ocfs2: Remove masklog ML_EXPORT.
[linux-block.git] / fs / ocfs2 / journal.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
83273932
SE
31#include <linux/time.h>
32#include <linux/random.h>
ccd979bd
MF
33
34#define MLOG_MASK_PREFIX ML_JOURNAL
35#include <cluster/masklog.h>
36
37#include "ocfs2.h"
38
39#include "alloc.h"
50655ae9 40#include "blockcheck.h"
316f4b9f 41#include "dir.h"
ccd979bd
MF
42#include "dlmglue.h"
43#include "extent_map.h"
44#include "heartbeat.h"
45#include "inode.h"
46#include "journal.h"
47#include "localalloc.h"
ccd979bd
MF
48#include "slot_map.h"
49#include "super.h"
ccd979bd 50#include "sysfile.h"
0cf2f763 51#include "uptodate.h"
2205363d 52#include "quota.h"
ccd979bd
MF
53
54#include "buffer_head_io.h"
55
34af946a 56DEFINE_SPINLOCK(trans_inc_lock);
ccd979bd 57
83273932
SE
58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
ccd979bd
MF
60static int ocfs2_force_read_journal(struct inode *inode);
61static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 62 int node_num, int slot_num);
ccd979bd
MF
63static int __ocfs2_recovery_thread(void *arg);
64static int ocfs2_commit_cache(struct ocfs2_super *osb);
19ece546 65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
ccd979bd 66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 67 int dirty, int replayed);
ccd979bd
MF
68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72static int ocfs2_commit_thread(void *arg);
9140db04
SE
73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
ccd979bd 78
19ece546
JK
79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80{
81 return __ocfs2_wait_on_mount(osb, 0);
82}
83
84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85{
86 return __ocfs2_wait_on_mount(osb, 1);
87}
88
9140db04
SE
89/*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98};
99
100struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104};
105
106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107{
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116}
117
118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119{
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149}
150
151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152{
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167}
168
169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170{
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178}
179
553abd04
JB
180int ocfs2_recovery_init(struct ocfs2_super *osb)
181{
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202}
203
204/* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208{
209 mb();
210 return osb->recovery_thread_task != NULL;
211}
212
213void ocfs2_recovery_exit(struct ocfs2_super *osb)
214{
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237}
238
239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241{
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253}
254
255/* Behaves like test-and-set. Returns the previous value */
256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258{
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275}
276
277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279{
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298}
299
ccd979bd
MF
300static int ocfs2_commit_cache(struct ocfs2_super *osb)
301{
302 int status = 0;
303 unsigned int flushed;
ccd979bd
MF
304 struct ocfs2_journal *journal = NULL;
305
ccd979bd
MF
306 journal = osb->journal;
307
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal->j_trans_barrier);
310
311 if (atomic_read(&journal->j_num_trans) == 0) {
312 up_write(&journal->j_trans_barrier);
313 mlog(0, "No transactions for me to flush!\n");
314 goto finally;
315 }
316
2b4e30fb
JB
317 jbd2_journal_lock_updates(journal->j_journal);
318 status = jbd2_journal_flush(journal->j_journal);
319 jbd2_journal_unlock_updates(journal->j_journal);
ccd979bd
MF
320 if (status < 0) {
321 up_write(&journal->j_trans_barrier);
322 mlog_errno(status);
323 goto finally;
324 }
325
f9c57ada 326 ocfs2_inc_trans_id(journal);
ccd979bd
MF
327
328 flushed = atomic_read(&journal->j_num_trans);
329 atomic_set(&journal->j_num_trans, 0);
330 up_write(&journal->j_trans_barrier);
331
332 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
333 journal->j_trans_id, flushed);
334
34d024f8 335 ocfs2_wake_downconvert_thread(osb);
ccd979bd
MF
336 wake_up(&journal->j_checkpointed);
337finally:
ccd979bd
MF
338 return status;
339}
340
1fabe148 341handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
ccd979bd 342{
ccd979bd 343 journal_t *journal = osb->journal->j_journal;
1fabe148 344 handle_t *handle;
ccd979bd 345
ebdec83b 346 BUG_ON(!osb || !osb->journal->j_journal);
ccd979bd 347
65eff9cc
MF
348 if (ocfs2_is_hard_readonly(osb))
349 return ERR_PTR(-EROFS);
ccd979bd
MF
350
351 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 BUG_ON(max_buffs <= 0);
353
90e86a63
JK
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal, max_buffs);
ccd979bd 357
ccd979bd
MF
358 down_read(&osb->journal->j_trans_barrier);
359
2b4e30fb 360 handle = jbd2_journal_start(journal, max_buffs);
1fabe148 361 if (IS_ERR(handle)) {
ccd979bd
MF
362 up_read(&osb->journal->j_trans_barrier);
363
1fabe148 364 mlog_errno(PTR_ERR(handle));
ccd979bd
MF
365
366 if (is_journal_aborted(journal)) {
367 ocfs2_abort(osb->sb, "Detected aborted journal");
1fabe148 368 handle = ERR_PTR(-EROFS);
ccd979bd 369 }
c271c5c2
SM
370 } else {
371 if (!ocfs2_mount_local(osb))
372 atomic_inc(&(osb->journal->j_num_trans));
373 }
ccd979bd 374
ccd979bd 375 return handle;
ccd979bd
MF
376}
377
1fabe148
MF
378int ocfs2_commit_trans(struct ocfs2_super *osb,
379 handle_t *handle)
ccd979bd 380{
90e86a63 381 int ret, nested;
02dc1af4 382 struct ocfs2_journal *journal = osb->journal;
ccd979bd
MF
383
384 BUG_ON(!handle);
385
90e86a63 386 nested = handle->h_ref > 1;
2b4e30fb 387 ret = jbd2_journal_stop(handle);
1fabe148
MF
388 if (ret < 0)
389 mlog_errno(ret);
ccd979bd 390
90e86a63
JK
391 if (!nested)
392 up_read(&journal->j_trans_barrier);
ccd979bd 393
1fabe148 394 return ret;
ccd979bd
MF
395}
396
397/*
c901fb00 398 * 'nblocks' is what you want to add to the current transaction.
ccd979bd 399 *
2b4e30fb 400 * This might call jbd2_journal_restart() which will commit dirty buffers
e8aed345
MF
401 * and then restart the transaction. Before calling
402 * ocfs2_extend_trans(), any changed blocks should have been
403 * dirtied. After calling it, all blocks which need to be changed must
404 * go through another set of journal_access/journal_dirty calls.
405 *
ccd979bd
MF
406 * WARNING: This will not release any semaphores or disk locks taken
407 * during the transaction, so make sure they were taken *before*
408 * start_trans or we'll have ordering deadlocks.
409 *
410 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411 * good because transaction ids haven't yet been recorded on the
412 * cluster locks associated with this handle.
413 */
1fc58146 414int ocfs2_extend_trans(handle_t *handle, int nblocks)
ccd979bd 415{
c901fb00 416 int status, old_nblocks;
ccd979bd
MF
417
418 BUG_ON(!handle);
c901fb00 419 BUG_ON(nblocks < 0);
ccd979bd 420
c901fb00
TM
421 if (!nblocks)
422 return 0;
423
424 old_nblocks = handle->h_buffer_credits;
ccd979bd
MF
425
426 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
427
e407e397 428#ifdef CONFIG_OCFS2_DEBUG_FS
0879c584
MF
429 status = 1;
430#else
2b4e30fb 431 status = jbd2_journal_extend(handle, nblocks);
ccd979bd
MF
432 if (status < 0) {
433 mlog_errno(status);
434 goto bail;
435 }
0879c584 436#endif
ccd979bd
MF
437
438 if (status > 0) {
2b4e30fb
JB
439 mlog(0,
440 "jbd2_journal_extend failed, trying "
441 "jbd2_journal_restart\n");
c901fb00
TM
442 status = jbd2_journal_restart(handle,
443 old_nblocks + nblocks);
ccd979bd 444 if (status < 0) {
ccd979bd
MF
445 mlog_errno(status);
446 goto bail;
447 }
01ddf1e1 448 }
ccd979bd
MF
449
450 status = 0;
451bail:
ccd979bd
MF
452 return status;
453}
454
50655ae9
JB
455struct ocfs2_triggers {
456 struct jbd2_buffer_trigger_type ot_triggers;
457 int ot_offset;
458};
459
460static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
461{
462 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
463}
464
13ceef09 465static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
466 struct buffer_head *bh,
467 void *data, size_t size)
468{
469 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
470
471 /*
472 * We aren't guaranteed to have the superblock here, so we
473 * must unconditionally compute the ecc data.
474 * __ocfs2_journal_access() will only set the triggers if
475 * metaecc is enabled.
476 */
477 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
478}
479
480/*
481 * Quota blocks have their own trigger because the struct ocfs2_block_check
482 * offset depends on the blocksize.
483 */
13ceef09 484static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
485 struct buffer_head *bh,
486 void *data, size_t size)
487{
488 struct ocfs2_disk_dqtrailer *dqt =
489 ocfs2_block_dqtrailer(size, data);
490
491 /*
492 * We aren't guaranteed to have the superblock here, so we
493 * must unconditionally compute the ecc data.
494 * __ocfs2_journal_access() will only set the triggers if
495 * metaecc is enabled.
496 */
497 ocfs2_block_check_compute(data, size, &dqt->dq_check);
498}
499
c175a518
JB
500/*
501 * Directory blocks also have their own trigger because the
502 * struct ocfs2_block_check offset depends on the blocksize.
503 */
13ceef09 504static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
c175a518
JB
505 struct buffer_head *bh,
506 void *data, size_t size)
507{
508 struct ocfs2_dir_block_trailer *trailer =
509 ocfs2_dir_trailer_from_size(size, data);
510
511 /*
512 * We aren't guaranteed to have the superblock here, so we
513 * must unconditionally compute the ecc data.
514 * __ocfs2_journal_access() will only set the triggers if
515 * metaecc is enabled.
516 */
517 ocfs2_block_check_compute(data, size, &trailer->db_check);
518}
519
50655ae9
JB
520static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
521 struct buffer_head *bh)
522{
523 mlog(ML_ERROR,
524 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
525 "bh->b_blocknr = %llu\n",
526 (unsigned long)bh,
527 (unsigned long long)bh->b_blocknr);
528
529 /* We aren't guaranteed to have the superblock here - but if we
530 * don't, it'll just crash. */
531 ocfs2_error(bh->b_assoc_map->host->i_sb,
532 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
533}
534
535static struct ocfs2_triggers di_triggers = {
536 .ot_triggers = {
13ceef09 537 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
538 .t_abort = ocfs2_abort_trigger,
539 },
540 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
541};
542
543static struct ocfs2_triggers eb_triggers = {
544 .ot_triggers = {
13ceef09 545 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
546 .t_abort = ocfs2_abort_trigger,
547 },
548 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
549};
550
93c97087
TM
551static struct ocfs2_triggers rb_triggers = {
552 .ot_triggers = {
13ceef09 553 .t_frozen = ocfs2_frozen_trigger,
93c97087
TM
554 .t_abort = ocfs2_abort_trigger,
555 },
556 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
557};
558
50655ae9
JB
559static struct ocfs2_triggers gd_triggers = {
560 .ot_triggers = {
13ceef09 561 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
562 .t_abort = ocfs2_abort_trigger,
563 },
564 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
565};
566
c175a518
JB
567static struct ocfs2_triggers db_triggers = {
568 .ot_triggers = {
13ceef09 569 .t_frozen = ocfs2_db_frozen_trigger,
c175a518
JB
570 .t_abort = ocfs2_abort_trigger,
571 },
572};
573
50655ae9
JB
574static struct ocfs2_triggers xb_triggers = {
575 .ot_triggers = {
13ceef09 576 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
577 .t_abort = ocfs2_abort_trigger,
578 },
579 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
580};
581
582static struct ocfs2_triggers dq_triggers = {
583 .ot_triggers = {
13ceef09 584 .t_frozen = ocfs2_dq_frozen_trigger,
50655ae9
JB
585 .t_abort = ocfs2_abort_trigger,
586 },
587};
588
9b7895ef
MF
589static struct ocfs2_triggers dr_triggers = {
590 .ot_triggers = {
13ceef09 591 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
592 .t_abort = ocfs2_abort_trigger,
593 },
594 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
595};
596
597static struct ocfs2_triggers dl_triggers = {
598 .ot_triggers = {
13ceef09 599 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
600 .t_abort = ocfs2_abort_trigger,
601 },
602 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
603};
604
50655ae9 605static int __ocfs2_journal_access(handle_t *handle,
0cf2f763 606 struct ocfs2_caching_info *ci,
50655ae9
JB
607 struct buffer_head *bh,
608 struct ocfs2_triggers *triggers,
609 int type)
ccd979bd
MF
610{
611 int status;
0cf2f763
JB
612 struct ocfs2_super *osb =
613 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
ccd979bd 614
0cf2f763 615 BUG_ON(!ci || !ci->ci_ops);
ccd979bd
MF
616 BUG_ON(!handle);
617 BUG_ON(!bh);
ccd979bd 618
ef6b689b
TM
619 mlog(0, "bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
620 (unsigned long long)bh->b_blocknr, type,
621 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
622 "OCFS2_JOURNAL_ACCESS_CREATE" :
623 "OCFS2_JOURNAL_ACCESS_WRITE",
624 bh->b_size);
ccd979bd
MF
625
626 /* we can safely remove this assertion after testing. */
627 if (!buffer_uptodate(bh)) {
628 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
629 mlog(ML_ERROR, "b_blocknr=%llu\n",
630 (unsigned long long)bh->b_blocknr);
631 BUG();
632 }
633
0cf2f763 634 /* Set the current transaction information on the ci so
ccd979bd 635 * that the locking code knows whether it can drop it's locks
0cf2f763 636 * on this ci or not. We're protected from the commit
ccd979bd
MF
637 * thread updating the current transaction id until
638 * ocfs2_commit_trans() because ocfs2_start_trans() took
639 * j_trans_barrier for us. */
0cf2f763 640 ocfs2_set_ci_lock_trans(osb->journal, ci);
ccd979bd 641
0cf2f763 642 ocfs2_metadata_cache_io_lock(ci);
ccd979bd
MF
643 switch (type) {
644 case OCFS2_JOURNAL_ACCESS_CREATE:
645 case OCFS2_JOURNAL_ACCESS_WRITE:
2b4e30fb 646 status = jbd2_journal_get_write_access(handle, bh);
ccd979bd
MF
647 break;
648
649 case OCFS2_JOURNAL_ACCESS_UNDO:
2b4e30fb 650 status = jbd2_journal_get_undo_access(handle, bh);
ccd979bd
MF
651 break;
652
653 default:
654 status = -EINVAL;
af901ca1 655 mlog(ML_ERROR, "Unknown access type!\n");
ccd979bd 656 }
0cf2f763 657 if (!status && ocfs2_meta_ecc(osb) && triggers)
50655ae9 658 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
0cf2f763 659 ocfs2_metadata_cache_io_unlock(ci);
ccd979bd
MF
660
661 if (status < 0)
662 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
663 status, type);
664
ccd979bd
MF
665 return status;
666}
667
0cf2f763
JB
668int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
669 struct buffer_head *bh, int type)
50655ae9 670{
0cf2f763 671 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
50655ae9
JB
672}
673
0cf2f763 674int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
675 struct buffer_head *bh, int type)
676{
0cf2f763 677 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
50655ae9
JB
678}
679
93c97087
TM
680int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
681 struct buffer_head *bh, int type)
682{
683 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
684 type);
685}
686
0cf2f763 687int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
688 struct buffer_head *bh, int type)
689{
0cf2f763 690 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
50655ae9
JB
691}
692
0cf2f763 693int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
694 struct buffer_head *bh, int type)
695{
0cf2f763 696 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
50655ae9
JB
697}
698
0cf2f763 699int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
700 struct buffer_head *bh, int type)
701{
0cf2f763 702 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
50655ae9
JB
703}
704
0cf2f763 705int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
706 struct buffer_head *bh, int type)
707{
0cf2f763 708 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
50655ae9
JB
709}
710
0cf2f763 711int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
712 struct buffer_head *bh, int type)
713{
0cf2f763 714 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
9b7895ef
MF
715}
716
0cf2f763 717int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
718 struct buffer_head *bh, int type)
719{
0cf2f763 720 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
9b7895ef
MF
721}
722
0cf2f763 723int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
724 struct buffer_head *bh, int type)
725{
0cf2f763 726 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
50655ae9
JB
727}
728
ec20cec7 729void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
ccd979bd
MF
730{
731 int status;
732
ef6b689b
TM
733 mlog(0, "(bh->b_blocknr=%llu)\n",
734 (unsigned long long)bh->b_blocknr);
ccd979bd 735
2b4e30fb 736 status = jbd2_journal_dirty_metadata(handle, bh);
ec20cec7 737 BUG_ON(status);
ccd979bd
MF
738}
739
2b4e30fb 740#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
ccd979bd
MF
741
742void ocfs2_set_journal_params(struct ocfs2_super *osb)
743{
744 journal_t *journal = osb->journal->j_journal;
d147b3d6
MF
745 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
746
747 if (osb->osb_commit_interval)
748 commit_interval = osb->osb_commit_interval;
ccd979bd 749
a931da6a 750 write_lock(&journal->j_state_lock);
d147b3d6 751 journal->j_commit_interval = commit_interval;
ccd979bd 752 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
2b4e30fb 753 journal->j_flags |= JBD2_BARRIER;
ccd979bd 754 else
2b4e30fb 755 journal->j_flags &= ~JBD2_BARRIER;
a931da6a 756 write_unlock(&journal->j_state_lock);
ccd979bd
MF
757}
758
759int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
760{
761 int status = -1;
762 struct inode *inode = NULL; /* the journal inode */
763 journal_t *j_journal = NULL;
764 struct ocfs2_dinode *di = NULL;
765 struct buffer_head *bh = NULL;
766 struct ocfs2_super *osb;
e63aecb6 767 int inode_lock = 0;
ccd979bd 768
ccd979bd
MF
769 BUG_ON(!journal);
770
771 osb = journal->j_osb;
772
773 /* already have the inode for our journal */
774 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
775 osb->slot_num);
776 if (inode == NULL) {
777 status = -EACCES;
778 mlog_errno(status);
779 goto done;
780 }
781 if (is_bad_inode(inode)) {
782 mlog(ML_ERROR, "access error (bad inode)\n");
783 iput(inode);
784 inode = NULL;
785 status = -EACCES;
786 goto done;
787 }
788
789 SET_INODE_JOURNAL(inode);
790 OCFS2_I(inode)->ip_open_count++;
791
6eff5790
MF
792 /* Skip recovery waits here - journal inode metadata never
793 * changes in a live cluster so it can be considered an
794 * exception to the rule. */
e63aecb6 795 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd
MF
796 if (status < 0) {
797 if (status != -ERESTARTSYS)
798 mlog(ML_ERROR, "Could not get lock on journal!\n");
799 goto done;
800 }
801
e63aecb6 802 inode_lock = 1;
ccd979bd
MF
803 di = (struct ocfs2_dinode *)bh->b_data;
804
805 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
806 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
807 inode->i_size);
808 status = -EINVAL;
809 goto done;
810 }
811
812 mlog(0, "inode->i_size = %lld\n", inode->i_size);
5515eff8
AM
813 mlog(0, "inode->i_blocks = %llu\n",
814 (unsigned long long)inode->i_blocks);
ccd979bd
MF
815 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
816
817 /* call the kernels journal init function now */
2b4e30fb 818 j_journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
819 if (j_journal == NULL) {
820 mlog(ML_ERROR, "Linux journal layer error\n");
821 status = -EINVAL;
822 goto done;
823 }
824
2b4e30fb 825 mlog(0, "Returned from jbd2_journal_init_inode\n");
ccd979bd
MF
826 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
827
828 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
829 OCFS2_JOURNAL_DIRTY_FL);
830
831 journal->j_journal = j_journal;
832 journal->j_inode = inode;
833 journal->j_bh = bh;
834
835 ocfs2_set_journal_params(osb);
836
837 journal->j_state = OCFS2_JOURNAL_LOADED;
838
839 status = 0;
840done:
841 if (status < 0) {
e63aecb6
MF
842 if (inode_lock)
843 ocfs2_inode_unlock(inode, 1);
a81cb88b 844 brelse(bh);
ccd979bd
MF
845 if (inode) {
846 OCFS2_I(inode)->ip_open_count--;
847 iput(inode);
848 }
849 }
850
ccd979bd
MF
851 return status;
852}
853
539d8264
SM
854static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
855{
856 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
857}
858
859static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
860{
861 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
862}
863
ccd979bd 864static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 865 int dirty, int replayed)
ccd979bd
MF
866{
867 int status;
868 unsigned int flags;
869 struct ocfs2_journal *journal = osb->journal;
870 struct buffer_head *bh = journal->j_bh;
871 struct ocfs2_dinode *fe;
872
ccd979bd 873 fe = (struct ocfs2_dinode *)bh->b_data;
10995aa2
JB
874
875 /* The journal bh on the osb always comes from ocfs2_journal_init()
876 * and was validated there inside ocfs2_inode_lock_full(). It's a
877 * code bug if we mess it up. */
878 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
ccd979bd
MF
879
880 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
881 if (dirty)
882 flags |= OCFS2_JOURNAL_DIRTY_FL;
883 else
884 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
885 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
886
539d8264
SM
887 if (replayed)
888 ocfs2_bump_recovery_generation(fe);
889
13723d00 890 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 891 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
ccd979bd
MF
892 if (status < 0)
893 mlog_errno(status);
894
ccd979bd
MF
895 return status;
896}
897
898/*
899 * If the journal has been kmalloc'd it needs to be freed after this
900 * call.
901 */
902void ocfs2_journal_shutdown(struct ocfs2_super *osb)
903{
904 struct ocfs2_journal *journal = NULL;
905 int status = 0;
906 struct inode *inode = NULL;
907 int num_running_trans = 0;
908
ebdec83b 909 BUG_ON(!osb);
ccd979bd
MF
910
911 journal = osb->journal;
912 if (!journal)
913 goto done;
914
915 inode = journal->j_inode;
916
917 if (journal->j_state != OCFS2_JOURNAL_LOADED)
918 goto done;
919
2b4e30fb 920 /* need to inc inode use count - jbd2_journal_destroy will iput. */
ccd979bd
MF
921 if (!igrab(inode))
922 BUG();
923
924 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
925 if (num_running_trans > 0)
926 mlog(0, "Shutting down journal: must wait on %d "
927 "running transactions!\n",
928 num_running_trans);
929
930 /* Do a commit_cache here. It will flush our journal, *and*
931 * release any locks that are still held.
932 * set the SHUTDOWN flag and release the trans lock.
933 * the commit thread will take the trans lock for us below. */
934 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
935
936 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
937 * drop the trans_lock (which we want to hold until we
938 * completely destroy the journal. */
939 if (osb->commit_task) {
940 /* Wait for the commit thread */
941 mlog(0, "Waiting for ocfs2commit to exit....\n");
942 kthread_stop(osb->commit_task);
943 osb->commit_task = NULL;
944 }
945
946 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
947
c271c5c2 948 if (ocfs2_mount_local(osb)) {
2b4e30fb
JB
949 jbd2_journal_lock_updates(journal->j_journal);
950 status = jbd2_journal_flush(journal->j_journal);
951 jbd2_journal_unlock_updates(journal->j_journal);
c271c5c2
SM
952 if (status < 0)
953 mlog_errno(status);
954 }
955
956 if (status == 0) {
957 /*
958 * Do not toggle if flush was unsuccessful otherwise
959 * will leave dirty metadata in a "clean" journal
960 */
539d8264 961 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
c271c5c2
SM
962 if (status < 0)
963 mlog_errno(status);
964 }
ccd979bd
MF
965
966 /* Shutdown the kernel journal system */
2b4e30fb 967 jbd2_journal_destroy(journal->j_journal);
ae0dff68 968 journal->j_journal = NULL;
ccd979bd
MF
969
970 OCFS2_I(inode)->ip_open_count--;
971
972 /* unlock our journal */
e63aecb6 973 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
974
975 brelse(journal->j_bh);
976 journal->j_bh = NULL;
977
978 journal->j_state = OCFS2_JOURNAL_FREE;
979
980// up_write(&journal->j_trans_barrier);
981done:
982 if (inode)
983 iput(inode);
ccd979bd
MF
984}
985
986static void ocfs2_clear_journal_error(struct super_block *sb,
987 journal_t *journal,
988 int slot)
989{
990 int olderr;
991
2b4e30fb 992 olderr = jbd2_journal_errno(journal);
ccd979bd
MF
993 if (olderr) {
994 mlog(ML_ERROR, "File system error %d recorded in "
995 "journal %u.\n", olderr, slot);
996 mlog(ML_ERROR, "File system on device %s needs checking.\n",
997 sb->s_id);
998
2b4e30fb
JB
999 jbd2_journal_ack_err(journal);
1000 jbd2_journal_clear_err(journal);
ccd979bd
MF
1001 }
1002}
1003
539d8264 1004int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
ccd979bd
MF
1005{
1006 int status = 0;
1007 struct ocfs2_super *osb;
1008
b1f3550f 1009 BUG_ON(!journal);
ccd979bd
MF
1010
1011 osb = journal->j_osb;
1012
2b4e30fb 1013 status = jbd2_journal_load(journal->j_journal);
ccd979bd
MF
1014 if (status < 0) {
1015 mlog(ML_ERROR, "Failed to load journal!\n");
1016 goto done;
1017 }
1018
1019 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1020
539d8264 1021 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
ccd979bd
MF
1022 if (status < 0) {
1023 mlog_errno(status);
1024 goto done;
1025 }
1026
1027 /* Launch the commit thread */
c271c5c2
SM
1028 if (!local) {
1029 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1030 "ocfs2cmt");
1031 if (IS_ERR(osb->commit_task)) {
1032 status = PTR_ERR(osb->commit_task);
1033 osb->commit_task = NULL;
1034 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1035 "error=%d", status);
1036 goto done;
1037 }
1038 } else
ccd979bd 1039 osb->commit_task = NULL;
ccd979bd
MF
1040
1041done:
ccd979bd
MF
1042 return status;
1043}
1044
1045
1046/* 'full' flag tells us whether we clear out all blocks or if we just
1047 * mark the journal clean */
1048int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1049{
1050 int status;
1051
ebdec83b 1052 BUG_ON(!journal);
ccd979bd 1053
2b4e30fb 1054 status = jbd2_journal_wipe(journal->j_journal, full);
ccd979bd
MF
1055 if (status < 0) {
1056 mlog_errno(status);
1057 goto bail;
1058 }
1059
539d8264 1060 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
ccd979bd
MF
1061 if (status < 0)
1062 mlog_errno(status);
1063
1064bail:
ccd979bd
MF
1065 return status;
1066}
1067
553abd04
JB
1068static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1069{
1070 int empty;
1071 struct ocfs2_recovery_map *rm = osb->recovery_map;
1072
1073 spin_lock(&osb->osb_lock);
1074 empty = (rm->rm_used == 0);
1075 spin_unlock(&osb->osb_lock);
1076
1077 return empty;
1078}
1079
1080void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1081{
1082 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1083}
1084
ccd979bd
MF
1085/*
1086 * JBD Might read a cached version of another nodes journal file. We
1087 * don't want this as this file changes often and we get no
1088 * notification on those changes. The only way to be sure that we've
1089 * got the most up to date version of those blocks then is to force
1090 * read them off disk. Just searching through the buffer cache won't
1091 * work as there may be pages backing this file which are still marked
1092 * up to date. We know things can't change on this file underneath us
1093 * as we have the lock by now :)
1094 */
1095static int ocfs2_force_read_journal(struct inode *inode)
1096{
1097 int status = 0;
4f902c37 1098 int i;
8110b073 1099 u64 v_blkno, p_blkno, p_blocks, num_blocks;
4f902c37 1100#define CONCURRENT_JOURNAL_FILL 32ULL
ccd979bd
MF
1101 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1102
ccd979bd
MF
1103 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1104
8110b073 1105 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
ccd979bd 1106 v_blkno = 0;
8110b073 1107 while (v_blkno < num_blocks) {
ccd979bd 1108 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
49cb8d2d 1109 &p_blkno, &p_blocks, NULL);
ccd979bd
MF
1110 if (status < 0) {
1111 mlog_errno(status);
1112 goto bail;
1113 }
1114
1115 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1116 p_blocks = CONCURRENT_JOURNAL_FILL;
1117
dd4a2c2b
MF
1118 /* We are reading journal data which should not
1119 * be put in the uptodate cache */
da1e9098
JB
1120 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1121 p_blkno, p_blocks, bhs);
ccd979bd
MF
1122 if (status < 0) {
1123 mlog_errno(status);
1124 goto bail;
1125 }
1126
1127 for(i = 0; i < p_blocks; i++) {
1128 brelse(bhs[i]);
1129 bhs[i] = NULL;
1130 }
1131
1132 v_blkno += p_blocks;
1133 }
1134
1135bail:
1136 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
a81cb88b 1137 brelse(bhs[i]);
ccd979bd
MF
1138 return status;
1139}
1140
1141struct ocfs2_la_recovery_item {
1142 struct list_head lri_list;
1143 int lri_slot;
1144 struct ocfs2_dinode *lri_la_dinode;
1145 struct ocfs2_dinode *lri_tl_dinode;
2205363d 1146 struct ocfs2_quota_recovery *lri_qrec;
ccd979bd
MF
1147};
1148
1149/* Does the second half of the recovery process. By this point, the
1150 * node is marked clean and can actually be considered recovered,
1151 * hence it's no longer in the recovery map, but there's still some
1152 * cleanup we can do which shouldn't happen within the recovery thread
1153 * as locking in that context becomes very difficult if we are to take
1154 * recovering nodes into account.
1155 *
1156 * NOTE: This function can and will sleep on recovery of other nodes
1157 * during cluster locking, just like any other ocfs2 process.
1158 */
c4028958 1159void ocfs2_complete_recovery(struct work_struct *work)
ccd979bd
MF
1160{
1161 int ret;
c4028958
DH
1162 struct ocfs2_journal *journal =
1163 container_of(work, struct ocfs2_journal, j_recovery_work);
1164 struct ocfs2_super *osb = journal->j_osb;
ccd979bd 1165 struct ocfs2_dinode *la_dinode, *tl_dinode;
800deef3 1166 struct ocfs2_la_recovery_item *item, *n;
2205363d 1167 struct ocfs2_quota_recovery *qrec;
ccd979bd
MF
1168 LIST_HEAD(tmp_la_list);
1169
ccd979bd
MF
1170 mlog(0, "completing recovery from keventd\n");
1171
1172 spin_lock(&journal->j_lock);
1173 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1174 spin_unlock(&journal->j_lock);
1175
800deef3 1176 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
ccd979bd
MF
1177 list_del_init(&item->lri_list);
1178
1179 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1180
19ece546
JK
1181 ocfs2_wait_on_quotas(osb);
1182
ccd979bd
MF
1183 la_dinode = item->lri_la_dinode;
1184 if (la_dinode) {
b0697053 1185 mlog(0, "Clean up local alloc %llu\n",
1ca1a111 1186 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
ccd979bd
MF
1187
1188 ret = ocfs2_complete_local_alloc_recovery(osb,
1189 la_dinode);
1190 if (ret < 0)
1191 mlog_errno(ret);
1192
1193 kfree(la_dinode);
1194 }
1195
1196 tl_dinode = item->lri_tl_dinode;
1197 if (tl_dinode) {
b0697053 1198 mlog(0, "Clean up truncate log %llu\n",
1ca1a111 1199 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
ccd979bd
MF
1200
1201 ret = ocfs2_complete_truncate_log_recovery(osb,
1202 tl_dinode);
1203 if (ret < 0)
1204 mlog_errno(ret);
1205
1206 kfree(tl_dinode);
1207 }
1208
1209 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1210 if (ret < 0)
1211 mlog_errno(ret);
1212
2205363d
JK
1213 qrec = item->lri_qrec;
1214 if (qrec) {
1215 mlog(0, "Recovering quota files");
1216 ret = ocfs2_finish_quota_recovery(osb, qrec,
1217 item->lri_slot);
1218 if (ret < 0)
1219 mlog_errno(ret);
1220 /* Recovery info is already freed now */
1221 }
1222
ccd979bd
MF
1223 kfree(item);
1224 }
1225
1226 mlog(0, "Recovery completion\n");
ccd979bd
MF
1227}
1228
1229/* NOTE: This function always eats your references to la_dinode and
1230 * tl_dinode, either manually on error, or by passing them to
1231 * ocfs2_complete_recovery */
1232static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1233 int slot_num,
1234 struct ocfs2_dinode *la_dinode,
2205363d
JK
1235 struct ocfs2_dinode *tl_dinode,
1236 struct ocfs2_quota_recovery *qrec)
ccd979bd
MF
1237{
1238 struct ocfs2_la_recovery_item *item;
1239
afae00ab 1240 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
ccd979bd
MF
1241 if (!item) {
1242 /* Though we wish to avoid it, we are in fact safe in
1243 * skipping local alloc cleanup as fsck.ocfs2 is more
1244 * than capable of reclaiming unused space. */
1245 if (la_dinode)
1246 kfree(la_dinode);
1247
1248 if (tl_dinode)
1249 kfree(tl_dinode);
1250
2205363d
JK
1251 if (qrec)
1252 ocfs2_free_quota_recovery(qrec);
1253
ccd979bd
MF
1254 mlog_errno(-ENOMEM);
1255 return;
1256 }
1257
1258 INIT_LIST_HEAD(&item->lri_list);
1259 item->lri_la_dinode = la_dinode;
1260 item->lri_slot = slot_num;
1261 item->lri_tl_dinode = tl_dinode;
2205363d 1262 item->lri_qrec = qrec;
ccd979bd
MF
1263
1264 spin_lock(&journal->j_lock);
1265 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1266 queue_work(ocfs2_wq, &journal->j_recovery_work);
1267 spin_unlock(&journal->j_lock);
1268}
1269
1270/* Called by the mount code to queue recovery the last part of
9140db04 1271 * recovery for it's own and offline slot(s). */
ccd979bd
MF
1272void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1273{
1274 struct ocfs2_journal *journal = osb->journal;
1275
9140db04
SE
1276 /* No need to queue up our truncate_log as regular cleanup will catch
1277 * that */
1278 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1279 osb->local_alloc_copy, NULL, NULL);
1280 ocfs2_schedule_truncate_log_flush(osb, 0);
ccd979bd 1281
9140db04
SE
1282 osb->local_alloc_copy = NULL;
1283 osb->dirty = 0;
1284
1285 /* queue to recover orphan slots for all offline slots */
1286 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1287 ocfs2_queue_replay_slots(osb);
1288 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1289}
1290
2205363d
JK
1291void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1292{
1293 if (osb->quota_rec) {
1294 ocfs2_queue_recovery_completion(osb->journal,
1295 osb->slot_num,
1296 NULL,
1297 NULL,
1298 osb->quota_rec);
1299 osb->quota_rec = NULL;
1300 }
1301}
1302
ccd979bd
MF
1303static int __ocfs2_recovery_thread(void *arg)
1304{
2205363d 1305 int status, node_num, slot_num;
ccd979bd 1306 struct ocfs2_super *osb = arg;
553abd04 1307 struct ocfs2_recovery_map *rm = osb->recovery_map;
2205363d
JK
1308 int *rm_quota = NULL;
1309 int rm_quota_used = 0, i;
1310 struct ocfs2_quota_recovery *qrec;
ccd979bd 1311
ccd979bd
MF
1312 status = ocfs2_wait_on_mount(osb);
1313 if (status < 0) {
1314 goto bail;
1315 }
1316
2205363d
JK
1317 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1318 if (!rm_quota) {
1319 status = -ENOMEM;
1320 goto bail;
1321 }
ccd979bd
MF
1322restart:
1323 status = ocfs2_super_lock(osb, 1);
1324 if (status < 0) {
1325 mlog_errno(status);
1326 goto bail;
1327 }
1328
9140db04
SE
1329 status = ocfs2_compute_replay_slots(osb);
1330 if (status < 0)
1331 mlog_errno(status);
1332
1333 /* queue recovery for our own slot */
1334 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1335 NULL, NULL);
1336
553abd04
JB
1337 spin_lock(&osb->osb_lock);
1338 while (rm->rm_used) {
1339 /* It's always safe to remove entry zero, as we won't
1340 * clear it until ocfs2_recover_node() has succeeded. */
1341 node_num = rm->rm_entries[0];
1342 spin_unlock(&osb->osb_lock);
2205363d
JK
1343 mlog(0, "checking node %d\n", node_num);
1344 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1345 if (slot_num == -ENOENT) {
1346 status = 0;
1347 mlog(0, "no slot for this node, so no recovery"
1348 "required.\n");
1349 goto skip_recovery;
1350 }
1351 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1352
1353 /* It is a bit subtle with quota recovery. We cannot do it
1354 * immediately because we have to obtain cluster locks from
1355 * quota files and we also don't want to just skip it because
1356 * then quota usage would be out of sync until some node takes
1357 * the slot. So we remember which nodes need quota recovery
1358 * and when everything else is done, we recover quotas. */
1359 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1360 if (i == rm_quota_used)
1361 rm_quota[rm_quota_used++] = slot_num;
1362
1363 status = ocfs2_recover_node(osb, node_num, slot_num);
1364skip_recovery:
553abd04
JB
1365 if (!status) {
1366 ocfs2_recovery_map_clear(osb, node_num);
1367 } else {
ccd979bd
MF
1368 mlog(ML_ERROR,
1369 "Error %d recovering node %d on device (%u,%u)!\n",
1370 status, node_num,
1371 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1372 mlog(ML_ERROR, "Volume requires unmount.\n");
ccd979bd
MF
1373 }
1374
553abd04 1375 spin_lock(&osb->osb_lock);
ccd979bd 1376 }
553abd04
JB
1377 spin_unlock(&osb->osb_lock);
1378 mlog(0, "All nodes recovered\n");
1379
539d8264
SM
1380 /* Refresh all journal recovery generations from disk */
1381 status = ocfs2_check_journals_nolocks(osb);
1382 status = (status == -EROFS) ? 0 : status;
1383 if (status < 0)
1384 mlog_errno(status);
1385
2205363d
JK
1386 /* Now it is right time to recover quotas... We have to do this under
1387 * superblock lock so that noone can start using the slot (and crash)
1388 * before we recover it */
1389 for (i = 0; i < rm_quota_used; i++) {
1390 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1391 if (IS_ERR(qrec)) {
1392 status = PTR_ERR(qrec);
1393 mlog_errno(status);
1394 continue;
1395 }
1396 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1397 NULL, NULL, qrec);
1398 }
1399
ccd979bd
MF
1400 ocfs2_super_unlock(osb, 1);
1401
9140db04
SE
1402 /* queue recovery for offline slots */
1403 ocfs2_queue_replay_slots(osb);
ccd979bd
MF
1404
1405bail:
c74ec2f7 1406 mutex_lock(&osb->recovery_lock);
553abd04 1407 if (!status && !ocfs2_recovery_completed(osb)) {
c74ec2f7 1408 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
1409 goto restart;
1410 }
1411
9140db04 1412 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1413 osb->recovery_thread_task = NULL;
1414 mb(); /* sync with ocfs2_recovery_thread_running */
1415 wake_up(&osb->recovery_event);
1416
c74ec2f7 1417 mutex_unlock(&osb->recovery_lock);
ccd979bd 1418
2205363d
JK
1419 if (rm_quota)
1420 kfree(rm_quota);
1421
ccd979bd
MF
1422 /* no one is callint kthread_stop() for us so the kthread() api
1423 * requires that we call do_exit(). And it isn't exported, but
1424 * complete_and_exit() seems to be a minimal wrapper around it. */
1425 complete_and_exit(NULL, status);
1426 return status;
1427}
1428
1429void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1430{
ef6b689b
TM
1431 mlog(0, "(node_num=%d, osb->node_num = %d)\n",
1432 node_num, osb->node_num);
ccd979bd 1433
c74ec2f7 1434 mutex_lock(&osb->recovery_lock);
ccd979bd
MF
1435 if (osb->disable_recovery)
1436 goto out;
1437
1438 /* People waiting on recovery will wait on
1439 * the recovery map to empty. */
553abd04
JB
1440 if (ocfs2_recovery_map_set(osb, node_num))
1441 mlog(0, "node %d already in recovery map.\n", node_num);
ccd979bd
MF
1442
1443 mlog(0, "starting recovery thread...\n");
1444
1445 if (osb->recovery_thread_task)
1446 goto out;
1447
1448 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
78427043 1449 "ocfs2rec");
ccd979bd
MF
1450 if (IS_ERR(osb->recovery_thread_task)) {
1451 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1452 osb->recovery_thread_task = NULL;
1453 }
1454
1455out:
c74ec2f7 1456 mutex_unlock(&osb->recovery_lock);
ccd979bd 1457 wake_up(&osb->recovery_event);
ccd979bd
MF
1458}
1459
539d8264
SM
1460static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1461 int slot_num,
1462 struct buffer_head **bh,
1463 struct inode **ret_inode)
1464{
1465 int status = -EACCES;
1466 struct inode *inode = NULL;
1467
1468 BUG_ON(slot_num >= osb->max_slots);
1469
1470 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1471 slot_num);
1472 if (!inode || is_bad_inode(inode)) {
1473 mlog_errno(status);
1474 goto bail;
1475 }
1476 SET_INODE_JOURNAL(inode);
1477
b657c95c 1478 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
539d8264
SM
1479 if (status < 0) {
1480 mlog_errno(status);
1481 goto bail;
1482 }
1483
1484 status = 0;
1485
1486bail:
1487 if (inode) {
1488 if (status || !ret_inode)
1489 iput(inode);
1490 else
1491 *ret_inode = inode;
1492 }
1493 return status;
1494}
1495
ccd979bd
MF
1496/* Does the actual journal replay and marks the journal inode as
1497 * clean. Will only replay if the journal inode is marked dirty. */
1498static int ocfs2_replay_journal(struct ocfs2_super *osb,
1499 int node_num,
1500 int slot_num)
1501{
1502 int status;
1503 int got_lock = 0;
1504 unsigned int flags;
1505 struct inode *inode = NULL;
1506 struct ocfs2_dinode *fe;
1507 journal_t *journal = NULL;
1508 struct buffer_head *bh = NULL;
539d8264 1509 u32 slot_reco_gen;
ccd979bd 1510
539d8264
SM
1511 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1512 if (status) {
ccd979bd
MF
1513 mlog_errno(status);
1514 goto done;
1515 }
539d8264
SM
1516
1517 fe = (struct ocfs2_dinode *)bh->b_data;
1518 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1519 brelse(bh);
1520 bh = NULL;
1521
1522 /*
1523 * As the fs recovery is asynchronous, there is a small chance that
1524 * another node mounted (and recovered) the slot before the recovery
1525 * thread could get the lock. To handle that, we dirty read the journal
1526 * inode for that slot to get the recovery generation. If it is
1527 * different than what we expected, the slot has been recovered.
1528 * If not, it needs recovery.
1529 */
1530 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1531 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1532 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1533 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1534 status = -EBUSY;
ccd979bd
MF
1535 goto done;
1536 }
539d8264
SM
1537
1538 /* Continue with recovery as the journal has not yet been recovered */
ccd979bd 1539
e63aecb6 1540 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd 1541 if (status < 0) {
e63aecb6 1542 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
ccd979bd
MF
1543 if (status != -ERESTARTSYS)
1544 mlog(ML_ERROR, "Could not lock journal!\n");
1545 goto done;
1546 }
1547 got_lock = 1;
1548
1549 fe = (struct ocfs2_dinode *) bh->b_data;
1550
1551 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
539d8264 1552 slot_reco_gen = ocfs2_get_recovery_generation(fe);
ccd979bd
MF
1553
1554 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1555 mlog(0, "No recovery required for node %d\n", node_num);
539d8264
SM
1556 /* Refresh recovery generation for the slot */
1557 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
ccd979bd
MF
1558 goto done;
1559 }
1560
9140db04
SE
1561 /* we need to run complete recovery for offline orphan slots */
1562 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1563
ccd979bd
MF
1564 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1565 node_num, slot_num,
1566 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1567
1568 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1569
1570 status = ocfs2_force_read_journal(inode);
1571 if (status < 0) {
1572 mlog_errno(status);
1573 goto done;
1574 }
1575
1576 mlog(0, "calling journal_init_inode\n");
2b4e30fb 1577 journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
1578 if (journal == NULL) {
1579 mlog(ML_ERROR, "Linux journal layer error\n");
1580 status = -EIO;
1581 goto done;
1582 }
1583
2b4e30fb 1584 status = jbd2_journal_load(journal);
ccd979bd
MF
1585 if (status < 0) {
1586 mlog_errno(status);
1587 if (!igrab(inode))
1588 BUG();
2b4e30fb 1589 jbd2_journal_destroy(journal);
ccd979bd
MF
1590 goto done;
1591 }
1592
1593 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1594
1595 /* wipe the journal */
1596 mlog(0, "flushing the journal.\n");
2b4e30fb
JB
1597 jbd2_journal_lock_updates(journal);
1598 status = jbd2_journal_flush(journal);
1599 jbd2_journal_unlock_updates(journal);
ccd979bd
MF
1600 if (status < 0)
1601 mlog_errno(status);
1602
1603 /* This will mark the node clean */
1604 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1605 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1606 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1607
539d8264
SM
1608 /* Increment recovery generation to indicate successful recovery */
1609 ocfs2_bump_recovery_generation(fe);
1610 osb->slot_recovery_generations[slot_num] =
1611 ocfs2_get_recovery_generation(fe);
1612
13723d00 1613 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 1614 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
ccd979bd
MF
1615 if (status < 0)
1616 mlog_errno(status);
1617
1618 if (!igrab(inode))
1619 BUG();
1620
2b4e30fb 1621 jbd2_journal_destroy(journal);
ccd979bd
MF
1622
1623done:
1624 /* drop the lock on this nodes journal */
1625 if (got_lock)
e63aecb6 1626 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1627
1628 if (inode)
1629 iput(inode);
1630
a81cb88b 1631 brelse(bh);
ccd979bd 1632
ccd979bd
MF
1633 return status;
1634}
1635
1636/*
1637 * Do the most important parts of node recovery:
1638 * - Replay it's journal
1639 * - Stamp a clean local allocator file
1640 * - Stamp a clean truncate log
1641 * - Mark the node clean
1642 *
1643 * If this function completes without error, a node in OCFS2 can be
1644 * said to have been safely recovered. As a result, failure during the
1645 * second part of a nodes recovery process (local alloc recovery) is
1646 * far less concerning.
1647 */
1648static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 1649 int node_num, int slot_num)
ccd979bd
MF
1650{
1651 int status = 0;
ccd979bd
MF
1652 struct ocfs2_dinode *la_copy = NULL;
1653 struct ocfs2_dinode *tl_copy = NULL;
1654
ef6b689b
TM
1655 mlog(0, "(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1656 node_num, slot_num, osb->node_num);
ccd979bd
MF
1657
1658 /* Should not ever be called to recover ourselves -- in that
1659 * case we should've called ocfs2_journal_load instead. */
ebdec83b 1660 BUG_ON(osb->node_num == node_num);
ccd979bd 1661
ccd979bd
MF
1662 status = ocfs2_replay_journal(osb, node_num, slot_num);
1663 if (status < 0) {
539d8264
SM
1664 if (status == -EBUSY) {
1665 mlog(0, "Skipping recovery for slot %u (node %u) "
1666 "as another node has recovered it\n", slot_num,
1667 node_num);
1668 status = 0;
1669 goto done;
1670 }
ccd979bd
MF
1671 mlog_errno(status);
1672 goto done;
1673 }
1674
1675 /* Stamp a clean local alloc file AFTER recovering the journal... */
1676 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1677 if (status < 0) {
1678 mlog_errno(status);
1679 goto done;
1680 }
1681
1682 /* An error from begin_truncate_log_recovery is not
1683 * serious enough to warrant halting the rest of
1684 * recovery. */
1685 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1686 if (status < 0)
1687 mlog_errno(status);
1688
1689 /* Likewise, this would be a strange but ultimately not so
1690 * harmful place to get an error... */
8e8a4603 1691 status = ocfs2_clear_slot(osb, slot_num);
ccd979bd
MF
1692 if (status < 0)
1693 mlog_errno(status);
1694
1695 /* This will kfree the memory pointed to by la_copy and tl_copy */
1696 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
2205363d 1697 tl_copy, NULL);
ccd979bd
MF
1698
1699 status = 0;
1700done:
1701
ccd979bd
MF
1702 return status;
1703}
1704
1705/* Test node liveness by trylocking his journal. If we get the lock,
1706 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1707 * still alive (we couldn't get the lock) and < 0 on error. */
1708static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1709 int slot_num)
1710{
1711 int status, flags;
1712 struct inode *inode = NULL;
1713
1714 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1715 slot_num);
1716 if (inode == NULL) {
1717 mlog(ML_ERROR, "access error\n");
1718 status = -EACCES;
1719 goto bail;
1720 }
1721 if (is_bad_inode(inode)) {
1722 mlog(ML_ERROR, "access error (bad inode)\n");
1723 iput(inode);
1724 inode = NULL;
1725 status = -EACCES;
1726 goto bail;
1727 }
1728 SET_INODE_JOURNAL(inode);
1729
1730 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
e63aecb6 1731 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
ccd979bd
MF
1732 if (status < 0) {
1733 if (status != -EAGAIN)
1734 mlog_errno(status);
1735 goto bail;
1736 }
1737
e63aecb6 1738 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1739bail:
1740 if (inode)
1741 iput(inode);
1742
1743 return status;
1744}
1745
1746/* Call this underneath ocfs2_super_lock. It also assumes that the
1747 * slot info struct has been updated from disk. */
1748int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1749{
d85b20e4
JB
1750 unsigned int node_num;
1751 int status, i;
a1af7d15 1752 u32 gen;
539d8264
SM
1753 struct buffer_head *bh = NULL;
1754 struct ocfs2_dinode *di;
ccd979bd
MF
1755
1756 /* This is called with the super block cluster lock, so we
1757 * know that the slot map can't change underneath us. */
1758
d85b20e4 1759 for (i = 0; i < osb->max_slots; i++) {
539d8264
SM
1760 /* Read journal inode to get the recovery generation */
1761 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1762 if (status) {
1763 mlog_errno(status);
1764 goto bail;
1765 }
1766 di = (struct ocfs2_dinode *)bh->b_data;
a1af7d15 1767 gen = ocfs2_get_recovery_generation(di);
539d8264
SM
1768 brelse(bh);
1769 bh = NULL;
1770
a1af7d15
MF
1771 spin_lock(&osb->osb_lock);
1772 osb->slot_recovery_generations[i] = gen;
1773
539d8264
SM
1774 mlog(0, "Slot %u recovery generation is %u\n", i,
1775 osb->slot_recovery_generations[i]);
1776
a1af7d15
MF
1777 if (i == osb->slot_num) {
1778 spin_unlock(&osb->osb_lock);
ccd979bd 1779 continue;
a1af7d15 1780 }
d85b20e4
JB
1781
1782 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
a1af7d15
MF
1783 if (status == -ENOENT) {
1784 spin_unlock(&osb->osb_lock);
ccd979bd 1785 continue;
a1af7d15 1786 }
ccd979bd 1787
a1af7d15
MF
1788 if (__ocfs2_recovery_map_test(osb, node_num)) {
1789 spin_unlock(&osb->osb_lock);
ccd979bd 1790 continue;
a1af7d15 1791 }
d85b20e4 1792 spin_unlock(&osb->osb_lock);
ccd979bd
MF
1793
1794 /* Ok, we have a slot occupied by another node which
1795 * is not in the recovery map. We trylock his journal
1796 * file here to test if he's alive. */
1797 status = ocfs2_trylock_journal(osb, i);
1798 if (!status) {
1799 /* Since we're called from mount, we know that
1800 * the recovery thread can't race us on
1801 * setting / checking the recovery bits. */
1802 ocfs2_recovery_thread(osb, node_num);
1803 } else if ((status < 0) && (status != -EAGAIN)) {
1804 mlog_errno(status);
1805 goto bail;
1806 }
ccd979bd 1807 }
ccd979bd
MF
1808
1809 status = 0;
1810bail:
ccd979bd
MF
1811 return status;
1812}
1813
83273932
SE
1814/*
1815 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1816 * randomness to the timeout to minimize multple nodes firing the timer at the
1817 * same time.
1818 */
1819static inline unsigned long ocfs2_orphan_scan_timeout(void)
1820{
1821 unsigned long time;
1822
1823 get_random_bytes(&time, sizeof(time));
1824 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1825 return msecs_to_jiffies(time);
1826}
1827
1828/*
1829 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1830 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1831 * is done to catch any orphans that are left over in orphan directories.
1832 *
1833 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1834 * seconds. It gets an EX lock on os_lockres and checks sequence number
1835 * stored in LVB. If the sequence number has changed, it means some other
1836 * node has done the scan. This node skips the scan and tracks the
1837 * sequence number. If the sequence number didn't change, it means a scan
1838 * hasn't happened. The node queues a scan and increments the
1839 * sequence number in the LVB.
1840 */
1841void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1842{
1843 struct ocfs2_orphan_scan *os;
1844 int status, i;
1845 u32 seqno = 0;
1846
1847 os = &osb->osb_orphan_scan;
1848
3c3f20c9
TM
1849 mlog(0, "Begin orphan scan\n");
1850
692684e1
SM
1851 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1852 goto out;
1853
df152c24 1854 status = ocfs2_orphan_scan_lock(osb, &seqno);
83273932
SE
1855 if (status < 0) {
1856 if (status != -EAGAIN)
1857 mlog_errno(status);
1858 goto out;
1859 }
1860
692684e1
SM
1861 /* Do no queue the tasks if the volume is being umounted */
1862 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1863 goto unlock;
1864
83273932
SE
1865 if (os->os_seqno != seqno) {
1866 os->os_seqno = seqno;
1867 goto unlock;
1868 }
1869
1870 for (i = 0; i < osb->max_slots; i++)
1871 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1872 NULL);
1873 /*
1874 * We queued a recovery on orphan slots, increment the sequence
1875 * number and update LVB so other node will skip the scan for a while
1876 */
1877 seqno++;
15633a22
SE
1878 os->os_count++;
1879 os->os_scantime = CURRENT_TIME;
83273932 1880unlock:
df152c24 1881 ocfs2_orphan_scan_unlock(osb, seqno);
83273932 1882out:
3c3f20c9 1883 mlog(0, "Orphan scan completed\n");
83273932
SE
1884 return;
1885}
1886
1887/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1888void ocfs2_orphan_scan_work(struct work_struct *work)
1889{
1890 struct ocfs2_orphan_scan *os;
1891 struct ocfs2_super *osb;
1892
1893 os = container_of(work, struct ocfs2_orphan_scan,
1894 os_orphan_scan_work.work);
1895 osb = os->os_osb;
1896
1897 mutex_lock(&os->os_lock);
1898 ocfs2_queue_orphan_scan(osb);
692684e1 1899 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
40f165f4 1900 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
692684e1 1901 ocfs2_orphan_scan_timeout());
83273932
SE
1902 mutex_unlock(&os->os_lock);
1903}
1904
1905void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1906{
1907 struct ocfs2_orphan_scan *os;
1908
1909 os = &osb->osb_orphan_scan;
df152c24
SM
1910 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1911 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1912 mutex_lock(&os->os_lock);
1913 cancel_delayed_work(&os->os_orphan_scan_work);
1914 mutex_unlock(&os->os_lock);
1915 }
83273932
SE
1916}
1917
df152c24 1918void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
83273932
SE
1919{
1920 struct ocfs2_orphan_scan *os;
1921
1922 os = &osb->osb_orphan_scan;
1923 os->os_osb = osb;
15633a22 1924 os->os_count = 0;
3211949f 1925 os->os_seqno = 0;
83273932 1926 mutex_init(&os->os_lock);
df152c24 1927 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
8b712cd5 1928}
83273932 1929
8b712cd5
JM
1930void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1931{
1932 struct ocfs2_orphan_scan *os;
1933
1934 os = &osb->osb_orphan_scan;
1935 os->os_scantime = CURRENT_TIME;
df152c24
SM
1936 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1937 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1938 else {
1939 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
40f165f4
TM
1940 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1941 ocfs2_orphan_scan_timeout());
df152c24 1942 }
83273932
SE
1943}
1944
5eae5b96
MF
1945struct ocfs2_orphan_filldir_priv {
1946 struct inode *head;
1947 struct ocfs2_super *osb;
1948};
1949
1950static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1951 loff_t pos, u64 ino, unsigned type)
1952{
1953 struct ocfs2_orphan_filldir_priv *p = priv;
1954 struct inode *iter;
1955
1956 if (name_len == 1 && !strncmp(".", name, 1))
1957 return 0;
1958 if (name_len == 2 && !strncmp("..", name, 2))
1959 return 0;
1960
1961 /* Skip bad inodes so that recovery can continue */
1962 iter = ocfs2_iget(p->osb, ino,
5fa0613e 1963 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
5eae5b96
MF
1964 if (IS_ERR(iter))
1965 return 0;
1966
1967 mlog(0, "queue orphan %llu\n",
1968 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1969 /* No locking is required for the next_orphan queue as there
1970 * is only ever a single process doing orphan recovery. */
1971 OCFS2_I(iter)->ip_next_orphan = p->head;
1972 p->head = iter;
1973
1974 return 0;
1975}
1976
b4df6ed8
MF
1977static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1978 int slot,
1979 struct inode **head)
ccd979bd 1980{
b4df6ed8 1981 int status;
ccd979bd 1982 struct inode *orphan_dir_inode = NULL;
5eae5b96
MF
1983 struct ocfs2_orphan_filldir_priv priv;
1984 loff_t pos = 0;
1985
1986 priv.osb = osb;
1987 priv.head = *head;
ccd979bd
MF
1988
1989 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1990 ORPHAN_DIR_SYSTEM_INODE,
1991 slot);
1992 if (!orphan_dir_inode) {
1993 status = -ENOENT;
1994 mlog_errno(status);
b4df6ed8 1995 return status;
2bd63216 1996 }
ccd979bd 1997
1b1dcc1b 1998 mutex_lock(&orphan_dir_inode->i_mutex);
e63aecb6 1999 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
ccd979bd 2000 if (status < 0) {
ccd979bd
MF
2001 mlog_errno(status);
2002 goto out;
2003 }
ccd979bd 2004
5eae5b96
MF
2005 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2006 ocfs2_orphan_filldir);
2007 if (status) {
2008 mlog_errno(status);
a86370fb 2009 goto out_cluster;
ccd979bd 2010 }
ccd979bd 2011
5eae5b96
MF
2012 *head = priv.head;
2013
a86370fb 2014out_cluster:
e63aecb6 2015 ocfs2_inode_unlock(orphan_dir_inode, 0);
b4df6ed8
MF
2016out:
2017 mutex_unlock(&orphan_dir_inode->i_mutex);
ccd979bd 2018 iput(orphan_dir_inode);
b4df6ed8
MF
2019 return status;
2020}
2021
2022static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2023 int slot)
2024{
2025 int ret;
2026
2027 spin_lock(&osb->osb_lock);
2028 ret = !osb->osb_orphan_wipes[slot];
2029 spin_unlock(&osb->osb_lock);
2030 return ret;
2031}
2032
2033static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2034 int slot)
2035{
2036 spin_lock(&osb->osb_lock);
2037 /* Mark ourselves such that new processes in delete_inode()
2038 * know to quit early. */
2039 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2040 while (osb->osb_orphan_wipes[slot]) {
2041 /* If any processes are already in the middle of an
2042 * orphan wipe on this dir, then we need to wait for
2043 * them. */
2044 spin_unlock(&osb->osb_lock);
2045 wait_event_interruptible(osb->osb_wipe_event,
2046 ocfs2_orphan_recovery_can_continue(osb, slot));
2047 spin_lock(&osb->osb_lock);
2048 }
2049 spin_unlock(&osb->osb_lock);
2050}
2051
2052static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2053 int slot)
2054{
2055 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2056}
2057
2058/*
2059 * Orphan recovery. Each mounted node has it's own orphan dir which we
2060 * must run during recovery. Our strategy here is to build a list of
2061 * the inodes in the orphan dir and iget/iput them. The VFS does
2062 * (most) of the rest of the work.
2063 *
2064 * Orphan recovery can happen at any time, not just mount so we have a
2065 * couple of extra considerations.
2066 *
2067 * - We grab as many inodes as we can under the orphan dir lock -
2068 * doing iget() outside the orphan dir risks getting a reference on
2069 * an invalid inode.
2070 * - We must be sure not to deadlock with other processes on the
2071 * system wanting to run delete_inode(). This can happen when they go
2072 * to lock the orphan dir and the orphan recovery process attempts to
2073 * iget() inside the orphan dir lock. This can be avoided by
2074 * advertising our state to ocfs2_delete_inode().
2075 */
2076static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2077 int slot)
2078{
2079 int ret = 0;
2080 struct inode *inode = NULL;
2081 struct inode *iter;
2082 struct ocfs2_inode_info *oi;
2083
2084 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2085
2086 ocfs2_mark_recovering_orphan_dir(osb, slot);
2087 ret = ocfs2_queue_orphans(osb, slot, &inode);
2088 ocfs2_clear_recovering_orphan_dir(osb, slot);
2089
2090 /* Error here should be noted, but we want to continue with as
2091 * many queued inodes as we've got. */
2092 if (ret)
2093 mlog_errno(ret);
ccd979bd
MF
2094
2095 while (inode) {
2096 oi = OCFS2_I(inode);
b0697053 2097 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
ccd979bd
MF
2098
2099 iter = oi->ip_next_orphan;
2100
2101 spin_lock(&oi->ip_lock);
34d024f8
MF
2102 /* The remote delete code may have set these on the
2103 * assumption that the other node would wipe them
2104 * successfully. If they are still in the node's
2105 * orphan dir, we need to reset that state. */
ccd979bd
MF
2106 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2107
2108 /* Set the proper information to get us going into
2109 * ocfs2_delete_inode. */
2110 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
ccd979bd
MF
2111 spin_unlock(&oi->ip_lock);
2112
2113 iput(inode);
2114
2115 inode = iter;
2116 }
2117
b4df6ed8 2118 return ret;
ccd979bd
MF
2119}
2120
19ece546 2121static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
ccd979bd
MF
2122{
2123 /* This check is good because ocfs2 will wait on our recovery
2124 * thread before changing it to something other than MOUNTED
2125 * or DISABLED. */
2126 wait_event(osb->osb_mount_event,
19ece546
JK
2127 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2128 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
ccd979bd
MF
2129 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2130
2131 /* If there's an error on mount, then we may never get to the
2132 * MOUNTED flag, but this is set right before
2133 * dismount_volume() so we can trust it. */
2134 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2135 mlog(0, "mount error, exiting!\n");
2136 return -EBUSY;
2137 }
2138
2139 return 0;
2140}
2141
2142static int ocfs2_commit_thread(void *arg)
2143{
2144 int status;
2145 struct ocfs2_super *osb = arg;
2146 struct ocfs2_journal *journal = osb->journal;
2147
2148 /* we can trust j_num_trans here because _should_stop() is only set in
2149 * shutdown and nobody other than ourselves should be able to start
2150 * transactions. committing on shutdown might take a few iterations
2151 * as final transactions put deleted inodes on the list */
2152 while (!(kthread_should_stop() &&
2153 atomic_read(&journal->j_num_trans) == 0)) {
2154
745ae8ba
MF
2155 wait_event_interruptible(osb->checkpoint_event,
2156 atomic_read(&journal->j_num_trans)
2157 || kthread_should_stop());
ccd979bd
MF
2158
2159 status = ocfs2_commit_cache(osb);
2160 if (status < 0)
2161 mlog_errno(status);
2162
2163 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2164 mlog(ML_KTHREAD,
2165 "commit_thread: %u transactions pending on "
2166 "shutdown\n",
2167 atomic_read(&journal->j_num_trans));
2168 }
2169 }
2170
2171 return 0;
2172}
2173
539d8264
SM
2174/* Reads all the journal inodes without taking any cluster locks. Used
2175 * for hard readonly access to determine whether any journal requires
2176 * recovery. Also used to refresh the recovery generation numbers after
2177 * a journal has been recovered by another node.
2178 */
ccd979bd
MF
2179int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2180{
2181 int ret = 0;
2182 unsigned int slot;
539d8264 2183 struct buffer_head *di_bh = NULL;
ccd979bd 2184 struct ocfs2_dinode *di;
539d8264 2185 int journal_dirty = 0;
ccd979bd
MF
2186
2187 for(slot = 0; slot < osb->max_slots; slot++) {
539d8264
SM
2188 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2189 if (ret) {
ccd979bd
MF
2190 mlog_errno(ret);
2191 goto out;
2192 }
2193
2194 di = (struct ocfs2_dinode *) di_bh->b_data;
2195
539d8264
SM
2196 osb->slot_recovery_generations[slot] =
2197 ocfs2_get_recovery_generation(di);
2198
ccd979bd
MF
2199 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2200 OCFS2_JOURNAL_DIRTY_FL)
539d8264 2201 journal_dirty = 1;
ccd979bd
MF
2202
2203 brelse(di_bh);
539d8264 2204 di_bh = NULL;
ccd979bd
MF
2205 }
2206
2207out:
539d8264
SM
2208 if (journal_dirty)
2209 ret = -EROFS;
ccd979bd
MF
2210 return ret;
2211}