Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[linux-2.6-block.git] / fs / reiserfs / file.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
1da177e4
LT
5#include <linux/time.h>
6#include <linux/reiserfs_fs.h>
7#include <linux/reiserfs_acl.h>
8#include <linux/reiserfs_xattr.h>
1da177e4
LT
9#include <asm/uaccess.h>
10#include <linux/pagemap.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/blkdev.h>
14#include <linux/buffer_head.h>
15#include <linux/quotaops.h>
16
17/*
18** We pack the tails of files on file close, not at the time they are written.
19** This implies an unnecessary copy of the tail and an unnecessary indirect item
20** insertion/balancing, for files that are written in one write.
21** It avoids unnecessary tail packings (balances) for files that are written in
22** multiple writes and are small enough to have tails.
23**
24** file_release is called by the VFS layer when the file is closed. If
25** this is the last open file descriptor, and the file
26** small enough to have a tail, and the tail is currently in an
27** unformatted node, the tail is converted back into a direct item.
28**
29** We use reiserfs_truncate_file to pack the tail, since it already has
30** all the conditions coded.
31*/
bd4c625c 32static int reiserfs_file_release(struct inode *inode, struct file *filp)
1da177e4
LT
33{
34
bd4c625c
LT
35 struct reiserfs_transaction_handle th;
36 int err;
37 int jbegin_failure = 0;
1da177e4 38
14a61442 39 BUG_ON(!S_ISREG(inode->i_mode));
1da177e4 40
bd4c625c
LT
41 /* fast out for when nothing needs to be done */
42 if ((atomic_read(&inode->i_count) > 1 ||
43 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
44 !tail_has_to_be_packed(inode)) &&
45 REISERFS_I(inode)->i_prealloc_count <= 0) {
46 return 0;
47 }
1da177e4 48
1b1dcc1b 49 mutex_lock(&inode->i_mutex);
de14569f
VS
50
51 mutex_lock(&(REISERFS_I(inode)->i_mmap));
52 if (REISERFS_I(inode)->i_flags & i_ever_mapped)
53 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
54
b5f3953c 55 reiserfs_write_lock(inode->i_sb);
bd4c625c
LT
56 /* freeing preallocation only involves relogging blocks that
57 * are already in the current transaction. preallocation gets
58 * freed at the end of each transaction, so it is impossible for
59 * us to log any additional blocks (including quota blocks)
60 */
61 err = journal_begin(&th, inode->i_sb, 1);
1da177e4 62 if (err) {
bd4c625c
LT
63 /* uh oh, we can't allow the inode to go away while there
64 * is still preallocation blocks pending. Try to join the
65 * aborted transaction
66 */
67 jbegin_failure = err;
68 err = journal_join_abort(&th, inode->i_sb, 1);
69
70 if (err) {
71 /* hmpf, our choices here aren't good. We can pin the inode
72 * which will disallow unmount from every happening, we can
73 * do nothing, which will corrupt random memory on unmount,
74 * or we can forcibly remove the file from the preallocation
75 * list, which will leak blocks on disk. Lets pin the inode
76 * and let the admin know what is going on.
77 */
78 igrab(inode);
79 reiserfs_warning(inode->i_sb,
80 "pinning inode %lu because the "
533221fb
AD
81 "preallocation can't be freed",
82 inode->i_ino);
bd4c625c
LT
83 goto out;
84 }
1da177e4 85 }
bd4c625c 86 reiserfs_update_inode_transaction(inode);
1da177e4
LT
87
88#ifdef REISERFS_PREALLOCATE
bd4c625c 89 reiserfs_discard_prealloc(&th, inode);
1da177e4 90#endif
bd4c625c
LT
91 err = journal_end(&th, inode->i_sb, 1);
92
93 /* copy back the error code from journal_begin */
94 if (!err)
95 err = jbegin_failure;
96
97 if (!err && atomic_read(&inode->i_count) <= 1 &&
98 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
99 tail_has_to_be_packed(inode)) {
100 /* if regular file is released by last holder and it has been
101 appended (we append by unformatted node only) or its direct
102 item(s) had to be converted, then it may have to be
103 indirect2direct converted */
104 err = reiserfs_truncate_file(inode, 0);
105 }
106 out:
de14569f 107 mutex_unlock(&(REISERFS_I(inode)->i_mmap));
1b1dcc1b 108 mutex_unlock(&inode->i_mutex);
bd4c625c
LT
109 reiserfs_write_unlock(inode->i_sb);
110 return err;
1da177e4
LT
111}
112
de14569f
VS
113static int reiserfs_file_mmap(struct file *file, struct vm_area_struct *vma)
114{
115 struct inode *inode;
116
117 inode = file->f_path.dentry->d_inode;
118 mutex_lock(&(REISERFS_I(inode)->i_mmap));
119 REISERFS_I(inode)->i_flags |= i_ever_mapped;
120 mutex_unlock(&(REISERFS_I(inode)->i_mmap));
121
122 return generic_file_mmap(file, vma);
123}
124
bd4c625c
LT
125static void reiserfs_vfs_truncate_file(struct inode *inode)
126{
127 reiserfs_truncate_file(inode, 1);
1da177e4
LT
128}
129
130/* Sync a reiserfs file. */
131
132/*
133 * FIXME: sync_mapping_buffers() never has anything to sync. Can
134 * be removed...
135 */
136
bd4c625c
LT
137static int reiserfs_sync_file(struct file *p_s_filp,
138 struct dentry *p_s_dentry, int datasync)
139{
140 struct inode *p_s_inode = p_s_dentry->d_inode;
141 int n_err;
142 int barrier_done;
143
14a61442 144 BUG_ON(!S_ISREG(p_s_inode->i_mode));
bd4c625c
LT
145 n_err = sync_mapping_buffers(p_s_inode->i_mapping);
146 reiserfs_write_lock(p_s_inode->i_sb);
147 barrier_done = reiserfs_commit_for_inode(p_s_inode);
148 reiserfs_write_unlock(p_s_inode->i_sb);
25736b1c 149 if (barrier_done != 1 && reiserfs_barrier_flush(p_s_inode->i_sb))
bd4c625c
LT
150 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
151 if (barrier_done < 0)
152 return barrier_done;
153 return (n_err < 0) ? -EIO : 0;
1da177e4
LT
154}
155
156/* I really do not want to play with memory shortage right now, so
157 to simplify the code, we are not going to write more than this much pages at
158 a time. This still should considerably improve performance compared to 4k
159 at a time case. This is 32 pages of 4k size. */
160#define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE
161
162/* Allocates blocks for a file to fulfil write request.
163 Maps all unmapped but prepared pages from the list.
164 Updates metadata with newly allocated blocknumbers as needed */
bd4c625c
LT
165static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */
166 loff_t pos, /* Writing position */
167 int num_pages, /* number of pages write going
168 to touch */
169 int write_bytes, /* amount of bytes to write */
170 struct page **prepared_pages, /* array of
171 prepared pages
172 */
173 int blocks_to_allocate /* Amount of blocks we
174 need to allocate to
175 fit the data into file
176 */
177 )
1da177e4 178{
bd4c625c
LT
179 struct cpu_key key; // cpu key of item that we are going to deal with
180 struct item_head *ih; // pointer to item head that we are going to deal with
181 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with
182 __le32 *item; // pointer to item we are going to deal with
183 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
184 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored.
185 reiserfs_blocknr_hint_t hint; // hint structure for block allocator.
186 size_t res; // return value of various functions that we call.
187 int curr_block; // current block used to keep track of unmapped blocks.
188 int i; // loop counter
189 int itempos; // position in item
190 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in
191 // first page
192 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */
193 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created.
194 int modifying_this_item = 0; // Flag for items traversal code to keep track
195 // of the fact that we already prepared
196 // current block for journal
197 int will_prealloc = 0;
198 RFALSE(!blocks_to_allocate,
199 "green-9004: tried to allocate zero blocks?");
200
201 /* only preallocate if this is a small write */
202 if (REISERFS_I(inode)->i_prealloc_count ||
203 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) &&
204 blocks_to_allocate <
205 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
206 will_prealloc =
207 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;
208
209 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
210 sizeof(b_blocknr_t), GFP_NOFS);
e5dd259f
DC
211 if (!allocated_blocks)
212 return -ENOMEM;
bd4c625c
LT
213
214 /* First we compose a key to point at the writing position, we want to do
215 that outside of any locking region. */
216 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ );
217
218 /* If we came here, it means we absolutely need to open a transaction,
219 since we need to allocate some blocks */
220 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that.
221 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough
222 if (res)
1da177e4 223 goto error_exit;
bd4c625c 224 reiserfs_update_inode_transaction(inode);
1da177e4 225
bd4c625c
LT
226 /* Look for the in-tree position of our write, need path for block allocator */
227 res = search_for_position_by_key(inode->i_sb, &key, &path);
228 if (res == IO_ERROR) {
229 res = -EIO;
1da177e4 230 goto error_exit;
1da177e4 231 }
1da177e4 232
bd4c625c
LT
233 /* Allocate blocks */
234 /* First fill in "hint" structure for block allocator */
235 hint.th = th; // transaction handle.
236 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine.
237 hint.inode = inode; // Inode is needed by block allocator too.
238 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator.
239 hint.key = key.on_disk_key; // on disk key of file.
240 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already.
241 hint.formatted_node = 0; // We are allocating blocks for unformatted node.
242 hint.preallocate = will_prealloc;
243
244 /* Call block allocator to allocate blocks */
245 res =
246 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
247 blocks_to_allocate, blocks_to_allocate);
248 if (res != CARRY_ON) {
249 if (res == NO_DISK_SPACE) {
250 /* We flush the transaction in case of no space. This way some
251 blocks might become free */
252 SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
253 res = restart_transaction(th, inode, &path);
254 if (res)
255 goto error_exit;
256
257 /* We might have scheduled, so search again */
258 res =
259 search_for_position_by_key(inode->i_sb, &key,
260 &path);
261 if (res == IO_ERROR) {
262 res = -EIO;
263 goto error_exit;
264 }
1da177e4 265
bd4c625c
LT
266 /* update changed info for hint structure. */
267 res =
268 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
269 blocks_to_allocate,
270 blocks_to_allocate);
271 if (res != CARRY_ON) {
0ad74ffa 272 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
bd4c625c
LT
273 pathrelse(&path);
274 goto error_exit;
275 }
276 } else {
0ad74ffa 277 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
bd4c625c
LT
278 pathrelse(&path);
279 goto error_exit;
280 }
281 }
282#ifdef __BIG_ENDIAN
283 // Too bad, I have not found any way to convert a given region from
284 // cpu format to little endian format
1da177e4 285 {
bd4c625c
LT
286 int i;
287 for (i = 0; i < blocks_to_allocate; i++)
288 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]);
1da177e4 289 }
bd4c625c 290#endif
1da177e4 291
bd4c625c
LT
292 /* Blocks allocating well might have scheduled and tree might have changed,
293 let's search the tree again */
294 /* find where in the tree our write should go */
295 res = search_for_position_by_key(inode->i_sb, &key, &path);
296 if (res == IO_ERROR) {
297 res = -EIO;
1da177e4 298 goto error_exit_free_blocks;
bd4c625c
LT
299 }
300
301 bh = get_last_bh(&path); // Get a bufferhead for last element in path.
302 ih = get_ih(&path); // Get a pointer to last item head in path.
303 item = get_item(&path); // Get a pointer to last item in path
304
305 /* Let's see what we have found */
306 if (res != POSITION_FOUND) { /* position not found, this means that we
307 might need to append file with holes
308 first */
309 // Since we are writing past the file's end, we need to find out if
310 // there is a hole that needs to be inserted before our writing
311 // position, and how many blocks it is going to cover (we need to
312 // populate pointers to file blocks representing the hole with zeros)
313
314 {
315 int item_offset = 1;
316 /*
317 * if ih is stat data, its offset is 0 and we don't want to
318 * add 1 to pos in the hole_size calculation
319 */
320 if (is_statdata_le_ih(ih))
321 item_offset = 0;
322 hole_size = (pos + item_offset -
323 (le_key_k_offset
324 (get_inode_item_key_version(inode),
325 &(ih->ih_key)) + op_bytes_number(ih,
326 inode->
327 i_sb->
328 s_blocksize)))
329 >> inode->i_sb->s_blocksize_bits;
330 }
331
332 if (hole_size > 0) {
333 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time.
334 /* area filled with zeroes, to supply as list of zero blocknumbers
335 We allocate it outside of loop just in case loop would spin for
336 several iterations. */
01afb213 337 char *zeros = kzalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway.
bd4c625c
LT
338 if (!zeros) {
339 res = -ENOMEM;
340 goto error_exit_free_blocks;
1da177e4 341 }
bd4c625c
LT
342 do {
343 to_paste =
344 min_t(__u64, hole_size,
345 MAX_ITEM_LEN(inode->i_sb->
346 s_blocksize) /
347 UNFM_P_SIZE);
348 if (is_indirect_le_ih(ih)) {
349 /* Ok, there is existing indirect item already. Need to append it */
350 /* Calculate position past inserted item */
351 make_cpu_key(&key, inode,
352 le_key_k_offset
353 (get_inode_item_key_version
354 (inode),
355 &(ih->ih_key)) +
356 op_bytes_number(ih,
357 inode->
358 i_sb->
359 s_blocksize),
360 TYPE_INDIRECT, 3);
361 res =
362 reiserfs_paste_into_item(th, &path,
363 &key,
364 inode,
365 (char *)
366 zeros,
367 UNFM_P_SIZE
368 *
369 to_paste);
370 if (res) {
371 kfree(zeros);
372 goto error_exit_free_blocks;
373 }
374 } else if (is_statdata_le_ih(ih)) {
375 /* No existing item, create it */
376 /* item head for new item */
377 struct item_head ins_ih;
378
379 /* create a key for our new item */
380 make_cpu_key(&key, inode, 1,
381 TYPE_INDIRECT, 3);
382
383 /* Create new item head for our new item */
384 make_le_item_head(&ins_ih, &key,
385 key.version, 1,
386 TYPE_INDIRECT,
387 to_paste *
388 UNFM_P_SIZE,
389 0 /* free space */ );
390
391 /* Find where such item should live in the tree */
392 res =
393 search_item(inode->i_sb, &key,
394 &path);
395 if (res != ITEM_NOT_FOUND) {
396 /* item should not exist, otherwise we have error */
397 if (res != -ENOSPC) {
398 reiserfs_warning(inode->
399 i_sb,
400 "green-9008: search_by_key (%K) returned %d",
401 &key,
402 res);
403 }
404 res = -EIO;
405 kfree(zeros);
406 goto error_exit_free_blocks;
407 }
408 res =
409 reiserfs_insert_item(th, &path,
410 &key, &ins_ih,
411 inode,
412 (char *)zeros);
413 } else {
414 reiserfs_panic(inode->i_sb,
415 "green-9011: Unexpected key type %K\n",
416 &key);
417 }
418 if (res) {
419 kfree(zeros);
420 goto error_exit_free_blocks;
421 }
422 /* Now we want to check if transaction is too full, and if it is
423 we restart it. This will also free the path. */
424 if (journal_transaction_should_end
425 (th, th->t_blocks_allocated)) {
c5574768
VS
426 inode->i_size = cpu_key_k_offset(&key) +
427 (to_paste << inode->i_blkbits);
bd4c625c
LT
428 res =
429 restart_transaction(th, inode,
430 &path);
431 if (res) {
432 pathrelse(&path);
433 kfree(zeros);
434 goto error_exit;
435 }
436 }
437
438 /* Well, need to recalculate path and stuff */
439 set_cpu_key_k_offset(&key,
440 cpu_key_k_offset(&key) +
441 (to_paste << inode->
442 i_blkbits));
443 res =
444 search_for_position_by_key(inode->i_sb,
445 &key, &path);
446 if (res == IO_ERROR) {
447 res = -EIO;
448 kfree(zeros);
449 goto error_exit_free_blocks;
450 }
451 bh = get_last_bh(&path);
452 ih = get_ih(&path);
453 item = get_item(&path);
454 hole_size -= to_paste;
455 } while (hole_size);
456 kfree(zeros);
1da177e4 457 }
bd4c625c
LT
458 }
459 // Go through existing indirect items first
460 // replace all zeroes with blocknumbers from list
461 // Note that if no corresponding item was found, by previous search,
462 // it means there are no existing in-tree representation for file area
463 // we are going to overwrite, so there is nothing to scan through for holes.
464 for (curr_block = 0, itempos = path.pos_in_item;
465 curr_block < blocks_to_allocate && res == POSITION_FOUND;) {
466 retry:
467
468 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) {
469 /* We run out of data in this indirect item, let's look for another
470 one. */
471 /* First if we are already modifying current item, log it */
472 if (modifying_this_item) {
473 journal_mark_dirty(th, inode->i_sb, bh);
474 modifying_this_item = 0;
475 }
476 /* Then set the key to look for a new indirect item (offset of old
477 item is added to old item length */
478 set_cpu_key_k_offset(&key,
479 le_key_k_offset
480 (get_inode_item_key_version(inode),
481 &(ih->ih_key)) +
482 op_bytes_number(ih,
483 inode->i_sb->
484 s_blocksize));
485 /* Search ofor position of new key in the tree. */
486 res =
487 search_for_position_by_key(inode->i_sb, &key,
488 &path);
489 if (res == IO_ERROR) {
490 res = -EIO;
491 goto error_exit_free_blocks;
492 }
493 bh = get_last_bh(&path);
494 ih = get_ih(&path);
495 item = get_item(&path);
496 itempos = path.pos_in_item;
497 continue; // loop to check all kinds of conditions and so on.
1da177e4 498 }
bd4c625c
LT
499 /* Ok, we have correct position in item now, so let's see if it is
500 representing file hole (blocknumber is zero) and fill it if needed */
501 if (!item[itempos]) {
502 /* Ok, a hole. Now we need to check if we already prepared this
503 block to be journaled */
504 while (!modifying_this_item) { // loop until succeed
505 /* Well, this item is not journaled yet, so we must prepare
506 it for journal first, before we can change it */
507 struct item_head tmp_ih; // We copy item head of found item,
508 // here to detect if fs changed under
509 // us while we were preparing for
510 // journal.
511 int fs_gen; // We store fs generation here to find if someone
512 // changes fs under our feet
513
514 copy_item_head(&tmp_ih, ih); // Remember itemhead
515 fs_gen = get_generation(inode->i_sb); // remember fs generation
516 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing.
517 if (fs_changed(fs_gen, inode->i_sb)
518 && item_moved(&tmp_ih, &path)) {
519 // Sigh, fs was changed under us, we need to look for new
520 // location of item we are working with
521
522 /* unmark prepaerd area as journaled and search for it's
523 new position */
524 reiserfs_restore_prepared_buffer(inode->
525 i_sb,
526 bh);
527 res =
528 search_for_position_by_key(inode->
529 i_sb,
530 &key,
531 &path);
532 if (res == IO_ERROR) {
533 res = -EIO;
534 goto error_exit_free_blocks;
535 }
536 bh = get_last_bh(&path);
537 ih = get_ih(&path);
538 item = get_item(&path);
539 itempos = path.pos_in_item;
540 goto retry;
541 }
542 modifying_this_item = 1;
543 }
544 item[itempos] = allocated_blocks[curr_block]; // Assign new block
545 curr_block++;
1da177e4 546 }
bd4c625c 547 itempos++;
1da177e4 548 }
bd4c625c
LT
549
550 if (modifying_this_item) { // We need to log last-accessed block, if it
551 // was modified, but not logged yet.
552 journal_mark_dirty(th, inode->i_sb, bh);
1da177e4 553 }
bd4c625c
LT
554
555 if (curr_block < blocks_to_allocate) {
556 // Oh, well need to append to indirect item, or to create indirect item
557 // if there weren't any
558 if (is_indirect_le_ih(ih)) {
559 // Existing indirect item - append. First calculate key for append
560 // position. We do not need to recalculate path as it should
561 // already point to correct place.
562 make_cpu_key(&key, inode,
563 le_key_k_offset(get_inode_item_key_version
564 (inode),
565 &(ih->ih_key)) +
566 op_bytes_number(ih,
567 inode->i_sb->s_blocksize),
568 TYPE_INDIRECT, 3);
569 res =
570 reiserfs_paste_into_item(th, &path, &key, inode,
571 (char *)(allocated_blocks +
572 curr_block),
573 UNFM_P_SIZE *
574 (blocks_to_allocate -
575 curr_block));
576 if (res) {
577 goto error_exit_free_blocks;
578 }
579 } else if (is_statdata_le_ih(ih)) {
580 // Last found item was statdata. That means we need to create indirect item.
581 struct item_head ins_ih; /* itemhead for new item */
582
583 /* create a key for our new item */
584 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one,
585 // because that's
586 // where first
587 // indirect item
588 // begins
589 /* Create new item head for our new item */
590 make_le_item_head(&ins_ih, &key, key.version, 1,
591 TYPE_INDIRECT,
592 (blocks_to_allocate -
593 curr_block) * UNFM_P_SIZE,
594 0 /* free space */ );
595 /* Find where such item should live in the tree */
596 res = search_item(inode->i_sb, &key, &path);
597 if (res != ITEM_NOT_FOUND) {
598 /* Well, if we have found such item already, or some error
599 occured, we need to warn user and return error */
600 if (res != -ENOSPC) {
601 reiserfs_warning(inode->i_sb,
602 "green-9009: search_by_key (%K) "
603 "returned %d", &key,
604 res);
605 }
606 res = -EIO;
607 goto error_exit_free_blocks;
608 }
609 /* Insert item into the tree with the data as its body */
610 res =
611 reiserfs_insert_item(th, &path, &key, &ins_ih,
612 inode,
613 (char *)(allocated_blocks +
614 curr_block));
615 } else {
616 reiserfs_panic(inode->i_sb,
617 "green-9010: unexpected item type for key %K\n",
618 &key);
1da177e4 619 }
1da177e4 620 }
bd4c625c
LT
621 // the caller is responsible for closing the transaction
622 // unless we return an error, they are also responsible for logging
623 // the inode.
624 //
625 pathrelse(&path);
626 /*
627 * cleanup prellocation from previous writes
628 * if this is a partial block write
629 */
630 if (write_bytes & (inode->i_sb->s_blocksize - 1))
631 reiserfs_discard_prealloc(th, inode);
632 reiserfs_write_unlock(inode->i_sb);
633
634 // go through all the pages/buffers and map the buffers to newly allocated
635 // blocks (so that system knows where to write these pages later).
636 curr_block = 0;
637 for (i = 0; i < num_pages; i++) {
638 struct page *page = prepared_pages[i]; //current page
639 struct buffer_head *head = page_buffers(page); // first buffer for a page
640 int block_start, block_end; // in-page offsets for buffers.
641
642 if (!page_buffers(page))
643 reiserfs_panic(inode->i_sb,
644 "green-9005: No buffers for prepared page???");
645
646 /* For each buffer in page */
647 for (bh = head, block_start = 0; bh != head || !block_start;
648 block_start = block_end, bh = bh->b_this_page) {
649 if (!bh)
650 reiserfs_panic(inode->i_sb,
651 "green-9006: Allocated but absent buffer for a page?");
652 block_end = block_start + inode->i_sb->s_blocksize;
653 if (i == 0 && block_end <= from)
654 /* if this buffer is before requested data to map, skip it */
655 continue;
656 if (i == num_pages - 1 && block_start >= to)
657 /* If this buffer is after requested data to map, abort
658 processing of current page */
659 break;
660
661 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it
662 map_bh(bh, inode->i_sb,
663 le32_to_cpu(allocated_blocks
664 [curr_block]));
665 curr_block++;
666 set_buffer_new(bh);
667 }
1da177e4 668 }
1da177e4 669 }
1da177e4 670
bd4c625c
LT
671 RFALSE(curr_block > blocks_to_allocate,
672 "green-9007: Used too many blocks? weird");
1da177e4 673
bd4c625c
LT
674 kfree(allocated_blocks);
675 return 0;
1da177e4
LT
676
677// Need to deal with transaction here.
bd4c625c
LT
678 error_exit_free_blocks:
679 pathrelse(&path);
680 // free blocks
681 for (i = 0; i < blocks_to_allocate; i++)
682 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]),
683 1);
684
685 error_exit:
686 if (th->t_trans_id) {
687 int err;
688 // update any changes we made to blk count
9f03783c 689 mark_inode_dirty(inode);
bd4c625c
LT
690 err =
691 journal_end(th, inode->i_sb,
692 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
693 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
694 if (err)
695 res = err;
696 }
697 reiserfs_write_unlock(inode->i_sb);
698 kfree(allocated_blocks);
699
700 return res;
1da177e4
LT
701}
702
703/* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
bd4c625c
LT
704static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */
705 size_t num_pages /* amount of pages */ )
706{
707 int i; // loop counter
1da177e4 708
bd4c625c
LT
709 for (i = 0; i < num_pages; i++) {
710 struct page *page = prepared_pages[i];
1da177e4 711
bd4c625c
LT
712 try_to_free_buffers(page);
713 unlock_page(page);
714 page_cache_release(page);
715 }
1da177e4
LT
716}
717
718/* This function will copy data from userspace to specified pages within
719 supplied byte range */
bd4c625c
LT
720static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */
721 int num_pages, /* Number of pages affected */
722 int write_bytes, /* Amount of bytes to write */
723 struct page **prepared_pages, /* pointer to
724 array to
725 prepared pages
726 */
727 const char __user * buf /* Pointer to user-supplied
728 data */
729 )
1da177e4 730{
bd4c625c
LT
731 long page_fault = 0; // status of copy_from_user.
732 int i; // loop counter.
733 int offset; // offset in page
734
735 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
736 i++, offset = 0) {
737 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
738 struct page *page = prepared_pages[i]; // Current page we process.
739
740 fault_in_pages_readable(buf, count);
741
742 /* Copy data from userspace to the current page */
743 kmap(page);
744 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data.
745 /* Flush processor's dcache for this page */
746 flush_dcache_page(page);
747 kunmap(page);
748 buf += count;
749 write_bytes -= count;
750
751 if (page_fault)
752 break; // Was there a fault? abort.
753 }
754
755 return page_fault ? -EFAULT : 0;
1da177e4
LT
756}
757
758/* taken fs/buffer.c:__block_commit_write */
759int reiserfs_commit_page(struct inode *inode, struct page *page,
bd4c625c 760 unsigned from, unsigned to)
1da177e4 761{
bd4c625c
LT
762 unsigned block_start, block_end;
763 int partial = 0;
764 unsigned blocksize;
765 struct buffer_head *bh, *head;
766 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
767 int new;
768 int logit = reiserfs_file_data_log(inode);
769 struct super_block *s = inode->i_sb;
770 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
771 struct reiserfs_transaction_handle th;
772 int ret = 0;
773
774 th.t_trans_id = 0;
775 blocksize = 1 << inode->i_blkbits;
776
777 if (logit) {
778 reiserfs_write_lock(s);
779 ret = journal_begin(&th, s, bh_per_page + 1);
780 if (ret)
781 goto drop_write_lock;
782 reiserfs_update_inode_transaction(inode);
783 }
784 for (bh = head = page_buffers(page), block_start = 0;
785 bh != head || !block_start;
786 block_start = block_end, bh = bh->b_this_page) {
787
788 new = buffer_new(bh);
789 clear_buffer_new(bh);
790 block_end = block_start + blocksize;
791 if (block_end <= from || block_start >= to) {
792 if (!buffer_uptodate(bh))
793 partial = 1;
794 } else {
795 set_buffer_uptodate(bh);
796 if (logit) {
797 reiserfs_prepare_for_journal(s, bh, 1);
798 journal_mark_dirty(&th, s, bh);
799 } else if (!buffer_dirty(bh)) {
800 mark_buffer_dirty(bh);
801 /* do data=ordered on any page past the end
802 * of file and any buffer marked BH_New.
803 */
804 if (reiserfs_data_ordered(inode->i_sb) &&
805 (new || page->index >= i_size_index)) {
806 reiserfs_add_ordered_list(inode, bh);
807 }
808 }
809 }
1da177e4 810 }
bd4c625c
LT
811 if (logit) {
812 ret = journal_end(&th, s, bh_per_page + 1);
813 drop_write_lock:
814 reiserfs_write_unlock(s);
815 }
816 /*
817 * If this is a partial write which happened to make all buffers
818 * uptodate then we can optimize away a bogus readpage() for
819 * the next read(). Here we 'discover' whether the page went
820 * uptodate as a result of this (potentially partial) write.
821 */
822 if (!partial)
823 SetPageUptodate(page);
824 return ret;
1da177e4
LT
825}
826
1da177e4
LT
827/* Submit pages for write. This was separated from actual file copying
828 because we might want to allocate block numbers in-between.
829 This function assumes that caller will adjust file size to correct value. */
bd4c625c
LT
830static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */
831 size_t num_pages, /* Number of pages to write */
832 size_t write_bytes, /* number of bytes to write */
833 struct page **prepared_pages /* list of pages */
834 )
1da177e4 835{
bd4c625c
LT
836 int status; // return status of block_commit_write.
837 int retval = 0; // Return value we are going to return.
838 int i; // loop counter
839 int offset; // Writing offset in page.
840 int orig_write_bytes = write_bytes;
841 int sd_update = 0;
842
843 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
844 i++, offset = 0) {
845 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
846 struct page *page = prepared_pages[i]; // Current page we process.
847
848 status =
849 reiserfs_commit_page(inode, page, offset, offset + count);
850 if (status)
851 retval = status; // To not overcomplicate matters We are going to
852 // submit all the pages even if there was error.
853 // we only remember error status to report it on
854 // exit.
855 write_bytes -= count;
856 }
857 /* now that we've gotten all the ordered buffers marked dirty,
858 * we can safely update i_size and close any running transaction
859 */
860 if (pos + orig_write_bytes > inode->i_size) {
861 inode->i_size = pos + orig_write_bytes; // Set new size
862 /* If the file have grown so much that tail packing is no
863 * longer possible, reset "need to pack" flag */
864 if ((have_large_tails(inode->i_sb) &&
865 inode->i_size > i_block_size(inode) * 4) ||
866 (have_small_tails(inode->i_sb) &&
867 inode->i_size > i_block_size(inode)))
868 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
869 else if ((have_large_tails(inode->i_sb) &&
870 inode->i_size < i_block_size(inode) * 4) ||
871 (have_small_tails(inode->i_sb) &&
872 inode->i_size < i_block_size(inode)))
873 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
874
875 if (th->t_trans_id) {
876 reiserfs_write_lock(inode->i_sb);
9f03783c
CM
877 // this sets the proper flags for O_SYNC to trigger a commit
878 mark_inode_dirty(inode);
bd4c625c 879 reiserfs_write_unlock(inode->i_sb);
73ce5934
HH
880 } else {
881 reiserfs_write_lock(inode->i_sb);
882 reiserfs_update_inode_transaction(inode);
9f03783c 883 mark_inode_dirty(inode);
73ce5934
HH
884 reiserfs_write_unlock(inode->i_sb);
885 }
bd4c625c
LT
886
887 sd_update = 1;
888 }
1da177e4 889 if (th->t_trans_id) {
bd4c625c
LT
890 reiserfs_write_lock(inode->i_sb);
891 if (!sd_update)
9f03783c 892 mark_inode_dirty(inode);
bd4c625c
LT
893 status = journal_end(th, th->t_super, th->t_blocks_allocated);
894 if (status)
895 retval = status;
896 reiserfs_write_unlock(inode->i_sb);
897 }
898 th->t_trans_id = 0;
1da177e4 899
bd4c625c
LT
900 /*
901 * we have to unlock the pages after updating i_size, otherwise
902 * we race with writepage
903 */
904 for (i = 0; i < num_pages; i++) {
905 struct page *page = prepared_pages[i];
906 unlock_page(page);
907 mark_page_accessed(page);
908 page_cache_release(page);
909 }
910 return retval;
1da177e4
LT
911}
912
913/* Look if passed writing region is going to touch file's tail
914 (if it is present). And if it is, convert the tail to unformatted node */
bd4c625c
LT
915static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */
916 loff_t pos, /* Writing position */
917 int write_bytes /* amount of bytes to write */
918 )
1da177e4 919{
bd4c625c
LT
920 INITIALIZE_PATH(path); // needed for search_for_position
921 struct cpu_key key; // Key that would represent last touched writing byte.
922 struct item_head *ih; // item header of found block;
923 int res; // Return value of various functions we call.
924 int cont_expand_offset; // We will put offset for generic_cont_expand here
925 // This can be int just because tails are created
926 // only for small files.
927
1da177e4 928/* this embodies a dependency on a particular tail policy */
bd4c625c
LT
929 if (inode->i_size >= inode->i_sb->s_blocksize * 4) {
930 /* such a big files do not have tails, so we won't bother ourselves
931 to look for tails, simply return */
932 return 0;
933 }
1da177e4 934
bd4c625c
LT
935 reiserfs_write_lock(inode->i_sb);
936 /* find the item containing the last byte to be written, or if
937 * writing past the end of the file then the last item of the
938 * file (and then we check its type). */
939 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY,
940 3 /*key length */ );
941 res = search_for_position_by_key(inode->i_sb, &key, &path);
942 if (res == IO_ERROR) {
943 reiserfs_write_unlock(inode->i_sb);
944 return -EIO;
945 }
946 ih = get_ih(&path);
947 res = 0;
948 if (is_direct_le_ih(ih)) {
949 /* Ok, closest item is file tail (tails are stored in "direct"
950 * items), so we need to unpack it. */
951 /* To not overcomplicate matters, we just call generic_cont_expand
952 which will in turn call other stuff and finally will boil down to
953 reiserfs_get_block() that would do necessary conversion. */
954 cont_expand_offset =
955 le_key_k_offset(get_inode_item_key_version(inode),
956 &(ih->ih_key));
957 pathrelse(&path);
958 res = generic_cont_expand(inode, cont_expand_offset);
959 } else
960 pathrelse(&path);
961
962 reiserfs_write_unlock(inode->i_sb);
963 return res;
1da177e4
LT
964}
965
966/* This function locks pages starting from @pos for @inode.
967 @num_pages pages are locked and stored in
968 @prepared_pages array. Also buffers are allocated for these pages.
969 First and last page of the region is read if it is overwritten only
970 partially. If last page did not exist before write (file hole or file
971 append), it is zeroed, then.
972 Returns number of unallocated blocks that should be allocated to cover
973 new file data.*/
bd4c625c
LT
974static int reiserfs_prepare_file_region_for_write(struct inode *inode
975 /* Inode of the file */ ,
976 loff_t pos, /* position in the file */
977 size_t num_pages, /* number of pages to
978 prepare */
979 size_t write_bytes, /* Amount of bytes to be
980 overwritten from
981 @pos */
982 struct page **prepared_pages /* pointer to array
983 where to store
984 prepared pages */
985 )
1da177e4 986{
bd4c625c
LT
987 int res = 0; // Return values of different functions we call.
988 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages.
989 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page
990 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
991 /* offset of last modified byte in last
992 page */
993 struct address_space *mapping = inode->i_mapping; // Pages are mapped here.
994 int i; // Simple counter
995 int blocks = 0; /* Return value (blocks that should be allocated) */
996 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead
997 // of a page.
998 unsigned block_start, block_end; // Starting and ending offsets of current
999 // buffer in the page.
1000 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if
1001 // Page appeared to be not up
1002 // to date. Note how we have
1003 // at most 2 buffers, this is
1004 // because we at most may
1005 // partially overwrite two
1006 // buffers for one page. One at // the beginning of write area
1007 // and one at the end.
1008 // Everything inthe middle gets // overwritten totally.
1009
1010 struct cpu_key key; // cpu key of item that we are going to deal with
1011 struct item_head *ih = NULL; // pointer to item head that we are going to deal with
1012 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with
1013 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
1014 __le32 *item = NULL; // pointer to item we are going to deal with
1015 int item_pos = -1; /* Position in indirect item */
1016
1017 if (num_pages < 1) {
1018 reiserfs_warning(inode->i_sb,
1019 "green-9001: reiserfs_prepare_file_region_for_write "
1020 "called with zero number of pages to process");
1021 return -EFAULT;
1da177e4
LT
1022 }
1023
bd4c625c
LT
1024 /* We have 2 loops for pages. In first loop we grab and lock the pages, so
1025 that nobody would touch these until we release the pages. Then
1026 we'd start to deal with mapping buffers to blocks. */
1027 for (i = 0; i < num_pages; i++) {
1028 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page
1029 if (!prepared_pages[i]) {
1030 res = -ENOMEM;
1031 goto failed_page_grabbing;
1da177e4 1032 }
bd4c625c
LT
1033 if (!page_has_buffers(prepared_pages[i]))
1034 create_empty_buffers(prepared_pages[i],
1035 inode->i_sb->s_blocksize, 0);
1036 }
1da177e4 1037
bd4c625c
LT
1038 /* Let's count amount of blocks for a case where all the blocks
1039 overwritten are new (we will substract already allocated blocks later) */
1040 if (num_pages > 2)
1041 /* These are full-overwritten pages so we count all the blocks in
1042 these pages are counted as needed to be allocated */
1043 blocks =
1044 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1045
1046 /* count blocks needed for first page (possibly partially written) */
1047 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */
1048
1049 /* Now we account for last page. If last page == first page (we
1050 overwrite only one page), we substract all the blocks past the
1051 last writing position in a page out of already calculated number
1052 of blocks */
1053 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) -
1054 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
1055 /* Note how we do not roundup here since partial blocks still
1056 should be allocated */
1057
1058 /* Now if all the write area lies past the file end, no point in
1059 maping blocks, since there is none, so we just zero out remaining
1060 parts of first and last pages in write area (if needed) */
1061 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) {
f2fff596
ND
1062 if (from != 0) /* First page needs to be partially zeroed */
1063 zero_user_page(prepared_pages[0], 0, from, KM_USER0);
1064
1065 if (to != PAGE_CACHE_SIZE) /* Last page needs to be partially zeroed */
1066 zero_user_page(prepared_pages[num_pages-1], to,
1067 PAGE_CACHE_SIZE - to, KM_USER0);
1da177e4 1068
bd4c625c
LT
1069 /* Since all blocks are new - use already calculated value */
1070 return blocks;
1071 }
1072
1073 /* Well, since we write somewhere into the middle of a file, there is
1074 possibility we are writing over some already allocated blocks, so
1075 let's map these blocks and substract number of such blocks out of blocks
1076 we need to allocate (calculated above) */
1077 /* Mask write position to start on blocksize, we do it out of the
1078 loop for performance reasons */
1079 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
1080 /* Set cpu key to the starting position in a file (on left block boundary) */
1081 make_cpu_key(&key, inode,
1082 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)),
1083 TYPE_ANY, 3 /*key length */ );
1084
1085 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key()
1086 for (i = 0; i < num_pages; i++) {
1087
1088 head = page_buffers(prepared_pages[i]);
1089 /* For each buffer in the page */
1090 for (bh = head, block_start = 0; bh != head || !block_start;
1091 block_start = block_end, bh = bh->b_this_page) {
1092 if (!bh)
1093 reiserfs_panic(inode->i_sb,
1094 "green-9002: Allocated but absent buffer for a page?");
1095 /* Find where this buffer ends */
1096 block_end = block_start + inode->i_sb->s_blocksize;
1097 if (i == 0 && block_end <= from)
1098 /* if this buffer is before requested data to map, skip it */
1099 continue;
1100
1101 if (i == num_pages - 1 && block_start >= to) {
1102 /* If this buffer is after requested data to map, abort
1103 processing of current page */
1104 break;
1da177e4
LT
1105 }
1106
bd4c625c
LT
1107 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1108 /* This is optimisation for a case where buffer is mapped
1109 and have blocknumber assigned. In case significant amount
1110 of such buffers are present, we may avoid some amount
1111 of search_by_key calls.
1112 Probably it would be possible to move parts of this code
1113 out of BKL, but I afraid that would overcomplicate code
1114 without any noticeable benefit.
1115 */
1116 item_pos++;
1117 /* Update the key */
1118 set_cpu_key_k_offset(&key,
1119 cpu_key_k_offset(&key) +
1120 inode->i_sb->s_blocksize);
1121 blocks--; // Decrease the amount of blocks that need to be
1122 // allocated
1123 continue; // Go to the next buffer
1124 }
1da177e4 1125
bd4c625c
LT
1126 if (!itembuf || /* if first iteration */
1127 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the
1128 current unformatted_item */
1129 /* Try to find next item */
1130 res =
1131 search_for_position_by_key(inode->i_sb,
1132 &key, &path);
1133 /* Abort if no more items */
1134 if (res != POSITION_FOUND) {
1135 /* make sure later loops don't use this item */
1136 itembuf = NULL;
1137 item = NULL;
1138 break;
1139 }
1140
1141 /* Update information about current indirect item */
1142 itembuf = get_last_bh(&path);
1143 ih = get_ih(&path);
1144 item = get_item(&path);
1145 item_pos = path.pos_in_item;
1146
1147 RFALSE(!is_indirect_le_ih(ih),
1148 "green-9003: indirect item expected");
1149 }
1da177e4 1150
bd4c625c
LT
1151 /* See if there is some block associated with the file
1152 at that position, map the buffer to this block */
1153 if (get_block_num(item, item_pos)) {
1154 map_bh(bh, inode->i_sb,
1155 get_block_num(item, item_pos));
1156 blocks--; // Decrease the amount of blocks that need to be
1157 // allocated
1158 }
1159 item_pos++;
1160 /* Update the key */
1161 set_cpu_key_k_offset(&key,
1162 cpu_key_k_offset(&key) +
1163 inode->i_sb->s_blocksize);
1da177e4 1164 }
1da177e4 1165 }
bd4c625c
LT
1166 pathrelse(&path); // Free the path
1167 reiserfs_write_unlock(inode->i_sb);
1da177e4
LT
1168
1169 /* Now zero out unmappend buffers for the first and last pages of
1170 write area or issue read requests if page is mapped. */
1171 /* First page, see if it is not uptodate */
bd4c625c
LT
1172 if (!PageUptodate(prepared_pages[0])) {
1173 head = page_buffers(prepared_pages[0]);
1174
1175 /* For each buffer in page */
1176 for (bh = head, block_start = 0; bh != head || !block_start;
1177 block_start = block_end, bh = bh->b_this_page) {
1178
1179 if (!bh)
1180 reiserfs_panic(inode->i_sb,
1181 "green-9002: Allocated but absent buffer for a page?");
1182 /* Find where this buffer ends */
1183 block_end = block_start + inode->i_sb->s_blocksize;
1184 if (block_end <= from)
1185 /* if this buffer is before requested data to map, skip it */
1186 continue;
1187 if (block_start < from) { /* Aha, our partial buffer */
1188 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1189 issue READ request for it to
1190 not loose data */
1191 ll_rw_block(READ, 1, &bh);
1192 *wait_bh++ = bh;
1193 } else { /* Not mapped, zero it */
f2fff596
ND
1194 zero_user_page(prepared_pages[0],
1195 block_start,
1196 from - block_start, KM_USER0);
bd4c625c
LT
1197 set_buffer_uptodate(bh);
1198 }
1199 }
1da177e4 1200 }
1da177e4
LT
1201 }
1202
1203 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
bd4c625c
LT
1204 if (!PageUptodate(prepared_pages[num_pages - 1]) ||
1205 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) >
1206 (inode->i_size >> PAGE_CACHE_SHIFT)) {
1207 head = page_buffers(prepared_pages[num_pages - 1]);
1208
1209 /* for each buffer in page */
1210 for (bh = head, block_start = 0; bh != head || !block_start;
1211 block_start = block_end, bh = bh->b_this_page) {
1212
1213 if (!bh)
1214 reiserfs_panic(inode->i_sb,
1215 "green-9002: Allocated but absent buffer for a page?");
1216 /* Find where this buffer ends */
1217 block_end = block_start + inode->i_sb->s_blocksize;
1218 if (block_start >= to)
1219 /* if this buffer is after requested data to map, skip it */
1220 break;
1221 if (block_end > to) { /* Aha, our partial buffer */
1222 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1223 issue READ request for it to
1224 not loose data */
1225 ll_rw_block(READ, 1, &bh);
1226 *wait_bh++ = bh;
1227 } else { /* Not mapped, zero it */
f2fff596
ND
1228 zero_user_page(prepared_pages[num_pages-1],
1229 to, block_end - to, KM_USER0);
bd4c625c
LT
1230 set_buffer_uptodate(bh);
1231 }
1232 }
1da177e4 1233 }
1da177e4
LT
1234 }
1235
bd4c625c
LT
1236 /* Wait for read requests we made to happen, if necessary */
1237 while (wait_bh > wait) {
1238 wait_on_buffer(*--wait_bh);
1239 if (!buffer_uptodate(*wait_bh)) {
1240 res = -EIO;
1241 goto failed_read;
1242 }
1da177e4 1243 }
bd4c625c
LT
1244
1245 return blocks;
1246 failed_page_grabbing:
1247 num_pages = i;
1248 failed_read:
1249 reiserfs_unprepare_pages(prepared_pages, num_pages);
1250 return res;
1da177e4
LT
1251}
1252
1253/* Write @count bytes at position @ppos in a file indicated by @file
1254 from the buffer @buf.
1255
1256 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
1257 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was
1258 written for (ext2/3). This is for several reasons:
1259
1260 * It has no understanding of any filesystem specific optimizations.
1261
1262 * It enters the filesystem repeatedly for each page that is written.
1263
1264 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
1265 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
1266 * to reiserfs which allows for fewer tree traversals.
1267
1268 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.
1269
1270 * Asking the block allocation code for blocks one at a time is slightly less efficient.
1271
1272 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
1273 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make
1274 things right finally.
1275
1276 Future Features: providing search_by_key with hints.
1277
1278*/
bd4c625c
LT
1279static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */
1280 const char __user * buf, /* pointer to user supplied data
1281 (in userspace) */
1282 size_t count, /* amount of bytes to write */
1283 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to
1284 * new current position before returning. */
1285 )
1da177e4 1286{
bd4c625c
LT
1287 size_t already_written = 0; // Number of bytes already written to the file.
1288 loff_t pos; // Current position in the file.
1289 ssize_t res; // return value of various functions that we call.
1290 int err = 0;
1fc5adbd 1291 struct inode *inode = file->f_path.dentry->d_inode; // Inode of the file that we are writing to.
bd4c625c
LT
1292 /* To simplify coding at this time, we store
1293 locked pages in array for now */
1294 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
1295 struct reiserfs_transaction_handle th;
1296 th.t_trans_id = 0;
1297
fa385bef
JM
1298 /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items
1299 * lying around (most of the disk, in fact). Despite the filesystem
1300 * now being a v3.6 format, the old items still can't support large
1301 * file sizes. Catch this case here, as the rest of the VFS layer is
1302 * oblivious to the different limitations between old and new items.
1303 * reiserfs_setattr catches this for truncates. This chunk is lifted
1304 * from generic_write_checks. */
1305 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 &&
1306 *ppos + count > MAX_NON_LFS) {
1307 if (*ppos >= MAX_NON_LFS) {
1308 send_sig(SIGXFSZ, current, 0);
1309 return -EFBIG;
1310 }
1311 if (count > MAX_NON_LFS - (unsigned long)*ppos)
1312 count = MAX_NON_LFS - (unsigned long)*ppos;
1313 }
1314
c5574768
VS
1315 if (file->f_flags & O_DIRECT)
1316 return do_sync_write(file, buf, count, ppos);
1da177e4 1317
bd4c625c
LT
1318 if (unlikely((ssize_t) count < 0))
1319 return -EINVAL;
1320
1321 if (unlikely(!access_ok(VERIFY_READ, buf, count)))
1322 return -EFAULT;
1323
1b1dcc1b 1324 mutex_lock(&inode->i_mutex); // locks the entire file for just us
bd4c625c
LT
1325
1326 pos = *ppos;
1327
1328 /* Check if we can write to specified region of file, file
1329 is not overly big and this kind of stuff. Adjust pos and
1330 count, if needed */
1331 res = generic_write_checks(file, &pos, &count, 0);
1332 if (res)
1333 goto out;
1334
1335 if (count == 0)
1336 goto out;
1337
1fc5adbd 1338 res = remove_suid(file->f_path.dentry);
bd4c625c
LT
1339 if (res)
1340 goto out;
1341
870f4817 1342 file_update_time(file);
bd4c625c
LT
1343
1344 // Ok, we are done with all the checks.
1345
1346 // Now we should start real work
1347
1348 /* If we are going to write past the file's packed tail or if we are going
1349 to overwrite part of the tail, we need that tail to be converted into
1350 unformatted node */
1351 res = reiserfs_check_for_tail_and_convert(inode, pos, count);
1352 if (res)
1353 goto out;
1354
1355 while (count > 0) {
1356 /* This is the main loop in which we running until some error occures
1357 or until we write all of the data. */
1358 size_t num_pages; /* amount of pages we are going to write this iteration */
1359 size_t write_bytes; /* amount of bytes to write during this iteration */
1360 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */
1361
1362 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */
1363 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial
1364 pages */
1365 ((count +
1366 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT);
1367 /* convert size to amount of
1368 pages */
1369 reiserfs_write_lock(inode->i_sb);
1370 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME
1371 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) {
1372 /* If we were asked to write more data than we want to or if there
1373 is not that much space, then we shorten amount of data to write
1374 for this iteration. */
1375 num_pages =
1376 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME,
1377 reiserfs_can_fit_pages(inode->i_sb));
1378 /* Also we should not forget to set size in bytes accordingly */
1379 write_bytes = (num_pages << PAGE_CACHE_SHIFT) -
1380 (pos & (PAGE_CACHE_SIZE - 1));
1381 /* If position is not on the
1382 start of the page, we need
1383 to substract the offset
1384 within page */
1385 } else
1386 write_bytes = count;
1387
1388 /* reserve the blocks to be allocated later, so that later on
1389 we still have the space to write the blocks to */
1390 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1391 num_pages <<
1392 (PAGE_CACHE_SHIFT -
1393 inode->i_blkbits));
1394 reiserfs_write_unlock(inode->i_sb);
1395
1396 if (!num_pages) { /* If we do not have enough space even for a single page... */
1397 if (pos >
1398 inode->i_size + inode->i_sb->s_blocksize -
1399 (pos & (inode->i_sb->s_blocksize - 1))) {
1400 res = -ENOSPC;
1401 break; // In case we are writing past the end of the last file block, break.
1402 }
1403 // Otherwise we are possibly overwriting the file, so
1404 // let's set write size to be equal or less than blocksize.
1405 // This way we get it correctly for file holes.
1406 // But overwriting files on absolutelly full volumes would not
1407 // be very efficient. Well, people are not supposed to fill
1408 // 100% of disk space anyway.
1409 write_bytes =
1410 min_t(size_t, count,
1411 inode->i_sb->s_blocksize -
1412 (pos & (inode->i_sb->s_blocksize - 1)));
1413 num_pages = 1;
1414 // No blocks were claimed before, so do it now.
1415 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1416 1 <<
1417 (PAGE_CACHE_SHIFT
1418 -
1419 inode->
1420 i_blkbits));
1421 }
1da177e4 1422
bd4c625c
LT
1423 /* Prepare for writing into the region, read in all the
1424 partially overwritten pages, if needed. And lock the pages,
1425 so that nobody else can access these until we are done.
1426 We get number of actual blocks needed as a result. */
c499ec24
VS
1427 res = reiserfs_prepare_file_region_for_write(inode, pos,
1428 num_pages,
1429 write_bytes,
1430 prepared_pages);
1431 if (res < 0) {
bd4c625c
LT
1432 reiserfs_release_claimed_blocks(inode->i_sb,
1433 num_pages <<
1434 (PAGE_CACHE_SHIFT -
1435 inode->i_blkbits));
1436 break;
1437 }
1da177e4 1438
c499ec24
VS
1439 blocks_to_allocate = res;
1440
bd4c625c
LT
1441 /* First we correct our estimate of how many blocks we need */
1442 reiserfs_release_claimed_blocks(inode->i_sb,
1443 (num_pages <<
1444 (PAGE_CACHE_SHIFT -
1445 inode->i_sb->
1446 s_blocksize_bits)) -
1447 blocks_to_allocate);
1448
1449 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */
1450 /* Fill in all the possible holes and append the file if needed */
1451 res =
1452 reiserfs_allocate_blocks_for_region(&th, inode, pos,
1453 num_pages,
1454 write_bytes,
1455 prepared_pages,
1456 blocks_to_allocate);
1457 }
1da177e4 1458
bd4c625c
LT
1459 /* well, we have allocated the blocks, so it is time to free
1460 the reservation we made earlier. */
1461 reiserfs_release_claimed_blocks(inode->i_sb,
1462 blocks_to_allocate);
1463 if (res) {
1464 reiserfs_unprepare_pages(prepared_pages, num_pages);
1465 break;
1466 }
1da177e4 1467
bd4c625c
LT
1468/* NOTE that allocating blocks and filling blocks can be done in reverse order
1469 and probably we would do that just to get rid of garbage in files after a
1470 crash */
1da177e4 1471
bd4c625c
LT
1472 /* Copy data from user-supplied buffer to file's pages */
1473 res =
1474 reiserfs_copy_from_user_to_file_region(pos, num_pages,
1475 write_bytes,
1476 prepared_pages, buf);
1477 if (res) {
1478 reiserfs_unprepare_pages(prepared_pages, num_pages);
1479 break;
1480 }
1da177e4 1481
bd4c625c
LT
1482 /* Send the pages to disk and unlock them. */
1483 res =
1484 reiserfs_submit_file_region_for_write(&th, inode, pos,
1485 num_pages,
1486 write_bytes,
1487 prepared_pages);
1488 if (res)
1489 break;
1490
1491 already_written += write_bytes;
1492 buf += write_bytes;
1493 *ppos = pos += write_bytes;
1494 count -= write_bytes;
59308602 1495 balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages);
1da177e4
LT
1496 }
1497
bd4c625c
LT
1498 /* this is only true on error */
1499 if (th.t_trans_id) {
1500 reiserfs_write_lock(inode->i_sb);
1501 err = journal_end(&th, th.t_super, th.t_blocks_allocated);
1502 reiserfs_write_unlock(inode->i_sb);
1503 if (err) {
1504 res = err;
1505 goto out;
1506 }
1da177e4
LT
1507 }
1508
619d5d8a
JM
1509 if (likely(res >= 0) &&
1510 (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))))
1511 res = generic_osync_inode(inode, file->f_mapping,
1512 OSYNC_METADATA | OSYNC_DATA);
1da177e4 1513
1b1dcc1b 1514 mutex_unlock(&inode->i_mutex);
bd4c625c
LT
1515 reiserfs_async_progress_wait(inode->i_sb);
1516 return (already_written != 0) ? already_written : res;
1da177e4 1517
bd4c625c 1518 out:
1b1dcc1b 1519 mutex_unlock(&inode->i_mutex); // unlock the file on exit.
bd4c625c 1520 return res;
1da177e4
LT
1521}
1522
4b6f5d20 1523const struct file_operations reiserfs_file_operations = {
027445c3 1524 .read = do_sync_read,
bd4c625c
LT
1525 .write = reiserfs_file_write,
1526 .ioctl = reiserfs_ioctl,
52b499c4
DH
1527#ifdef CONFIG_COMPAT
1528 .compat_ioctl = reiserfs_compat_ioctl,
1529#endif
de14569f 1530 .mmap = reiserfs_file_mmap,
5a2618e6 1531 .open = generic_file_open,
bd4c625c
LT
1532 .release = reiserfs_file_release,
1533 .fsync = reiserfs_sync_file,
1534 .sendfile = generic_file_sendfile,
1535 .aio_read = generic_file_aio_read,
9637f28f 1536 .aio_write = generic_file_aio_write,
5274f052
JA
1537 .splice_read = generic_file_splice_read,
1538 .splice_write = generic_file_splice_write,
1da177e4
LT
1539};
1540
c5ef1c42 1541const struct inode_operations reiserfs_file_inode_operations = {
bd4c625c
LT
1542 .truncate = reiserfs_vfs_truncate_file,
1543 .setattr = reiserfs_setattr,
1544 .setxattr = reiserfs_setxattr,
1545 .getxattr = reiserfs_getxattr,
1546 .listxattr = reiserfs_listxattr,
1547 .removexattr = reiserfs_removexattr,
1548 .permission = reiserfs_permission,
1da177e4 1549};