifs_info *c)
679{
680 int i;
681
682 spin_lock(&dbg_lock);
2ba5f7ae 683 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
73944a6d
AH
684 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
685 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
686 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
687 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
688 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
689 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
690 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
691 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
692 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
693 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
694 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
695 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
696 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
697 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
698 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
699 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
700 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
701 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
702 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
703 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
704 c->nhead_lnum, c->nhead_offs);
705 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
706 if (c->big_lpt)
707 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
708 c->lsave_lnum, c->lsave_offs);
709 for (i = 0; i < c->lpt_lebs; i++)
710 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
711 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
712 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
713 spin_unlock(&dbg_lock);
714}
715
1e51764a
AB
716void dbg_dump_leb(const struct ubifs_info *c, int lnum)
717{
718 struct ubifs_scan_leb *sleb;
719 struct ubifs_scan_node *snod;
720
721 if (dbg_failure_mode)
722 return;
723
2ba5f7ae
AB
724 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
725 current->pid, lnum);
17c2f9f8 726 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
1e51764a
AB
727 if (IS_ERR(sleb)) {
728 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
729 return;
730 }
731
732 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
733 sleb->nodes_cnt, sleb->endpt);
734
735 list_for_each_entry(snod, &sleb->nodes, list) {
736 cond_resched();
737 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
738 snod->offs, snod->len);
739 dbg_dump_node(c, snod->node);
740 }
741
2ba5f7ae
AB
742 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
743 current->pid, lnum);
1e51764a
AB
744 ubifs_scan_destroy(sleb);
745 return;
746}
747
748void dbg_dump_znode(const struct ubifs_info *c,
749 const struct ubifs_znode *znode)
750{
751 int n;
752 const struct ubifs_zbranch *zbr;
753
754 spin_lock(&dbg_lock);
755 if (znode->parent)
756 zbr = &znode->parent->zbranch[znode->iip];
757 else
758 zbr = &c->zroot;
759
760 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
761 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
762 zbr->len, znode->parent, znode->iip, znode->level,
763 znode->child_cnt, znode->flags);
764
765 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
766 spin_unlock(&dbg_lock);
767 return;
768 }
769
770 printk(KERN_DEBUG "zbranches:\n");
771 for (n = 0; n < znode->child_cnt; n++) {
772 zbr = &znode->zbranch[n];
773 if (znode->level > 0)
774 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
775 "%s\n", n, zbr->znode, zbr->lnum,
776 zbr->offs, zbr->len,
777 DBGKEY(&zbr->key));
778 else
779 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
780 "%s\n", n, zbr->znode, zbr->lnum,
781 zbr->offs, zbr->len,
782 DBGKEY(&zbr->key));
783 }
784 spin_unlock(&dbg_lock);
785}
786
787void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
788{
789 int i;
790
2ba5f7ae 791 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
1de94159 792 current->pid, cat, heap->cnt);
1e51764a
AB
793 for (i = 0; i < heap->cnt; i++) {
794 struct ubifs_lprops *lprops = heap->arr[i];
795
796 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
797 "flags %d\n", i, lprops->lnum, lprops->hpos,
798 lprops->free, lprops->dirty, lprops->flags);
799 }
2ba5f7ae 800 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
1e51764a
AB
801}
802
803void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
804 struct ubifs_nnode *parent, int iip)
805{
806 int i;
807
2ba5f7ae 808 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
1e51764a
AB
809 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
810 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
811 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
812 pnode->flags, iip, pnode->level, pnode->num);
813 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
814 struct ubifs_lprops *lp = &pnode->lprops[i];
815
816 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
817 i, lp->free, lp->dirty, lp->flags, lp->lnum);
818 }
819}
820
821void dbg_dump_tnc(struct ubifs_info *c)
822{
823 struct ubifs_znode *znode;
824 int level;
825
826 printk(KERN_DEBUG "\n");
2ba5f7ae 827 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1e51764a
AB
828 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
829 level = znode->level;
830 printk(KERN_DEBUG "== Level %d ==\n", level);
831 while (znode) {
832 if (level != znode->level) {
833 level = znode->level;
834 printk(KERN_DEBUG "== Level %d ==\n", level);
835 }
836 dbg_dump_znode(c, znode);
837 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
838 }
2ba5f7ae 839 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1e51764a
AB
840}
841
842static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
843 void *priv)
844{
845 dbg_dump_znode(c, znode);
846 return 0;
847}
848
849/**
850 * dbg_dump_index - dump the on-flash index.
851 * @c: UBIFS file-system description object
852 *
853 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
854 * which dumps only in-memory znodes and does not read znodes which from flash.
855 */
856void dbg_dump_index(struct ubifs_info *c)
857{
858 dbg_walk_index(c, NULL, dump_znode, NULL);
859}
860
861/**
862 * dbg_check_synced_i_size - check synchronized inode size.
863 * @inode: inode to check
864 *
865 * If inode is clean, synchronized inode size has to be equivalent to current
866 * inode size. This function has to be called only for locked inodes (@i_mutex
867 * has to be locked). Returns %0 if synchronized inode size if correct, and
868 * %-EINVAL if not.
869 */
870int dbg_check_synced_i_size(struct inode *inode)
871{
872 int err = 0;
873 struct ubifs_inode *ui = ubifs_inode(inode);
874
875 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
876 return 0;
877 if (!S_ISREG(inode->i_mode))
878 return 0;
879
880 mutex_lock(&ui->ui_mutex);
881 spin_lock(&ui->ui_lock);
882 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
883 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
884 "is clean", ui->ui_size, ui->synced_i_size);
885 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
886 inode->i_mode, i_size_read(inode));
887 dbg_dump_stack();
888 err = -EINVAL;
889 }
890 spin_unlock(&ui->ui_lock);
891 mutex_unlock(&ui->ui_mutex);
892 return err;
893}
894
895/*
896 * dbg_check_dir - check directory inode size and link count.
897 * @c: UBIFS file-system description object
898 * @dir: the directory to calculate size for
899 * @size: the result is returned here
900 *
901 * This function makes sure that directory size and link count are correct.
902 * Returns zero in case of success and a negative error code in case of
903 * failure.
904 *
905 * Note, it is good idea to make sure the @dir->i_mutex is locked before
906 * calling this function.
907 */
908int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
909{
910 unsigned int nlink = 2;
911 union ubifs_key key;
912 struct ubifs_dent_node *dent, *pdent = NULL;
913 struct qstr nm = { .name = NULL };
914 loff_t size = UBIFS_INO_NODE_SZ;
915
916 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
917 return 0;
918
919 if (!S_ISDIR(dir->i_mode))
920 return 0;
921
922 lowest_dent_key(c, &key, dir->i_ino);
923 while (1) {
924 int err;
925
926 dent = ubifs_tnc_next_ent(c, &key, &nm);
927 if (IS_ERR(dent)) {
928 err = PTR_ERR(dent);
929 if (err == -ENOENT)
930 break;
931 return err;
932 }
933
934 nm.name = dent->name;
935 nm.len = le16_to_cpu(dent->nlen);
936 size += CALC_DENT_SIZE(nm.len);
937 if (dent->type == UBIFS_ITYPE_DIR)
938 nlink += 1;
939 kfree(pdent);
940 pdent = dent;
941 key_read(c, &dent->key, &key);
942 }
943 kfree(pdent);
944
945 if (i_size_read(dir) != size) {
946 ubifs_err("directory inode %lu has size %llu, "
947 "but calculated size is %llu", dir->i_ino,
948 (unsigned long long)i_size_read(dir),
949 (unsigned long long)size);
950 dump_stack();
951 return -EINVAL;
952 }
953 if (dir->i_nlink != nlink) {
954 ubifs_err("directory inode %lu has nlink %u, but calculated "
955 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
956 dump_stack();
957 return -EINVAL;
958 }
959
960 return 0;
961}
962
963/**
964 * dbg_check_key_order - make sure that colliding keys are properly ordered.
965 * @c: UBIFS file-system description object
966 * @zbr1: first zbranch
967 * @zbr2: following zbranch
968 *
969 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
970 * names of the direntries/xentries which are referred by the keys. This
971 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
972 * sure the name of direntry/xentry referred by @zbr1 is less than
973 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
974 * and a negative error code in case of failure.
975 */
976static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
977 struct ubifs_zbranch *zbr2)
978{
979 int err, nlen1, nlen2, cmp;
980 struct ubifs_dent_node *dent1, *dent2;
981 union ubifs_key key;
982
983 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
984 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
985 if (!dent1)
986 return -ENOMEM;
987 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
988 if (!dent2) {
989 err = -ENOMEM;
990 goto out_free;
991 }
992
993 err = ubifs_tnc_read_node(c, zbr1, dent1);
994 if (err)
995 goto out_free;
996 err = ubifs_validate_entry(c, dent1);
997 if (err)
998 goto out_free;
999
1000 err = ubifs_tnc_read_node(c, zbr2, dent2);
1001 if (err)
1002 goto out_free;
1003 err = ubifs_validate_entry(c, dent2);
1004 if (err)
1005 goto out_free;
1006
1007 /* Make sure node keys are the same as in zbranch */
1008 err = 1;
1009 key_read(c, &dent1->key, &key);
1010 if (keys_cmp(c, &zbr1->key, &key)) {
552ff317
AB
1011 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1012 zbr1->offs, DBGKEY(&key));
1013 ubifs_err("but it should have key %s according to tnc",
2ba5f7ae
AB
1014 DBGKEY(&zbr1->key));
1015 dbg_dump_node(c, dent1);
552ff317 1016 goto out_free;
1e51764a
AB
1017 }
1018
1019 key_read(c, &dent2->key, &key);
1020 if (keys_cmp(c, &zbr2->key, &key)) {
552ff317
AB
1021 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1022 zbr1->offs, DBGKEY(&key));
1023 ubifs_err("but it should have key %s according to tnc",
2ba5f7ae
AB
1024 DBGKEY(&zbr2->key));
1025 dbg_dump_node(c, dent2);
552ff317 1026 goto out_free;
1e51764a
AB
1027 }
1028
1029 nlen1 = le16_to_cpu(dent1->nlen);
1030 nlen2 = le16_to_cpu(dent2->nlen);
1031
1032 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1033 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1034 err = 0;
1035 goto out_free;
1036 }
1037 if (cmp == 0 && nlen1 == nlen2)
552ff317 1038 ubifs_err("2 xent/dent nodes with the same name");
1e51764a 1039 else
552ff317 1040 ubifs_err("bad order of colliding key %s",
1e51764a
AB
1041 DBGKEY(&key));
1042
552ff317 1043 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1e51764a 1044 dbg_dump_node(c, dent1);
552ff317 1045 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1e51764a
AB
1046 dbg_dump_node(c, dent2);
1047
1048out_free:
1049 kfree(dent2);
1050 kfree(dent1);
1051 return err;
1052}
1053
1054/**
1055 * dbg_check_znode - check if znode is all right.
1056 * @c: UBIFS file-system description object
1057 * @zbr: zbranch which points to this znode
1058 *
1059 * This function makes sure that znode referred to by @zbr is all right.
1060 * Returns zero if it is, and %-EINVAL if it is not.
1061 */
1062static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1063{
1064 struct ubifs_znode *znode = zbr->znode;
1065 struct ubifs_znode *zp = znode->parent;
1066 int n, err, cmp;
1067
1068 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1069 err = 1;
1070 goto out;
1071 }
1072 if (znode->level < 0) {
1073 err = 2;
1074 goto out;
1075 }
1076 if (znode->iip < 0 || znode->iip >= c->fanout) {
1077 err = 3;
1078 goto out;
1079 }
1080
1081 if (zbr->len == 0)
1082 /* Only dirty zbranch may have no on-flash nodes */
1083 if (!ubifs_zn_dirty(znode)) {
1084 err = 4;
1085 goto out;
1086 }
1087
1088 if (ubifs_zn_dirty(znode)) {
1089 /*
1090 * If znode is dirty, its parent has to be dirty as well. The
1091 * order of the operation is important, so we have to have
1092 * memory barriers.
1093 */
1094 smp_mb();
1095 if (zp && !ubifs_zn_dirty(zp)) {
1096 /*
1097 * The dirty flag is atomic and is cleared outside the
1098 * TNC mutex, so znode's dirty flag may now have
1099 * been cleared. The child is always cleared before the
1100 * parent, so we just need to check again.
1101 */
1102 smp_mb();
1103 if (ubifs_zn_dirty(znode)) {
1104 err = 5;
1105 goto out;
1106 }
1107 }
1108 }
1109
1110 if (zp) {
1111 const union ubifs_key *min, *max;
1112
1113 if (znode->level != zp->level - 1) {
1114 err = 6;
1115 goto out;
1116 }
1117
1118 /* Make sure the 'parent' pointer in our znode is correct */
1119 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1120 if (!err) {
1121 /* This zbranch does not exist in the parent */
1122 err = 7;
1123 goto out;
1124 }
1125
1126 if (znode->iip >= zp->child_cnt) {
1127 err = 8;
1128 goto out;
1129 }
1130
1131 if (znode->iip != n) {
1132 /* This may happen only in case of collisions */
1133 if (keys_cmp(c, &zp->zbranch[n].key,
1134 &zp->zbranch[znode->iip].key)) {
1135 err = 9;
1136 goto out;
1137 }
1138 n = znode->iip;
1139 }
1140
1141 /*
1142 * Make sure that the first key in our znode is greater than or
1143 * equal to the key in the pointing zbranch.
1144 */
1145 min = &zbr->key;
1146 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1147 if (cmp == 1) {
1148 err = 10;
1149 goto out;
1150 }
1151
1152 if (n + 1 < zp->child_cnt) {
1153 max = &zp->zbranch[n + 1].key;
1154
1155 /*
1156 * Make sure the last key in our znode is less or
1157 * equivalent than the the key in zbranch which goes
1158 * after our pointing zbranch.
1159 */
1160 cmp = keys_cmp(c, max,
1161 &znode->zbranch[znode->child_cnt - 1].key);
1162 if (cmp == -1) {
1163 err = 11;
1164 goto out;
1165 }
1166 }
1167 } else {
1168 /* This may only be root znode */
1169 if (zbr != &c->zroot) {
1170 err = 12;
1171 goto out;
1172 }
1173 }
1174
1175 /*
1176 * Make sure that next key is greater or equivalent then the previous
1177 * one.
1178 */
1179 for (n = 1; n < znode->child_cnt; n++) {
1180 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1181 &znode->zbranch[n].key);
1182 if (cmp > 0) {
1183 err = 13;
1184 goto out;
1185 }
1186 if (cmp == 0) {
1187 /* This can only be keys with colliding hash */
1188 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1189 err = 14;
1190 goto out;
1191 }
1192
1193 if (znode->level != 0 || c->replaying)
1194 continue;
1195
1196 /*
1197 * Colliding keys should follow binary order of
1198 * corresponding xentry/dentry names.
1199 */
1200 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1201 &znode->zbranch[n]);
1202 if (err < 0)
1203 return err;
1204 if (err) {
1205 err = 15;
1206 goto out;
1207 }
1208 }
1209 }
1210
1211 for (n = 0; n < znode->child_cnt; n++) {
1212 if (!znode->zbranch[n].znode &&
1213 (znode->zbranch[n].lnum == 0 ||
1214 znode->zbranch[n].len == 0)) {
1215 err = 16;
1216 goto out;
1217 }
1218
1219 if (znode->zbranch[n].lnum != 0 &&
1220 znode->zbranch[n].len == 0) {
1221 err = 17;
1222 goto out;
1223 }
1224
1225 if (znode->zbranch[n].lnum == 0 &&
1226 znode->zbranch[n].len != 0) {
1227 err = 18;
1228 goto out;
1229 }
1230
1231 if (znode->zbranch[n].lnum == 0 &&
1232 znode->zbranch[n].offs != 0) {
1233 err = 19;
1234 goto out;
1235 }
1236
1237 if (znode->level != 0 && znode->zbranch[n].znode)
1238 if (znode->zbranch[n].znode->parent != znode) {
1239 err = 20;
1240 goto out;
1241 }
1242 }
1243
1244 return 0;
1245
1246out:
1247 ubifs_err("failed, error %d", err);
1248 ubifs_msg("dump of the znode");
1249 dbg_dump_znode(c, znode);
1250 if (zp) {
1251 ubifs_msg("dump of the parent znode");
1252 dbg_dump_znode(c, zp);
1253 }
1254 dump_stack();
1255 return -EINVAL;
1256}
1257
1258/**
1259 * dbg_check_tnc - check TNC tree.
1260 * @c: UBIFS file-system description object
1261 * @extra: do extra checks that are possible at start commit
1262 *
1263 * This function traverses whole TNC tree and checks every znode. Returns zero
1264 * if everything is all right and %-EINVAL if something is wrong with TNC.
1265 */
1266int dbg_check_tnc(struct ubifs_info *c, int extra)
1267{
1268 struct ubifs_znode *znode;
1269 long clean_cnt = 0, dirty_cnt = 0;
1270 int err, last;
1271
1272 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1273 return 0;
1274
1275 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1276 if (!c->zroot.znode)
1277 return 0;
1278
1279 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1280 while (1) {
1281 struct ubifs_znode *prev;
1282 struct ubifs_zbranch *zbr;
1283
1284 if (!znode->parent)
1285 zbr = &c->zroot;
1286 else
1287 zbr = &znode->parent->zbranch[znode->iip];
1288
1289 err = dbg_check_znode(c, zbr);
1290 if (err)
1291 return err;
1292
1293 if (extra) {
1294 if (ubifs_zn_dirty(znode))
1295 dirty_cnt += 1;
1296 else
1297 clean_cnt += 1;
1298 }
1299
1300 prev = znode;
1301 znode = ubifs_tnc_postorder_next(znode);
1302 if (!znode)
1303 break;
1304
1305 /*
1306 * If the last key of this znode is equivalent to the first key
1307 * of the next znode (collision), then check order of the keys.
1308 */
1309 last = prev->child_cnt - 1;
1310 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1311 !keys_cmp(c, &prev->zbranch[last].key,
1312 &znode->zbranch[0].key)) {
1313 err = dbg_check_key_order(c, &prev->zbranch[last],
1314 &znode->zbranch[0]);
1315 if (err < 0)
1316 return err;
1317 if (err) {
1318 ubifs_msg("first znode");
1319 dbg_dump_znode(c, prev);
1320 ubifs_msg("second znode");
1321 dbg_dump_znode(c, znode);
1322 return -EINVAL;
1323 }
1324 }
1325 }
1326
1327 if (extra) {
1328 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1329 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1330 atomic_long_read(&c->clean_zn_cnt),
1331 clean_cnt);
1332 return -EINVAL;
1333 }
1334 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1335 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1336 atomic_long_read(&c->dirty_zn_cnt),
1337 dirty_cnt);
1338 return -EINVAL;
1339 }
1340 }
1341
1342 return 0;
1343}
1344
1345/**
1346 * dbg_walk_index - walk the on-flash index.
1347 * @c: UBIFS file-system description object
1348 * @leaf_cb: called for each leaf node
1349 * @znode_cb: called for each indexing node
1350 * @priv: private date which is passed to callbacks
1351 *
1352 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1353 * node and @znode_cb for each indexing node. Returns zero in case of success
1354 * and a negative error code in case of failure.
1355 *
1356 * It would be better if this function removed every znode it pulled to into
1357 * the TNC, so that the behavior more closely matched the non-debugging
1358 * behavior.
1359 */
1360int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1361 dbg_znode_callback znode_cb, void *priv)
1362{
1363 int err;
1364 struct ubifs_zbranch *zbr;
1365 struct ubifs_znode *znode, *child;
1366
1367 mutex_lock(&c->tnc_mutex);
1368 /* If the root indexing node is not in TNC - pull it */
1369 if (!c->zroot.znode) {
1370 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1371 if (IS_ERR(c->zroot.znode)) {
1372 err = PTR_ERR(c->zroot.znode);
1373 c->zroot.znode = NULL;
1374 goto out_unlock;
1375 }
1376 }
1377
1378 /*
1379 * We are going to traverse the indexing tree in the postorder manner.
1380 * Go down and find the leftmost indexing node where we are going to
1381 * start from.
1382 */
1383 znode = c->zroot.znode;
1384 while (znode->level > 0) {
1385 zbr = &znode->zbranch[0];
1386 child = zbr->znode;
1387 if (!child) {
1388 child = ubifs_load_znode(c, zbr, znode, 0);
1389 if (IS_ERR(child)) {
1390 err = PTR_ERR(child);
1391 goto out_unlock;
1392 }
1393 zbr->znode = child;
1394 }
1395
1396 znode = child;
1397 }
1398
1399 /* Iterate over all indexing nodes */
1400 while (1) {
1401 int idx;
1402
1403 cond_resched();
1404
1405 if (znode_cb) {
1406 err = znode_cb(c, znode, priv);
1407 if (err) {
1408 ubifs_err("znode checking function returned "
1409 "error %d", err);
1410 dbg_dump_znode(c, znode);
1411 goto out_dump;
1412 }
1413 }
1414 if (leaf_cb && znode->level == 0) {
1415 for (idx = 0; idx < znode->child_cnt; idx++) {
1416 zbr = &znode->zbranch[idx];
1417 err = leaf_cb(c, zbr, priv);
1418 if (err) {
1419 ubifs_err("leaf checking function "
1420 "returned error %d, for leaf "
1421 "at LEB %d:%d",
1422 err, zbr->lnum, zbr->offs);
1423 goto out_dump;
1424 }
1425 }
1426 }
1427
1428 if (!znode->parent)
1429 break;
1430
1431 idx = znode->iip + 1;
1432 znode = znode->parent;
1433 if (idx < znode->child_cnt) {
1434 /* Switch to the next index in the parent */
1435 zbr = &znode->zbranch[idx];
1436 child = zbr->znode;
1437 if (!child) {
1438 child = ubifs_load_znode(c, zbr, znode, idx);
1439 if (IS_ERR(child)) {
1440 err = PTR_ERR(child);
1441 goto out_unlock;
1442 }
1443 zbr->znode = child;
1444 }
1445 znode = child;
1446 } else
1447 /*
1448 * This is the last child, switch to the parent and
1449 * continue.
1450 */
1451 continue;
1452
1453 /* Go to the lowest leftmost znode in the new sub-tree */
1454 while (znode->level > 0) {
1455 zbr = &znode->zbranch[0];
1456 child = zbr->znode;
1457 if (!child) {
1458 child = ubifs_load_znode(c, zbr, znode, 0);
1459 if (IS_ERR(child)) {
1460 err = PTR_ERR(child);
1461 goto out_unlock;
1462 }
1463 zbr->znode = child;
1464 }
1465 znode = child;
1466 }
1467 }
1468
1469 mutex_unlock(&c->tnc_mutex);
1470 return 0;
1471
1472out_dump:
1473 if (znode->parent)
1474 zbr = &znode->parent->zbranch[znode->iip];
1475 else
1476 zbr = &c->zroot;
1477 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1478 dbg_dump_znode(c, znode);
1479out_unlock:
1480 mutex_unlock(&c->tnc_mutex);
1481 return err;
1482}
1483
1484/**
1485 * add_size - add znode size to partially calculated index size.
1486 * @c: UBIFS file-system description object
1487 * @znode: znode to add size for
1488 * @priv: partially calculated index size
1489 *
1490 * This is a helper function for 'dbg_check_idx_size()' which is called for
1491 * every indexing node and adds its size to the 'long long' variable pointed to
1492 * by @priv.
1493 */
1494static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1495{
1496 long long *idx_size = priv;
1497 int add;
1498
1499 add = ubifs_idx_node_sz(c, znode->child_cnt);
1500 add = ALIGN(add, 8);
1501 *idx_size += add;
1502 return 0;
1503}
1504
1505/**
1506 * dbg_check_idx_size - check index size.
1507 * @c: UBIFS file-system description object
1508 * @idx_size: size to check
1509 *
1510 * This function walks the UBIFS index, calculates its size and checks that the
1511 * size is equivalent to @idx_size. Returns zero in case of success and a
1512 * negative error code in case of failure.
1513 */
1514int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1515{
1516 int err;
1517 long long calc = 0;
1518
1519 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1520 return 0;
1521
1522 err = dbg_walk_index(c, NULL, add_size, &calc);
1523 if (err) {
1524 ubifs_err("error %d while walking the index", err);
1525 return err;
1526 }
1527
1528 if (calc != idx_size) {
1529 ubifs_err("index size check failed: calculated size is %lld, "
1530 "should be %lld", calc, idx_size);
1531 dump_stack();
1532 return -EINVAL;
1533 }
1534
1535 return 0;
1536}
1537
1538/**
1539 * struct fsck_inode - information about an inode used when checking the file-system.
1540 * @rb: link in the RB-tree of inodes
1541 * @inum: inode number
1542 * @mode: inode type, permissions, etc
1543 * @nlink: inode link count
1544 * @xattr_cnt: count of extended attributes
1545 * @references: how many directory/xattr entries refer this inode (calculated
1546 * while walking the index)
1547 * @calc_cnt: for directory inode count of child directories
1548 * @size: inode size (read from on-flash inode)
1549 * @xattr_sz: summary size of all extended attributes (read from on-flash
1550 * inode)
1551 * @calc_sz: for directories calculated directory size
1552 * @calc_xcnt: count of extended attributes
1553 * @calc_xsz: calculated summary size of all extended attributes
1554 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1555 * inode (read from on-flash inode)
1556 * @calc_xnms: calculated sum of lengths of all extended attribute names
1557 */
1558struct fsck_inode {
1559 struct rb_node rb;
1560 ino_t inum;
1561 umode_t mode;
1562 unsigned int nlink;
1563 unsigned int xattr_cnt;
1564 int references;
1565 int calc_cnt;
1566 long long size;
1567 unsigned int xattr_sz;
1568 long long calc_sz;
1569 long long calc_xcnt;
1570 long long calc_xsz;
1571 unsigned int xattr_nms;
1572 long long calc_xnms;
1573};
1574
1575/**
1576 * struct fsck_data - private FS checking information.
1577 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1578 */
1579struct fsck_data {
1580 struct rb_root inodes;
1581};
1582
1583/**
1584 * add_inode - add inode information to RB-tree of inodes.
1585 * @c: UBIFS file-system description object
1586 * @fsckd: FS checking information
1587 * @ino: raw UBIFS inode to add
1588 *
1589 * This is a helper function for 'check_leaf()' which adds information about
1590 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1591 * case of success and a negative error code in case of failure.
1592 */
1593static struct fsck_inode *add_inode(struct ubifs_info *c,
1594 struct fsck_data *fsckd,
1595 struct ubifs_ino_node *ino)
1596{
1597 struct rb_node **p, *parent = NULL;
1598 struct fsck_inode *fscki;
1599 ino_t inum = key_inum_flash(c, &ino->key);
1600
1601 p = &fsckd->inodes.rb_node;
1602 while (*p) {
1603 parent = *p;
1604 fscki = rb_entry(parent, struct fsck_inode, rb);
1605 if (inum < fscki->inum)
1606 p = &(*p)->rb_left;
1607 else if (inum > fscki->inum)
1608 p = &(*p)->rb_right;
1609 else
1610 return fscki;
1611 }
1612
1613 if (inum > c->highest_inum) {
1614 ubifs_err("too high inode number, max. is %lu",
e84461ad 1615 (unsigned long)c->highest_inum);
1e51764a
AB
1616 return ERR_PTR(-EINVAL);
1617 }
1618
1619 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1620 if (!fscki)
1621 return ERR_PTR(-ENOMEM);
1622
1623 fscki->inum = inum;
1624 fscki->nlink = le32_to_cpu(ino->nlink);
1625 fscki->size = le64_to_cpu(ino->size);
1626 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1627 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1628 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1629 fscki->mode = le32_to_cpu(ino->mode);
1630 if (S_ISDIR(fscki->mode)) {
1631 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1632 fscki->calc_cnt = 2;
1633 }
1634 rb_link_node(&fscki->rb, parent, p);
1635 rb_insert_color(&fscki->rb, &fsckd->inodes);
1636 return fscki;
1637}
1638
1639/**
1640 * search_inode - search inode in the RB-tree of inodes.
1641 * @fsckd: FS checking information
1642 * @inum: inode number to search
1643 *
1644 * This is a helper function for 'check_leaf()' which searches inode @inum in
1645 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1646 * the inode was not found.
1647 */
1648static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1649{
1650 struct rb_node *p;
1651 struct fsck_inode *fscki;
1652
1653 p = fsckd->inodes.rb_node;
1654 while (p) {
1655 fscki = rb_entry(p, struct fsck_inode, rb);
1656 if (inum < fscki->inum)
1657 p = p->rb_left;
1658 else if (inum > fscki->inum)
1659 p = p->rb_right;
1660 else
1661 return fscki;
1662 }
1663 return NULL;
1664}
1665
1666/**
1667 * read_add_inode - read inode node and add it to RB-tree of inodes.
1668 * @c: UBIFS file-system description object
1669 * @fsckd: FS checking information
1670 * @inum: inode number to read
1671 *
1672 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1673 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1674 * information pointer in case of success and a negative error code in case of
1675 * failure.
1676 */
1677static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1678 struct fsck_data *fsckd, ino_t inum)
1679{
1680 int n, err;
1681 union ubifs_key key;
1682 struct ubifs_znode *znode;
1683 struct ubifs_zbranch *zbr;
1684 struct ubifs_ino_node *ino;
1685 struct fsck_inode *fscki;
1686
1687 fscki = search_inode(fsckd, inum);
1688 if (fscki)
1689 return fscki;
1690
1691 ino_key_init(c, &key, inum);
1692 err = ubifs_lookup_level0(c, &key, &znode, &n);
1693 if (!err) {
e84461ad 1694 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1e51764a
AB
1695 return ERR_PTR(-ENOENT);
1696 } else if (err < 0) {
e84461ad
AB
1697 ubifs_err("error %d while looking up inode %lu",
1698 err, (unsigned long)inum);
1e51764a
AB
1699 return ERR_PTR(err);
1700 }
1701
1702 zbr = &znode->zbranch[n];
1703 if (zbr->len < UBIFS_INO_NODE_SZ) {
e84461ad
AB
1704 ubifs_err("bad node %lu node length %d",
1705 (unsigned long)inum, zbr->len);
1e51764a
AB
1706 return ERR_PTR(-EINVAL);
1707 }
1708
1709 ino = kmalloc(zbr->len, GFP_NOFS);
1710 if (!ino)
1711 return ERR_PTR(-ENOMEM);
1712
1713 err = ubifs_tnc_read_node(c, zbr, ino);
1714 if (err) {
1715 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1716 zbr->lnum, zbr->offs, err);
1717 kfree(ino);
1718 return ERR_PTR(err);
1719 }
1720
1721 fscki = add_inode(c, fsckd, ino);
1722 kfree(ino);
1723 if (IS_ERR(fscki)) {
1724 ubifs_err("error %ld while adding inode %lu node",
e84461ad 1725 PTR_ERR(fscki), (unsigned long)inum);
1e51764a
AB
1726 return fscki;
1727 }
1728
1729 return fscki;
1730}
1731
1732/**
1733 * check_leaf - check leaf node.
1734 * @c: UBIFS file-system description object
1735 * @zbr: zbranch of the leaf node to check
1736 * @priv: FS checking information
1737 *
1738 * This is a helper function for 'dbg_check_filesystem()' which is called for
1739 * every single leaf node while walking the indexing tree. It checks that the
1740 * leaf node referred from the indexing tree exists, has correct CRC, and does
1741 * some other basic validation. This function is also responsible for building
1742 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1743 * calculates reference count, size, etc for each inode in order to later
1744 * compare them to the information stored inside the inodes and detect possible
1745 * inconsistencies. Returns zero in case of success and a negative error code
1746 * in case of failure.
1747 */
1748static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1749 void *priv)
1750{
1751 ino_t inum;
1752 void *node;
1753 struct ubifs_ch *ch;
1754 int err, type = key_type(c, &zbr->key);
1755 struct fsck_inode *fscki;
1756
1757 if (zbr->len < UBIFS_CH_SZ) {
1758 ubifs_err("bad leaf length %d (LEB %d:%d)",
1759 zbr->len, zbr->lnum, zbr->offs);
1760 return -EINVAL;
1761 }
1762
1763 node = kmalloc(zbr->len, GFP_NOFS);
1764 if (!node)
1765 return -ENOMEM;
1766
1767 err = ubifs_tnc_read_node(c, zbr, node);
1768 if (err) {
1769 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1770 zbr->lnum, zbr->offs, err);
1771 goto out_free;
1772 }
1773
1774 /* If this is an inode node, add it to RB-tree of inodes */
1775 if (type == UBIFS_INO_KEY) {
1776 fscki = add_inode(c, priv, node);
1777 if (IS_ERR(fscki)) {
1778 err = PTR_ERR(fscki);
1779 ubifs_err("error %d while adding inode node", err);
1780 goto out_dump;
1781 }
1782 goto out;
1783 }
1784
1785 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1786 type != UBIFS_DATA_KEY) {
1787 ubifs_err("unexpected node type %d at LEB %d:%d",
1788 type, zbr->lnum, zbr->offs);
1789 err = -EINVAL;
1790 goto out_free;
1791 }
1792
1793 ch = node;
1794 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1795 ubifs_err("too high sequence number, max. is %llu",
1796 c->max_sqnum);
1797 err = -EINVAL;
1798 goto out_dump;
1799 }
1800
1801 if (type == UBIFS_DATA_KEY) {
1802 long long blk_offs;
1803 struct ubifs_data_node *dn = node;
1804
1805 /*
1806 * Search the inode node this data node belongs to and insert
1807 * it to the RB-tree of inodes.
1808 */
1809 inum = key_inum_flash(c, &dn->key);
1810 fscki = read_add_inode(c, priv, inum);
1811 if (IS_ERR(fscki)) {
1812 err = PTR_ERR(fscki);
1813 ubifs_err("error %d while processing data node and "
e84461ad
AB
1814 "trying to find inode node %lu",
1815 err, (unsigned long)inum);
1e51764a
AB
1816 goto out_dump;
1817 }
1818
1819 /* Make sure the data node is within inode size */
1820 blk_offs = key_block_flash(c, &dn->key);
1821 blk_offs <<= UBIFS_BLOCK_SHIFT;
1822 blk_offs += le32_to_cpu(dn->size);
1823 if (blk_offs > fscki->size) {
1824 ubifs_err("data node at LEB %d:%d is not within inode "
1825 "size %lld", zbr->lnum, zbr->offs,
1826 fscki->size);
1827 err = -EINVAL;
1828 goto out_dump;
1829 }
1830 } else {
1831 int nlen;
1832 struct ubifs_dent_node *dent = node;
1833 struct fsck_inode *fscki1;
1834
1835 err = ubifs_validate_entry(c, dent);
1836 if (err)
1837 goto out_dump;
1838
1839 /*
1840 * Search the inode node this entry refers to and the parent
1841 * inode node and insert them to the RB-tree of inodes.
1842 */
1843 inum = le64_to_cpu(dent->inum);
1844 fscki = read_add_inode(c, priv, inum);
1845 if (IS_ERR(fscki)) {
1846 err = PTR_ERR(fscki);
1847 ubifs_err("error %d while processing entry node and "
e84461ad
AB
1848 "trying to find inode node %lu",
1849 err, (unsigned long)inum);
1e51764a
AB
1850 goto out_dump;
1851 }
1852
1853 /* Count how many direntries or xentries refers this inode */
1854 fscki->references += 1;
1855
1856 inum = key_inum_flash(c, &dent->key);
1857 fscki1 = read_add_inode(c, priv, inum);
1858 if (IS_ERR(fscki1)) {
1859 err = PTR_ERR(fscki);
1860 ubifs_err("error %d while processing entry node and "
1861 "trying to find parent inode node %lu",
e84461ad 1862 err, (unsigned long)inum);
1e51764a
AB
1863 goto out_dump;
1864 }
1865
1866 nlen = le16_to_cpu(dent->nlen);
1867 if (type == UBIFS_XENT_KEY) {
1868 fscki1->calc_xcnt += 1;
1869 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1870 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1871 fscki1->calc_xnms += nlen;
1872 } else {
1873 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1874 if (dent->type == UBIFS_ITYPE_DIR)
1875 fscki1->calc_cnt += 1;
1876 }
1877 }
1878
1879out:
1880 kfree(node);
1881 return 0;
1882
1883out_dump:
1884 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1885 dbg_dump_node(c, node);
1886out_free:
1887 kfree(node);
1888 return err;
1889}
1890
1891/**
1892 * free_inodes - free RB-tree of inodes.
1893 * @fsckd: FS checking information
1894 */
1895static void free_inodes(struct fsck_data *fsckd)
1896{
1897 struct rb_node *this = fsckd->inodes.rb_node;
1898 struct fsck_inode *fscki;
1899
1900 while (this) {
1901 if (this->rb_left)
1902 this = this->rb_left;
1903 else if (this->rb_right)
1904 this = this->rb_right;
1905 else {
1906 fscki = rb_entry(this, struct fsck_inode, rb);
1907 this = rb_parent(this);
1908 if (this) {
1909 if (this->rb_left == &fscki->rb)
1910 this->rb_left = NULL;
1911 else
1912 this->rb_right = NULL;
1913 }
1914 kfree(fscki);
1915 }
1916 }
1917}
1918
1919/**
1920 * check_inodes - checks all inodes.
1921 * @c: UBIFS file-system description object
1922 * @fsckd: FS checking information
1923 *
1924 * This is a helper function for 'dbg_check_filesystem()' which walks the
1925 * RB-tree of inodes after the index scan has been finished, and checks that
1926 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1927 * %-EINVAL if not, and a negative error code in case of failure.
1928 */
1929static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1930{
1931 int n, err;
1932 union ubifs_key key;
1933 struct ubifs_znode *znode;
1934 struct ubifs_zbranch *zbr;
1935 struct ubifs_ino_node *ino;
1936 struct fsck_inode *fscki;
1937 struct rb_node *this = rb_first(&fsckd->inodes);
1938
1939 while (this) {
1940 fscki = rb_entry(this, struct fsck_inode, rb);
1941 this = rb_next(this);
1942
1943 if (S_ISDIR(fscki->mode)) {
1944 /*
1945 * Directories have to have exactly one reference (they
1946 * cannot have hardlinks), although root inode is an
1947 * exception.
1948 */
1949 if (fscki->inum != UBIFS_ROOT_INO &&
1950 fscki->references != 1) {
1951 ubifs_err("directory inode %lu has %d "
1952 "direntries which refer it, but "
e84461ad
AB
1953 "should be 1",
1954 (unsigned long)fscki->inum,
1e51764a
AB
1955 fscki->references);
1956 goto out_dump;
1957 }
1958 if (fscki->inum == UBIFS_ROOT_INO &&
1959 fscki->references != 0) {
1960 ubifs_err("root inode %lu has non-zero (%d) "
1961 "direntries which refer it",
e84461ad
AB
1962 (unsigned long)fscki->inum,
1963 fscki->references);
1e51764a
AB
1964 goto out_dump;
1965 }
1966 if (fscki->calc_sz != fscki->size) {
1967 ubifs_err("directory inode %lu size is %lld, "
1968 "but calculated size is %lld",
e84461ad
AB
1969 (unsigned long)fscki->inum,
1970 fscki->size, fscki->calc_sz);
1e51764a
AB
1971 goto out_dump;
1972 }
1973 if (fscki->calc_cnt != fscki->nlink) {
1974 ubifs_err("directory inode %lu nlink is %d, "
1975 "but calculated nlink is %d",
e84461ad
AB
1976 (unsigned long)fscki->inum,
1977 fscki->nlink, fscki->calc_cnt);
1e51764a
AB
1978 goto out_dump;
1979 }
1980 } else {
1981 if (fscki->references != fscki->nlink) {
1982 ubifs_err("inode %lu nlink is %d, but "
e84461ad
AB
1983 "calculated nlink is %d",
1984 (unsigned long)fscki->inum,
1e51764a
AB
1985 fscki->nlink, fscki->references);
1986 goto out_dump;
1987 }
1988 }
1989 if (fscki->xattr_sz != fscki->calc_xsz) {
1990 ubifs_err("inode %lu has xattr size %u, but "
1991 "calculated size is %lld",
e84461ad 1992 (unsigned long)fscki->inum, fscki->xattr_sz,
1e51764a
AB
1993 fscki->calc_xsz);
1994 goto out_dump;
1995 }
1996 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1997 ubifs_err("inode %lu has %u xattrs, but "
e84461ad
AB
1998 "calculated count is %lld",
1999 (unsigned long)fscki->inum,
1e51764a
AB
2000 fscki->xattr_cnt, fscki->calc_xcnt);
2001 goto out_dump;
2002 }
2003 if (fscki->xattr_nms != fscki->calc_xnms) {
2004 ubifs_err("inode %lu has xattr names' size %u, but "
2005 "calculated names' size is %lld",
e84461ad 2006 (unsigned long)fscki->inum, fscki->xattr_nms,
1e51764a
AB
2007 fscki->calc_xnms);
2008 goto out_dump;
2009 }
2010 }
2011
2012 return 0;
2013
2014out_dump:
2015 /* Read the bad inode and dump it */
2016 ino_key_init(c, &key, fscki->inum);
2017 err = ubifs_lookup_level0(c, &key, &znode, &n);
2018 if (!err) {
e84461ad
AB
2019 ubifs_err("inode %lu not found in index",
2020 (unsigned long)fscki->inum);
1e51764a
AB
2021 return -ENOENT;
2022 } else if (err < 0) {
2023 ubifs_err("error %d while looking up inode %lu",
e84461ad 2024 err, (unsigned long)fscki->inum);
1e51764a
AB
2025 return err;
2026 }
2027
2028 zbr = &znode->zbranch[n];
2029 ino = kmalloc(zbr->len, GFP_NOFS);
2030 if (!ino)
2031 return -ENOMEM;
2032
2033 err = ubifs_tnc_read_node(c, zbr, ino);
2034 if (err) {
2035 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2036 zbr->lnum, zbr->offs, err);
2037 kfree(ino);
2038 return err;
2039 }
2040
2041 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
e84461ad 2042 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
1e51764a
AB
2043 dbg_dump_node(c, ino);
2044 kfree(ino);
2045 return -EINVAL;
2046}
2047
2048/**
2049 * dbg_check_filesystem - check the file-system.
2050 * @c: UBIFS file-system description object
2051 *
2052 * This function checks the file system, namely:
2053 * o makes sure that all leaf nodes exist and their CRCs are correct;
2054 * o makes sure inode nlink, size, xattr size/count are correct (for all
2055 * inodes).
2056 *
2057 * The function reads whole indexing tree and all nodes, so it is pretty
2058 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2059 * not, and a negative error code in case of failure.
2060 */
2061int dbg_check_filesystem(struct ubifs_info *c)
2062{
2063 int err;
2064 struct fsck_data fsckd;
2065
2066 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2067 return 0;
2068
2069 fsckd.inodes = RB_ROOT;
2070 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2071 if (err)
2072 goto out_free;
2073
2074 err = check_inodes(c, &fsckd);
2075 if (err)
2076 goto out_free;
2077
2078 free_inodes(&fsckd);
2079 return 0;
2080
2081out_free:
2082 ubifs_err("file-system check failed with error %d", err);
2083 dump_stack();
2084 free_inodes(&fsckd);
2085 return err;
2086}
2087
2088static int invocation_cnt;
2089
2090int dbg_force_in_the_gaps(void)
2091{
2092 if (!dbg_force_in_the_gaps_enabled)
2093 return 0;
2094 /* Force in-the-gaps every 8th commit */
2095 return !((invocation_cnt++) & 0x7);
2096}
2097
2098/* Failure mode for recovery testing */
2099
2100#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2101
2102struct failure_mode_info {
2103 struct list_head list;
2104 struct ubifs_info *c;
2105};
2106
2107static LIST_HEAD(fmi_list);
2108static DEFINE_SPINLOCK(fmi_lock);
2109
2110static unsigned int next;
2111
2112static int simple_rand(void)
2113{
2114 if (next == 0)
2115 next = current->pid;
2116 next = next * 1103515245 + 12345;
2117 return (next >> 16) & 32767;
2118}
2119
17c2f9f8 2120static void failure_mode_init(struct ubifs_info *c)
1e51764a
AB
2121{
2122 struct failure_mode_info *fmi;
2123
2124 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2125 if (!fmi) {
552ff317 2126 ubifs_err("Failed to register failure mode - no memory");
1e51764a
AB
2127 return;
2128 }
2129 fmi->c = c;
2130 spin_lock(&fmi_lock);
2131 list_add_tail(&fmi->list, &fmi_list);
2132 spin_unlock(&fmi_lock);
2133}
2134
17c2f9f8 2135static void failure_mode_exit(struct ubifs_info *c)
1e51764a
AB
2136{
2137 struct failure_mode_info *fmi, *tmp;
2138
2139 spin_lock(&fmi_lock);
2140 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2141 if (fmi->c == c) {
2142 list_del(&fmi->list);
2143 kfree(fmi);
2144 }
2145 spin_unlock(&fmi_lock);
2146}
2147
2148static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2149{
2150 struct failure_mode_info *fmi;
2151
2152 spin_lock(&fmi_lock);
2153 list_for_each_entry(fmi, &fmi_list, list)
2154 if (fmi->c->ubi == desc) {
2155 struct ubifs_info *c = fmi->c;
2156
2157 spin_unlock(&fmi_lock);
2158 return c;
2159 }
2160 spin_unlock(&fmi_lock);
2161 return NULL;
2162}
2163
2164static int in_failure_mode(struct ubi_volume_desc *desc)
2165{
2166 struct ubifs_info *c = dbg_find_info(desc);
2167
2168 if (c && dbg_failure_mode)
17c2f9f8 2169 return c->dbg->failure_mode;
1e51764a
AB
2170 return 0;
2171}
2172
2173static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2174{
2175 struct ubifs_info *c = dbg_find_info(desc);
17c2f9f8 2176 struct ubifs_debug_info *d;
1e51764a
AB
2177
2178 if (!c || !dbg_failure_mode)
2179 return 0;
17c2f9f8
AB
2180 d = c->dbg;
2181 if (d->failure_mode)
1e51764a 2182 return 1;
17c2f9f8 2183 if (!d->fail_cnt) {
1e51764a
AB
2184 /* First call - decide delay to failure */
2185 if (chance(1, 2)) {
2186 unsigned int delay = 1 << (simple_rand() >> 11);
2187
2188 if (chance(1, 2)) {
17c2f9f8
AB
2189 d->fail_delay = 1;
2190 d->fail_timeout = jiffies +
1e51764a
AB
2191 msecs_to_jiffies(delay);
2192 dbg_rcvry("failing after %ums", delay);
2193 } else {
17c2f9f8
AB
2194 d->fail_delay = 2;
2195 d->fail_cnt_max = delay;
1e51764a
AB
2196 dbg_rcvry("failing after %u calls", delay);
2197 }
2198 }
17c2f9f8 2199 d->fail_cnt += 1;
1e51764a
AB
2200 }
2201 /* Determine if failure delay has expired */
17c2f9f8
AB
2202 if (d->fail_delay == 1) {
2203 if (time_before(jiffies, d->fail_timeout))
1e51764a 2204 return 0;
17c2f9f8
AB
2205 } else if (d->fail_delay == 2)
2206 if (d->fail_cnt++ < d->fail_cnt_max)
1e51764a
AB
2207 return 0;
2208 if (lnum == UBIFS_SB_LNUM) {
2209 if (write) {
2210 if (chance(1, 2))
2211 return 0;
2212 } else if (chance(19, 20))
2213 return 0;
2214 dbg_rcvry("failing in super block LEB %d", lnum);
2215 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2216 if (chance(19, 20))
2217 return 0;
2218 dbg_rcvry("failing in master LEB %d", lnum);
2219 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2220 if (write) {
2221 if (chance(99, 100))
2222 return 0;
2223 } else if (chance(399, 400))
2224 return 0;
2225 dbg_rcvry("failing in log LEB %d", lnum);
2226 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2227 if (write) {
2228 if (chance(7, 8))
2229 return 0;
2230 } else if (chance(19, 20))
2231 return 0;
2232 dbg_rcvry("failing in LPT LEB %d", lnum);
2233 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2234 if (write) {
2235 if (chance(1, 2))
2236 return 0;
2237 } else if (chance(9, 10))
2238 return 0;
2239 dbg_rcvry("failing in orphan LEB %d", lnum);
2240 } else if (lnum == c->ihead_lnum) {
2241 if (chance(99, 100))
2242 return 0;
2243 dbg_rcvry("failing in index head LEB %d", lnum);
2244 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2245 if (chance(9, 10))
2246 return 0;
2247 dbg_rcvry("failing in GC head LEB %d", lnum);
2248 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2249 !ubifs_search_bud(c, lnum)) {
2250 if (chance(19, 20))
2251 return 0;
2252 dbg_rcvry("failing in non-bud LEB %d", lnum);
2253 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2254 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2255 if (chance(999, 1000))
2256 return 0;
2257 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2258 } else {
2259 if (chance(9999, 10000))
2260 return 0;
2261 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2262 }
2263 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
17c2f9f8 2264 d->failure_mode = 1;
1e51764a
AB
2265 dump_stack();
2266 return 1;
2267}
2268
2269static void cut_data(const void *buf, int len)
2270{
2271 int flen, i;
2272 unsigned char *p = (void *)buf;
2273
2274 flen = (len * (long long)simple_rand()) >> 15;
2275 for (i = flen; i < len; i++)
2276 p[i] = 0xff;
2277}
2278
2279int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2280 int len, int check)
2281{
2282 if (in_failure_mode(desc))
2283 return -EIO;
2284 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2285}
2286
2287int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2288 int offset, int len, int dtype)
2289{
16dfd804 2290 int err, failing;
1e51764a
AB
2291
2292 if (in_failure_mode(desc))
2293 return -EIO;
16dfd804
AH
2294 failing = do_fail(desc, lnum, 1);
2295 if (failing)
1e51764a
AB
2296 cut_data(buf, len);
2297 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2298 if (err)
2299 return err;
16dfd804 2300 if (failing)
1e51764a
AB
2301 return -EIO;
2302 return 0;
2303}
2304
2305int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2306 int len, int dtype)
2307{
2308 int err;
2309
2310 if (do_fail(desc, lnum, 1))
2311 return -EIO;
2312 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2313 if (err)
2314 return err;
2315 if (do_fail(desc, lnum, 1))
2316 return -EIO;
2317 return 0;
2318}
2319
2320int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2321{
2322 int err;
2323
2324 if (do_fail(desc, lnum, 0))
2325 return -EIO;
2326 err = ubi_leb_erase(desc, lnum);
2327 if (err)
2328 return err;
2329 if (do_fail(desc, lnum, 0))
2330 return -EIO;
2331 return 0;
2332}
2333
2334int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2335{
2336 int err;
2337
2338 if (do_fail(desc, lnum, 0))
2339 return -EIO;
2340 err = ubi_leb_unmap(desc, lnum);
2341 if (err)
2342 return err;
2343 if (do_fail(desc, lnum, 0))
2344 return -EIO;
2345 return 0;
2346}
2347
2348int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2349{
2350 if (in_failure_mode(desc))
2351 return -EIO;
2352 return ubi_is_mapped(desc, lnum);
2353}
2354
2355int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2356{
2357 int err;
2358
2359 if (do_fail(desc, lnum, 0))
2360 return -EIO;
2361 err = ubi_leb_map(desc, lnum, dtype);
2362 if (err)
2363 return err;
2364 if (do_fail(desc, lnum, 0))
2365 return -EIO;
2366 return 0;
2367}
2368
17c2f9f8
AB
2369/**
2370 * ubifs_debugging_init - initialize UBIFS debugging.
2371 * @c: UBIFS file-system description object
2372 *
2373 * This function initializes debugging-related data for the file system.
2374 * Returns zero in case of success and a negative error code in case of
2375 * failure.
2376 */
2377int ubifs_debugging_init(struct ubifs_info *c)
2378{
2379 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2380 if (!c->dbg)
2381 return -ENOMEM;
2382
2383 c->dbg->buf = vmalloc(c->leb_size);
2384 if (!c->dbg->buf)
2385 goto out;
2386
2387 failure_mode_init(c);
2388 return 0;
2389
2390out:
2391 kfree(c->dbg);
2392 return -ENOMEM;
2393}
2394
2395/**
2396 * ubifs_debugging_exit - free debugging data.
2397 * @c: UBIFS file-system description object
2398 */
2399void ubifs_debugging_exit(struct ubifs_info *c)
2400{
2401 failure_mode_exit(c);
2402 vfree(c->dbg->buf);
2403 kfree(c->dbg);
2404}
2405
552ff317
AB
2406/*
2407 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2408 * contain the stuff specific to particular file-system mounts.
2409 */
2410static struct dentry *debugfs_rootdir;
2411
2412/**
2413 * dbg_debugfs_init - initialize debugfs file-system.
2414 *
2415 * UBIFS uses debugfs file-system to expose various debugging knobs to
2416 * user-space. This function creates "ubifs" directory in the debugfs
2417 * file-system. Returns zero in case of success and a negative error code in
2418 * case of failure.
2419 */
2420int dbg_debugfs_init(void)
2421{
2422 debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
2423 if (IS_ERR(debugfs_rootdir)) {
2424 int err = PTR_ERR(debugfs_rootdir);
2425 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2426 "error %d\n", err);
2427 return err;
2428 }
2429
2430 return 0;
2431}
2432
2433/**
2434 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2435 */
2436void dbg_debugfs_exit(void)
2437{
2438 debugfs_remove(debugfs_rootdir);
2439}
2440
2441static int open_debugfs_file(struct inode *inode, struct file *file)
2442{
2443 file->private_data = inode->i_private;
2444 return 0;
2445}
2446
2447static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2448 size_t count, loff_t *ppos)
2449{
2450 struct ubifs_info *c = file->private_data;
2451 struct ubifs_debug_info *d = c->dbg;
2452
2453 if (file->f_path.dentry == d->dump_lprops)
2454 dbg_dump_lprops(c);
2455 else if (file->f_path.dentry == d->dump_budg) {
2456 spin_lock(&c->space_lock);
2457 dbg_dump_budg(c);
2458 spin_unlock(&c->space_lock);
24fa9e94 2459 } else if (file->f_path.dentry == d->dump_tnc) {
552ff317
AB
2460 mutex_lock(&c->tnc_mutex);
2461 dbg_dump_tnc(c);
2462 mutex_unlock(&c->tnc_mutex);
2463 } else
2464 return -EINVAL;
2465
2466 *ppos += count;
2467 return count;
2468}
2469
2470static const struct file_operations debugfs_fops = {
2471 .open = open_debugfs_file,
2472 .write = write_debugfs_file,
2473 .owner = THIS_MODULE,
2474};
2475
2476/**
2477 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2478 * @c: UBIFS file-system description object
2479 *
2480 * This function creates all debugfs files for this instance of UBIFS. Returns
2481 * zero in case of success and a negative error code in case of failure.
2482 *
2483 * Note, the only reason we have not merged this function with the
2484 * 'ubifs_debugging_init()' function is because it is better to initialize
2485 * debugfs interfaces at the very end of the mount process, and remove them at
2486 * the very beginning of the mount process.
2487 */
2488int dbg_debugfs_init_fs(struct ubifs_info *c)
2489{
2490 int err;
2491 const char *fname;
2492 struct dentry *dent;
2493 struct ubifs_debug_info *d = c->dbg;
2494
2495 sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2496 d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
2497 debugfs_rootdir);
2498 if (IS_ERR(d->debugfs_dir)) {
2499 err = PTR_ERR(d->debugfs_dir);
2500 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2501 d->debugfs_dir_name, err);
2502 goto out;
2503 }
2504
2505 fname = "dump_lprops";
2506 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2507 &debugfs_fops);
2508 if (IS_ERR(dent))
2509 goto out_remove;
2510 d->dump_lprops = dent;
2511
2512 fname = "dump_budg";
2513 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2514 &debugfs_fops);
2515 if (IS_ERR(dent))
2516 goto out_remove;
2517 d->dump_budg = dent;
2518
2519 fname = "dump_tnc";
2520 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2521 &debugfs_fops);
2522 if (IS_ERR(dent))
2523 goto out_remove;
2524 d->dump_tnc = dent;
2525
2526 return 0;
2527
2528out_remove:
2529 err = PTR_ERR(dent);
2530 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2531 fname, err);
2532 debugfs_remove_recursive(d->debugfs_dir);
2533out:
2534 return err;
2535}
2536
2537/**
2538 * dbg_debugfs_exit_fs - remove all debugfs files.
2539 * @c: UBIFS file-system description object
2540 */
2541void dbg_debugfs_exit_fs(struct ubifs_info *c)
2542{
2543 debugfs_remove_recursive(c->dbg->debugfs_dir);
2544}
2545
1e51764a 2546#endif /* CONFIG_UBIFS_FS_DEBUG */