Merge git://git.kernel.org/pub/scm/linux/kernel/git/hirofumi/fatfs-2.6
[linux-2.6-block.git] / fs / reiserfs / fix_node.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
0222e657
JM
33 **
34 **
1da177e4
LT
35 **/
36
1da177e4
LT
37#include <linux/time.h>
38#include <linux/string.h>
39#include <linux/reiserfs_fs.h>
40#include <linux/buffer_head.h>
41
1da177e4
LT
42/* To make any changes in the tree we find a node, that contains item
43 to be changed/deleted or position in the node we insert a new item
44 to. We call this node S. To do balancing we need to decide what we
45 will shift to left/right neighbor, or to a new node, where new item
46 will be etc. To make this analysis simpler we build virtual
47 node. Virtual node is an array of items, that will replace items of
48 node S. (For instance if we are going to delete an item, virtual
49 node does not contain it). Virtual node keeps information about
50 item sizes and types, mergeability of first and last items, sizes
51 of all entries in directory item. We use this array of items when
52 calculating what we can shift to neighbors and how many nodes we
53 have to have if we do not any shiftings, if we shift to left/right
54 neighbor or to both. */
55
1da177e4 56/* taking item number in virtual node, returns number of item, that it has in source buffer */
bd4c625c 57static inline int old_item_num(int new_num, int affected_item_num, int mode)
1da177e4 58{
bd4c625c
LT
59 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60 return new_num;
1da177e4 61
bd4c625c 62 if (mode == M_INSERT) {
1da177e4 63
bd4c625c
LT
64 RFALSE(new_num == 0,
65 "vs-8005: for INSERT mode and item number of inserted item");
1da177e4 66
bd4c625c
LT
67 return new_num - 1;
68 }
1da177e4 69
bd4c625c
LT
70 RFALSE(mode != M_DELETE,
71 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72 mode);
73 /* delete mode */
74 return new_num + 1;
1da177e4
LT
75}
76
bd4c625c 77static void create_virtual_node(struct tree_balance *tb, int h)
1da177e4 78{
bd4c625c
LT
79 struct item_head *ih;
80 struct virtual_node *vn = tb->tb_vn;
81 int new_num;
82 struct buffer_head *Sh; /* this comes from tb->S[h] */
1da177e4 83
bd4c625c 84 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1da177e4 85
bd4c625c
LT
86 /* size of changed node */
87 vn->vn_size =
88 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
1da177e4 89
bd4c625c
LT
90 /* for internal nodes array if virtual items is not created */
91 if (h) {
92 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93 return;
1da177e4 94 }
1da177e4 95
bd4c625c
LT
96 /* number of items in virtual node */
97 vn->vn_nr_item =
98 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99 ((vn->vn_mode == M_DELETE) ? 1 : 0);
100
101 /* first virtual item */
102 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105
106 /* first item in the node */
107 ih = B_N_PITEM_HEAD(Sh, 0);
108
109 /* define the mergeability for 0-th item (if it is not being deleted) */
110 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113
114 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116 int j;
117 struct virtual_item *vi = vn->vn_vi + new_num;
118 int is_affected =
119 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120
121 if (is_affected && vn->vn_mode == M_INSERT)
122 continue;
123
124 /* get item number in source node */
125 j = old_item_num(new_num, vn->vn_affected_item_num,
126 vn->vn_mode);
127
128 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129 vi->vi_ih = ih + j;
130 vi->vi_item = B_I_PITEM(Sh, ih + j);
131 vi->vi_uarea = vn->vn_free_ptr;
132
133 // FIXME: there is no check, that item operation did not
134 // consume too much memory
135 vn->vn_free_ptr +=
136 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
c3a9c210 138 reiserfs_panic(tb->tb_sb, "vs-8030",
bd4c625c
LT
139 "virtual node space consumed");
140
141 if (!is_affected)
142 /* this is not being changed */
143 continue;
144
145 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
146 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
147 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
148 }
1da177e4 149 }
bd4c625c
LT
150
151 /* virtual inserted item is not defined yet */
152 if (vn->vn_mode == M_INSERT) {
153 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
154
9dce07f1 155 RFALSE(vn->vn_ins_ih == NULL,
bd4c625c
LT
156 "vs-8040: item header of inserted item is not specified");
157 vi->vi_item_len = tb->insert_size[0];
158 vi->vi_ih = vn->vn_ins_ih;
159 vi->vi_item = vn->vn_data;
160 vi->vi_uarea = vn->vn_free_ptr;
161
162 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
163 tb->insert_size[0]);
164 }
165
166 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
167 if (tb->CFR[0]) {
168 struct reiserfs_key *key;
169
170 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
171 if (op_is_left_mergeable(key, Sh->b_size)
172 && (vn->vn_mode != M_DELETE
173 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
174 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
175 VI_TYPE_RIGHT_MERGEABLE;
176
177#ifdef CONFIG_REISERFS_CHECK
178 if (op_is_left_mergeable(key, Sh->b_size) &&
179 !(vn->vn_mode != M_DELETE
180 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
181 /* we delete last item and it could be merged with right neighbor's first item */
182 if (!
183 (B_NR_ITEMS(Sh) == 1
184 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
185 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
186 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
187 print_block(Sh, 0, -1, -1);
c3a9c210
JM
188 reiserfs_panic(tb->tb_sb, "vs-8045",
189 "rdkey %k, affected item==%d "
190 "(mode==%c) Must be %c",
bd4c625c
LT
191 key, vn->vn_affected_item_num,
192 vn->vn_mode, M_DELETE);
cd02b966 193 }
bd4c625c 194 }
1da177e4 195#endif
1da177e4 196
bd4c625c
LT
197 }
198}
1da177e4
LT
199
200/* using virtual node check, how many items can be shifted to left
201 neighbor */
bd4c625c 202static void check_left(struct tree_balance *tb, int h, int cur_free)
1da177e4 203{
bd4c625c
LT
204 int i;
205 struct virtual_node *vn = tb->tb_vn;
206 struct virtual_item *vi;
207 int d_size, ih_size;
1da177e4 208
bd4c625c 209 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
1da177e4 210
bd4c625c
LT
211 /* internal level */
212 if (h > 0) {
213 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214 return;
215 }
1da177e4 216
bd4c625c 217 /* leaf level */
1da177e4 218
bd4c625c
LT
219 if (!cur_free || !vn->vn_nr_item) {
220 /* no free space or nothing to move */
221 tb->lnum[h] = 0;
222 tb->lbytes = -1;
223 return;
224 }
1da177e4 225
bd4c625c
LT
226 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227 "vs-8055: parent does not exist or invalid");
1da177e4 228
bd4c625c
LT
229 vi = vn->vn_vi;
230 if ((unsigned int)cur_free >=
231 (vn->vn_size -
232 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233 /* all contents of S[0] fits into L[0] */
1da177e4 234
bd4c625c
LT
235 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236 "vs-8055: invalid mode or balance condition failed");
1da177e4 237
bd4c625c
LT
238 tb->lnum[0] = vn->vn_nr_item;
239 tb->lbytes = -1;
240 return;
1da177e4 241 }
bd4c625c
LT
242
243 d_size = 0, ih_size = IH_SIZE;
244
245 /* first item may be merge with last item in left neighbor */
246 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247 d_size = -((int)IH_SIZE), ih_size = 0;
248
249 tb->lnum[0] = 0;
250 for (i = 0; i < vn->vn_nr_item;
251 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252 d_size += vi->vi_item_len;
253 if (cur_free >= d_size) {
254 /* the item can be shifted entirely */
255 cur_free -= d_size;
256 tb->lnum[0]++;
257 continue;
258 }
259
260 /* the item cannot be shifted entirely, try to split it */
261 /* check whether L[0] can hold ih and at least one byte of the item body */
262 if (cur_free <= ih_size) {
263 /* cannot shift even a part of the current item */
264 tb->lbytes = -1;
265 return;
266 }
267 cur_free -= ih_size;
268
269 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270 if (tb->lbytes != -1)
271 /* count partially shifted item */
272 tb->lnum[0]++;
273
274 break;
1da177e4 275 }
1da177e4 276
bd4c625c
LT
277 return;
278}
1da177e4
LT
279
280/* using virtual node check, how many items can be shifted to right
281 neighbor */
bd4c625c 282static void check_right(struct tree_balance *tb, int h, int cur_free)
1da177e4 283{
bd4c625c
LT
284 int i;
285 struct virtual_node *vn = tb->tb_vn;
286 struct virtual_item *vi;
287 int d_size, ih_size;
288
289 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290
291 /* internal level */
292 if (h > 0) {
293 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294 return;
1da177e4 295 }
bd4c625c
LT
296
297 /* leaf level */
298
299 if (!cur_free || !vn->vn_nr_item) {
300 /* no free space */
301 tb->rnum[h] = 0;
302 tb->rbytes = -1;
303 return;
1da177e4 304 }
1da177e4 305
bd4c625c
LT
306 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307 "vs-8075: parent does not exist or invalid");
308
309 vi = vn->vn_vi + vn->vn_nr_item - 1;
310 if ((unsigned int)cur_free >=
311 (vn->vn_size -
312 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313 /* all contents of S[0] fits into R[0] */
314
315 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316 "vs-8080: invalid mode or balance condition failed");
317
318 tb->rnum[h] = vn->vn_nr_item;
319 tb->rbytes = -1;
320 return;
321 }
322
323 d_size = 0, ih_size = IH_SIZE;
324
325 /* last item may be merge with first item in right neighbor */
326 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327 d_size = -(int)IH_SIZE, ih_size = 0;
328
329 tb->rnum[0] = 0;
330 for (i = vn->vn_nr_item - 1; i >= 0;
331 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332 d_size += vi->vi_item_len;
333 if (cur_free >= d_size) {
334 /* the item can be shifted entirely */
335 cur_free -= d_size;
336 tb->rnum[0]++;
337 continue;
338 }
339
340 /* check whether R[0] can hold ih and at least one byte of the item body */
341 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
342 tb->rbytes = -1;
343 return;
344 }
345
346 /* R[0] can hold the header of the item and at least one byte of its body */
347 cur_free -= ih_size; /* cur_free is still > 0 */
348
349 tb->rbytes = op_check_right(vi, cur_free);
350 if (tb->rbytes != -1)
351 /* count partially shifted item */
352 tb->rnum[0]++;
353
354 break;
355 }
356
357 return;
358}
1da177e4
LT
359
360/*
361 * from - number of items, which are shifted to left neighbor entirely
362 * to - number of item, which are shifted to right neighbor entirely
363 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
bd4c625c
LT
365static int get_num_ver(int mode, struct tree_balance *tb, int h,
366 int from, int from_bytes,
367 int to, int to_bytes, short *snum012, int flow)
1da177e4 368{
bd4c625c
LT
369 int i;
370 int cur_free;
371 // int bytes;
372 int units;
373 struct virtual_node *vn = tb->tb_vn;
374 // struct virtual_item * vi;
375
376 int total_node_size, max_node_size, current_item_size;
377 int needed_nodes;
378 int start_item, /* position of item we start filling node from */
379 end_item, /* position of item we finish filling node by */
0222e657 380 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
bd4c625c 381 we do not include into node that is being filled */
0222e657 382 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
bd4c625c
LT
383 we do node include into node that is being filled */
384 int split_item_positions[2]; /* these are positions in virtual item of
385 items, that are split between S[0] and
386 S1new and S1new and S2new */
387
388 split_item_positions[0] = -1;
389 split_item_positions[1] = -1;
390
391 /* We only create additional nodes if we are in insert or paste mode
392 or we are in replace mode at the internal level. If h is 0 and
393 the mode is M_REPLACE then in fix_nodes we change the mode to
394 paste or insert before we get here in the code. */
395 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396 "vs-8100: insert_size < 0 in overflow");
397
398 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399
400 /* snum012 [0-2] - number of items, that lay
401 to S[0], first new node and second new node */
402 snum012[3] = -1; /* s1bytes */
403 snum012[4] = -1; /* s2bytes */
404
405 /* internal level */
406 if (h > 0) {
407 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408 if (i == max_node_size)
409 return 1;
410 return (i / max_node_size + 1);
1da177e4
LT
411 }
412
bd4c625c
LT
413 /* leaf level */
414 needed_nodes = 1;
415 total_node_size = 0;
416 cur_free = max_node_size;
417
418 // start from 'from'-th item
419 start_item = from;
420 // skip its first 'start_bytes' units
421 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422
423 // last included item is the 'end_item'-th one
424 end_item = vn->vn_nr_item - to - 1;
425 // do not count last 'end_bytes' units of 'end_item'-th item
426 end_bytes = (to_bytes != -1) ? to_bytes : 0;
427
428 /* go through all item beginning from the start_item-th item and ending by
429 the end_item-th item. Do not count first 'start_bytes' units of
430 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431
432 for (i = start_item; i <= end_item; i++) {
433 struct virtual_item *vi = vn->vn_vi + i;
434 int skip_from_end = ((i == end_item) ? end_bytes : 0);
435
436 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437
438 /* get size of current item */
439 current_item_size = vi->vi_item_len;
440
441 /* do not take in calculation head part (from_bytes) of from-th item */
442 current_item_size -=
443 op_part_size(vi, 0 /*from start */ , start_bytes);
444
445 /* do not take in calculation tail part of last item */
446 current_item_size -=
447 op_part_size(vi, 1 /*from end */ , skip_from_end);
448
449 /* if item fits into current node entierly */
450 if (total_node_size + current_item_size <= max_node_size) {
451 snum012[needed_nodes - 1]++;
452 total_node_size += current_item_size;
453 start_bytes = 0;
454 continue;
455 }
456
457 if (current_item_size > max_node_size) {
458 /* virtual item length is longer, than max size of item in
459 a node. It is impossible for direct item */
460 RFALSE(is_direct_le_ih(vi->vi_ih),
461 "vs-8110: "
462 "direct item length is %d. It can not be longer than %d",
463 current_item_size, max_node_size);
464 /* we will try to split it */
465 flow = 1;
466 }
467
468 if (!flow) {
469 /* as we do not split items, take new node and continue */
470 needed_nodes++;
471 i--;
472 total_node_size = 0;
473 continue;
474 }
475 // calculate number of item units which fit into node being
476 // filled
477 {
478 int free_space;
479
480 free_space = max_node_size - total_node_size - IH_SIZE;
481 units =
482 op_check_left(vi, free_space, start_bytes,
483 skip_from_end);
484 if (units == -1) {
485 /* nothing fits into current node, take new node and continue */
486 needed_nodes++, i--, total_node_size = 0;
487 continue;
488 }
489 }
490
491 /* something fits into the current node */
492 //if (snum012[3] != -1 || needed_nodes != 1)
493 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495 start_bytes += units;
496 snum012[needed_nodes - 1 + 3] = units;
497
498 if (needed_nodes > 2)
45b03d5e
JM
499 reiserfs_warning(tb->tb_sb, "vs-8111",
500 "split_item_position is out of range");
bd4c625c
LT
501 snum012[needed_nodes - 1]++;
502 split_item_positions[needed_nodes - 1] = i;
503 needed_nodes++;
504 /* continue from the same item with start_bytes != -1 */
505 start_item = i;
506 i--;
507 total_node_size = 0;
1da177e4
LT
508 }
509
bd4c625c
LT
510 // sum012[4] (if it is not -1) contains number of units of which
511 // are to be in S1new, snum012[3] - to be in S0. They are supposed
512 // to be S1bytes and S2bytes correspondingly, so recalculate
513 if (snum012[4] > 0) {
514 int split_item_num;
515 int bytes_to_r, bytes_to_l;
516 int bytes_to_S1new;
517
518 split_item_num = split_item_positions[1];
519 bytes_to_l =
520 ((from == split_item_num
521 && from_bytes != -1) ? from_bytes : 0);
522 bytes_to_r =
523 ((end_item == split_item_num
524 && end_bytes != -1) ? end_bytes : 0);
525 bytes_to_S1new =
526 ((split_item_positions[0] ==
527 split_item_positions[1]) ? snum012[3] : 0);
528
529 // s2bytes
530 snum012[4] =
531 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532 bytes_to_r - bytes_to_l - bytes_to_S1new;
533
534 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
45b03d5e
JM
536 reiserfs_warning(tb->tb_sb, "vs-8115",
537 "not directory or indirect item");
1da177e4
LT
538 }
539
bd4c625c
LT
540 /* now we know S2bytes, calculate S1bytes */
541 if (snum012[3] > 0) {
542 int split_item_num;
543 int bytes_to_r, bytes_to_l;
544 int bytes_to_S2new;
545
546 split_item_num = split_item_positions[0];
547 bytes_to_l =
548 ((from == split_item_num
549 && from_bytes != -1) ? from_bytes : 0);
550 bytes_to_r =
551 ((end_item == split_item_num
552 && end_bytes != -1) ? end_bytes : 0);
553 bytes_to_S2new =
554 ((split_item_positions[0] == split_item_positions[1]
555 && snum012[4] != -1) ? snum012[4] : 0);
556
557 // s1bytes
558 snum012[3] =
559 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560 bytes_to_r - bytes_to_l - bytes_to_S2new;
1da177e4
LT
561 }
562
bd4c625c 563 return needed_nodes;
1da177e4
LT
564}
565
1da177e4 566#ifdef CONFIG_REISERFS_CHECK
bd4c625c 567extern struct tree_balance *cur_tb;
1da177e4
LT
568#endif
569
1da177e4
LT
570/* Set parameters for balancing.
571 * Performs write of results of analysis of balancing into structure tb,
0222e657 572 * where it will later be used by the functions that actually do the balancing.
1da177e4
LT
573 * Parameters:
574 * tb tree_balance structure;
575 * h current level of the node;
576 * lnum number of items from S[h] that must be shifted to L[h];
577 * rnum number of items from S[h] that must be shifted to R[h];
578 * blk_num number of blocks that S[h] will be splitted into;
579 * s012 number of items that fall into splitted nodes.
580 * lbytes number of bytes which flow to the left neighbor from the item that is not
581 * not shifted entirely
582 * rbytes number of bytes which flow to the right neighbor from the item that is not
583 * not shifted entirely
584 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
585 */
586
bd4c625c
LT
587static void set_parameters(struct tree_balance *tb, int h, int lnum,
588 int rnum, int blk_num, short *s012, int lb, int rb)
1da177e4
LT
589{
590
bd4c625c
LT
591 tb->lnum[h] = lnum;
592 tb->rnum[h] = rnum;
593 tb->blknum[h] = blk_num;
1da177e4 594
bd4c625c
LT
595 if (h == 0) { /* only for leaf level */
596 if (s012 != NULL) {
597 tb->s0num = *s012++,
598 tb->s1num = *s012++, tb->s2num = *s012++;
599 tb->s1bytes = *s012++;
600 tb->s2bytes = *s012;
601 }
602 tb->lbytes = lb;
603 tb->rbytes = rb;
1da177e4 604 }
bd4c625c
LT
605 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
606 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
1da177e4 607
bd4c625c
LT
608 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
609 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
610}
1da177e4
LT
611
612/* check, does node disappear if we shift tb->lnum[0] items to left
613 neighbor and tb->rnum[0] to the right one. */
bd4c625c 614static int is_leaf_removable(struct tree_balance *tb)
1da177e4 615{
bd4c625c
LT
616 struct virtual_node *vn = tb->tb_vn;
617 int to_left, to_right;
618 int size;
619 int remain_items;
620
621 /* number of items, that will be shifted to left (right) neighbor
622 entirely */
623 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
624 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
625 remain_items = vn->vn_nr_item;
626
627 /* how many items remain in S[0] after shiftings to neighbors */
628 remain_items -= (to_left + to_right);
629
630 if (remain_items < 1) {
631 /* all content of node can be shifted to neighbors */
632 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
633 NULL, -1, -1);
634 return 1;
635 }
1da177e4 636
bd4c625c
LT
637 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
638 /* S[0] is not removable */
639 return 0;
640
641 /* check, whether we can divide 1 remaining item between neighbors */
642
643 /* get size of remaining item (in item units) */
644 size = op_unit_num(&(vn->vn_vi[to_left]));
645
646 if (tb->lbytes + tb->rbytes >= size) {
647 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
648 tb->lbytes, -1);
649 return 1;
650 }
651
652 return 0;
653}
1da177e4
LT
654
655/* check whether L, S, R can be joined in one node */
bd4c625c 656static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
1da177e4 657{
bd4c625c
LT
658 struct virtual_node *vn = tb->tb_vn;
659 int ih_size;
660 struct buffer_head *S0;
661
662 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
663
664 ih_size = 0;
665 if (vn->vn_nr_item) {
666 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
667 ih_size += IH_SIZE;
668
669 if (vn->vn_vi[vn->vn_nr_item - 1].
670 vi_type & VI_TYPE_RIGHT_MERGEABLE)
671 ih_size += IH_SIZE;
672 } else {
673 /* there was only one item and it will be deleted */
674 struct item_head *ih;
675
676 RFALSE(B_NR_ITEMS(S0) != 1,
677 "vs-8125: item number must be 1: it is %d",
678 B_NR_ITEMS(S0));
679
680 ih = B_N_PITEM_HEAD(S0, 0);
681 if (tb->CFR[0]
682 && !comp_short_le_keys(&(ih->ih_key),
683 B_N_PDELIM_KEY(tb->CFR[0],
684 tb->rkey[0])))
685 if (is_direntry_le_ih(ih)) {
686 /* Directory must be in correct state here: that is
687 somewhere at the left side should exist first directory
688 item. But the item being deleted can not be that first
689 one because its right neighbor is item of the same
690 directory. (But first item always gets deleted in last
691 turn). So, neighbors of deleted item can be merged, so
692 we can save ih_size */
693 ih_size = IH_SIZE;
694
695 /* we might check that left neighbor exists and is of the
696 same directory */
697 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
698 "vs-8130: first directory item can not be removed until directory is not empty");
699 }
1da177e4 700
bd4c625c
LT
701 }
702
703 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
704 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
705 PROC_INFO_INC(tb->tb_sb, leaves_removable);
706 return 1;
707 }
708 return 0;
1da177e4 709
bd4c625c 710}
1da177e4
LT
711
712/* when we do not split item, lnum and rnum are numbers of entire items */
713#define SET_PAR_SHIFT_LEFT \
714if (h)\
715{\
716 int to_l;\
717 \
718 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
719 (MAX_NR_KEY(Sh) + 1 - lpar);\
720 \
721 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
722}\
723else \
724{\
725 if (lset==LEFT_SHIFT_FLOW)\
726 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
727 tb->lbytes, -1);\
728 else\
729 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
730 -1, -1);\
731}
732
1da177e4
LT
733#define SET_PAR_SHIFT_RIGHT \
734if (h)\
735{\
736 int to_r;\
737 \
738 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
739 \
740 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
741}\
742else \
743{\
744 if (rset==RIGHT_SHIFT_FLOW)\
745 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
746 -1, tb->rbytes);\
747 else\
748 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
749 -1, -1);\
750}
751
a063ae17 752static void free_buffers_in_tb(struct tree_balance *tb)
bd4c625c 753{
ee93961b 754 int i;
bd4c625c 755
a063ae17 756 pathrelse(tb->tb_path);
bd4c625c 757
ee93961b
JM
758 for (i = 0; i < MAX_HEIGHT; i++) {
759 brelse(tb->L[i]);
760 brelse(tb->R[i]);
761 brelse(tb->FL[i]);
762 brelse(tb->FR[i]);
763 brelse(tb->CFL[i]);
764 brelse(tb->CFR[i]);
765
766 tb->L[i] = NULL;
767 tb->R[i] = NULL;
768 tb->FL[i] = NULL;
769 tb->FR[i] = NULL;
770 tb->CFL[i] = NULL;
771 tb->CFR[i] = NULL;
bd4c625c 772 }
1da177e4
LT
773}
774
1da177e4
LT
775/* Get new buffers for storing new nodes that are created while balancing.
776 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
777 * CARRY_ON - schedule didn't occur while the function worked;
778 * NO_DISK_SPACE - no disk space.
779 */
780/* The function is NOT SCHEDULE-SAFE! */
ee93961b 781static int get_empty_nodes(struct tree_balance *tb, int h)
bd4c625c 782{
d68caa95 783 struct buffer_head *new_bh,
ee93961b
JM
784 *Sh = PATH_H_PBUFFER(tb->tb_path, h);
785 b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
786 int counter, number_of_freeblk, amount_needed, /* number of needed empty blocks */
787 retval = CARRY_ON;
a063ae17 788 struct super_block *sb = tb->tb_sb;
bd4c625c
LT
789
790 /* number_of_freeblk is the number of empty blocks which have been
791 acquired for use by the balancing algorithm minus the number of
792 empty blocks used in the previous levels of the analysis,
793 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
794 after empty blocks are acquired, and the balancing analysis is
795 then restarted, amount_needed is the number needed by this level
ee93961b 796 (h) of the balancing analysis.
bd4c625c
LT
797
798 Note that for systems with many processes writing, it would be
799 more layout optimal to calculate the total number needed by all
800 levels and then to run reiserfs_new_blocks to get all of them at once. */
801
802 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
803 the analysis or 0 if not restarted, then subtract the amount needed
ee93961b
JM
804 by all of the levels of the tree below h. */
805 /* blknum includes S[h], so we subtract 1 in this calculation */
806 for (counter = 0, number_of_freeblk = tb->cur_blknum;
807 counter < h; counter++)
808 number_of_freeblk -=
809 (tb->blknum[counter]) ? (tb->blknum[counter] -
bd4c625c
LT
810 1) : 0;
811
812 /* Allocate missing empty blocks. */
d68caa95 813 /* if Sh == 0 then we are getting a new root */
ee93961b 814 amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
bd4c625c 815 /* Amount_needed = the amount that we need more than the amount that we have. */
ee93961b
JM
816 if (amount_needed > number_of_freeblk)
817 amount_needed -= number_of_freeblk;
bd4c625c
LT
818 else /* If we have enough already then there is nothing to do. */
819 return CARRY_ON;
820
821 /* No need to check quota - is not allocated for blocks used for formatted nodes */
ee93961b
JM
822 if (reiserfs_new_form_blocknrs(tb, blocknrs,
823 amount_needed) == NO_DISK_SPACE)
bd4c625c
LT
824 return NO_DISK_SPACE;
825
826 /* for each blocknumber we just got, get a buffer and stick it on FEB */
ee93961b
JM
827 for (blocknr = blocknrs, counter = 0;
828 counter < amount_needed; blocknr++, counter++) {
bd4c625c 829
d68caa95 830 RFALSE(!*blocknr,
bd4c625c
LT
831 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
832
d68caa95
JM
833 new_bh = sb_getblk(sb, *blocknr);
834 RFALSE(buffer_dirty(new_bh) ||
835 buffer_journaled(new_bh) ||
836 buffer_journal_dirty(new_bh),
bd4c625c 837 "PAP-8140: journlaled or dirty buffer %b for the new block",
d68caa95 838 new_bh);
bd4c625c
LT
839
840 /* Put empty buffers into the array. */
a063ae17 841 RFALSE(tb->FEB[tb->cur_blknum],
bd4c625c
LT
842 "PAP-8141: busy slot for new buffer");
843
d68caa95
JM
844 set_buffer_journal_new(new_bh);
845 tb->FEB[tb->cur_blknum++] = new_bh;
bd4c625c
LT
846 }
847
ee93961b
JM
848 if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
849 retval = REPEAT_SEARCH;
1da177e4 850
ee93961b 851 return retval;
bd4c625c 852}
1da177e4
LT
853
854/* Get free space of the left neighbor, which is stored in the parent
855 * node of the left neighbor. */
bd4c625c 856static int get_lfree(struct tree_balance *tb, int h)
1da177e4 857{
bd4c625c
LT
858 struct buffer_head *l, *f;
859 int order;
1da177e4 860
9dce07f1
AV
861 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
862 (l = tb->FL[h]) == NULL)
bd4c625c 863 return 0;
1da177e4 864
bd4c625c
LT
865 if (f == l)
866 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
867 else {
868 order = B_NR_ITEMS(l);
869 f = l;
870 }
1da177e4 871
bd4c625c 872 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
1da177e4
LT
873}
874
1da177e4
LT
875/* Get free space of the right neighbor,
876 * which is stored in the parent node of the right neighbor.
877 */
bd4c625c 878static int get_rfree(struct tree_balance *tb, int h)
1da177e4 879{
bd4c625c
LT
880 struct buffer_head *r, *f;
881 int order;
1da177e4 882
9dce07f1
AV
883 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
884 (r = tb->FR[h]) == NULL)
bd4c625c 885 return 0;
1da177e4 886
bd4c625c
LT
887 if (f == r)
888 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
889 else {
890 order = 0;
891 f = r;
892 }
1da177e4 893
bd4c625c 894 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
1da177e4
LT
895
896}
897
1da177e4 898/* Check whether left neighbor is in memory. */
ee93961b 899static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
bd4c625c 900{
d68caa95 901 struct buffer_head *father, *left;
a063ae17 902 struct super_block *sb = tb->tb_sb;
ee93961b
JM
903 b_blocknr_t left_neighbor_blocknr;
904 int left_neighbor_position;
bd4c625c 905
a063ae17 906 /* Father of the left neighbor does not exist. */
ee93961b 907 if (!tb->FL[h])
bd4c625c
LT
908 return 0;
909
910 /* Calculate father of the node to be balanced. */
ee93961b 911 father = PATH_H_PBUFFER(tb->tb_path, h + 1);
bd4c625c 912
d68caa95
JM
913 RFALSE(!father ||
914 !B_IS_IN_TREE(father) ||
ee93961b 915 !B_IS_IN_TREE(tb->FL[h]) ||
d68caa95 916 !buffer_uptodate(father) ||
ee93961b 917 !buffer_uptodate(tb->FL[h]),
bd4c625c 918 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
ee93961b 919 father, tb->FL[h]);
bd4c625c
LT
920
921 /* Get position of the pointer to the left neighbor into the left father. */
ee93961b
JM
922 left_neighbor_position = (father == tb->FL[h]) ?
923 tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
bd4c625c 924 /* Get left neighbor block number. */
ee93961b
JM
925 left_neighbor_blocknr =
926 B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
bd4c625c 927 /* Look for the left neighbor in the cache. */
ee93961b 928 if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
bd4c625c
LT
929
930 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
931 "vs-8170: left neighbor (%b %z) is not in the tree",
932 left, left);
933 put_bh(left);
934 return 1;
935 }
1da177e4 936
bd4c625c
LT
937 return 0;
938}
1da177e4
LT
939
940#define LEFT_PARENTS 'l'
941#define RIGHT_PARENTS 'r'
942
d68caa95 943static void decrement_key(struct cpu_key *key)
1da177e4 944{
bd4c625c 945 // call item specific function for this key
d68caa95 946 item_ops[cpu_key_k_type(key)]->decrement_key(key);
1da177e4
LT
947}
948
1da177e4
LT
949/* Calculate far left/right parent of the left/right neighbor of the current node, that
950 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
951 * Calculate left/right common parent of the current node and L[h]/R[h].
952 * Calculate left/right delimiting key position.
953 * Returns: PATH_INCORRECT - path in the tree is not correct;
954 SCHEDULE_OCCURRED - schedule occurred while the function worked;
955 * CARRY_ON - schedule didn't occur while the function worked;
956 */
a063ae17 957static int get_far_parent(struct tree_balance *tb,
ee93961b 958 int h,
d68caa95
JM
959 struct buffer_head **pfather,
960 struct buffer_head **pcom_father, char c_lr_par)
1da177e4 961{
d68caa95 962 struct buffer_head *parent;
bd4c625c 963 INITIALIZE_PATH(s_path_to_neighbor_father);
d68caa95 964 struct treepath *path = tb->tb_path;
bd4c625c 965 struct cpu_key s_lr_father_key;
ee93961b
JM
966 int counter,
967 position = INT_MAX,
968 first_last_position = 0,
969 path_offset = PATH_H_PATH_OFFSET(path, h);
bd4c625c 970
ee93961b
JM
971 /* Starting from F[h] go upwards in the tree, and look for the common
972 ancestor of F[h], and its neighbor l/r, that should be obtained. */
bd4c625c 973
ee93961b 974 counter = path_offset;
bd4c625c 975
ee93961b 976 RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
bd4c625c
LT
977 "PAP-8180: invalid path length");
978
ee93961b 979 for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
bd4c625c
LT
980 /* Check whether parent of the current buffer in the path is really parent in the tree. */
981 if (!B_IS_IN_TREE
ee93961b 982 (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
bd4c625c
LT
983 return REPEAT_SEARCH;
984 /* Check whether position in the parent is correct. */
ee93961b 985 if ((position =
d68caa95 986 PATH_OFFSET_POSITION(path,
ee93961b 987 counter - 1)) >
d68caa95 988 B_NR_ITEMS(parent))
bd4c625c
LT
989 return REPEAT_SEARCH;
990 /* Check whether parent at the path really points to the child. */
ee93961b
JM
991 if (B_N_CHILD_NUM(parent, position) !=
992 PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
bd4c625c
LT
993 return REPEAT_SEARCH;
994 /* Return delimiting key if position in the parent is not equal to first/last one. */
995 if (c_lr_par == RIGHT_PARENTS)
ee93961b
JM
996 first_last_position = B_NR_ITEMS(parent);
997 if (position != first_last_position) {
d68caa95
JM
998 *pcom_father = parent;
999 get_bh(*pcom_father);
1000 /*(*pcom_father = parent)->b_count++; */
bd4c625c
LT
1001 break;
1002 }
1da177e4 1003 }
bd4c625c
LT
1004
1005 /* if we are in the root of the tree, then there is no common father */
ee93961b 1006 if (counter == FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c
LT
1007 /* Check whether first buffer in the path is the root of the tree. */
1008 if (PATH_OFFSET_PBUFFER
a063ae17 1009 (tb->tb_path,
bd4c625c 1010 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
a063ae17 1011 SB_ROOT_BLOCK(tb->tb_sb)) {
d68caa95 1012 *pfather = *pcom_father = NULL;
bd4c625c
LT
1013 return CARRY_ON;
1014 }
1015 return REPEAT_SEARCH;
1da177e4 1016 }
1da177e4 1017
d68caa95 1018 RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
bd4c625c 1019 "PAP-8185: (%b %z) level too small",
d68caa95 1020 *pcom_father, *pcom_father);
1da177e4 1021
bd4c625c 1022 /* Check whether the common parent is locked. */
1da177e4 1023
d68caa95
JM
1024 if (buffer_locked(*pcom_father)) {
1025 __wait_on_buffer(*pcom_father);
a063ae17 1026 if (FILESYSTEM_CHANGED_TB(tb)) {
d68caa95 1027 brelse(*pcom_father);
bd4c625c
LT
1028 return REPEAT_SEARCH;
1029 }
1da177e4 1030 }
1da177e4 1031
bd4c625c
LT
1032 /* So, we got common parent of the current node and its left/right neighbor.
1033 Now we are geting the parent of the left/right neighbor. */
1da177e4 1034
bd4c625c
LT
1035 /* Form key to get parent of the left/right neighbor. */
1036 le_key2cpu_key(&s_lr_father_key,
d68caa95 1037 B_N_PDELIM_KEY(*pcom_father,
bd4c625c 1038 (c_lr_par ==
ee93961b
JM
1039 LEFT_PARENTS) ? (tb->lkey[h - 1] =
1040 position -
1041 1) : (tb->rkey[h -
bd4c625c 1042 1] =
ee93961b 1043 position)));
1da177e4 1044
bd4c625c
LT
1045 if (c_lr_par == LEFT_PARENTS)
1046 decrement_key(&s_lr_father_key);
1da177e4 1047
bd4c625c 1048 if (search_by_key
a063ae17 1049 (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
ee93961b 1050 h + 1) == IO_ERROR)
bd4c625c
LT
1051 // path is released
1052 return IO_ERROR;
1da177e4 1053
a063ae17 1054 if (FILESYSTEM_CHANGED_TB(tb)) {
3cd6dbe6 1055 pathrelse(&s_path_to_neighbor_father);
d68caa95 1056 brelse(*pcom_father);
bd4c625c
LT
1057 return REPEAT_SEARCH;
1058 }
1da177e4 1059
d68caa95 1060 *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1da177e4 1061
ee93961b 1062 RFALSE(B_LEVEL(*pfather) != h + 1,
d68caa95 1063 "PAP-8190: (%b %z) level too small", *pfather, *pfather);
bd4c625c
LT
1064 RFALSE(s_path_to_neighbor_father.path_length <
1065 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1da177e4 1066
bd4c625c 1067 s_path_to_neighbor_father.path_length--;
3cd6dbe6 1068 pathrelse(&s_path_to_neighbor_father);
bd4c625c 1069 return CARRY_ON;
1da177e4
LT
1070}
1071
ee93961b
JM
1072/* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1073 * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1074 * FR[path_offset], CFL[path_offset], CFR[path_offset].
1075 * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1da177e4
LT
1076 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1077 * CARRY_ON - schedule didn't occur while the function worked;
1078 */
ee93961b 1079static int get_parents(struct tree_balance *tb, int h)
1da177e4 1080{
d68caa95 1081 struct treepath *path = tb->tb_path;
ee93961b
JM
1082 int position,
1083 ret,
1084 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
d68caa95 1085 struct buffer_head *curf, *curcf;
bd4c625c
LT
1086
1087 /* Current node is the root of the tree or will be root of the tree */
ee93961b 1088 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c
LT
1089 /* The root can not have parents.
1090 Release nodes which previously were obtained as parents of the current node neighbors. */
ee93961b
JM
1091 brelse(tb->FL[h]);
1092 brelse(tb->CFL[h]);
1093 brelse(tb->FR[h]);
1094 brelse(tb->CFR[h]);
1095 tb->FL[h] = NULL;
1096 tb->CFL[h] = NULL;
1097 tb->FR[h] = NULL;
1098 tb->CFR[h] = NULL;
bd4c625c
LT
1099 return CARRY_ON;
1100 }
1101
ee93961b
JM
1102 /* Get parent FL[path_offset] of L[path_offset]. */
1103 position = PATH_OFFSET_POSITION(path, path_offset - 1);
1104 if (position) {
bd4c625c 1105 /* Current node is not the first child of its parent. */
ee93961b
JM
1106 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1107 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
d68caa95
JM
1108 get_bh(curf);
1109 get_bh(curf);
ee93961b 1110 tb->lkey[h] = position - 1;
bd4c625c 1111 } else {
ee93961b
JM
1112 /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1113 Calculate current common parent of L[path_offset] and the current node. Note that
1114 CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1115 Calculate lkey[path_offset]. */
1116 if ((ret = get_far_parent(tb, h + 1, &curf,
d68caa95 1117 &curcf,
bd4c625c 1118 LEFT_PARENTS)) != CARRY_ON)
ee93961b 1119 return ret;
bd4c625c
LT
1120 }
1121
ee93961b
JM
1122 brelse(tb->FL[h]);
1123 tb->FL[h] = curf; /* New initialization of FL[h]. */
1124 brelse(tb->CFL[h]);
1125 tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
bd4c625c 1126
d68caa95
JM
1127 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1128 (curcf && !B_IS_IN_TREE(curcf)),
1129 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1da177e4 1130
ee93961b 1131/* Get parent FR[h] of R[h]. */
1da177e4 1132
ee93961b
JM
1133/* Current node is the last child of F[h]. FR[h] != F[h]. */
1134 if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1135/* Calculate current parent of R[h], which is the right neighbor of F[h].
1136 Calculate current common parent of R[h] and current node. Note that CFR[h]
1137 not equal FR[path_offset] and CFR[h] not equal F[h]. */
1138 if ((ret =
1139 get_far_parent(tb, h + 1, &curf, &curcf,
bd4c625c 1140 RIGHT_PARENTS)) != CARRY_ON)
ee93961b 1141 return ret;
bd4c625c 1142 } else {
ee93961b
JM
1143/* Current node is not the last child of its parent F[h]. */
1144 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1145 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
d68caa95
JM
1146 get_bh(curf);
1147 get_bh(curf);
ee93961b 1148 tb->rkey[h] = position;
bd4c625c 1149 }
1da177e4 1150
ee93961b
JM
1151 brelse(tb->FR[h]);
1152 /* New initialization of FR[path_offset]. */
1153 tb->FR[h] = curf;
bd4c625c 1154
ee93961b
JM
1155 brelse(tb->CFR[h]);
1156 /* New initialization of CFR[path_offset]. */
1157 tb->CFR[h] = curcf;
bd4c625c 1158
d68caa95
JM
1159 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1160 (curcf && !B_IS_IN_TREE(curcf)),
1161 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
bd4c625c
LT
1162
1163 return CARRY_ON;
1164}
1da177e4
LT
1165
1166/* it is possible to remove node as result of shiftings to
1167 neighbors even when we insert or paste item. */
bd4c625c
LT
1168static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1169 struct tree_balance *tb, int h)
1da177e4 1170{
bd4c625c
LT
1171 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1172 int levbytes = tb->insert_size[h];
1173 struct item_head *ih;
1174 struct reiserfs_key *r_key = NULL;
1175
1176 ih = B_N_PITEM_HEAD(Sh, 0);
1177 if (tb->CFR[h])
1178 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1179
1180 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1181 /* shifting may merge items which might save space */
1182 -
1183 ((!h
1184 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1185 -
1186 ((!h && r_key
1187 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1188 + ((h) ? KEY_SIZE : 0)) {
1189 /* node can not be removed */
1190 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1191 if (!h)
1192 tb->s0num =
1193 B_NR_ITEMS(Sh) +
1194 ((mode == M_INSERT) ? 1 : 0);
1195 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1196 return NO_BALANCING_NEEDED;
1197 }
1da177e4 1198 }
bd4c625c
LT
1199 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1200 return !NO_BALANCING_NEEDED;
1da177e4
LT
1201}
1202
1da177e4
LT
1203/* Check whether current node S[h] is balanced when increasing its size by
1204 * Inserting or Pasting.
1205 * Calculate parameters for balancing for current level h.
1206 * Parameters:
1207 * tb tree_balance structure;
1208 * h current level of the node;
1209 * inum item number in S[h];
1210 * mode i - insert, p - paste;
0222e657 1211 * Returns: 1 - schedule occurred;
1da177e4
LT
1212 * 0 - balancing for higher levels needed;
1213 * -1 - no balancing for higher levels needed;
1214 * -2 - no disk space.
1215 */
1216/* ip means Inserting or Pasting */
bd4c625c 1217static int ip_check_balance(struct tree_balance *tb, int h)
1da177e4 1218{
bd4c625c
LT
1219 struct virtual_node *vn = tb->tb_vn;
1220 int levbytes, /* Number of bytes that must be inserted into (value
1221 is negative if bytes are deleted) buffer which
1222 contains node being balanced. The mnemonic is
1223 that the attempted change in node space used level
1224 is levbytes bytes. */
ee93961b 1225 ret;
bd4c625c
LT
1226
1227 int lfree, sfree, rfree /* free space in L, S and R */ ;
1228
1229 /* nver is short for number of vertixes, and lnver is the number if
1230 we shift to the left, rnver is the number if we shift to the
1231 right, and lrnver is the number if we shift in both directions.
1232 The goal is to minimize first the number of vertixes, and second,
1233 the number of vertixes whose contents are changed by shifting,
1234 and third the number of uncached vertixes whose contents are
1235 changed by shifting and must be read from disk. */
1236 int nver, lnver, rnver, lrnver;
1237
1238 /* used at leaf level only, S0 = S[0] is the node being balanced,
1239 sInum [ I = 0,1,2 ] is the number of items that will
1240 remain in node SI after balancing. S1 and S2 are new
1241 nodes that might be created. */
1242
1243 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1244 where 4th parameter is s1bytes and 5th - s2bytes
1245 */
0222e657 1246 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
bd4c625c
LT
1247 0,1 - do not shift and do not shift but bottle
1248 2 - shift only whole item to left
1249 3 - shift to left and bottle as much as possible
1250 4,5 - shift to right (whole items and as much as possible
1251 6,7 - shift to both directions (whole items and as much as possible)
1252 */
1253
1254 /* Sh is the node whose balance is currently being checked */
1255 struct buffer_head *Sh;
1256
1257 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1258 levbytes = tb->insert_size[h];
1259
1260 /* Calculate balance parameters for creating new root. */
1261 if (!Sh) {
1262 if (!h)
c3a9c210
JM
1263 reiserfs_panic(tb->tb_sb, "vs-8210",
1264 "S[0] can not be 0");
ee93961b 1265 switch (ret = get_empty_nodes(tb, h)) {
bd4c625c
LT
1266 case CARRY_ON:
1267 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1268 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1269
1270 case NO_DISK_SPACE:
1271 case REPEAT_SEARCH:
ee93961b 1272 return ret;
bd4c625c 1273 default:
c3a9c210
JM
1274 reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1275 "return value of get_empty_nodes");
bd4c625c 1276 }
1da177e4 1277 }
1da177e4 1278
ee93961b
JM
1279 if ((ret = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1280 return ret;
1da177e4 1281
bd4c625c
LT
1282 sfree = B_FREE_SPACE(Sh);
1283
1284 /* get free space of neighbors */
1285 rfree = get_rfree(tb, h);
1286 lfree = get_lfree(tb, h);
1287
1288 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1289 NO_BALANCING_NEEDED)
1290 /* and new item fits into node S[h] without any shifting */
1291 return NO_BALANCING_NEEDED;
1da177e4 1292
bd4c625c 1293 create_virtual_node(tb, h);
1da177e4 1294
0222e657 1295 /*
bd4c625c
LT
1296 determine maximal number of items we can shift to the left neighbor (in tb structure)
1297 and the maximal number of bytes that can flow to the left neighbor
1298 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1da177e4 1299 */
bd4c625c 1300 check_left(tb, h, lfree);
1da177e4 1301
bd4c625c
LT
1302 /*
1303 determine maximal number of items we can shift to the right neighbor (in tb structure)
1304 and the maximal number of bytes that can flow to the right neighbor
1305 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1306 */
1307 check_right(tb, h, rfree);
1308
1309 /* all contents of internal node S[h] can be moved into its
1310 neighbors, S[h] will be removed after balancing */
1311 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1312 int to_r;
1313
1314 /* Since we are working on internal nodes, and our internal
1315 nodes have fixed size entries, then we can balance by the
1316 number of items rather than the space they consume. In this
1317 routine we set the left node equal to the right node,
1318 allowing a difference of less than or equal to 1 child
1319 pointer. */
1320 to_r =
1321 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1322 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1323 tb->rnum[h]);
1324 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1325 -1, -1);
1326 return CARRY_ON;
1327 }
1328
1329 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1330 RFALSE(h &&
1331 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1332 tb->rnum[h] >= vn->vn_nr_item + 1),
1333 "vs-8220: tree is not balanced on internal level");
1334 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1335 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1336 "vs-8225: tree is not balanced on leaf level");
1337
1338 /* all contents of S[0] can be moved into its neighbors
1339 S[0] will be removed after balancing. */
1340 if (!h && is_leaf_removable(tb))
1341 return CARRY_ON;
1342
1343 /* why do we perform this check here rather than earlier??
1344 Answer: we can win 1 node in some cases above. Moreover we
1345 checked it above, when we checked, that S[0] is not removable
1346 in principle */
1347 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1348 if (!h)
1349 tb->s0num = vn->vn_nr_item;
1350 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1351 return NO_BALANCING_NEEDED;
1352 }
1353
1354 {
1355 int lpar, rpar, nset, lset, rset, lrset;
0222e657 1356 /*
bd4c625c
LT
1357 * regular overflowing of the node
1358 */
1359
0222e657 1360 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
bd4c625c 1361 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
0222e657 1362 nset, lset, rset, lrset - shows, whether flowing items give better packing
bd4c625c 1363 */
1da177e4 1364#define FLOW 1
bd4c625c 1365#define NO_FLOW 0 /* do not any splitting */
1da177e4 1366
bd4c625c 1367 /* we choose one the following */
1da177e4
LT
1368#define NOTHING_SHIFT_NO_FLOW 0
1369#define NOTHING_SHIFT_FLOW 5
1370#define LEFT_SHIFT_NO_FLOW 10
1371#define LEFT_SHIFT_FLOW 15
1372#define RIGHT_SHIFT_NO_FLOW 20
1373#define RIGHT_SHIFT_FLOW 25
1374#define LR_SHIFT_NO_FLOW 30
1375#define LR_SHIFT_FLOW 35
1376
bd4c625c
LT
1377 lpar = tb->lnum[h];
1378 rpar = tb->rnum[h];
1379
1380 /* calculate number of blocks S[h] must be split into when
1381 nothing is shifted to the neighbors,
1382 as well as number of items in each part of the split node (s012 numbers),
1383 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1384 nset = NOTHING_SHIFT_NO_FLOW;
1385 nver = get_num_ver(vn->vn_mode, tb, h,
1386 0, -1, h ? vn->vn_nr_item : 0, -1,
1387 snum012, NO_FLOW);
1388
1389 if (!h) {
1390 int nver1;
1391
1392 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1393 nver1 = get_num_ver(vn->vn_mode, tb, h,
1394 0, -1, 0, -1,
1395 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1396 if (nver > nver1)
1397 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1398 }
1da177e4 1399
bd4c625c
LT
1400 /* calculate number of blocks S[h] must be split into when
1401 l_shift_num first items and l_shift_bytes of the right most
1402 liquid item to be shifted are shifted to the left neighbor,
1403 as well as number of items in each part of the splitted node (s012 numbers),
1404 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1405 */
1406 lset = LEFT_SHIFT_NO_FLOW;
1407 lnver = get_num_ver(vn->vn_mode, tb, h,
1408 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1409 -1, h ? vn->vn_nr_item : 0, -1,
1410 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1411 if (!h) {
1412 int lnver1;
1413
1414 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1415 lpar -
1416 ((tb->lbytes != -1) ? 1 : 0),
1417 tb->lbytes, 0, -1,
1418 snum012 + LEFT_SHIFT_FLOW, FLOW);
1419 if (lnver > lnver1)
1420 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1421 }
1da177e4 1422
bd4c625c
LT
1423 /* calculate number of blocks S[h] must be split into when
1424 r_shift_num first items and r_shift_bytes of the left most
1425 liquid item to be shifted are shifted to the right neighbor,
1426 as well as number of items in each part of the splitted node (s012 numbers),
1427 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1428 */
1429 rset = RIGHT_SHIFT_NO_FLOW;
1430 rnver = get_num_ver(vn->vn_mode, tb, h,
1431 0, -1,
1432 h ? (vn->vn_nr_item - rpar) : (rpar -
1433 ((tb->
1434 rbytes !=
1435 -1) ? 1 :
1436 0)), -1,
1437 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1438 if (!h) {
1439 int rnver1;
1440
1441 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1442 0, -1,
1443 (rpar -
1444 ((tb->rbytes != -1) ? 1 : 0)),
1445 tb->rbytes,
1446 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1447
1448 if (rnver > rnver1)
1449 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1450 }
1da177e4 1451
bd4c625c
LT
1452 /* calculate number of blocks S[h] must be split into when
1453 items are shifted in both directions,
1454 as well as number of items in each part of the splitted node (s012 numbers),
1455 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1456 */
1457 lrset = LR_SHIFT_NO_FLOW;
1458 lrnver = get_num_ver(vn->vn_mode, tb, h,
1459 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1460 -1,
1461 h ? (vn->vn_nr_item - rpar) : (rpar -
1462 ((tb->
1463 rbytes !=
1464 -1) ? 1 :
1465 0)), -1,
1466 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1467 if (!h) {
1468 int lrnver1;
1469
1470 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1471 lpar -
1472 ((tb->lbytes != -1) ? 1 : 0),
1473 tb->lbytes,
1474 (rpar -
1475 ((tb->rbytes != -1) ? 1 : 0)),
1476 tb->rbytes,
1477 snum012 + LR_SHIFT_FLOW, FLOW);
1478 if (lrnver > lrnver1)
1479 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1480 }
1da177e4 1481
bd4c625c
LT
1482 /* Our general shifting strategy is:
1483 1) to minimized number of new nodes;
1484 2) to minimized number of neighbors involved in shifting;
1485 3) to minimized number of disk reads; */
1486
1487 /* we can win TWO or ONE nodes by shifting in both directions */
1488 if (lrnver < lnver && lrnver < rnver) {
1489 RFALSE(h &&
1490 (tb->lnum[h] != 1 ||
1491 tb->rnum[h] != 1 ||
1492 lrnver != 1 || rnver != 2 || lnver != 2
1493 || h != 1), "vs-8230: bad h");
1494 if (lrset == LR_SHIFT_FLOW)
1495 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1496 lrnver, snum012 + lrset,
1497 tb->lbytes, tb->rbytes);
1498 else
1499 set_parameters(tb, h,
1500 tb->lnum[h] -
1501 ((tb->lbytes == -1) ? 0 : 1),
1502 tb->rnum[h] -
1503 ((tb->rbytes == -1) ? 0 : 1),
1504 lrnver, snum012 + lrset, -1, -1);
1505
1506 return CARRY_ON;
1507 }
1da177e4 1508
bd4c625c
LT
1509 /* if shifting doesn't lead to better packing then don't shift */
1510 if (nver == lrnver) {
1511 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1512 -1);
1513 return CARRY_ON;
1514 }
1da177e4 1515
bd4c625c
LT
1516 /* now we know that for better packing shifting in only one
1517 direction either to the left or to the right is required */
1da177e4 1518
bd4c625c
LT
1519 /* if shifting to the left is better than shifting to the right */
1520 if (lnver < rnver) {
1521 SET_PAR_SHIFT_LEFT;
1522 return CARRY_ON;
1523 }
1da177e4 1524
bd4c625c
LT
1525 /* if shifting to the right is better than shifting to the left */
1526 if (lnver > rnver) {
1527 SET_PAR_SHIFT_RIGHT;
1528 return CARRY_ON;
1529 }
1da177e4 1530
bd4c625c
LT
1531 /* now shifting in either direction gives the same number
1532 of nodes and we can make use of the cached neighbors */
1533 if (is_left_neighbor_in_cache(tb, h)) {
1534 SET_PAR_SHIFT_LEFT;
1535 return CARRY_ON;
1536 }
1da177e4 1537
bd4c625c
LT
1538 /* shift to the right independently on whether the right neighbor in cache or not */
1539 SET_PAR_SHIFT_RIGHT;
1540 return CARRY_ON;
1da177e4 1541 }
1da177e4
LT
1542}
1543
1da177e4
LT
1544/* Check whether current node S[h] is balanced when Decreasing its size by
1545 * Deleting or Cutting for INTERNAL node of S+tree.
1546 * Calculate parameters for balancing for current level h.
1547 * Parameters:
1548 * tb tree_balance structure;
1549 * h current level of the node;
1550 * inum item number in S[h];
1551 * mode i - insert, p - paste;
0222e657 1552 * Returns: 1 - schedule occurred;
1da177e4
LT
1553 * 0 - balancing for higher levels needed;
1554 * -1 - no balancing for higher levels needed;
1555 * -2 - no disk space.
1556 *
1557 * Note: Items of internal nodes have fixed size, so the balance condition for
1558 * the internal part of S+tree is as for the B-trees.
1559 */
bd4c625c 1560static int dc_check_balance_internal(struct tree_balance *tb, int h)
1da177e4 1561{
bd4c625c 1562 struct virtual_node *vn = tb->tb_vn;
1da177e4 1563
bd4c625c
LT
1564 /* Sh is the node whose balance is currently being checked,
1565 and Fh is its father. */
1566 struct buffer_head *Sh, *Fh;
ee93961b 1567 int maxsize, ret;
bd4c625c 1568 int lfree, rfree /* free space in L and R */ ;
1da177e4 1569
bd4c625c
LT
1570 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1571 Fh = PATH_H_PPARENT(tb->tb_path, h);
1da177e4 1572
bd4c625c 1573 maxsize = MAX_CHILD_SIZE(Sh);
1da177e4
LT
1574
1575/* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1576/* new_nr_item = number of items node would have if operation is */
1577/* performed without balancing (new_nr_item); */
bd4c625c 1578 create_virtual_node(tb, h);
1da177e4 1579
bd4c625c
LT
1580 if (!Fh) { /* S[h] is the root. */
1581 if (vn->vn_nr_item > 0) {
1582 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1583 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1584 }
1585 /* new_nr_item == 0.
1586 * Current root will be deleted resulting in
1587 * decrementing the tree height. */
1588 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1589 return CARRY_ON;
1590 }
1591
ee93961b
JM
1592 if ((ret = get_parents(tb, h)) != CARRY_ON)
1593 return ret;
bd4c625c
LT
1594
1595 /* get free space of neighbors */
1596 rfree = get_rfree(tb, h);
1597 lfree = get_lfree(tb, h);
1598
1599 /* determine maximal number of items we can fit into neighbors */
1600 check_left(tb, h, lfree);
1601 check_right(tb, h, rfree);
1602
1603 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1604 * In this case we balance only if it leads to better packing. */
1605 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1606 * which is impossible with greater values of new_nr_item. */
1607 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1608 /* All contents of S[h] can be moved to L[h]. */
1609 int n;
1610 int order_L;
1611
1612 order_L =
1613 ((n =
1614 PATH_H_B_ITEM_ORDER(tb->tb_path,
1615 h)) ==
1616 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1617 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1618 (DC_SIZE + KEY_SIZE);
1619 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1620 -1);
1621 return CARRY_ON;
1622 }
1623
1624 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1625 /* All contents of S[h] can be moved to R[h]. */
1626 int n;
1627 int order_R;
1628
1629 order_R =
1630 ((n =
1631 PATH_H_B_ITEM_ORDER(tb->tb_path,
1632 h)) ==
1633 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1634 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1635 (DC_SIZE + KEY_SIZE);
1636 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1637 -1);
1638 return CARRY_ON;
1639 }
1640 }
1641
1642 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1643 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1644 int to_r;
1645
1646 to_r =
1647 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1648 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1649 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1650 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1651 0, NULL, -1, -1);
1652 return CARRY_ON;
1653 }
1654
1655 /* Balancing does not lead to better packing. */
1656 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1657 return NO_BALANCING_NEEDED;
1da177e4 1658 }
bd4c625c
LT
1659
1660 /* Current node contain insufficient number of items. Balancing is required. */
1661 /* Check whether we can merge S[h] with left neighbor. */
1662 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1663 if (is_left_neighbor_in_cache(tb, h)
1664 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1665 int n;
1666 int order_L;
1667
1668 order_L =
1669 ((n =
1670 PATH_H_B_ITEM_ORDER(tb->tb_path,
1671 h)) ==
1672 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1673 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1674 KEY_SIZE);
1675 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1676 return CARRY_ON;
1677 }
1678
1679 /* Check whether we can merge S[h] with right neighbor. */
1680 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1681 int n;
1682 int order_R;
1683
1684 order_R =
1685 ((n =
1686 PATH_H_B_ITEM_ORDER(tb->tb_path,
1687 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1688 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1689 KEY_SIZE);
1690 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1691 return CARRY_ON;
1da177e4
LT
1692 }
1693
bd4c625c
LT
1694 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1695 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1696 int to_r;
1697
1698 to_r =
1699 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1700 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1701 tb->rnum[h]);
1702 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1703 -1, -1);
1704 return CARRY_ON;
1705 }
1da177e4 1706
bd4c625c
LT
1707 /* For internal nodes try to borrow item from a neighbor */
1708 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1709
1710 /* Borrow one or two items from caching neighbor */
1711 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1712 int from_l;
1713
1714 from_l =
1715 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1716 1) / 2 - (vn->vn_nr_item + 1);
1717 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1718 return CARRY_ON;
1da177e4
LT
1719 }
1720
bd4c625c
LT
1721 set_parameters(tb, h, 0,
1722 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1723 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1da177e4 1724 return CARRY_ON;
1da177e4
LT
1725}
1726
1da177e4
LT
1727/* Check whether current node S[h] is balanced when Decreasing its size by
1728 * Deleting or Truncating for LEAF node of S+tree.
1729 * Calculate parameters for balancing for current level h.
1730 * Parameters:
1731 * tb tree_balance structure;
1732 * h current level of the node;
1733 * inum item number in S[h];
1734 * mode i - insert, p - paste;
0222e657 1735 * Returns: 1 - schedule occurred;
1da177e4
LT
1736 * 0 - balancing for higher levels needed;
1737 * -1 - no balancing for higher levels needed;
1738 * -2 - no disk space.
1739 */
bd4c625c 1740static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1da177e4 1741{
bd4c625c
LT
1742 struct virtual_node *vn = tb->tb_vn;
1743
1744 /* Number of bytes that must be deleted from
1745 (value is negative if bytes are deleted) buffer which
1746 contains node being balanced. The mnemonic is that the
1747 attempted change in node space used level is levbytes bytes. */
1748 int levbytes;
1749 /* the maximal item size */
ee93961b 1750 int maxsize, ret;
bd4c625c
LT
1751 /* S0 is the node whose balance is currently being checked,
1752 and F0 is its father. */
1753 struct buffer_head *S0, *F0;
1754 int lfree, rfree /* free space in L and R */ ;
1755
1756 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1757 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1da177e4 1758
bd4c625c 1759 levbytes = tb->insert_size[h];
1da177e4 1760
bd4c625c
LT
1761 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1762
1763 if (!F0) { /* S[0] is the root now. */
1764
1765 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1766 "vs-8240: attempt to create empty buffer tree");
1767
1768 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1769 return NO_BALANCING_NEEDED;
1770 }
1771
ee93961b
JM
1772 if ((ret = get_parents(tb, h)) != CARRY_ON)
1773 return ret;
bd4c625c
LT
1774
1775 /* get free space of neighbors */
1776 rfree = get_rfree(tb, h);
1777 lfree = get_lfree(tb, h);
1778
1779 create_virtual_node(tb, h);
1780
1781 /* if 3 leaves can be merge to one, set parameters and return */
1782 if (are_leaves_removable(tb, lfree, rfree))
1783 return CARRY_ON;
1784
1785 /* determine maximal number of items we can shift to the left/right neighbor
1786 and the maximal number of bytes that can flow to the left/right neighbor
1787 from the left/right most liquid item that cannot be shifted from S[0] entirely
1788 */
1789 check_left(tb, h, lfree);
1790 check_right(tb, h, rfree);
1791
1792 /* check whether we can merge S with left neighbor. */
1793 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1794 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1795 !tb->FR[h]) {
1796
1797 RFALSE(!tb->FL[h],
1798 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1799
1800 /* set parameter to merge S[0] with its left neighbor */
1801 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1802 return CARRY_ON;
1803 }
1804
1805 /* check whether we can merge S[0] with right neighbor. */
1806 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1807 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1808 return CARRY_ON;
1809 }
1810
1811 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1812 if (is_leaf_removable(tb))
1813 return CARRY_ON;
1814
1815 /* Balancing is not required. */
1816 tb->s0num = vn->vn_nr_item;
1817 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1818 return NO_BALANCING_NEEDED;
1819}
1da177e4
LT
1820
1821/* Check whether current node S[h] is balanced when Decreasing its size by
1822 * Deleting or Cutting.
1823 * Calculate parameters for balancing for current level h.
1824 * Parameters:
1825 * tb tree_balance structure;
1826 * h current level of the node;
1827 * inum item number in S[h];
1828 * mode d - delete, c - cut.
0222e657 1829 * Returns: 1 - schedule occurred;
1da177e4
LT
1830 * 0 - balancing for higher levels needed;
1831 * -1 - no balancing for higher levels needed;
1832 * -2 - no disk space.
1833 */
bd4c625c 1834static int dc_check_balance(struct tree_balance *tb, int h)
1da177e4 1835{
bd4c625c
LT
1836 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1837 "vs-8250: S is not initialized");
1da177e4 1838
bd4c625c
LT
1839 if (h)
1840 return dc_check_balance_internal(tb, h);
1841 else
1842 return dc_check_balance_leaf(tb, h);
1da177e4
LT
1843}
1844
1da177e4
LT
1845/* Check whether current node S[h] is balanced.
1846 * Calculate parameters for balancing for current level h.
1847 * Parameters:
1848 *
1849 * tb tree_balance structure:
1850 *
1851 * tb is a large structure that must be read about in the header file
1852 * at the same time as this procedure if the reader is to successfully
1853 * understand this procedure
1854 *
1855 * h current level of the node;
1856 * inum item number in S[h];
1857 * mode i - insert, p - paste, d - delete, c - cut.
0222e657 1858 * Returns: 1 - schedule occurred;
1da177e4
LT
1859 * 0 - balancing for higher levels needed;
1860 * -1 - no balancing for higher levels needed;
1861 * -2 - no disk space.
1862 */
bd4c625c
LT
1863static int check_balance(int mode,
1864 struct tree_balance *tb,
1865 int h,
1866 int inum,
1867 int pos_in_item,
1868 struct item_head *ins_ih, const void *data)
1da177e4 1869{
bd4c625c 1870 struct virtual_node *vn;
1da177e4 1871
bd4c625c
LT
1872 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1873 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1874 vn->vn_mode = mode;
1875 vn->vn_affected_item_num = inum;
1876 vn->vn_pos_in_item = pos_in_item;
1877 vn->vn_ins_ih = ins_ih;
1878 vn->vn_data = data;
1da177e4 1879
bd4c625c
LT
1880 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1881 "vs-8255: ins_ih can not be 0 in insert mode");
1da177e4 1882
bd4c625c
LT
1883 if (tb->insert_size[h] > 0)
1884 /* Calculate balance parameters when size of node is increasing. */
1885 return ip_check_balance(tb, h);
1da177e4 1886
bd4c625c
LT
1887 /* Calculate balance parameters when size of node is decreasing. */
1888 return dc_check_balance(tb, h);
1da177e4
LT
1889}
1890
bd4c625c 1891/* Check whether parent at the path is the really parent of the current node.*/
ee93961b 1892static int get_direct_parent(struct tree_balance *tb, int h)
bd4c625c 1893{
ad31a4fc 1894 struct buffer_head *bh;
d68caa95 1895 struct treepath *path = tb->tb_path;
ee93961b
JM
1896 int position,
1897 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
bd4c625c
LT
1898
1899 /* We are in the root or in the new root. */
ee93961b 1900 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c 1901
ee93961b 1902 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
bd4c625c
LT
1903 "PAP-8260: invalid offset in the path");
1904
d68caa95 1905 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
a063ae17 1906 b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
bd4c625c 1907 /* Root is not changed. */
ee93961b
JM
1908 PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1909 PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
bd4c625c
LT
1910 return CARRY_ON;
1911 }
1912 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1913 }
1914
1915 if (!B_IS_IN_TREE
ee93961b 1916 (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
bd4c625c 1917 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1da177e4 1918
ee93961b 1919 if ((position =
d68caa95 1920 PATH_OFFSET_POSITION(path,
ee93961b 1921 path_offset - 1)) > B_NR_ITEMS(bh))
bd4c625c 1922 return REPEAT_SEARCH;
1da177e4 1923
ee93961b
JM
1924 if (B_N_CHILD_NUM(bh, position) !=
1925 PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
bd4c625c
LT
1926 /* Parent in the path is not parent of the current node in the tree. */
1927 return REPEAT_SEARCH;
1928
ad31a4fc
JM
1929 if (buffer_locked(bh)) {
1930 __wait_on_buffer(bh);
a063ae17 1931 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 1932 return REPEAT_SEARCH;
1da177e4 1933 }
1da177e4 1934
bd4c625c
LT
1935 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1936}
1da177e4 1937
ee93961b
JM
1938/* Using lnum[h] and rnum[h] we should determine what neighbors
1939 * of S[h] we
1940 * need in order to balance S[h], and get them if necessary.
1da177e4
LT
1941 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1942 * CARRY_ON - schedule didn't occur while the function worked;
1943 */
ee93961b 1944static int get_neighbors(struct tree_balance *tb, int h)
bd4c625c 1945{
ee93961b
JM
1946 int child_position,
1947 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1948 unsigned long son_number;
a063ae17 1949 struct super_block *sb = tb->tb_sb;
ad31a4fc 1950 struct buffer_head *bh;
bd4c625c 1951
ee93961b 1952 PROC_INFO_INC(sb, get_neighbors[h]);
bd4c625c 1953
ee93961b
JM
1954 if (tb->lnum[h]) {
1955 /* We need left neighbor to balance S[h]. */
1956 PROC_INFO_INC(sb, need_l_neighbor[h]);
1957 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
bd4c625c 1958
ee93961b
JM
1959 RFALSE(bh == tb->FL[h] &&
1960 !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
bd4c625c
LT
1961 "PAP-8270: invalid position in the parent");
1962
ee93961b 1963 child_position =
ad31a4fc 1964 (bh ==
ee93961b
JM
1965 tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1966 FL[h]);
1967 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1968 bh = sb_bread(sb, son_number);
ad31a4fc 1969 if (!bh)
bd4c625c 1970 return IO_ERROR;
a063ae17 1971 if (FILESYSTEM_CHANGED_TB(tb)) {
ad31a4fc 1972 brelse(bh);
ee93961b 1973 PROC_INFO_INC(sb, get_neighbors_restart[h]);
bd4c625c
LT
1974 return REPEAT_SEARCH;
1975 }
1976
ee93961b
JM
1977 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1978 child_position > B_NR_ITEMS(tb->FL[h]) ||
1979 B_N_CHILD_NUM(tb->FL[h], child_position) !=
ad31a4fc
JM
1980 bh->b_blocknr, "PAP-8275: invalid parent");
1981 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
ee93961b 1982 RFALSE(!h &&
ad31a4fc
JM
1983 B_FREE_SPACE(bh) !=
1984 MAX_CHILD_SIZE(bh) -
ee93961b 1985 dc_size(B_N_CHILD(tb->FL[0], child_position)),
bd4c625c
LT
1986 "PAP-8290: invalid child size of left neighbor");
1987
ee93961b
JM
1988 brelse(tb->L[h]);
1989 tb->L[h] = bh;
1da177e4 1990 }
bd4c625c 1991
ee93961b
JM
1992 /* We need right neighbor to balance S[path_offset]. */
1993 if (tb->rnum[h]) { /* We need right neighbor to balance S[path_offset]. */
1994 PROC_INFO_INC(sb, need_r_neighbor[h]);
1995 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
bd4c625c 1996
ee93961b 1997 RFALSE(bh == tb->FR[h] &&
a063ae17 1998 PATH_OFFSET_POSITION(tb->tb_path,
ee93961b 1999 path_offset) >=
ad31a4fc 2000 B_NR_ITEMS(bh),
bd4c625c
LT
2001 "PAP-8295: invalid position in the parent");
2002
ee93961b
JM
2003 child_position =
2004 (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2005 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2006 bh = sb_bread(sb, son_number);
ad31a4fc 2007 if (!bh)
bd4c625c 2008 return IO_ERROR;
a063ae17 2009 if (FILESYSTEM_CHANGED_TB(tb)) {
ad31a4fc 2010 brelse(bh);
ee93961b 2011 PROC_INFO_INC(sb, get_neighbors_restart[h]);
bd4c625c
LT
2012 return REPEAT_SEARCH;
2013 }
ee93961b
JM
2014 brelse(tb->R[h]);
2015 tb->R[h] = bh;
bd4c625c 2016
ee93961b 2017 RFALSE(!h
ad31a4fc
JM
2018 && B_FREE_SPACE(bh) !=
2019 MAX_CHILD_SIZE(bh) -
ee93961b 2020 dc_size(B_N_CHILD(tb->FR[0], child_position)),
bd4c625c 2021 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
ad31a4fc 2022 B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
ee93961b 2023 dc_size(B_N_CHILD(tb->FR[0], child_position)));
bd4c625c 2024
1da177e4 2025 }
bd4c625c 2026 return CARRY_ON;
1da177e4
LT
2027}
2028
bd4c625c 2029static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
1da177e4 2030{
bd4c625c
LT
2031 int max_num_of_items;
2032 int max_num_of_entries;
2033 unsigned long blocksize = sb->s_blocksize;
1da177e4
LT
2034
2035#define MIN_NAME_LEN 1
2036
bd4c625c
LT
2037 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2038 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2039 (DEH_SIZE + MIN_NAME_LEN);
1da177e4 2040
bd4c625c
LT
2041 return sizeof(struct virtual_node) +
2042 max(max_num_of_items * sizeof(struct virtual_item),
2043 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2044 (max_num_of_entries - 1) * sizeof(__u16));
1da177e4
LT
2045}
2046
1da177e4
LT
2047/* maybe we should fail balancing we are going to perform when kmalloc
2048 fails several times. But now it will loop until kmalloc gets
2049 required memory */
bd4c625c 2050static int get_mem_for_virtual_node(struct tree_balance *tb)
1da177e4 2051{
bd4c625c
LT
2052 int check_fs = 0;
2053 int size;
2054 char *buf;
2055
2056 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2057
2058 if (size > tb->vn_buf_size) {
2059 /* we have to allocate more memory for virtual node */
2060 if (tb->vn_buf) {
2061 /* free memory allocated before */
d739b42b 2062 kfree(tb->vn_buf);
bd4c625c
LT
2063 /* this is not needed if kfree is atomic */
2064 check_fs = 1;
2065 }
1da177e4 2066
bd4c625c
LT
2067 /* virtual node requires now more memory */
2068 tb->vn_buf_size = size;
2069
2070 /* get memory for virtual item */
d739b42b 2071 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
bd4c625c
LT
2072 if (!buf) {
2073 /* getting memory with GFP_KERNEL priority may involve
2074 balancing now (due to indirect_to_direct conversion on
2075 dcache shrinking). So, release path and collected
2076 resources here */
2077 free_buffers_in_tb(tb);
d739b42b 2078 buf = kmalloc(size, GFP_NOFS);
bd4c625c 2079 if (!buf) {
bd4c625c
LT
2080 tb->vn_buf_size = 0;
2081 }
2082 tb->vn_buf = buf;
2083 schedule();
2084 return REPEAT_SEARCH;
2085 }
1da177e4 2086
bd4c625c
LT
2087 tb->vn_buf = buf;
2088 }
1da177e4 2089
bd4c625c
LT
2090 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2091 return REPEAT_SEARCH;
1da177e4 2092
bd4c625c 2093 return CARRY_ON;
1da177e4
LT
2094}
2095
1da177e4 2096#ifdef CONFIG_REISERFS_CHECK
a9dd3643 2097static void tb_buffer_sanity_check(struct super_block *sb,
ad31a4fc 2098 struct buffer_head *bh,
bd4c625c 2099 const char *descr, int level)
1da177e4 2100{
ad31a4fc
JM
2101 if (bh) {
2102 if (atomic_read(&(bh->b_count)) <= 0)
1da177e4 2103
a9dd3643 2104 reiserfs_panic(sb, "jmacd-1", "negative or zero "
c3a9c210 2105 "reference counter for buffer %s[%d] "
ad31a4fc 2106 "(%b)", descr, level, bh);
1da177e4 2107
ad31a4fc 2108 if (!buffer_uptodate(bh))
a9dd3643 2109 reiserfs_panic(sb, "jmacd-2", "buffer is not up "
c3a9c210 2110 "to date %s[%d] (%b)",
ad31a4fc 2111 descr, level, bh);
1da177e4 2112
ad31a4fc 2113 if (!B_IS_IN_TREE(bh))
a9dd3643 2114 reiserfs_panic(sb, "jmacd-3", "buffer is not "
c3a9c210 2115 "in tree %s[%d] (%b)",
ad31a4fc 2116 descr, level, bh);
1da177e4 2117
ad31a4fc 2118 if (bh->b_bdev != sb->s_bdev)
a9dd3643 2119 reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
c3a9c210 2120 "device %s[%d] (%b)",
ad31a4fc 2121 descr, level, bh);
1da177e4 2122
ad31a4fc 2123 if (bh->b_size != sb->s_blocksize)
a9dd3643 2124 reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
c3a9c210 2125 "blocksize %s[%d] (%b)",
ad31a4fc 2126 descr, level, bh);
1da177e4 2127
ad31a4fc 2128 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
a9dd3643 2129 reiserfs_panic(sb, "jmacd-6", "buffer block "
c3a9c210 2130 "number too high %s[%d] (%b)",
ad31a4fc 2131 descr, level, bh);
bd4c625c
LT
2132 }
2133}
2134#else
a9dd3643 2135static void tb_buffer_sanity_check(struct super_block *sb,
ad31a4fc 2136 struct buffer_head *bh,
bd4c625c
LT
2137 const char *descr, int level)
2138{;
2139}
2140#endif
1da177e4 2141
bd4c625c
LT
2142static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2143{
2144 return reiserfs_prepare_for_journal(s, bh, 0);
2145}
1da177e4 2146
a063ae17 2147static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
bd4c625c
LT
2148{
2149 struct buffer_head *locked;
2150#ifdef CONFIG_REISERFS_CHECK
2151 int repeat_counter = 0;
2152#endif
2153 int i;
1da177e4 2154
bd4c625c 2155 do {
1da177e4 2156
bd4c625c
LT
2157 locked = NULL;
2158
a063ae17 2159 for (i = tb->tb_path->path_length;
bd4c625c 2160 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
a063ae17 2161 if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
bd4c625c
LT
2162 /* if I understand correctly, we can only be sure the last buffer
2163 ** in the path is in the tree --clm
2164 */
2165#ifdef CONFIG_REISERFS_CHECK
a063ae17
JM
2166 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2167 PATH_OFFSET_PBUFFER(tb->tb_path, i))
2168 tb_buffer_sanity_check(tb->tb_sb,
bd4c625c 2169 PATH_OFFSET_PBUFFER
a063ae17 2170 (tb->tb_path,
bd4c625c 2171 i), "S",
a063ae17 2172 tb->tb_path->
bd4c625c 2173 path_length - i);
bd4c625c 2174#endif
a063ae17 2175 if (!clear_all_dirty_bits(tb->tb_sb,
bd4c625c 2176 PATH_OFFSET_PBUFFER
a063ae17 2177 (tb->tb_path,
bd4c625c
LT
2178 i))) {
2179 locked =
a063ae17 2180 PATH_OFFSET_PBUFFER(tb->tb_path,
bd4c625c
LT
2181 i);
2182 }
2183 }
1da177e4
LT
2184 }
2185
a063ae17 2186 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
bd4c625c
LT
2187 i++) {
2188
a063ae17 2189 if (tb->lnum[i]) {
bd4c625c 2190
a063ae17
JM
2191 if (tb->L[i]) {
2192 tb_buffer_sanity_check(tb->tb_sb,
2193 tb->L[i],
bd4c625c
LT
2194 "L", i);
2195 if (!clear_all_dirty_bits
a063ae17
JM
2196 (tb->tb_sb, tb->L[i]))
2197 locked = tb->L[i];
bd4c625c
LT
2198 }
2199
a063ae17
JM
2200 if (!locked && tb->FL[i]) {
2201 tb_buffer_sanity_check(tb->tb_sb,
2202 tb->FL[i],
bd4c625c
LT
2203 "FL", i);
2204 if (!clear_all_dirty_bits
a063ae17
JM
2205 (tb->tb_sb, tb->FL[i]))
2206 locked = tb->FL[i];
bd4c625c
LT
2207 }
2208
a063ae17
JM
2209 if (!locked && tb->CFL[i]) {
2210 tb_buffer_sanity_check(tb->tb_sb,
2211 tb->CFL[i],
bd4c625c
LT
2212 "CFL", i);
2213 if (!clear_all_dirty_bits
a063ae17
JM
2214 (tb->tb_sb, tb->CFL[i]))
2215 locked = tb->CFL[i];
bd4c625c
LT
2216 }
2217
2218 }
2219
a063ae17 2220 if (!locked && (tb->rnum[i])) {
bd4c625c 2221
a063ae17
JM
2222 if (tb->R[i]) {
2223 tb_buffer_sanity_check(tb->tb_sb,
2224 tb->R[i],
bd4c625c
LT
2225 "R", i);
2226 if (!clear_all_dirty_bits
a063ae17
JM
2227 (tb->tb_sb, tb->R[i]))
2228 locked = tb->R[i];
bd4c625c
LT
2229 }
2230
a063ae17
JM
2231 if (!locked && tb->FR[i]) {
2232 tb_buffer_sanity_check(tb->tb_sb,
2233 tb->FR[i],
bd4c625c
LT
2234 "FR", i);
2235 if (!clear_all_dirty_bits
a063ae17
JM
2236 (tb->tb_sb, tb->FR[i]))
2237 locked = tb->FR[i];
bd4c625c
LT
2238 }
2239
a063ae17
JM
2240 if (!locked && tb->CFR[i]) {
2241 tb_buffer_sanity_check(tb->tb_sb,
2242 tb->CFR[i],
bd4c625c
LT
2243 "CFR", i);
2244 if (!clear_all_dirty_bits
a063ae17
JM
2245 (tb->tb_sb, tb->CFR[i]))
2246 locked = tb->CFR[i];
bd4c625c
LT
2247 }
2248 }
2249 }
2250 /* as far as I can tell, this is not required. The FEB list seems
2251 ** to be full of newly allocated nodes, which will never be locked,
2252 ** dirty, or anything else.
2253 ** To be safe, I'm putting in the checks and waits in. For the moment,
2254 ** they are needed to keep the code in journal.c from complaining
2255 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2256 ** --clm
2257 */
2258 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
a063ae17 2259 if (tb->FEB[i]) {
bd4c625c 2260 if (!clear_all_dirty_bits
a063ae17
JM
2261 (tb->tb_sb, tb->FEB[i]))
2262 locked = tb->FEB[i];
bd4c625c 2263 }
1da177e4 2264 }
1da177e4 2265
bd4c625c 2266 if (locked) {
1da177e4 2267#ifdef CONFIG_REISERFS_CHECK
bd4c625c
LT
2268 repeat_counter++;
2269 if ((repeat_counter % 10000) == 0) {
a063ae17 2270 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
45b03d5e
JM
2271 "too many iterations waiting "
2272 "for buffer to unlock "
bd4c625c
LT
2273 "(%b)", locked);
2274
2275 /* Don't loop forever. Try to recover from possible error. */
2276
a063ae17 2277 return (FILESYSTEM_CHANGED_TB(tb)) ?
bd4c625c
LT
2278 REPEAT_SEARCH : CARRY_ON;
2279 }
1da177e4 2280#endif
bd4c625c 2281 __wait_on_buffer(locked);
a063ae17 2282 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 2283 return REPEAT_SEARCH;
bd4c625c 2284 }
1da177e4 2285
bd4c625c 2286 } while (locked);
1da177e4 2287
bd4c625c 2288 return CARRY_ON;
1da177e4
LT
2289}
2290
1da177e4
LT
2291/* Prepare for balancing, that is
2292 * get all necessary parents, and neighbors;
2293 * analyze what and where should be moved;
2294 * get sufficient number of new nodes;
2295 * Balancing will start only after all resources will be collected at a time.
0222e657 2296 *
1da177e4
LT
2297 * When ported to SMP kernels, only at the last moment after all needed nodes
2298 * are collected in cache, will the resources be locked using the usual
2299 * textbook ordered lock acquisition algorithms. Note that ensuring that
2300 * this code neither write locks what it does not need to write lock nor locks out of order
2301 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
0222e657 2302 *
1da177e4 2303 * fix is meant in the sense of render unchanging
0222e657 2304 *
1da177e4
LT
2305 * Latency might be improved by first gathering a list of what buffers are needed
2306 * and then getting as many of them in parallel as possible? -Hans
2307 *
2308 * Parameters:
2309 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2310 * tb tree_balance structure;
2311 * inum item number in S[h];
2312 * pos_in_item - comment this if you can
a063ae17
JM
2313 * ins_ih item head of item being inserted
2314 * data inserted item or data to be pasted
1da177e4
LT
2315 * Returns: 1 - schedule occurred while the function worked;
2316 * 0 - schedule didn't occur while the function worked;
0222e657 2317 * -1 - if no_disk_space
1da177e4
LT
2318 */
2319
ee93961b 2320int fix_nodes(int op_mode, struct tree_balance *tb,
d68caa95 2321 struct item_head *ins_ih, const void *data)
bd4c625c 2322{
ee93961b
JM
2323 int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2324 int pos_in_item;
1da177e4 2325
bd4c625c
LT
2326 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2327 ** during wait_tb_buffers_run
2328 */
2329 int wait_tb_buffers_run = 0;
a063ae17 2330 struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
1da177e4 2331
a063ae17 2332 ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
bd4c625c 2333
ee93961b 2334 pos_in_item = tb->tb_path->pos_in_item;
bd4c625c 2335
a063ae17 2336 tb->fs_gen = get_generation(tb->tb_sb);
1da177e4 2337
bd4c625c
LT
2338 /* we prepare and log the super here so it will already be in the
2339 ** transaction when do_balance needs to change it.
2340 ** This way do_balance won't have to schedule when trying to prepare
2341 ** the super for logging
2342 */
a063ae17
JM
2343 reiserfs_prepare_for_journal(tb->tb_sb,
2344 SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2345 journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2346 SB_BUFFER_WITH_SB(tb->tb_sb));
2347 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 2348 return REPEAT_SEARCH;
1da177e4 2349
bd4c625c 2350 /* if it possible in indirect_to_direct conversion */
a063ae17
JM
2351 if (buffer_locked(tbS0)) {
2352 __wait_on_buffer(tbS0);
2353 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c
LT
2354 return REPEAT_SEARCH;
2355 }
2356#ifdef CONFIG_REISERFS_CHECK
2357 if (cur_tb) {
2358 print_cur_tb("fix_nodes");
a063ae17 2359 reiserfs_panic(tb->tb_sb, "PAP-8305",
c3a9c210 2360 "there is pending do_balance");
bd4c625c 2361 }
1da177e4 2362
a063ae17
JM
2363 if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2364 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
c3a9c210
JM
2365 "not uptodate at the beginning of fix_nodes "
2366 "or not in tree (mode %c)",
ee93961b 2367 tbS0, tbS0, op_mode);
1da177e4 2368
bd4c625c 2369 /* Check parameters. */
ee93961b 2370 switch (op_mode) {
bd4c625c 2371 case M_INSERT:
ee93961b 2372 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
a063ae17 2373 reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
c3a9c210 2374 "item number %d (in S0 - %d) in case "
ee93961b 2375 "of insert", item_num,
a063ae17 2376 B_NR_ITEMS(tbS0));
bd4c625c
LT
2377 break;
2378 case M_PASTE:
2379 case M_DELETE:
2380 case M_CUT:
ee93961b 2381 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
a063ae17
JM
2382 print_block(tbS0, 0, -1, -1);
2383 reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
c3a9c210
JM
2384 "item number(%d); mode = %c "
2385 "insert_size = %d",
ee93961b 2386 item_num, op_mode,
a063ae17 2387 tb->insert_size[0]);
1da177e4 2388 }
1da177e4 2389 break;
bd4c625c 2390 default:
a063ae17 2391 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
c3a9c210 2392 "of operation");
1da177e4 2393 }
bd4c625c 2394#endif
1da177e4 2395
a063ae17 2396 if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
bd4c625c
LT
2397 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2398 return REPEAT_SEARCH;
1da177e4 2399
ee93961b
JM
2400 /* Starting from the leaf level; for all levels h of the tree. */
2401 for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2402 ret = get_direct_parent(tb, h);
2403 if (ret != CARRY_ON)
bd4c625c 2404 goto repeat;
1da177e4 2405
ee93961b
JM
2406 ret = check_balance(op_mode, tb, h, item_num,
2407 pos_in_item, ins_ih, data);
2408 if (ret != CARRY_ON) {
2409 if (ret == NO_BALANCING_NEEDED) {
bd4c625c 2410 /* No balancing for higher levels needed. */
ee93961b
JM
2411 ret = get_neighbors(tb, h);
2412 if (ret != CARRY_ON)
bd4c625c 2413 goto repeat;
ee93961b
JM
2414 if (h != MAX_HEIGHT - 1)
2415 tb->insert_size[h + 1] = 0;
bd4c625c
LT
2416 /* ok, analysis and resource gathering are complete */
2417 break;
2418 }
2419 goto repeat;
2420 }
1da177e4 2421
ee93961b
JM
2422 ret = get_neighbors(tb, h);
2423 if (ret != CARRY_ON)
bd4c625c 2424 goto repeat;
bd4c625c 2425
a063ae17
JM
2426 /* No disk space, or schedule occurred and analysis may be
2427 * invalid and needs to be redone. */
ee93961b
JM
2428 ret = get_empty_nodes(tb, h);
2429 if (ret != CARRY_ON)
a063ae17 2430 goto repeat;
bd4c625c 2431
ee93961b 2432 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
bd4c625c
LT
2433 /* We have a positive insert size but no nodes exist on this
2434 level, this means that we are creating a new root. */
2435
ee93961b 2436 RFALSE(tb->blknum[h] != 1,
bd4c625c
LT
2437 "PAP-8350: creating new empty root");
2438
ee93961b
JM
2439 if (h < MAX_HEIGHT - 1)
2440 tb->insert_size[h + 1] = 0;
2441 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2442 if (tb->blknum[h] > 1) {
2443 /* The tree needs to be grown, so this node S[h]
bd4c625c 2444 which is the root node is split into two nodes,
ee93961b 2445 and a new node (S[h+1]) will be created to
bd4c625c
LT
2446 become the root node. */
2447
ee93961b 2448 RFALSE(h == MAX_HEIGHT - 1,
bd4c625c
LT
2449 "PAP-8355: attempt to create too high of a tree");
2450
ee93961b 2451 tb->insert_size[h + 1] =
bd4c625c 2452 (DC_SIZE +
ee93961b 2453 KEY_SIZE) * (tb->blknum[h] - 1) +
bd4c625c 2454 DC_SIZE;
ee93961b
JM
2455 } else if (h < MAX_HEIGHT - 1)
2456 tb->insert_size[h + 1] = 0;
bd4c625c 2457 } else
ee93961b
JM
2458 tb->insert_size[h + 1] =
2459 (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
1da177e4 2460 }
1da177e4 2461
ee93961b
JM
2462 ret = wait_tb_buffers_until_unlocked(tb);
2463 if (ret == CARRY_ON) {
a063ae17 2464 if (FILESYSTEM_CHANGED_TB(tb)) {
bd4c625c 2465 wait_tb_buffers_run = 1;
ee93961b 2466 ret = REPEAT_SEARCH;
bd4c625c
LT
2467 goto repeat;
2468 } else {
2469 return CARRY_ON;
2470 }
1da177e4 2471 } else {
bd4c625c
LT
2472 wait_tb_buffers_run = 1;
2473 goto repeat;
1da177e4
LT
2474 }
2475
bd4c625c
LT
2476 repeat:
2477 // fix_nodes was unable to perform its calculation due to
2478 // filesystem got changed under us, lack of free disk space or i/o
2479 // failure. If the first is the case - the search will be
2480 // repeated. For now - free all resources acquired so far except
2481 // for the new allocated nodes
2482 {
2483 int i;
2484
2485 /* Release path buffers. */
2486 if (wait_tb_buffers_run) {
a063ae17 2487 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
bd4c625c 2488 } else {
a063ae17 2489 pathrelse(tb->tb_path);
bd4c625c
LT
2490 }
2491 /* brelse all resources collected for balancing */
2492 for (i = 0; i < MAX_HEIGHT; i++) {
2493 if (wait_tb_buffers_run) {
a063ae17
JM
2494 reiserfs_restore_prepared_buffer(tb->tb_sb,
2495 tb->L[i]);
2496 reiserfs_restore_prepared_buffer(tb->tb_sb,
2497 tb->R[i]);
2498 reiserfs_restore_prepared_buffer(tb->tb_sb,
2499 tb->FL[i]);
2500 reiserfs_restore_prepared_buffer(tb->tb_sb,
2501 tb->FR[i]);
2502 reiserfs_restore_prepared_buffer(tb->tb_sb,
2503 tb->
bd4c625c 2504 CFL[i]);
a063ae17
JM
2505 reiserfs_restore_prepared_buffer(tb->tb_sb,
2506 tb->
bd4c625c
LT
2507 CFR[i]);
2508 }
2509
a063ae17
JM
2510 brelse(tb->L[i]);
2511 brelse(tb->R[i]);
2512 brelse(tb->FL[i]);
2513 brelse(tb->FR[i]);
2514 brelse(tb->CFL[i]);
2515 brelse(tb->CFR[i]);
2516
2517 tb->L[i] = NULL;
2518 tb->R[i] = NULL;
2519 tb->FL[i] = NULL;
2520 tb->FR[i] = NULL;
2521 tb->CFL[i] = NULL;
2522 tb->CFR[i] = NULL;
bd4c625c
LT
2523 }
2524
2525 if (wait_tb_buffers_run) {
2526 for (i = 0; i < MAX_FEB_SIZE; i++) {
a063ae17 2527 if (tb->FEB[i])
bd4c625c 2528 reiserfs_restore_prepared_buffer
a063ae17 2529 (tb->tb_sb, tb->FEB[i]);
bd4c625c 2530 }
1da177e4 2531 }
ee93961b 2532 return ret;
1da177e4 2533 }
1da177e4
LT
2534
2535}
2536
a063ae17 2537/* Anatoly will probably forgive me renaming tb to tb. I just
1da177e4 2538 wanted to make lines shorter */
bd4c625c 2539void unfix_nodes(struct tree_balance *tb)
1da177e4 2540{
bd4c625c 2541 int i;
1da177e4 2542
bd4c625c
LT
2543 /* Release path buffers. */
2544 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
1da177e4 2545
bd4c625c
LT
2546 /* brelse all resources collected for balancing */
2547 for (i = 0; i < MAX_HEIGHT; i++) {
2548 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2549 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2550 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2551 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2552 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2553 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2554
2555 brelse(tb->L[i]);
2556 brelse(tb->R[i]);
2557 brelse(tb->FL[i]);
2558 brelse(tb->FR[i]);
2559 brelse(tb->CFL[i]);
2560 brelse(tb->CFR[i]);
2561 }
1da177e4 2562
bd4c625c
LT
2563 /* deal with list of allocated (used and unused) nodes */
2564 for (i = 0; i < MAX_FEB_SIZE; i++) {
2565 if (tb->FEB[i]) {
2566 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2567 /* de-allocated block which was not used by balancing and
2568 bforget about buffer for it */
2569 brelse(tb->FEB[i]);
2570 reiserfs_free_block(tb->transaction_handle, NULL,
2571 blocknr, 0);
2572 }
2573 if (tb->used[i]) {
2574 /* release used as new nodes including a new root */
2575 brelse(tb->used[i]);
2576 }
2577 }
1da177e4 2578
d739b42b 2579 kfree(tb->vn_buf);
1da177e4 2580
bd4c625c 2581}