UBIFS: use PAGE_CACHE_MASK correctly
[linux-2.6-block.git] / fs / ubifs / debug.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
552ff317 35#include <linux/debugfs.h>
1e51764a
AB
36
37#ifdef CONFIG_UBIFS_FS_DEBUG
38
39DEFINE_SPINLOCK(dbg_lock);
40
41static char dbg_key_buf0[128];
42static char dbg_key_buf1[128];
43
44unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
45unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
46unsigned int ubifs_tst_flags;
47
48module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
49module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
50module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
51
52MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
53MODULE_PARM_DESC(debug_chks, "Debug check flags");
54MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
55
56static const char *get_key_fmt(int fmt)
57{
58 switch (fmt) {
59 case UBIFS_SIMPLE_KEY_FMT:
60 return "simple";
61 default:
62 return "unknown/invalid format";
63 }
64}
65
66static const char *get_key_hash(int hash)
67{
68 switch (hash) {
69 case UBIFS_KEY_HASH_R5:
70 return "R5";
71 case UBIFS_KEY_HASH_TEST:
72 return "test";
73 default:
74 return "unknown/invalid name hash";
75 }
76}
77
78static const char *get_key_type(int type)
79{
80 switch (type) {
81 case UBIFS_INO_KEY:
82 return "inode";
83 case UBIFS_DENT_KEY:
84 return "direntry";
85 case UBIFS_XENT_KEY:
86 return "xentry";
87 case UBIFS_DATA_KEY:
88 return "data";
89 case UBIFS_TRUN_KEY:
90 return "truncate";
91 default:
92 return "unknown/invalid key";
93 }
94}
95
96static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
97 char *buffer)
98{
99 char *p = buffer;
100 int type = key_type(c, key);
101
102 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
103 switch (type) {
104 case UBIFS_INO_KEY:
e84461ad 105 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
1e51764a
AB
106 get_key_type(type));
107 break;
108 case UBIFS_DENT_KEY:
109 case UBIFS_XENT_KEY:
e84461ad
AB
110 sprintf(p, "(%lu, %s, %#08x)",
111 (unsigned long)key_inum(c, key),
1e51764a
AB
112 get_key_type(type), key_hash(c, key));
113 break;
114 case UBIFS_DATA_KEY:
e84461ad
AB
115 sprintf(p, "(%lu, %s, %u)",
116 (unsigned long)key_inum(c, key),
1e51764a
AB
117 get_key_type(type), key_block(c, key));
118 break;
119 case UBIFS_TRUN_KEY:
120 sprintf(p, "(%lu, %s)",
e84461ad
AB
121 (unsigned long)key_inum(c, key),
122 get_key_type(type));
1e51764a
AB
123 break;
124 default:
125 sprintf(p, "(bad key type: %#08x, %#08x)",
126 key->u32[0], key->u32[1]);
127 }
128 } else
129 sprintf(p, "bad key format %d", c->key_fmt);
130}
131
132const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
133{
134 /* dbg_lock must be held */
135 sprintf_key(c, key, dbg_key_buf0);
136 return dbg_key_buf0;
137}
138
139const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
140{
141 /* dbg_lock must be held */
142 sprintf_key(c, key, dbg_key_buf1);
143 return dbg_key_buf1;
144}
145
146const char *dbg_ntype(int type)
147{
148 switch (type) {
149 case UBIFS_PAD_NODE:
150 return "padding node";
151 case UBIFS_SB_NODE:
152 return "superblock node";
153 case UBIFS_MST_NODE:
154 return "master node";
155 case UBIFS_REF_NODE:
156 return "reference node";
157 case UBIFS_INO_NODE:
158 return "inode node";
159 case UBIFS_DENT_NODE:
160 return "direntry node";
161 case UBIFS_XENT_NODE:
162 return "xentry node";
163 case UBIFS_DATA_NODE:
164 return "data node";
165 case UBIFS_TRUN_NODE:
166 return "truncate node";
167 case UBIFS_IDX_NODE:
168 return "indexing node";
169 case UBIFS_CS_NODE:
170 return "commit start node";
171 case UBIFS_ORPH_NODE:
172 return "orphan node";
173 default:
174 return "unknown node";
175 }
176}
177
178static const char *dbg_gtype(int type)
179{
180 switch (type) {
181 case UBIFS_NO_NODE_GROUP:
182 return "no node group";
183 case UBIFS_IN_NODE_GROUP:
184 return "in node group";
185 case UBIFS_LAST_OF_NODE_GROUP:
186 return "last of node group";
187 default:
188 return "unknown";
189 }
190}
191
192const char *dbg_cstate(int cmt_state)
193{
194 switch (cmt_state) {
195 case COMMIT_RESTING:
196 return "commit resting";
197 case COMMIT_BACKGROUND:
198 return "background commit requested";
199 case COMMIT_REQUIRED:
200 return "commit required";
201 case COMMIT_RUNNING_BACKGROUND:
202 return "BACKGROUND commit running";
203 case COMMIT_RUNNING_REQUIRED:
204 return "commit running and required";
205 case COMMIT_BROKEN:
206 return "broken commit";
207 default:
208 return "unknown commit state";
209 }
210}
211
212static void dump_ch(const struct ubifs_ch *ch)
213{
214 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
215 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
216 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
217 dbg_ntype(ch->node_type));
218 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
219 dbg_gtype(ch->group_type));
220 printk(KERN_DEBUG "\tsqnum %llu\n",
221 (unsigned long long)le64_to_cpu(ch->sqnum));
222 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
223}
224
225void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
226{
227 const struct ubifs_inode *ui = ubifs_inode(inode);
228
b5e426e9
AB
229 printk(KERN_DEBUG "Dump in-memory inode:");
230 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
231 printk(KERN_DEBUG "\tsize %llu\n",
1e51764a 232 (unsigned long long)i_size_read(inode));
b5e426e9
AB
233 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
234 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
235 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
236 printk(KERN_DEBUG "\tatime %u.%u\n",
1e51764a
AB
237 (unsigned int)inode->i_atime.tv_sec,
238 (unsigned int)inode->i_atime.tv_nsec);
b5e426e9 239 printk(KERN_DEBUG "\tmtime %u.%u\n",
1e51764a
AB
240 (unsigned int)inode->i_mtime.tv_sec,
241 (unsigned int)inode->i_mtime.tv_nsec);
b5e426e9 242 printk(KERN_DEBUG "\tctime %u.%u\n",
1e51764a
AB
243 (unsigned int)inode->i_ctime.tv_sec,
244 (unsigned int)inode->i_ctime.tv_nsec);
b5e426e9
AB
245 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
246 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
247 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
248 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
249 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
250 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
251 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
252 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
253 (unsigned long long)ui->synced_i_size);
254 printk(KERN_DEBUG "\tui_size %llu\n",
255 (unsigned long long)ui->ui_size);
256 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
257 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
258 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
259 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
260 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
1e51764a
AB
261}
262
263void dbg_dump_node(const struct ubifs_info *c, const void *node)
264{
265 int i, n;
266 union ubifs_key key;
267 const struct ubifs_ch *ch = node;
268
269 if (dbg_failure_mode)
270 return;
271
272 /* If the magic is incorrect, just hexdump the first bytes */
273 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
274 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
275 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
276 (void *)node, UBIFS_CH_SZ, 1);
277 return;
278 }
279
280 spin_lock(&dbg_lock);
281 dump_ch(node);
282
283 switch (ch->node_type) {
284 case UBIFS_PAD_NODE:
285 {
286 const struct ubifs_pad_node *pad = node;
287
288 printk(KERN_DEBUG "\tpad_len %u\n",
289 le32_to_cpu(pad->pad_len));
290 break;
291 }
292 case UBIFS_SB_NODE:
293 {
294 const struct ubifs_sb_node *sup = node;
295 unsigned int sup_flags = le32_to_cpu(sup->flags);
296
297 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
298 (int)sup->key_hash, get_key_hash(sup->key_hash));
299 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
300 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
301 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
302 printk(KERN_DEBUG "\t big_lpt %u\n",
303 !!(sup_flags & UBIFS_FLG_BIGLPT));
304 printk(KERN_DEBUG "\tmin_io_size %u\n",
305 le32_to_cpu(sup->min_io_size));
306 printk(KERN_DEBUG "\tleb_size %u\n",
307 le32_to_cpu(sup->leb_size));
308 printk(KERN_DEBUG "\tleb_cnt %u\n",
309 le32_to_cpu(sup->leb_cnt));
310 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
311 le32_to_cpu(sup->max_leb_cnt));
312 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
313 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
314 printk(KERN_DEBUG "\tlog_lebs %u\n",
315 le32_to_cpu(sup->log_lebs));
316 printk(KERN_DEBUG "\tlpt_lebs %u\n",
317 le32_to_cpu(sup->lpt_lebs));
318 printk(KERN_DEBUG "\torph_lebs %u\n",
319 le32_to_cpu(sup->orph_lebs));
320 printk(KERN_DEBUG "\tjhead_cnt %u\n",
321 le32_to_cpu(sup->jhead_cnt));
322 printk(KERN_DEBUG "\tfanout %u\n",
323 le32_to_cpu(sup->fanout));
324 printk(KERN_DEBUG "\tlsave_cnt %u\n",
325 le32_to_cpu(sup->lsave_cnt));
326 printk(KERN_DEBUG "\tdefault_compr %u\n",
327 (int)le16_to_cpu(sup->default_compr));
328 printk(KERN_DEBUG "\trp_size %llu\n",
329 (unsigned long long)le64_to_cpu(sup->rp_size));
330 printk(KERN_DEBUG "\trp_uid %u\n",
331 le32_to_cpu(sup->rp_uid));
332 printk(KERN_DEBUG "\trp_gid %u\n",
333 le32_to_cpu(sup->rp_gid));
334 printk(KERN_DEBUG "\tfmt_version %u\n",
335 le32_to_cpu(sup->fmt_version));
336 printk(KERN_DEBUG "\ttime_gran %u\n",
337 le32_to_cpu(sup->time_gran));
338 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X"
339 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
340 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
341 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
342 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
343 sup->uuid[12], sup->uuid[13], sup->uuid[14],
344 sup->uuid[15]);
345 break;
346 }
347 case UBIFS_MST_NODE:
348 {
349 const struct ubifs_mst_node *mst = node;
350
351 printk(KERN_DEBUG "\thighest_inum %llu\n",
352 (unsigned long long)le64_to_cpu(mst->highest_inum));
353 printk(KERN_DEBUG "\tcommit number %llu\n",
354 (unsigned long long)le64_to_cpu(mst->cmt_no));
355 printk(KERN_DEBUG "\tflags %#x\n",
356 le32_to_cpu(mst->flags));
357 printk(KERN_DEBUG "\tlog_lnum %u\n",
358 le32_to_cpu(mst->log_lnum));
359 printk(KERN_DEBUG "\troot_lnum %u\n",
360 le32_to_cpu(mst->root_lnum));
361 printk(KERN_DEBUG "\troot_offs %u\n",
362 le32_to_cpu(mst->root_offs));
363 printk(KERN_DEBUG "\troot_len %u\n",
364 le32_to_cpu(mst->root_len));
365 printk(KERN_DEBUG "\tgc_lnum %u\n",
366 le32_to_cpu(mst->gc_lnum));
367 printk(KERN_DEBUG "\tihead_lnum %u\n",
368 le32_to_cpu(mst->ihead_lnum));
369 printk(KERN_DEBUG "\tihead_offs %u\n",
370 le32_to_cpu(mst->ihead_offs));
0ecb9529
HH
371 printk(KERN_DEBUG "\tindex_size %llu\n",
372 (unsigned long long)le64_to_cpu(mst->index_size));
1e51764a
AB
373 printk(KERN_DEBUG "\tlpt_lnum %u\n",
374 le32_to_cpu(mst->lpt_lnum));
375 printk(KERN_DEBUG "\tlpt_offs %u\n",
376 le32_to_cpu(mst->lpt_offs));
377 printk(KERN_DEBUG "\tnhead_lnum %u\n",
378 le32_to_cpu(mst->nhead_lnum));
379 printk(KERN_DEBUG "\tnhead_offs %u\n",
380 le32_to_cpu(mst->nhead_offs));
381 printk(KERN_DEBUG "\tltab_lnum %u\n",
382 le32_to_cpu(mst->ltab_lnum));
383 printk(KERN_DEBUG "\tltab_offs %u\n",
384 le32_to_cpu(mst->ltab_offs));
385 printk(KERN_DEBUG "\tlsave_lnum %u\n",
386 le32_to_cpu(mst->lsave_lnum));
387 printk(KERN_DEBUG "\tlsave_offs %u\n",
388 le32_to_cpu(mst->lsave_offs));
389 printk(KERN_DEBUG "\tlscan_lnum %u\n",
390 le32_to_cpu(mst->lscan_lnum));
391 printk(KERN_DEBUG "\tleb_cnt %u\n",
392 le32_to_cpu(mst->leb_cnt));
393 printk(KERN_DEBUG "\tempty_lebs %u\n",
394 le32_to_cpu(mst->empty_lebs));
395 printk(KERN_DEBUG "\tidx_lebs %u\n",
396 le32_to_cpu(mst->idx_lebs));
397 printk(KERN_DEBUG "\ttotal_free %llu\n",
398 (unsigned long long)le64_to_cpu(mst->total_free));
399 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
400 (unsigned long long)le64_to_cpu(mst->total_dirty));
401 printk(KERN_DEBUG "\ttotal_used %llu\n",
402 (unsigned long long)le64_to_cpu(mst->total_used));
403 printk(KERN_DEBUG "\ttotal_dead %llu\n",
404 (unsigned long long)le64_to_cpu(mst->total_dead));
405 printk(KERN_DEBUG "\ttotal_dark %llu\n",
406 (unsigned long long)le64_to_cpu(mst->total_dark));
407 break;
408 }
409 case UBIFS_REF_NODE:
410 {
411 const struct ubifs_ref_node *ref = node;
412
413 printk(KERN_DEBUG "\tlnum %u\n",
414 le32_to_cpu(ref->lnum));
415 printk(KERN_DEBUG "\toffs %u\n",
416 le32_to_cpu(ref->offs));
417 printk(KERN_DEBUG "\tjhead %u\n",
418 le32_to_cpu(ref->jhead));
419 break;
420 }
421 case UBIFS_INO_NODE:
422 {
423 const struct ubifs_ino_node *ino = node;
424
425 key_read(c, &ino->key, &key);
426 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
427 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
428 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
429 printk(KERN_DEBUG "\tsize %llu\n",
430 (unsigned long long)le64_to_cpu(ino->size));
431 printk(KERN_DEBUG "\tnlink %u\n",
432 le32_to_cpu(ino->nlink));
433 printk(KERN_DEBUG "\tatime %lld.%u\n",
434 (long long)le64_to_cpu(ino->atime_sec),
435 le32_to_cpu(ino->atime_nsec));
436 printk(KERN_DEBUG "\tmtime %lld.%u\n",
437 (long long)le64_to_cpu(ino->mtime_sec),
438 le32_to_cpu(ino->mtime_nsec));
439 printk(KERN_DEBUG "\tctime %lld.%u\n",
440 (long long)le64_to_cpu(ino->ctime_sec),
441 le32_to_cpu(ino->ctime_nsec));
442 printk(KERN_DEBUG "\tuid %u\n",
443 le32_to_cpu(ino->uid));
444 printk(KERN_DEBUG "\tgid %u\n",
445 le32_to_cpu(ino->gid));
446 printk(KERN_DEBUG "\tmode %u\n",
447 le32_to_cpu(ino->mode));
448 printk(KERN_DEBUG "\tflags %#x\n",
449 le32_to_cpu(ino->flags));
450 printk(KERN_DEBUG "\txattr_cnt %u\n",
451 le32_to_cpu(ino->xattr_cnt));
452 printk(KERN_DEBUG "\txattr_size %u\n",
453 le32_to_cpu(ino->xattr_size));
454 printk(KERN_DEBUG "\txattr_names %u\n",
455 le32_to_cpu(ino->xattr_names));
456 printk(KERN_DEBUG "\tcompr_type %#x\n",
457 (int)le16_to_cpu(ino->compr_type));
458 printk(KERN_DEBUG "\tdata len %u\n",
459 le32_to_cpu(ino->data_len));
460 break;
461 }
462 case UBIFS_DENT_NODE:
463 case UBIFS_XENT_NODE:
464 {
465 const struct ubifs_dent_node *dent = node;
466 int nlen = le16_to_cpu(dent->nlen);
467
468 key_read(c, &dent->key, &key);
469 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
470 printk(KERN_DEBUG "\tinum %llu\n",
471 (unsigned long long)le64_to_cpu(dent->inum));
472 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
473 printk(KERN_DEBUG "\tnlen %d\n", nlen);
474 printk(KERN_DEBUG "\tname ");
475
476 if (nlen > UBIFS_MAX_NLEN)
477 printk(KERN_DEBUG "(bad name length, not printing, "
478 "bad or corrupted node)");
479 else {
480 for (i = 0; i < nlen && dent->name[i]; i++)
481 printk("%c", dent->name[i]);
482 }
483 printk("\n");
484
485 break;
486 }
487 case UBIFS_DATA_NODE:
488 {
489 const struct ubifs_data_node *dn = node;
490 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
491
492 key_read(c, &dn->key, &key);
493 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
494 printk(KERN_DEBUG "\tsize %u\n",
495 le32_to_cpu(dn->size));
496 printk(KERN_DEBUG "\tcompr_typ %d\n",
497 (int)le16_to_cpu(dn->compr_type));
498 printk(KERN_DEBUG "\tdata size %d\n",
499 dlen);
500 printk(KERN_DEBUG "\tdata:\n");
501 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
502 (void *)&dn->data, dlen, 0);
503 break;
504 }
505 case UBIFS_TRUN_NODE:
506 {
507 const struct ubifs_trun_node *trun = node;
508
509 printk(KERN_DEBUG "\tinum %u\n",
510 le32_to_cpu(trun->inum));
511 printk(KERN_DEBUG "\told_size %llu\n",
512 (unsigned long long)le64_to_cpu(trun->old_size));
513 printk(KERN_DEBUG "\tnew_size %llu\n",
514 (unsigned long long)le64_to_cpu(trun->new_size));
515 break;
516 }
517 case UBIFS_IDX_NODE:
518 {
519 const struct ubifs_idx_node *idx = node;
520
521 n = le16_to_cpu(idx->child_cnt);
522 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
523 printk(KERN_DEBUG "\tlevel %d\n",
524 (int)le16_to_cpu(idx->level));
525 printk(KERN_DEBUG "\tBranches:\n");
526
527 for (i = 0; i < n && i < c->fanout - 1; i++) {
528 const struct ubifs_branch *br;
529
530 br = ubifs_idx_branch(c, idx, i);
531 key_read(c, &br->key, &key);
532 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
533 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
534 le32_to_cpu(br->len), DBGKEY(&key));
535 }
536 break;
537 }
538 case UBIFS_CS_NODE:
539 break;
540 case UBIFS_ORPH_NODE:
541 {
542 const struct ubifs_orph_node *orph = node;
543
544 printk(KERN_DEBUG "\tcommit number %llu\n",
545 (unsigned long long)
546 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
547 printk(KERN_DEBUG "\tlast node flag %llu\n",
548 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
549 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
550 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
551 for (i = 0; i < n; i++)
552 printk(KERN_DEBUG "\t ino %llu\n",
7424bac8 553 (unsigned long long)le64_to_cpu(orph->inos[i]));
1e51764a
AB
554 break;
555 }
556 default:
557 printk(KERN_DEBUG "node type %d was not recognized\n",
558 (int)ch->node_type);
559 }
560 spin_unlock(&dbg_lock);
561}
562
563void dbg_dump_budget_req(const struct ubifs_budget_req *req)
564{
565 spin_lock(&dbg_lock);
566 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
567 req->new_ino, req->dirtied_ino);
568 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
569 req->new_ino_d, req->dirtied_ino_d);
570 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
571 req->new_page, req->dirtied_page);
572 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
573 req->new_dent, req->mod_dent);
574 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
575 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
576 req->data_growth, req->dd_growth);
577 spin_unlock(&dbg_lock);
578}
579
580void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
581{
582 spin_lock(&dbg_lock);
1de94159
AB
583 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
584 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
1e51764a
AB
585 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
586 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
587 lst->total_dirty);
588 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
589 "total_dead %lld\n", lst->total_used, lst->total_dark,
590 lst->total_dead);
591 spin_unlock(&dbg_lock);
592}
593
594void dbg_dump_budg(struct ubifs_info *c)
595{
596 int i;
597 struct rb_node *rb;
598 struct ubifs_bud *bud;
599 struct ubifs_gced_idx_leb *idx_gc;
600
601 spin_lock(&dbg_lock);
1de94159
AB
602 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
603 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
1e51764a
AB
604 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
605 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
606 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
607 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
608 c->freeable_cnt);
609 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
610 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
611 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
612 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
613 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
614 atomic_long_read(&c->dirty_zn_cnt),
615 atomic_long_read(&c->clean_zn_cnt));
616 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
617 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
618 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
619 c->gc_lnum, c->ihead_lnum);
620 for (i = 0; i < c->jhead_cnt; i++)
621 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
622 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
623 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624 bud = rb_entry(rb, struct ubifs_bud, rb);
625 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
626 }
627 list_for_each_entry(bud, &c->old_buds, list)
628 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
629 list_for_each_entry(idx_gc, &c->idx_gc, list)
630 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
631 idx_gc->lnum, idx_gc->unmap);
632 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
633 spin_unlock(&dbg_lock);
634}
635
636void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
637{
638 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
639 "flags %#x\n", lp->lnum, lp->free, lp->dirty,
640 c->leb_size - lp->free - lp->dirty, lp->flags);
641}
642
643void dbg_dump_lprops(struct ubifs_info *c)
644{
645 int lnum, err;
646 struct ubifs_lprops lp;
647 struct ubifs_lp_stats lst;
648
2ba5f7ae
AB
649 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
650 current->pid);
1e51764a
AB
651 ubifs_get_lp_stats(c, &lst);
652 dbg_dump_lstats(&lst);
653
654 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
655 err = ubifs_read_one_lp(c, lnum, &lp);
656 if (err)
657 ubifs_err("cannot read lprops for LEB %d", lnum);
658
659 dbg_dump_lprop(c, &lp);
660 }
2ba5f7ae
AB
661 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
662 current->pid);
1e51764a
AB
663}
664
73944a6d
AH
665void dbg_dump_lpt_info(struct ubifs_info *c)
666{
667 int i;
668
669 spin_lock(&dbg_lock);
2ba5f7ae 670 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
73944a6d
AH
671 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
672 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
673 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
674 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
675 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
676 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
677 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
678 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
679 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
680 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
681 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
682 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
683 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
684 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
685 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
686 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
687 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
688 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
689 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
690 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
691 c->nhead_lnum, c->nhead_offs);
692 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
693 if (c->big_lpt)
694 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
695 c->lsave_lnum, c->lsave_offs);
696 for (i = 0; i < c->lpt_lebs; i++)
697 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
698 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
699 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
700 spin_unlock(&dbg_lock);
701}
702
1e51764a
AB
703void dbg_dump_leb(const struct ubifs_info *c, int lnum)
704{
705 struct ubifs_scan_leb *sleb;
706 struct ubifs_scan_node *snod;
707
708 if (dbg_failure_mode)
709 return;
710
2ba5f7ae
AB
711 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
712 current->pid, lnum);
17c2f9f8 713 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
1e51764a
AB
714 if (IS_ERR(sleb)) {
715 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
716 return;
717 }
718
719 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
720 sleb->nodes_cnt, sleb->endpt);
721
722 list_for_each_entry(snod, &sleb->nodes, list) {
723 cond_resched();
724 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
725 snod->offs, snod->len);
726 dbg_dump_node(c, snod->node);
727 }
728
2ba5f7ae
AB
729 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
730 current->pid, lnum);
1e51764a
AB
731 ubifs_scan_destroy(sleb);
732 return;
733}
734
735void dbg_dump_znode(const struct ubifs_info *c,
736 const struct ubifs_znode *znode)
737{
738 int n;
739 const struct ubifs_zbranch *zbr;
740
741 spin_lock(&dbg_lock);
742 if (znode->parent)
743 zbr = &znode->parent->zbranch[znode->iip];
744 else
745 zbr = &c->zroot;
746
747 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
748 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
749 zbr->len, znode->parent, znode->iip, znode->level,
750 znode->child_cnt, znode->flags);
751
752 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
753 spin_unlock(&dbg_lock);
754 return;
755 }
756
757 printk(KERN_DEBUG "zbranches:\n");
758 for (n = 0; n < znode->child_cnt; n++) {
759 zbr = &znode->zbranch[n];
760 if (znode->level > 0)
761 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
762 "%s\n", n, zbr->znode, zbr->lnum,
763 zbr->offs, zbr->len,
764 DBGKEY(&zbr->key));
765 else
766 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
767 "%s\n", n, zbr->znode, zbr->lnum,
768 zbr->offs, zbr->len,
769 DBGKEY(&zbr->key));
770 }
771 spin_unlock(&dbg_lock);
772}
773
774void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
775{
776 int i;
777
2ba5f7ae 778 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
1de94159 779 current->pid, cat, heap->cnt);
1e51764a
AB
780 for (i = 0; i < heap->cnt; i++) {
781 struct ubifs_lprops *lprops = heap->arr[i];
782
783 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
784 "flags %d\n", i, lprops->lnum, lprops->hpos,
785 lprops->free, lprops->dirty, lprops->flags);
786 }
2ba5f7ae 787 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
1e51764a
AB
788}
789
790void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
791 struct ubifs_nnode *parent, int iip)
792{
793 int i;
794
2ba5f7ae 795 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
1e51764a
AB
796 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
797 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
798 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
799 pnode->flags, iip, pnode->level, pnode->num);
800 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
801 struct ubifs_lprops *lp = &pnode->lprops[i];
802
803 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
804 i, lp->free, lp->dirty, lp->flags, lp->lnum);
805 }
806}
807
808void dbg_dump_tnc(struct ubifs_info *c)
809{
810 struct ubifs_znode *znode;
811 int level;
812
813 printk(KERN_DEBUG "\n");
2ba5f7ae 814 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1e51764a
AB
815 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
816 level = znode->level;
817 printk(KERN_DEBUG "== Level %d ==\n", level);
818 while (znode) {
819 if (level != znode->level) {
820 level = znode->level;
821 printk(KERN_DEBUG "== Level %d ==\n", level);
822 }
823 dbg_dump_znode(c, znode);
824 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
825 }
2ba5f7ae 826 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1e51764a
AB
827}
828
829static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
830 void *priv)
831{
832 dbg_dump_znode(c, znode);
833 return 0;
834}
835
836/**
837 * dbg_dump_index - dump the on-flash index.
838 * @c: UBIFS file-system description object
839 *
840 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
841 * which dumps only in-memory znodes and does not read znodes which from flash.
842 */
843void dbg_dump_index(struct ubifs_info *c)
844{
845 dbg_walk_index(c, NULL, dump_znode, NULL);
846}
847
848/**
849 * dbg_check_synced_i_size - check synchronized inode size.
850 * @inode: inode to check
851 *
852 * If inode is clean, synchronized inode size has to be equivalent to current
853 * inode size. This function has to be called only for locked inodes (@i_mutex
854 * has to be locked). Returns %0 if synchronized inode size if correct, and
855 * %-EINVAL if not.
856 */
857int dbg_check_synced_i_size(struct inode *inode)
858{
859 int err = 0;
860 struct ubifs_inode *ui = ubifs_inode(inode);
861
862 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
863 return 0;
864 if (!S_ISREG(inode->i_mode))
865 return 0;
866
867 mutex_lock(&ui->ui_mutex);
868 spin_lock(&ui->ui_lock);
869 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
870 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
871 "is clean", ui->ui_size, ui->synced_i_size);
872 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
873 inode->i_mode, i_size_read(inode));
874 dbg_dump_stack();
875 err = -EINVAL;
876 }
877 spin_unlock(&ui->ui_lock);
878 mutex_unlock(&ui->ui_mutex);
879 return err;
880}
881
882/*
883 * dbg_check_dir - check directory inode size and link count.
884 * @c: UBIFS file-system description object
885 * @dir: the directory to calculate size for
886 * @size: the result is returned here
887 *
888 * This function makes sure that directory size and link count are correct.
889 * Returns zero in case of success and a negative error code in case of
890 * failure.
891 *
892 * Note, it is good idea to make sure the @dir->i_mutex is locked before
893 * calling this function.
894 */
895int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
896{
897 unsigned int nlink = 2;
898 union ubifs_key key;
899 struct ubifs_dent_node *dent, *pdent = NULL;
900 struct qstr nm = { .name = NULL };
901 loff_t size = UBIFS_INO_NODE_SZ;
902
903 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
904 return 0;
905
906 if (!S_ISDIR(dir->i_mode))
907 return 0;
908
909 lowest_dent_key(c, &key, dir->i_ino);
910 while (1) {
911 int err;
912
913 dent = ubifs_tnc_next_ent(c, &key, &nm);
914 if (IS_ERR(dent)) {
915 err = PTR_ERR(dent);
916 if (err == -ENOENT)
917 break;
918 return err;
919 }
920
921 nm.name = dent->name;
922 nm.len = le16_to_cpu(dent->nlen);
923 size += CALC_DENT_SIZE(nm.len);
924 if (dent->type == UBIFS_ITYPE_DIR)
925 nlink += 1;
926 kfree(pdent);
927 pdent = dent;
928 key_read(c, &dent->key, &key);
929 }
930 kfree(pdent);
931
932 if (i_size_read(dir) != size) {
933 ubifs_err("directory inode %lu has size %llu, "
934 "but calculated size is %llu", dir->i_ino,
935 (unsigned long long)i_size_read(dir),
936 (unsigned long long)size);
937 dump_stack();
938 return -EINVAL;
939 }
940 if (dir->i_nlink != nlink) {
941 ubifs_err("directory inode %lu has nlink %u, but calculated "
942 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
943 dump_stack();
944 return -EINVAL;
945 }
946
947 return 0;
948}
949
950/**
951 * dbg_check_key_order - make sure that colliding keys are properly ordered.
952 * @c: UBIFS file-system description object
953 * @zbr1: first zbranch
954 * @zbr2: following zbranch
955 *
956 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
957 * names of the direntries/xentries which are referred by the keys. This
958 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
959 * sure the name of direntry/xentry referred by @zbr1 is less than
960 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
961 * and a negative error code in case of failure.
962 */
963static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
964 struct ubifs_zbranch *zbr2)
965{
966 int err, nlen1, nlen2, cmp;
967 struct ubifs_dent_node *dent1, *dent2;
968 union ubifs_key key;
969
970 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
971 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
972 if (!dent1)
973 return -ENOMEM;
974 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
975 if (!dent2) {
976 err = -ENOMEM;
977 goto out_free;
978 }
979
980 err = ubifs_tnc_read_node(c, zbr1, dent1);
981 if (err)
982 goto out_free;
983 err = ubifs_validate_entry(c, dent1);
984 if (err)
985 goto out_free;
986
987 err = ubifs_tnc_read_node(c, zbr2, dent2);
988 if (err)
989 goto out_free;
990 err = ubifs_validate_entry(c, dent2);
991 if (err)
992 goto out_free;
993
994 /* Make sure node keys are the same as in zbranch */
995 err = 1;
996 key_read(c, &dent1->key, &key);
997 if (keys_cmp(c, &zbr1->key, &key)) {
552ff317
AB
998 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
999 zbr1->offs, DBGKEY(&key));
1000 ubifs_err("but it should have key %s according to tnc",
2ba5f7ae
AB
1001 DBGKEY(&zbr1->key));
1002 dbg_dump_node(c, dent1);
552ff317 1003 goto out_free;
1e51764a
AB
1004 }
1005
1006 key_read(c, &dent2->key, &key);
1007 if (keys_cmp(c, &zbr2->key, &key)) {
552ff317
AB
1008 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1009 zbr1->offs, DBGKEY(&key));
1010 ubifs_err("but it should have key %s according to tnc",
2ba5f7ae
AB
1011 DBGKEY(&zbr2->key));
1012 dbg_dump_node(c, dent2);
552ff317 1013 goto out_free;
1e51764a
AB
1014 }
1015
1016 nlen1 = le16_to_cpu(dent1->nlen);
1017 nlen2 = le16_to_cpu(dent2->nlen);
1018
1019 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1020 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1021 err = 0;
1022 goto out_free;
1023 }
1024 if (cmp == 0 && nlen1 == nlen2)
552ff317 1025 ubifs_err("2 xent/dent nodes with the same name");
1e51764a 1026 else
552ff317 1027 ubifs_err("bad order of colliding key %s",
1e51764a
AB
1028 DBGKEY(&key));
1029
552ff317 1030 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1e51764a 1031 dbg_dump_node(c, dent1);
552ff317 1032 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1e51764a
AB
1033 dbg_dump_node(c, dent2);
1034
1035out_free:
1036 kfree(dent2);
1037 kfree(dent1);
1038 return err;
1039}
1040
1041/**
1042 * dbg_check_znode - check if znode is all right.
1043 * @c: UBIFS file-system description object
1044 * @zbr: zbranch which points to this znode
1045 *
1046 * This function makes sure that znode referred to by @zbr is all right.
1047 * Returns zero if it is, and %-EINVAL if it is not.
1048 */
1049static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1050{
1051 struct ubifs_znode *znode = zbr->znode;
1052 struct ubifs_znode *zp = znode->parent;
1053 int n, err, cmp;
1054
1055 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1056 err = 1;
1057 goto out;
1058 }
1059 if (znode->level < 0) {
1060 err = 2;
1061 goto out;
1062 }
1063 if (znode->iip < 0 || znode->iip >= c->fanout) {
1064 err = 3;
1065 goto out;
1066 }
1067
1068 if (zbr->len == 0)
1069 /* Only dirty zbranch may have no on-flash nodes */
1070 if (!ubifs_zn_dirty(znode)) {
1071 err = 4;
1072 goto out;
1073 }
1074
1075 if (ubifs_zn_dirty(znode)) {
1076 /*
1077 * If znode is dirty, its parent has to be dirty as well. The
1078 * order of the operation is important, so we have to have
1079 * memory barriers.
1080 */
1081 smp_mb();
1082 if (zp && !ubifs_zn_dirty(zp)) {
1083 /*
1084 * The dirty flag is atomic and is cleared outside the
1085 * TNC mutex, so znode's dirty flag may now have
1086 * been cleared. The child is always cleared before the
1087 * parent, so we just need to check again.
1088 */
1089 smp_mb();
1090 if (ubifs_zn_dirty(znode)) {
1091 err = 5;
1092 goto out;
1093 }
1094 }
1095 }
1096
1097 if (zp) {
1098 const union ubifs_key *min, *max;
1099
1100 if (znode->level != zp->level - 1) {
1101 err = 6;
1102 goto out;
1103 }
1104
1105 /* Make sure the 'parent' pointer in our znode is correct */
1106 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1107 if (!err) {
1108 /* This zbranch does not exist in the parent */
1109 err = 7;
1110 goto out;
1111 }
1112
1113 if (znode->iip >= zp->child_cnt) {
1114 err = 8;
1115 goto out;
1116 }
1117
1118 if (znode->iip != n) {
1119 /* This may happen only in case of collisions */
1120 if (keys_cmp(c, &zp->zbranch[n].key,
1121 &zp->zbranch[znode->iip].key)) {
1122 err = 9;
1123 goto out;
1124 }
1125 n = znode->iip;
1126 }
1127
1128 /*
1129 * Make sure that the first key in our znode is greater than or
1130 * equal to the key in the pointing zbranch.
1131 */
1132 min = &zbr->key;
1133 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1134 if (cmp == 1) {
1135 err = 10;
1136 goto out;
1137 }
1138
1139 if (n + 1 < zp->child_cnt) {
1140 max = &zp->zbranch[n + 1].key;
1141
1142 /*
1143 * Make sure the last key in our znode is less or
1144 * equivalent than the the key in zbranch which goes
1145 * after our pointing zbranch.
1146 */
1147 cmp = keys_cmp(c, max,
1148 &znode->zbranch[znode->child_cnt - 1].key);
1149 if (cmp == -1) {
1150 err = 11;
1151 goto out;
1152 }
1153 }
1154 } else {
1155 /* This may only be root znode */
1156 if (zbr != &c->zroot) {
1157 err = 12;
1158 goto out;
1159 }
1160 }
1161
1162 /*
1163 * Make sure that next key is greater or equivalent then the previous
1164 * one.
1165 */
1166 for (n = 1; n < znode->child_cnt; n++) {
1167 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1168 &znode->zbranch[n].key);
1169 if (cmp > 0) {
1170 err = 13;
1171 goto out;
1172 }
1173 if (cmp == 0) {
1174 /* This can only be keys with colliding hash */
1175 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1176 err = 14;
1177 goto out;
1178 }
1179
1180 if (znode->level != 0 || c->replaying)
1181 continue;
1182
1183 /*
1184 * Colliding keys should follow binary order of
1185 * corresponding xentry/dentry names.
1186 */
1187 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1188 &znode->zbranch[n]);
1189 if (err < 0)
1190 return err;
1191 if (err) {
1192 err = 15;
1193 goto out;
1194 }
1195 }
1196 }
1197
1198 for (n = 0; n < znode->child_cnt; n++) {
1199 if (!znode->zbranch[n].znode &&
1200 (znode->zbranch[n].lnum == 0 ||
1201 znode->zbranch[n].len == 0)) {
1202 err = 16;
1203 goto out;
1204 }
1205
1206 if (znode->zbranch[n].lnum != 0 &&
1207 znode->zbranch[n].len == 0) {
1208 err = 17;
1209 goto out;
1210 }
1211
1212 if (znode->zbranch[n].lnum == 0 &&
1213 znode->zbranch[n].len != 0) {
1214 err = 18;
1215 goto out;
1216 }
1217
1218 if (znode->zbranch[n].lnum == 0 &&
1219 znode->zbranch[n].offs != 0) {
1220 err = 19;
1221 goto out;
1222 }
1223
1224 if (znode->level != 0 && znode->zbranch[n].znode)
1225 if (znode->zbranch[n].znode->parent != znode) {
1226 err = 20;
1227 goto out;
1228 }
1229 }
1230
1231 return 0;
1232
1233out:
1234 ubifs_err("failed, error %d", err);
1235 ubifs_msg("dump of the znode");
1236 dbg_dump_znode(c, znode);
1237 if (zp) {
1238 ubifs_msg("dump of the parent znode");
1239 dbg_dump_znode(c, zp);
1240 }
1241 dump_stack();
1242 return -EINVAL;
1243}
1244
1245/**
1246 * dbg_check_tnc - check TNC tree.
1247 * @c: UBIFS file-system description object
1248 * @extra: do extra checks that are possible at start commit
1249 *
1250 * This function traverses whole TNC tree and checks every znode. Returns zero
1251 * if everything is all right and %-EINVAL if something is wrong with TNC.
1252 */
1253int dbg_check_tnc(struct ubifs_info *c, int extra)
1254{
1255 struct ubifs_znode *znode;
1256 long clean_cnt = 0, dirty_cnt = 0;
1257 int err, last;
1258
1259 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1260 return 0;
1261
1262 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1263 if (!c->zroot.znode)
1264 return 0;
1265
1266 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1267 while (1) {
1268 struct ubifs_znode *prev;
1269 struct ubifs_zbranch *zbr;
1270
1271 if (!znode->parent)
1272 zbr = &c->zroot;
1273 else
1274 zbr = &znode->parent->zbranch[znode->iip];
1275
1276 err = dbg_check_znode(c, zbr);
1277 if (err)
1278 return err;
1279
1280 if (extra) {
1281 if (ubifs_zn_dirty(znode))
1282 dirty_cnt += 1;
1283 else
1284 clean_cnt += 1;
1285 }
1286
1287 prev = znode;
1288 znode = ubifs_tnc_postorder_next(znode);
1289 if (!znode)
1290 break;
1291
1292 /*
1293 * If the last key of this znode is equivalent to the first key
1294 * of the next znode (collision), then check order of the keys.
1295 */
1296 last = prev->child_cnt - 1;
1297 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1298 !keys_cmp(c, &prev->zbranch[last].key,
1299 &znode->zbranch[0].key)) {
1300 err = dbg_check_key_order(c, &prev->zbranch[last],
1301 &znode->zbranch[0]);
1302 if (err < 0)
1303 return err;
1304 if (err) {
1305 ubifs_msg("first znode");
1306 dbg_dump_znode(c, prev);
1307 ubifs_msg("second znode");
1308 dbg_dump_znode(c, znode);
1309 return -EINVAL;
1310 }
1311 }
1312 }
1313
1314 if (extra) {
1315 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1316 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1317 atomic_long_read(&c->clean_zn_cnt),
1318 clean_cnt);
1319 return -EINVAL;
1320 }
1321 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1322 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1323 atomic_long_read(&c->dirty_zn_cnt),
1324 dirty_cnt);
1325 return -EINVAL;
1326 }
1327 }
1328
1329 return 0;
1330}
1331
1332/**
1333 * dbg_walk_index - walk the on-flash index.
1334 * @c: UBIFS file-system description object
1335 * @leaf_cb: called for each leaf node
1336 * @znode_cb: called for each indexing node
1337 * @priv: private date which is passed to callbacks
1338 *
1339 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1340 * node and @znode_cb for each indexing node. Returns zero in case of success
1341 * and a negative error code in case of failure.
1342 *
1343 * It would be better if this function removed every znode it pulled to into
1344 * the TNC, so that the behavior more closely matched the non-debugging
1345 * behavior.
1346 */
1347int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1348 dbg_znode_callback znode_cb, void *priv)
1349{
1350 int err;
1351 struct ubifs_zbranch *zbr;
1352 struct ubifs_znode *znode, *child;
1353
1354 mutex_lock(&c->tnc_mutex);
1355 /* If the root indexing node is not in TNC - pull it */
1356 if (!c->zroot.znode) {
1357 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1358 if (IS_ERR(c->zroot.znode)) {
1359 err = PTR_ERR(c->zroot.znode);
1360 c->zroot.znode = NULL;
1361 goto out_unlock;
1362 }
1363 }
1364
1365 /*
1366 * We are going to traverse the indexing tree in the postorder manner.
1367 * Go down and find the leftmost indexing node where we are going to
1368 * start from.
1369 */
1370 znode = c->zroot.znode;
1371 while (znode->level > 0) {
1372 zbr = &znode->zbranch[0];
1373 child = zbr->znode;
1374 if (!child) {
1375 child = ubifs_load_znode(c, zbr, znode, 0);
1376 if (IS_ERR(child)) {
1377 err = PTR_ERR(child);
1378 goto out_unlock;
1379 }
1380 zbr->znode = child;
1381 }
1382
1383 znode = child;
1384 }
1385
1386 /* Iterate over all indexing nodes */
1387 while (1) {
1388 int idx;
1389
1390 cond_resched();
1391
1392 if (znode_cb) {
1393 err = znode_cb(c, znode, priv);
1394 if (err) {
1395 ubifs_err("znode checking function returned "
1396 "error %d", err);
1397 dbg_dump_znode(c, znode);
1398 goto out_dump;
1399 }
1400 }
1401 if (leaf_cb && znode->level == 0) {
1402 for (idx = 0; idx < znode->child_cnt; idx++) {
1403 zbr = &znode->zbranch[idx];
1404 err = leaf_cb(c, zbr, priv);
1405 if (err) {
1406 ubifs_err("leaf checking function "
1407 "returned error %d, for leaf "
1408 "at LEB %d:%d",
1409 err, zbr->lnum, zbr->offs);
1410 goto out_dump;
1411 }
1412 }
1413 }
1414
1415 if (!znode->parent)
1416 break;
1417
1418 idx = znode->iip + 1;
1419 znode = znode->parent;
1420 if (idx < znode->child_cnt) {
1421 /* Switch to the next index in the parent */
1422 zbr = &znode->zbranch[idx];
1423 child = zbr->znode;
1424 if (!child) {
1425 child = ubifs_load_znode(c, zbr, znode, idx);
1426 if (IS_ERR(child)) {
1427 err = PTR_ERR(child);
1428 goto out_unlock;
1429 }
1430 zbr->znode = child;
1431 }
1432 znode = child;
1433 } else
1434 /*
1435 * This is the last child, switch to the parent and
1436 * continue.
1437 */
1438 continue;
1439
1440 /* Go to the lowest leftmost znode in the new sub-tree */
1441 while (znode->level > 0) {
1442 zbr = &znode->zbranch[0];
1443 child = zbr->znode;
1444 if (!child) {
1445 child = ubifs_load_znode(c, zbr, znode, 0);
1446 if (IS_ERR(child)) {
1447 err = PTR_ERR(child);
1448 goto out_unlock;
1449 }
1450 zbr->znode = child;
1451 }
1452 znode = child;
1453 }
1454 }
1455
1456 mutex_unlock(&c->tnc_mutex);
1457 return 0;
1458
1459out_dump:
1460 if (znode->parent)
1461 zbr = &znode->parent->zbranch[znode->iip];
1462 else
1463 zbr = &c->zroot;
1464 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1465 dbg_dump_znode(c, znode);
1466out_unlock:
1467 mutex_unlock(&c->tnc_mutex);
1468 return err;
1469}
1470
1471/**
1472 * add_size - add znode size to partially calculated index size.
1473 * @c: UBIFS file-system description object
1474 * @znode: znode to add size for
1475 * @priv: partially calculated index size
1476 *
1477 * This is a helper function for 'dbg_check_idx_size()' which is called for
1478 * every indexing node and adds its size to the 'long long' variable pointed to
1479 * by @priv.
1480 */
1481static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1482{
1483 long long *idx_size = priv;
1484 int add;
1485
1486 add = ubifs_idx_node_sz(c, znode->child_cnt);
1487 add = ALIGN(add, 8);
1488 *idx_size += add;
1489 return 0;
1490}
1491
1492/**
1493 * dbg_check_idx_size - check index size.
1494 * @c: UBIFS file-system description object
1495 * @idx_size: size to check
1496 *
1497 * This function walks the UBIFS index, calculates its size and checks that the
1498 * size is equivalent to @idx_size. Returns zero in case of success and a
1499 * negative error code in case of failure.
1500 */
1501int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1502{
1503 int err;
1504 long long calc = 0;
1505
1506 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1507 return 0;
1508
1509 err = dbg_walk_index(c, NULL, add_size, &calc);
1510 if (err) {
1511 ubifs_err("error %d while walking the index", err);
1512 return err;
1513 }
1514
1515 if (calc != idx_size) {
1516 ubifs_err("index size check failed: calculated size is %lld, "
1517 "should be %lld", calc, idx_size);
1518 dump_stack();
1519 return -EINVAL;
1520 }
1521
1522 return 0;
1523}
1524
1525/**
1526 * struct fsck_inode - information about an inode used when checking the file-system.
1527 * @rb: link in the RB-tree of inodes
1528 * @inum: inode number
1529 * @mode: inode type, permissions, etc
1530 * @nlink: inode link count
1531 * @xattr_cnt: count of extended attributes
1532 * @references: how many directory/xattr entries refer this inode (calculated
1533 * while walking the index)
1534 * @calc_cnt: for directory inode count of child directories
1535 * @size: inode size (read from on-flash inode)
1536 * @xattr_sz: summary size of all extended attributes (read from on-flash
1537 * inode)
1538 * @calc_sz: for directories calculated directory size
1539 * @calc_xcnt: count of extended attributes
1540 * @calc_xsz: calculated summary size of all extended attributes
1541 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1542 * inode (read from on-flash inode)
1543 * @calc_xnms: calculated sum of lengths of all extended attribute names
1544 */
1545struct fsck_inode {
1546 struct rb_node rb;
1547 ino_t inum;
1548 umode_t mode;
1549 unsigned int nlink;
1550 unsigned int xattr_cnt;
1551 int references;
1552 int calc_cnt;
1553 long long size;
1554 unsigned int xattr_sz;
1555 long long calc_sz;
1556 long long calc_xcnt;
1557 long long calc_xsz;
1558 unsigned int xattr_nms;
1559 long long calc_xnms;
1560};
1561
1562/**
1563 * struct fsck_data - private FS checking information.
1564 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1565 */
1566struct fsck_data {
1567 struct rb_root inodes;
1568};
1569
1570/**
1571 * add_inode - add inode information to RB-tree of inodes.
1572 * @c: UBIFS file-system description object
1573 * @fsckd: FS checking information
1574 * @ino: raw UBIFS inode to add
1575 *
1576 * This is a helper function for 'check_leaf()' which adds information about
1577 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1578 * case of success and a negative error code in case of failure.
1579 */
1580static struct fsck_inode *add_inode(struct ubifs_info *c,
1581 struct fsck_data *fsckd,
1582 struct ubifs_ino_node *ino)
1583{
1584 struct rb_node **p, *parent = NULL;
1585 struct fsck_inode *fscki;
1586 ino_t inum = key_inum_flash(c, &ino->key);
1587
1588 p = &fsckd->inodes.rb_node;
1589 while (*p) {
1590 parent = *p;
1591 fscki = rb_entry(parent, struct fsck_inode, rb);
1592 if (inum < fscki->inum)
1593 p = &(*p)->rb_left;
1594 else if (inum > fscki->inum)
1595 p = &(*p)->rb_right;
1596 else
1597 return fscki;
1598 }
1599
1600 if (inum > c->highest_inum) {
1601 ubifs_err("too high inode number, max. is %lu",
e84461ad 1602 (unsigned long)c->highest_inum);
1e51764a
AB
1603 return ERR_PTR(-EINVAL);
1604 }
1605
1606 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1607 if (!fscki)
1608 return ERR_PTR(-ENOMEM);
1609
1610 fscki->inum = inum;
1611 fscki->nlink = le32_to_cpu(ino->nlink);
1612 fscki->size = le64_to_cpu(ino->size);
1613 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1614 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1615 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1616 fscki->mode = le32_to_cpu(ino->mode);
1617 if (S_ISDIR(fscki->mode)) {
1618 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1619 fscki->calc_cnt = 2;
1620 }
1621 rb_link_node(&fscki->rb, parent, p);
1622 rb_insert_color(&fscki->rb, &fsckd->inodes);
1623 return fscki;
1624}
1625
1626/**
1627 * search_inode - search inode in the RB-tree of inodes.
1628 * @fsckd: FS checking information
1629 * @inum: inode number to search
1630 *
1631 * This is a helper function for 'check_leaf()' which searches inode @inum in
1632 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1633 * the inode was not found.
1634 */
1635static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1636{
1637 struct rb_node *p;
1638 struct fsck_inode *fscki;
1639
1640 p = fsckd->inodes.rb_node;
1641 while (p) {
1642 fscki = rb_entry(p, struct fsck_inode, rb);
1643 if (inum < fscki->inum)
1644 p = p->rb_left;
1645 else if (inum > fscki->inum)
1646 p = p->rb_right;
1647 else
1648 return fscki;
1649 }
1650 return NULL;
1651}
1652
1653/**
1654 * read_add_inode - read inode node and add it to RB-tree of inodes.
1655 * @c: UBIFS file-system description object
1656 * @fsckd: FS checking information
1657 * @inum: inode number to read
1658 *
1659 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1660 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1661 * information pointer in case of success and a negative error code in case of
1662 * failure.
1663 */
1664static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1665 struct fsck_data *fsckd, ino_t inum)
1666{
1667 int n, err;
1668 union ubifs_key key;
1669 struct ubifs_znode *znode;
1670 struct ubifs_zbranch *zbr;
1671 struct ubifs_ino_node *ino;
1672 struct fsck_inode *fscki;
1673
1674 fscki = search_inode(fsckd, inum);
1675 if (fscki)
1676 return fscki;
1677
1678 ino_key_init(c, &key, inum);
1679 err = ubifs_lookup_level0(c, &key, &znode, &n);
1680 if (!err) {
e84461ad 1681 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1e51764a
AB
1682 return ERR_PTR(-ENOENT);
1683 } else if (err < 0) {
e84461ad
AB
1684 ubifs_err("error %d while looking up inode %lu",
1685 err, (unsigned long)inum);
1e51764a
AB
1686 return ERR_PTR(err);
1687 }
1688
1689 zbr = &znode->zbranch[n];
1690 if (zbr->len < UBIFS_INO_NODE_SZ) {
e84461ad
AB
1691 ubifs_err("bad node %lu node length %d",
1692 (unsigned long)inum, zbr->len);
1e51764a
AB
1693 return ERR_PTR(-EINVAL);
1694 }
1695
1696 ino = kmalloc(zbr->len, GFP_NOFS);
1697 if (!ino)
1698 return ERR_PTR(-ENOMEM);
1699
1700 err = ubifs_tnc_read_node(c, zbr, ino);
1701 if (err) {
1702 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1703 zbr->lnum, zbr->offs, err);
1704 kfree(ino);
1705 return ERR_PTR(err);
1706 }
1707
1708 fscki = add_inode(c, fsckd, ino);
1709 kfree(ino);
1710 if (IS_ERR(fscki)) {
1711 ubifs_err("error %ld while adding inode %lu node",
e84461ad 1712 PTR_ERR(fscki), (unsigned long)inum);
1e51764a
AB
1713 return fscki;
1714 }
1715
1716 return fscki;
1717}
1718
1719/**
1720 * check_leaf - check leaf node.
1721 * @c: UBIFS file-system description object
1722 * @zbr: zbranch of the leaf node to check
1723 * @priv: FS checking information
1724 *
1725 * This is a helper function for 'dbg_check_filesystem()' which is called for
1726 * every single leaf node while walking the indexing tree. It checks that the
1727 * leaf node referred from the indexing tree exists, has correct CRC, and does
1728 * some other basic validation. This function is also responsible for building
1729 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1730 * calculates reference count, size, etc for each inode in order to later
1731 * compare them to the information stored inside the inodes and detect possible
1732 * inconsistencies. Returns zero in case of success and a negative error code
1733 * in case of failure.
1734 */
1735static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1736 void *priv)
1737{
1738 ino_t inum;
1739 void *node;
1740 struct ubifs_ch *ch;
1741 int err, type = key_type(c, &zbr->key);
1742 struct fsck_inode *fscki;
1743
1744 if (zbr->len < UBIFS_CH_SZ) {
1745 ubifs_err("bad leaf length %d (LEB %d:%d)",
1746 zbr->len, zbr->lnum, zbr->offs);
1747 return -EINVAL;
1748 }
1749
1750 node = kmalloc(zbr->len, GFP_NOFS);
1751 if (!node)
1752 return -ENOMEM;
1753
1754 err = ubifs_tnc_read_node(c, zbr, node);
1755 if (err) {
1756 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1757 zbr->lnum, zbr->offs, err);
1758 goto out_free;
1759 }
1760
1761 /* If this is an inode node, add it to RB-tree of inodes */
1762 if (type == UBIFS_INO_KEY) {
1763 fscki = add_inode(c, priv, node);
1764 if (IS_ERR(fscki)) {
1765 err = PTR_ERR(fscki);
1766 ubifs_err("error %d while adding inode node", err);
1767 goto out_dump;
1768 }
1769 goto out;
1770 }
1771
1772 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1773 type != UBIFS_DATA_KEY) {
1774 ubifs_err("unexpected node type %d at LEB %d:%d",
1775 type, zbr->lnum, zbr->offs);
1776 err = -EINVAL;
1777 goto out_free;
1778 }
1779
1780 ch = node;
1781 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1782 ubifs_err("too high sequence number, max. is %llu",
1783 c->max_sqnum);
1784 err = -EINVAL;
1785 goto out_dump;
1786 }
1787
1788 if (type == UBIFS_DATA_KEY) {
1789 long long blk_offs;
1790 struct ubifs_data_node *dn = node;
1791
1792 /*
1793 * Search the inode node this data node belongs to and insert
1794 * it to the RB-tree of inodes.
1795 */
1796 inum = key_inum_flash(c, &dn->key);
1797 fscki = read_add_inode(c, priv, inum);
1798 if (IS_ERR(fscki)) {
1799 err = PTR_ERR(fscki);
1800 ubifs_err("error %d while processing data node and "
e84461ad
AB
1801 "trying to find inode node %lu",
1802 err, (unsigned long)inum);
1e51764a
AB
1803 goto out_dump;
1804 }
1805
1806 /* Make sure the data node is within inode size */
1807 blk_offs = key_block_flash(c, &dn->key);
1808 blk_offs <<= UBIFS_BLOCK_SHIFT;
1809 blk_offs += le32_to_cpu(dn->size);
1810 if (blk_offs > fscki->size) {
1811 ubifs_err("data node at LEB %d:%d is not within inode "
1812 "size %lld", zbr->lnum, zbr->offs,
1813 fscki->size);
1814 err = -EINVAL;
1815 goto out_dump;
1816 }
1817 } else {
1818 int nlen;
1819 struct ubifs_dent_node *dent = node;
1820 struct fsck_inode *fscki1;
1821
1822 err = ubifs_validate_entry(c, dent);
1823 if (err)
1824 goto out_dump;
1825
1826 /*
1827 * Search the inode node this entry refers to and the parent
1828 * inode node and insert them to the RB-tree of inodes.
1829 */
1830 inum = le64_to_cpu(dent->inum);
1831 fscki = read_add_inode(c, priv, inum);
1832 if (IS_ERR(fscki)) {
1833 err = PTR_ERR(fscki);
1834 ubifs_err("error %d while processing entry node and "
e84461ad
AB
1835 "trying to find inode node %lu",
1836 err, (unsigned long)inum);
1e51764a
AB
1837 goto out_dump;
1838 }
1839
1840 /* Count how many direntries or xentries refers this inode */
1841 fscki->references += 1;
1842
1843 inum = key_inum_flash(c, &dent->key);
1844 fscki1 = read_add_inode(c, priv, inum);
1845 if (IS_ERR(fscki1)) {
1846 err = PTR_ERR(fscki);
1847 ubifs_err("error %d while processing entry node and "
1848 "trying to find parent inode node %lu",
e84461ad 1849 err, (unsigned long)inum);
1e51764a
AB
1850 goto out_dump;
1851 }
1852
1853 nlen = le16_to_cpu(dent->nlen);
1854 if (type == UBIFS_XENT_KEY) {
1855 fscki1->calc_xcnt += 1;
1856 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1857 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1858 fscki1->calc_xnms += nlen;
1859 } else {
1860 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1861 if (dent->type == UBIFS_ITYPE_DIR)
1862 fscki1->calc_cnt += 1;
1863 }
1864 }
1865
1866out:
1867 kfree(node);
1868 return 0;
1869
1870out_dump:
1871 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1872 dbg_dump_node(c, node);
1873out_free:
1874 kfree(node);
1875 return err;
1876}
1877
1878/**
1879 * free_inodes - free RB-tree of inodes.
1880 * @fsckd: FS checking information
1881 */
1882static void free_inodes(struct fsck_data *fsckd)
1883{
1884 struct rb_node *this = fsckd->inodes.rb_node;
1885 struct fsck_inode *fscki;
1886
1887 while (this) {
1888 if (this->rb_left)
1889 this = this->rb_left;
1890 else if (this->rb_right)
1891 this = this->rb_right;
1892 else {
1893 fscki = rb_entry(this, struct fsck_inode, rb);
1894 this = rb_parent(this);
1895 if (this) {
1896 if (this->rb_left == &fscki->rb)
1897 this->rb_left = NULL;
1898 else
1899 this->rb_right = NULL;
1900 }
1901 kfree(fscki);
1902 }
1903 }
1904}
1905
1906/**
1907 * check_inodes - checks all inodes.
1908 * @c: UBIFS file-system description object
1909 * @fsckd: FS checking information
1910 *
1911 * This is a helper function for 'dbg_check_filesystem()' which walks the
1912 * RB-tree of inodes after the index scan has been finished, and checks that
1913 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1914 * %-EINVAL if not, and a negative error code in case of failure.
1915 */
1916static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1917{
1918 int n, err;
1919 union ubifs_key key;
1920 struct ubifs_znode *znode;
1921 struct ubifs_zbranch *zbr;
1922 struct ubifs_ino_node *ino;
1923 struct fsck_inode *fscki;
1924 struct rb_node *this = rb_first(&fsckd->inodes);
1925
1926 while (this) {
1927 fscki = rb_entry(this, struct fsck_inode, rb);
1928 this = rb_next(this);
1929
1930 if (S_ISDIR(fscki->mode)) {
1931 /*
1932 * Directories have to have exactly one reference (they
1933 * cannot have hardlinks), although root inode is an
1934 * exception.
1935 */
1936 if (fscki->inum != UBIFS_ROOT_INO &&
1937 fscki->references != 1) {
1938 ubifs_err("directory inode %lu has %d "
1939 "direntries which refer it, but "
e84461ad
AB
1940 "should be 1",
1941 (unsigned long)fscki->inum,
1e51764a
AB
1942 fscki->references);
1943 goto out_dump;
1944 }
1945 if (fscki->inum == UBIFS_ROOT_INO &&
1946 fscki->references != 0) {
1947 ubifs_err("root inode %lu has non-zero (%d) "
1948 "direntries which refer it",
e84461ad
AB
1949 (unsigned long)fscki->inum,
1950 fscki->references);
1e51764a
AB
1951 goto out_dump;
1952 }
1953 if (fscki->calc_sz != fscki->size) {
1954 ubifs_err("directory inode %lu size is %lld, "
1955 "but calculated size is %lld",
e84461ad
AB
1956 (unsigned long)fscki->inum,
1957 fscki->size, fscki->calc_sz);
1e51764a
AB
1958 goto out_dump;
1959 }
1960 if (fscki->calc_cnt != fscki->nlink) {
1961 ubifs_err("directory inode %lu nlink is %d, "
1962 "but calculated nlink is %d",
e84461ad
AB
1963 (unsigned long)fscki->inum,
1964 fscki->nlink, fscki->calc_cnt);
1e51764a
AB
1965 goto out_dump;
1966 }
1967 } else {
1968 if (fscki->references != fscki->nlink) {
1969 ubifs_err("inode %lu nlink is %d, but "
e84461ad
AB
1970 "calculated nlink is %d",
1971 (unsigned long)fscki->inum,
1e51764a
AB
1972 fscki->nlink, fscki->references);
1973 goto out_dump;
1974 }
1975 }
1976 if (fscki->xattr_sz != fscki->calc_xsz) {
1977 ubifs_err("inode %lu has xattr size %u, but "
1978 "calculated size is %lld",
e84461ad 1979 (unsigned long)fscki->inum, fscki->xattr_sz,
1e51764a
AB
1980 fscki->calc_xsz);
1981 goto out_dump;
1982 }
1983 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1984 ubifs_err("inode %lu has %u xattrs, but "
e84461ad
AB
1985 "calculated count is %lld",
1986 (unsigned long)fscki->inum,
1e51764a
AB
1987 fscki->xattr_cnt, fscki->calc_xcnt);
1988 goto out_dump;
1989 }
1990 if (fscki->xattr_nms != fscki->calc_xnms) {
1991 ubifs_err("inode %lu has xattr names' size %u, but "
1992 "calculated names' size is %lld",
e84461ad 1993 (unsigned long)fscki->inum, fscki->xattr_nms,
1e51764a
AB
1994 fscki->calc_xnms);
1995 goto out_dump;
1996 }
1997 }
1998
1999 return 0;
2000
2001out_dump:
2002 /* Read the bad inode and dump it */
2003 ino_key_init(c, &key, fscki->inum);
2004 err = ubifs_lookup_level0(c, &key, &znode, &n);
2005 if (!err) {
e84461ad
AB
2006 ubifs_err("inode %lu not found in index",
2007 (unsigned long)fscki->inum);
1e51764a
AB
2008 return -ENOENT;
2009 } else if (err < 0) {
2010 ubifs_err("error %d while looking up inode %lu",
e84461ad 2011 err, (unsigned long)fscki->inum);
1e51764a
AB
2012 return err;
2013 }
2014
2015 zbr = &znode->zbranch[n];
2016 ino = kmalloc(zbr->len, GFP_NOFS);
2017 if (!ino)
2018 return -ENOMEM;
2019
2020 err = ubifs_tnc_read_node(c, zbr, ino);
2021 if (err) {
2022 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2023 zbr->lnum, zbr->offs, err);
2024 kfree(ino);
2025 return err;
2026 }
2027
2028 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
e84461ad 2029 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
1e51764a
AB
2030 dbg_dump_node(c, ino);
2031 kfree(ino);
2032 return -EINVAL;
2033}
2034
2035/**
2036 * dbg_check_filesystem - check the file-system.
2037 * @c: UBIFS file-system description object
2038 *
2039 * This function checks the file system, namely:
2040 * o makes sure that all leaf nodes exist and their CRCs are correct;
2041 * o makes sure inode nlink, size, xattr size/count are correct (for all
2042 * inodes).
2043 *
2044 * The function reads whole indexing tree and all nodes, so it is pretty
2045 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2046 * not, and a negative error code in case of failure.
2047 */
2048int dbg_check_filesystem(struct ubifs_info *c)
2049{
2050 int err;
2051 struct fsck_data fsckd;
2052
2053 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2054 return 0;
2055
2056 fsckd.inodes = RB_ROOT;
2057 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2058 if (err)
2059 goto out_free;
2060
2061 err = check_inodes(c, &fsckd);
2062 if (err)
2063 goto out_free;
2064
2065 free_inodes(&fsckd);
2066 return 0;
2067
2068out_free:
2069 ubifs_err("file-system check failed with error %d", err);
2070 dump_stack();
2071 free_inodes(&fsckd);
2072 return err;
2073}
2074
2075static int invocation_cnt;
2076
2077int dbg_force_in_the_gaps(void)
2078{
2079 if (!dbg_force_in_the_gaps_enabled)
2080 return 0;
2081 /* Force in-the-gaps every 8th commit */
2082 return !((invocation_cnt++) & 0x7);
2083}
2084
2085/* Failure mode for recovery testing */
2086
2087#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2088
2089struct failure_mode_info {
2090 struct list_head list;
2091 struct ubifs_info *c;
2092};
2093
2094static LIST_HEAD(fmi_list);
2095static DEFINE_SPINLOCK(fmi_lock);
2096
2097static unsigned int next;
2098
2099static int simple_rand(void)
2100{
2101 if (next == 0)
2102 next = current->pid;
2103 next = next * 1103515245 + 12345;
2104 return (next >> 16) & 32767;
2105}
2106
17c2f9f8 2107static void failure_mode_init(struct ubifs_info *c)
1e51764a
AB
2108{
2109 struct failure_mode_info *fmi;
2110
2111 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2112 if (!fmi) {
552ff317 2113 ubifs_err("Failed to register failure mode - no memory");
1e51764a
AB
2114 return;
2115 }
2116 fmi->c = c;
2117 spin_lock(&fmi_lock);
2118 list_add_tail(&fmi->list, &fmi_list);
2119 spin_unlock(&fmi_lock);
2120}
2121
17c2f9f8 2122static void failure_mode_exit(struct ubifs_info *c)
1e51764a
AB
2123{
2124 struct failure_mode_info *fmi, *tmp;
2125
2126 spin_lock(&fmi_lock);
2127 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2128 if (fmi->c == c) {
2129 list_del(&fmi->list);
2130 kfree(fmi);
2131 }
2132 spin_unlock(&fmi_lock);
2133}
2134
2135static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2136{
2137 struct failure_mode_info *fmi;
2138
2139 spin_lock(&fmi_lock);
2140 list_for_each_entry(fmi, &fmi_list, list)
2141 if (fmi->c->ubi == desc) {
2142 struct ubifs_info *c = fmi->c;
2143
2144 spin_unlock(&fmi_lock);
2145 return c;
2146 }
2147 spin_unlock(&fmi_lock);
2148 return NULL;
2149}
2150
2151static int in_failure_mode(struct ubi_volume_desc *desc)
2152{
2153 struct ubifs_info *c = dbg_find_info(desc);
2154
2155 if (c && dbg_failure_mode)
17c2f9f8 2156 return c->dbg->failure_mode;
1e51764a
AB
2157 return 0;
2158}
2159
2160static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2161{
2162 struct ubifs_info *c = dbg_find_info(desc);
17c2f9f8 2163 struct ubifs_debug_info *d;
1e51764a
AB
2164
2165 if (!c || !dbg_failure_mode)
2166 return 0;
17c2f9f8
AB
2167 d = c->dbg;
2168 if (d->failure_mode)
1e51764a 2169 return 1;
17c2f9f8 2170 if (!d->fail_cnt) {
1e51764a
AB
2171 /* First call - decide delay to failure */
2172 if (chance(1, 2)) {
2173 unsigned int delay = 1 << (simple_rand() >> 11);
2174
2175 if (chance(1, 2)) {
17c2f9f8
AB
2176 d->fail_delay = 1;
2177 d->fail_timeout = jiffies +
1e51764a
AB
2178 msecs_to_jiffies(delay);
2179 dbg_rcvry("failing after %ums", delay);
2180 } else {
17c2f9f8
AB
2181 d->fail_delay = 2;
2182 d->fail_cnt_max = delay;
1e51764a
AB
2183 dbg_rcvry("failing after %u calls", delay);
2184 }
2185 }
17c2f9f8 2186 d->fail_cnt += 1;
1e51764a
AB
2187 }
2188 /* Determine if failure delay has expired */
17c2f9f8
AB
2189 if (d->fail_delay == 1) {
2190 if (time_before(jiffies, d->fail_timeout))
1e51764a 2191 return 0;
17c2f9f8
AB
2192 } else if (d->fail_delay == 2)
2193 if (d->fail_cnt++ < d->fail_cnt_max)
1e51764a
AB
2194 return 0;
2195 if (lnum == UBIFS_SB_LNUM) {
2196 if (write) {
2197 if (chance(1, 2))
2198 return 0;
2199 } else if (chance(19, 20))
2200 return 0;
2201 dbg_rcvry("failing in super block LEB %d", lnum);
2202 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2203 if (chance(19, 20))
2204 return 0;
2205 dbg_rcvry("failing in master LEB %d", lnum);
2206 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2207 if (write) {
2208 if (chance(99, 100))
2209 return 0;
2210 } else if (chance(399, 400))
2211 return 0;
2212 dbg_rcvry("failing in log LEB %d", lnum);
2213 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2214 if (write) {
2215 if (chance(7, 8))
2216 return 0;
2217 } else if (chance(19, 20))
2218 return 0;
2219 dbg_rcvry("failing in LPT LEB %d", lnum);
2220 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2221 if (write) {
2222 if (chance(1, 2))
2223 return 0;
2224 } else if (chance(9, 10))
2225 return 0;
2226 dbg_rcvry("failing in orphan LEB %d", lnum);
2227 } else if (lnum == c->ihead_lnum) {
2228 if (chance(99, 100))
2229 return 0;
2230 dbg_rcvry("failing in index head LEB %d", lnum);
2231 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2232 if (chance(9, 10))
2233 return 0;
2234 dbg_rcvry("failing in GC head LEB %d", lnum);
2235 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2236 !ubifs_search_bud(c, lnum)) {
2237 if (chance(19, 20))
2238 return 0;
2239 dbg_rcvry("failing in non-bud LEB %d", lnum);
2240 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2241 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2242 if (chance(999, 1000))
2243 return 0;
2244 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2245 } else {
2246 if (chance(9999, 10000))
2247 return 0;
2248 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2249 }
2250 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
17c2f9f8 2251 d->failure_mode = 1;
1e51764a
AB
2252 dump_stack();
2253 return 1;
2254}
2255
2256static void cut_data(const void *buf, int len)
2257{
2258 int flen, i;
2259 unsigned char *p = (void *)buf;
2260
2261 flen = (len * (long long)simple_rand()) >> 15;
2262 for (i = flen; i < len; i++)
2263 p[i] = 0xff;
2264}
2265
2266int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2267 int len, int check)
2268{
2269 if (in_failure_mode(desc))
2270 return -EIO;
2271 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2272}
2273
2274int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2275 int offset, int len, int dtype)
2276{
16dfd804 2277 int err, failing;
1e51764a
AB
2278
2279 if (in_failure_mode(desc))
2280 return -EIO;
16dfd804
AH
2281 failing = do_fail(desc, lnum, 1);
2282 if (failing)
1e51764a
AB
2283 cut_data(buf, len);
2284 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2285 if (err)
2286 return err;
16dfd804 2287 if (failing)
1e51764a
AB
2288 return -EIO;
2289 return 0;
2290}
2291
2292int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2293 int len, int dtype)
2294{
2295 int err;
2296
2297 if (do_fail(desc, lnum, 1))
2298 return -EIO;
2299 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2300 if (err)
2301 return err;
2302 if (do_fail(desc, lnum, 1))
2303 return -EIO;
2304 return 0;
2305}
2306
2307int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2308{
2309 int err;
2310
2311 if (do_fail(desc, lnum, 0))
2312 return -EIO;
2313 err = ubi_leb_erase(desc, lnum);
2314 if (err)
2315 return err;
2316 if (do_fail(desc, lnum, 0))
2317 return -EIO;
2318 return 0;
2319}
2320
2321int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2322{
2323 int err;
2324
2325 if (do_fail(desc, lnum, 0))
2326 return -EIO;
2327 err = ubi_leb_unmap(desc, lnum);
2328 if (err)
2329 return err;
2330 if (do_fail(desc, lnum, 0))
2331 return -EIO;
2332 return 0;
2333}
2334
2335int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2336{
2337 if (in_failure_mode(desc))
2338 return -EIO;
2339 return ubi_is_mapped(desc, lnum);
2340}
2341
2342int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2343{
2344 int err;
2345
2346 if (do_fail(desc, lnum, 0))
2347 return -EIO;
2348 err = ubi_leb_map(desc, lnum, dtype);
2349 if (err)
2350 return err;
2351 if (do_fail(desc, lnum, 0))
2352 return -EIO;
2353 return 0;
2354}
2355
17c2f9f8
AB
2356/**
2357 * ubifs_debugging_init - initialize UBIFS debugging.
2358 * @c: UBIFS file-system description object
2359 *
2360 * This function initializes debugging-related data for the file system.
2361 * Returns zero in case of success and a negative error code in case of
2362 * failure.
2363 */
2364int ubifs_debugging_init(struct ubifs_info *c)
2365{
2366 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2367 if (!c->dbg)
2368 return -ENOMEM;
2369
2370 c->dbg->buf = vmalloc(c->leb_size);
2371 if (!c->dbg->buf)
2372 goto out;
2373
2374 failure_mode_init(c);
2375 return 0;
2376
2377out:
2378 kfree(c->dbg);
2379 return -ENOMEM;
2380}
2381
2382/**
2383 * ubifs_debugging_exit - free debugging data.
2384 * @c: UBIFS file-system description object
2385 */
2386void ubifs_debugging_exit(struct ubifs_info *c)
2387{
2388 failure_mode_exit(c);
2389 vfree(c->dbg->buf);
2390 kfree(c->dbg);
2391}
2392
552ff317
AB
2393/*
2394 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2395 * contain the stuff specific to particular file-system mounts.
2396 */
2397static struct dentry *debugfs_rootdir;
2398
2399/**
2400 * dbg_debugfs_init - initialize debugfs file-system.
2401 *
2402 * UBIFS uses debugfs file-system to expose various debugging knobs to
2403 * user-space. This function creates "ubifs" directory in the debugfs
2404 * file-system. Returns zero in case of success and a negative error code in
2405 * case of failure.
2406 */
2407int dbg_debugfs_init(void)
2408{
2409 debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
2410 if (IS_ERR(debugfs_rootdir)) {
2411 int err = PTR_ERR(debugfs_rootdir);
2412 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2413 "error %d\n", err);
2414 return err;
2415 }
2416
2417 return 0;
2418}
2419
2420/**
2421 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2422 */
2423void dbg_debugfs_exit(void)
2424{
2425 debugfs_remove(debugfs_rootdir);
2426}
2427
2428static int open_debugfs_file(struct inode *inode, struct file *file)
2429{
2430 file->private_data = inode->i_private;
2431 return 0;
2432}
2433
2434static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2435 size_t count, loff_t *ppos)
2436{
2437 struct ubifs_info *c = file->private_data;
2438 struct ubifs_debug_info *d = c->dbg;
2439
2440 if (file->f_path.dentry == d->dump_lprops)
2441 dbg_dump_lprops(c);
2442 else if (file->f_path.dentry == d->dump_budg) {
2443 spin_lock(&c->space_lock);
2444 dbg_dump_budg(c);
2445 spin_unlock(&c->space_lock);
2446 } else if (file->f_path.dentry == d->dump_budg) {
2447 mutex_lock(&c->tnc_mutex);
2448 dbg_dump_tnc(c);
2449 mutex_unlock(&c->tnc_mutex);
2450 } else
2451 return -EINVAL;
2452
2453 *ppos += count;
2454 return count;
2455}
2456
2457static const struct file_operations debugfs_fops = {
2458 .open = open_debugfs_file,
2459 .write = write_debugfs_file,
2460 .owner = THIS_MODULE,
2461};
2462
2463/**
2464 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2465 * @c: UBIFS file-system description object
2466 *
2467 * This function creates all debugfs files for this instance of UBIFS. Returns
2468 * zero in case of success and a negative error code in case of failure.
2469 *
2470 * Note, the only reason we have not merged this function with the
2471 * 'ubifs_debugging_init()' function is because it is better to initialize
2472 * debugfs interfaces at the very end of the mount process, and remove them at
2473 * the very beginning of the mount process.
2474 */
2475int dbg_debugfs_init_fs(struct ubifs_info *c)
2476{
2477 int err;
2478 const char *fname;
2479 struct dentry *dent;
2480 struct ubifs_debug_info *d = c->dbg;
2481
2482 sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2483 d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
2484 debugfs_rootdir);
2485 if (IS_ERR(d->debugfs_dir)) {
2486 err = PTR_ERR(d->debugfs_dir);
2487 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2488 d->debugfs_dir_name, err);
2489 goto out;
2490 }
2491
2492 fname = "dump_lprops";
2493 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2494 &debugfs_fops);
2495 if (IS_ERR(dent))
2496 goto out_remove;
2497 d->dump_lprops = dent;
2498
2499 fname = "dump_budg";
2500 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2501 &debugfs_fops);
2502 if (IS_ERR(dent))
2503 goto out_remove;
2504 d->dump_budg = dent;
2505
2506 fname = "dump_tnc";
2507 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2508 &debugfs_fops);
2509 if (IS_ERR(dent))
2510 goto out_remove;
2511 d->dump_tnc = dent;
2512
2513 return 0;
2514
2515out_remove:
2516 err = PTR_ERR(dent);
2517 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2518 fname, err);
2519 debugfs_remove_recursive(d->debugfs_dir);
2520out:
2521 return err;
2522}
2523
2524/**
2525 * dbg_debugfs_exit_fs - remove all debugfs files.
2526 * @c: UBIFS file-system description object
2527 */
2528void dbg_debugfs_exit_fs(struct ubifs_info *c)
2529{
2530 debugfs_remove_recursive(c->dbg->debugfs_dir);
2531}
2532
1e51764a 2533#endif /* CONFIG_UBIFS_FS_DEBUG */