Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / ocfs2 / journal.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
83273932
SE
31#include <linux/time.h>
32#include <linux/random.h>
ccd979bd
MF
33
34#define MLOG_MASK_PREFIX ML_JOURNAL
35#include <cluster/masklog.h>
36
37#include "ocfs2.h"
38
39#include "alloc.h"
50655ae9 40#include "blockcheck.h"
316f4b9f 41#include "dir.h"
ccd979bd
MF
42#include "dlmglue.h"
43#include "extent_map.h"
44#include "heartbeat.h"
45#include "inode.h"
46#include "journal.h"
47#include "localalloc.h"
ccd979bd
MF
48#include "slot_map.h"
49#include "super.h"
ccd979bd 50#include "sysfile.h"
0cf2f763 51#include "uptodate.h"
2205363d 52#include "quota.h"
ccd979bd
MF
53
54#include "buffer_head_io.h"
55
34af946a 56DEFINE_SPINLOCK(trans_inc_lock);
ccd979bd 57
83273932
SE
58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
ccd979bd
MF
60static int ocfs2_force_read_journal(struct inode *inode);
61static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 62 int node_num, int slot_num);
ccd979bd
MF
63static int __ocfs2_recovery_thread(void *arg);
64static int ocfs2_commit_cache(struct ocfs2_super *osb);
19ece546 65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
ccd979bd 66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 67 int dirty, int replayed);
ccd979bd
MF
68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72static int ocfs2_commit_thread(void *arg);
9140db04
SE
73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
ccd979bd 78
19ece546
JK
79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80{
81 return __ocfs2_wait_on_mount(osb, 0);
82}
83
84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85{
86 return __ocfs2_wait_on_mount(osb, 1);
87}
88
9140db04
SE
89/*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98};
99
100struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104};
105
106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107{
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116}
117
118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119{
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149}
150
151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152{
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167}
168
169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170{
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178}
179
553abd04
JB
180int ocfs2_recovery_init(struct ocfs2_super *osb)
181{
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202}
203
204/* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208{
209 mb();
210 return osb->recovery_thread_task != NULL;
211}
212
213void ocfs2_recovery_exit(struct ocfs2_super *osb)
214{
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237}
238
239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241{
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253}
254
255/* Behaves like test-and-set. Returns the previous value */
256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258{
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275}
276
277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279{
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298}
299
ccd979bd
MF
300static int ocfs2_commit_cache(struct ocfs2_super *osb)
301{
302 int status = 0;
303 unsigned int flushed;
304 unsigned long old_id;
305 struct ocfs2_journal *journal = NULL;
306
307 mlog_entry_void();
308
309 journal = osb->journal;
310
311 /* Flush all pending commits and checkpoint the journal. */
312 down_write(&journal->j_trans_barrier);
313
314 if (atomic_read(&journal->j_num_trans) == 0) {
315 up_write(&journal->j_trans_barrier);
316 mlog(0, "No transactions for me to flush!\n");
317 goto finally;
318 }
319
2b4e30fb
JB
320 jbd2_journal_lock_updates(journal->j_journal);
321 status = jbd2_journal_flush(journal->j_journal);
322 jbd2_journal_unlock_updates(journal->j_journal);
ccd979bd
MF
323 if (status < 0) {
324 up_write(&journal->j_trans_barrier);
325 mlog_errno(status);
326 goto finally;
327 }
328
329 old_id = ocfs2_inc_trans_id(journal);
330
331 flushed = atomic_read(&journal->j_num_trans);
332 atomic_set(&journal->j_num_trans, 0);
333 up_write(&journal->j_trans_barrier);
334
335 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 journal->j_trans_id, flushed);
337
34d024f8 338 ocfs2_wake_downconvert_thread(osb);
ccd979bd
MF
339 wake_up(&journal->j_checkpointed);
340finally:
341 mlog_exit(status);
342 return status;
343}
344
ccd979bd
MF
345/* pass it NULL and it will allocate a new handle object for you. If
346 * you pass it a handle however, it may still return error, in which
347 * case it has free'd the passed handle for you. */
1fabe148 348handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
ccd979bd 349{
ccd979bd 350 journal_t *journal = osb->journal->j_journal;
1fabe148 351 handle_t *handle;
ccd979bd 352
ebdec83b 353 BUG_ON(!osb || !osb->journal->j_journal);
ccd979bd 354
65eff9cc
MF
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
ccd979bd
MF
357
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
360
90e86a63
JK
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
ccd979bd 364
ccd979bd
MF
365 down_read(&osb->journal->j_trans_barrier);
366
2b4e30fb 367 handle = jbd2_journal_start(journal, max_buffs);
1fabe148 368 if (IS_ERR(handle)) {
ccd979bd
MF
369 up_read(&osb->journal->j_trans_barrier);
370
1fabe148 371 mlog_errno(PTR_ERR(handle));
ccd979bd
MF
372
373 if (is_journal_aborted(journal)) {
374 ocfs2_abort(osb->sb, "Detected aborted journal");
1fabe148 375 handle = ERR_PTR(-EROFS);
ccd979bd 376 }
c271c5c2
SM
377 } else {
378 if (!ocfs2_mount_local(osb))
379 atomic_inc(&(osb->journal->j_num_trans));
380 }
ccd979bd 381
ccd979bd 382 return handle;
ccd979bd
MF
383}
384
1fabe148
MF
385int ocfs2_commit_trans(struct ocfs2_super *osb,
386 handle_t *handle)
ccd979bd 387{
90e86a63 388 int ret, nested;
02dc1af4 389 struct ocfs2_journal *journal = osb->journal;
ccd979bd
MF
390
391 BUG_ON(!handle);
392
90e86a63 393 nested = handle->h_ref > 1;
2b4e30fb 394 ret = jbd2_journal_stop(handle);
1fabe148
MF
395 if (ret < 0)
396 mlog_errno(ret);
ccd979bd 397
90e86a63
JK
398 if (!nested)
399 up_read(&journal->j_trans_barrier);
ccd979bd 400
1fabe148 401 return ret;
ccd979bd
MF
402}
403
404/*
405 * 'nblocks' is what you want to add to the current
406 * transaction. extend_trans will either extend the current handle by
407 * nblocks, or commit it and start a new one with nblocks credits.
408 *
2b4e30fb 409 * This might call jbd2_journal_restart() which will commit dirty buffers
e8aed345
MF
410 * and then restart the transaction. Before calling
411 * ocfs2_extend_trans(), any changed blocks should have been
412 * dirtied. After calling it, all blocks which need to be changed must
413 * go through another set of journal_access/journal_dirty calls.
414 *
ccd979bd
MF
415 * WARNING: This will not release any semaphores or disk locks taken
416 * during the transaction, so make sure they were taken *before*
417 * start_trans or we'll have ordering deadlocks.
418 *
419 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
420 * good because transaction ids haven't yet been recorded on the
421 * cluster locks associated with this handle.
422 */
1fc58146 423int ocfs2_extend_trans(handle_t *handle, int nblocks)
ccd979bd
MF
424{
425 int status;
426
427 BUG_ON(!handle);
ccd979bd
MF
428 BUG_ON(!nblocks);
429
430 mlog_entry_void();
431
432 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
433
e407e397 434#ifdef CONFIG_OCFS2_DEBUG_FS
0879c584
MF
435 status = 1;
436#else
2b4e30fb 437 status = jbd2_journal_extend(handle, nblocks);
ccd979bd
MF
438 if (status < 0) {
439 mlog_errno(status);
440 goto bail;
441 }
0879c584 442#endif
ccd979bd
MF
443
444 if (status > 0) {
2b4e30fb
JB
445 mlog(0,
446 "jbd2_journal_extend failed, trying "
447 "jbd2_journal_restart\n");
448 status = jbd2_journal_restart(handle, nblocks);
ccd979bd 449 if (status < 0) {
ccd979bd
MF
450 mlog_errno(status);
451 goto bail;
452 }
01ddf1e1 453 }
ccd979bd
MF
454
455 status = 0;
456bail:
457
458 mlog_exit(status);
459 return status;
460}
461
50655ae9
JB
462struct ocfs2_triggers {
463 struct jbd2_buffer_trigger_type ot_triggers;
464 int ot_offset;
465};
466
467static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
468{
469 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
470}
471
472static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
473 struct buffer_head *bh,
474 void *data, size_t size)
475{
476 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
477
478 /*
479 * We aren't guaranteed to have the superblock here, so we
480 * must unconditionally compute the ecc data.
481 * __ocfs2_journal_access() will only set the triggers if
482 * metaecc is enabled.
483 */
484 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
485}
486
487/*
488 * Quota blocks have their own trigger because the struct ocfs2_block_check
489 * offset depends on the blocksize.
490 */
491static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
492 struct buffer_head *bh,
493 void *data, size_t size)
494{
495 struct ocfs2_disk_dqtrailer *dqt =
496 ocfs2_block_dqtrailer(size, data);
497
498 /*
499 * We aren't guaranteed to have the superblock here, so we
500 * must unconditionally compute the ecc data.
501 * __ocfs2_journal_access() will only set the triggers if
502 * metaecc is enabled.
503 */
504 ocfs2_block_check_compute(data, size, &dqt->dq_check);
505}
506
c175a518
JB
507/*
508 * Directory blocks also have their own trigger because the
509 * struct ocfs2_block_check offset depends on the blocksize.
510 */
511static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
512 struct buffer_head *bh,
513 void *data, size_t size)
514{
515 struct ocfs2_dir_block_trailer *trailer =
516 ocfs2_dir_trailer_from_size(size, data);
517
518 /*
519 * We aren't guaranteed to have the superblock here, so we
520 * must unconditionally compute the ecc data.
521 * __ocfs2_journal_access() will only set the triggers if
522 * metaecc is enabled.
523 */
524 ocfs2_block_check_compute(data, size, &trailer->db_check);
525}
526
50655ae9
JB
527static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
528 struct buffer_head *bh)
529{
530 mlog(ML_ERROR,
531 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
532 "bh->b_blocknr = %llu\n",
533 (unsigned long)bh,
534 (unsigned long long)bh->b_blocknr);
535
536 /* We aren't guaranteed to have the superblock here - but if we
537 * don't, it'll just crash. */
538 ocfs2_error(bh->b_assoc_map->host->i_sb,
539 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
540}
541
542static struct ocfs2_triggers di_triggers = {
543 .ot_triggers = {
544 .t_commit = ocfs2_commit_trigger,
545 .t_abort = ocfs2_abort_trigger,
546 },
547 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
548};
549
550static struct ocfs2_triggers eb_triggers = {
551 .ot_triggers = {
552 .t_commit = ocfs2_commit_trigger,
553 .t_abort = ocfs2_abort_trigger,
554 },
555 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
556};
557
93c97087
TM
558static struct ocfs2_triggers rb_triggers = {
559 .ot_triggers = {
560 .t_commit = ocfs2_commit_trigger,
561 .t_abort = ocfs2_abort_trigger,
562 },
563 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
564};
565
50655ae9
JB
566static struct ocfs2_triggers gd_triggers = {
567 .ot_triggers = {
568 .t_commit = ocfs2_commit_trigger,
569 .t_abort = ocfs2_abort_trigger,
570 },
571 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
572};
573
c175a518
JB
574static struct ocfs2_triggers db_triggers = {
575 .ot_triggers = {
576 .t_commit = ocfs2_db_commit_trigger,
577 .t_abort = ocfs2_abort_trigger,
578 },
579};
580
50655ae9
JB
581static struct ocfs2_triggers xb_triggers = {
582 .ot_triggers = {
583 .t_commit = ocfs2_commit_trigger,
584 .t_abort = ocfs2_abort_trigger,
585 },
586 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
587};
588
589static struct ocfs2_triggers dq_triggers = {
590 .ot_triggers = {
591 .t_commit = ocfs2_dq_commit_trigger,
592 .t_abort = ocfs2_abort_trigger,
593 },
594};
595
9b7895ef
MF
596static struct ocfs2_triggers dr_triggers = {
597 .ot_triggers = {
598 .t_commit = ocfs2_commit_trigger,
599 .t_abort = ocfs2_abort_trigger,
600 },
601 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
602};
603
604static struct ocfs2_triggers dl_triggers = {
605 .ot_triggers = {
606 .t_commit = ocfs2_commit_trigger,
607 .t_abort = ocfs2_abort_trigger,
608 },
609 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
610};
611
50655ae9 612static int __ocfs2_journal_access(handle_t *handle,
0cf2f763 613 struct ocfs2_caching_info *ci,
50655ae9
JB
614 struct buffer_head *bh,
615 struct ocfs2_triggers *triggers,
616 int type)
ccd979bd
MF
617{
618 int status;
0cf2f763
JB
619 struct ocfs2_super *osb =
620 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
ccd979bd 621
0cf2f763 622 BUG_ON(!ci || !ci->ci_ops);
ccd979bd
MF
623 BUG_ON(!handle);
624 BUG_ON(!bh);
ccd979bd 625
205f87f6 626 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
ccd979bd
MF
627 (unsigned long long)bh->b_blocknr, type,
628 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
629 "OCFS2_JOURNAL_ACCESS_CREATE" :
630 "OCFS2_JOURNAL_ACCESS_WRITE",
631 bh->b_size);
632
633 /* we can safely remove this assertion after testing. */
634 if (!buffer_uptodate(bh)) {
635 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
636 mlog(ML_ERROR, "b_blocknr=%llu\n",
637 (unsigned long long)bh->b_blocknr);
638 BUG();
639 }
640
0cf2f763 641 /* Set the current transaction information on the ci so
ccd979bd 642 * that the locking code knows whether it can drop it's locks
0cf2f763 643 * on this ci or not. We're protected from the commit
ccd979bd
MF
644 * thread updating the current transaction id until
645 * ocfs2_commit_trans() because ocfs2_start_trans() took
646 * j_trans_barrier for us. */
0cf2f763 647 ocfs2_set_ci_lock_trans(osb->journal, ci);
ccd979bd 648
0cf2f763 649 ocfs2_metadata_cache_io_lock(ci);
ccd979bd
MF
650 switch (type) {
651 case OCFS2_JOURNAL_ACCESS_CREATE:
652 case OCFS2_JOURNAL_ACCESS_WRITE:
2b4e30fb 653 status = jbd2_journal_get_write_access(handle, bh);
ccd979bd
MF
654 break;
655
656 case OCFS2_JOURNAL_ACCESS_UNDO:
2b4e30fb 657 status = jbd2_journal_get_undo_access(handle, bh);
ccd979bd
MF
658 break;
659
660 default:
661 status = -EINVAL;
af901ca1 662 mlog(ML_ERROR, "Unknown access type!\n");
ccd979bd 663 }
0cf2f763 664 if (!status && ocfs2_meta_ecc(osb) && triggers)
50655ae9 665 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
0cf2f763 666 ocfs2_metadata_cache_io_unlock(ci);
ccd979bd
MF
667
668 if (status < 0)
669 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
670 status, type);
671
672 mlog_exit(status);
673 return status;
674}
675
0cf2f763
JB
676int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
677 struct buffer_head *bh, int type)
50655ae9 678{
0cf2f763 679 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
50655ae9
JB
680}
681
0cf2f763 682int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
683 struct buffer_head *bh, int type)
684{
0cf2f763 685 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
50655ae9
JB
686}
687
93c97087
TM
688int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
689 struct buffer_head *bh, int type)
690{
691 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
692 type);
693}
694
0cf2f763 695int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
696 struct buffer_head *bh, int type)
697{
0cf2f763 698 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
50655ae9
JB
699}
700
0cf2f763 701int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
702 struct buffer_head *bh, int type)
703{
0cf2f763 704 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
50655ae9
JB
705}
706
0cf2f763 707int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
708 struct buffer_head *bh, int type)
709{
0cf2f763 710 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
50655ae9
JB
711}
712
0cf2f763 713int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
714 struct buffer_head *bh, int type)
715{
0cf2f763 716 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
50655ae9
JB
717}
718
0cf2f763 719int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
720 struct buffer_head *bh, int type)
721{
0cf2f763 722 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
9b7895ef
MF
723}
724
0cf2f763 725int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
726 struct buffer_head *bh, int type)
727{
0cf2f763 728 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
9b7895ef
MF
729}
730
0cf2f763 731int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
732 struct buffer_head *bh, int type)
733{
0cf2f763 734 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
50655ae9
JB
735}
736
1fabe148 737int ocfs2_journal_dirty(handle_t *handle,
ccd979bd
MF
738 struct buffer_head *bh)
739{
740 int status;
741
ccd979bd
MF
742 mlog_entry("(bh->b_blocknr=%llu)\n",
743 (unsigned long long)bh->b_blocknr);
744
2b4e30fb 745 status = jbd2_journal_dirty_metadata(handle, bh);
ccd979bd
MF
746 if (status < 0)
747 mlog(ML_ERROR, "Could not dirty metadata buffer. "
748 "(bh->b_blocknr=%llu)\n",
749 (unsigned long long)bh->b_blocknr);
750
751 mlog_exit(status);
752 return status;
753}
754
2b4e30fb 755#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
ccd979bd
MF
756
757void ocfs2_set_journal_params(struct ocfs2_super *osb)
758{
759 journal_t *journal = osb->journal->j_journal;
d147b3d6
MF
760 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
761
762 if (osb->osb_commit_interval)
763 commit_interval = osb->osb_commit_interval;
ccd979bd
MF
764
765 spin_lock(&journal->j_state_lock);
d147b3d6 766 journal->j_commit_interval = commit_interval;
ccd979bd 767 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
2b4e30fb 768 journal->j_flags |= JBD2_BARRIER;
ccd979bd 769 else
2b4e30fb 770 journal->j_flags &= ~JBD2_BARRIER;
ccd979bd
MF
771 spin_unlock(&journal->j_state_lock);
772}
773
774int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
775{
776 int status = -1;
777 struct inode *inode = NULL; /* the journal inode */
778 journal_t *j_journal = NULL;
779 struct ocfs2_dinode *di = NULL;
780 struct buffer_head *bh = NULL;
781 struct ocfs2_super *osb;
e63aecb6 782 int inode_lock = 0;
ccd979bd
MF
783
784 mlog_entry_void();
785
786 BUG_ON(!journal);
787
788 osb = journal->j_osb;
789
790 /* already have the inode for our journal */
791 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
792 osb->slot_num);
793 if (inode == NULL) {
794 status = -EACCES;
795 mlog_errno(status);
796 goto done;
797 }
798 if (is_bad_inode(inode)) {
799 mlog(ML_ERROR, "access error (bad inode)\n");
800 iput(inode);
801 inode = NULL;
802 status = -EACCES;
803 goto done;
804 }
805
806 SET_INODE_JOURNAL(inode);
807 OCFS2_I(inode)->ip_open_count++;
808
6eff5790
MF
809 /* Skip recovery waits here - journal inode metadata never
810 * changes in a live cluster so it can be considered an
811 * exception to the rule. */
e63aecb6 812 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd
MF
813 if (status < 0) {
814 if (status != -ERESTARTSYS)
815 mlog(ML_ERROR, "Could not get lock on journal!\n");
816 goto done;
817 }
818
e63aecb6 819 inode_lock = 1;
ccd979bd
MF
820 di = (struct ocfs2_dinode *)bh->b_data;
821
822 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
823 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
824 inode->i_size);
825 status = -EINVAL;
826 goto done;
827 }
828
829 mlog(0, "inode->i_size = %lld\n", inode->i_size);
5515eff8
AM
830 mlog(0, "inode->i_blocks = %llu\n",
831 (unsigned long long)inode->i_blocks);
ccd979bd
MF
832 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
833
834 /* call the kernels journal init function now */
2b4e30fb 835 j_journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
836 if (j_journal == NULL) {
837 mlog(ML_ERROR, "Linux journal layer error\n");
838 status = -EINVAL;
839 goto done;
840 }
841
2b4e30fb 842 mlog(0, "Returned from jbd2_journal_init_inode\n");
ccd979bd
MF
843 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
844
845 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
846 OCFS2_JOURNAL_DIRTY_FL);
847
848 journal->j_journal = j_journal;
849 journal->j_inode = inode;
850 journal->j_bh = bh;
851
852 ocfs2_set_journal_params(osb);
853
854 journal->j_state = OCFS2_JOURNAL_LOADED;
855
856 status = 0;
857done:
858 if (status < 0) {
e63aecb6
MF
859 if (inode_lock)
860 ocfs2_inode_unlock(inode, 1);
a81cb88b 861 brelse(bh);
ccd979bd
MF
862 if (inode) {
863 OCFS2_I(inode)->ip_open_count--;
864 iput(inode);
865 }
866 }
867
868 mlog_exit(status);
869 return status;
870}
871
539d8264
SM
872static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
873{
874 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
875}
876
877static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
878{
879 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
880}
881
ccd979bd 882static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 883 int dirty, int replayed)
ccd979bd
MF
884{
885 int status;
886 unsigned int flags;
887 struct ocfs2_journal *journal = osb->journal;
888 struct buffer_head *bh = journal->j_bh;
889 struct ocfs2_dinode *fe;
890
891 mlog_entry_void();
892
893 fe = (struct ocfs2_dinode *)bh->b_data;
10995aa2
JB
894
895 /* The journal bh on the osb always comes from ocfs2_journal_init()
896 * and was validated there inside ocfs2_inode_lock_full(). It's a
897 * code bug if we mess it up. */
898 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
ccd979bd
MF
899
900 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
901 if (dirty)
902 flags |= OCFS2_JOURNAL_DIRTY_FL;
903 else
904 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
905 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
906
539d8264
SM
907 if (replayed)
908 ocfs2_bump_recovery_generation(fe);
909
13723d00 910 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 911 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
ccd979bd
MF
912 if (status < 0)
913 mlog_errno(status);
914
ccd979bd
MF
915 mlog_exit(status);
916 return status;
917}
918
919/*
920 * If the journal has been kmalloc'd it needs to be freed after this
921 * call.
922 */
923void ocfs2_journal_shutdown(struct ocfs2_super *osb)
924{
925 struct ocfs2_journal *journal = NULL;
926 int status = 0;
927 struct inode *inode = NULL;
928 int num_running_trans = 0;
929
930 mlog_entry_void();
931
ebdec83b 932 BUG_ON(!osb);
ccd979bd
MF
933
934 journal = osb->journal;
935 if (!journal)
936 goto done;
937
938 inode = journal->j_inode;
939
940 if (journal->j_state != OCFS2_JOURNAL_LOADED)
941 goto done;
942
2b4e30fb 943 /* need to inc inode use count - jbd2_journal_destroy will iput. */
ccd979bd
MF
944 if (!igrab(inode))
945 BUG();
946
947 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
948 if (num_running_trans > 0)
949 mlog(0, "Shutting down journal: must wait on %d "
950 "running transactions!\n",
951 num_running_trans);
952
953 /* Do a commit_cache here. It will flush our journal, *and*
954 * release any locks that are still held.
955 * set the SHUTDOWN flag and release the trans lock.
956 * the commit thread will take the trans lock for us below. */
957 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
958
959 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
960 * drop the trans_lock (which we want to hold until we
961 * completely destroy the journal. */
962 if (osb->commit_task) {
963 /* Wait for the commit thread */
964 mlog(0, "Waiting for ocfs2commit to exit....\n");
965 kthread_stop(osb->commit_task);
966 osb->commit_task = NULL;
967 }
968
969 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
970
c271c5c2 971 if (ocfs2_mount_local(osb)) {
2b4e30fb
JB
972 jbd2_journal_lock_updates(journal->j_journal);
973 status = jbd2_journal_flush(journal->j_journal);
974 jbd2_journal_unlock_updates(journal->j_journal);
c271c5c2
SM
975 if (status < 0)
976 mlog_errno(status);
977 }
978
979 if (status == 0) {
980 /*
981 * Do not toggle if flush was unsuccessful otherwise
982 * will leave dirty metadata in a "clean" journal
983 */
539d8264 984 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
c271c5c2
SM
985 if (status < 0)
986 mlog_errno(status);
987 }
ccd979bd
MF
988
989 /* Shutdown the kernel journal system */
2b4e30fb 990 jbd2_journal_destroy(journal->j_journal);
ae0dff68 991 journal->j_journal = NULL;
ccd979bd
MF
992
993 OCFS2_I(inode)->ip_open_count--;
994
995 /* unlock our journal */
e63aecb6 996 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
997
998 brelse(journal->j_bh);
999 journal->j_bh = NULL;
1000
1001 journal->j_state = OCFS2_JOURNAL_FREE;
1002
1003// up_write(&journal->j_trans_barrier);
1004done:
1005 if (inode)
1006 iput(inode);
1007 mlog_exit_void();
1008}
1009
1010static void ocfs2_clear_journal_error(struct super_block *sb,
1011 journal_t *journal,
1012 int slot)
1013{
1014 int olderr;
1015
2b4e30fb 1016 olderr = jbd2_journal_errno(journal);
ccd979bd
MF
1017 if (olderr) {
1018 mlog(ML_ERROR, "File system error %d recorded in "
1019 "journal %u.\n", olderr, slot);
1020 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1021 sb->s_id);
1022
2b4e30fb
JB
1023 jbd2_journal_ack_err(journal);
1024 jbd2_journal_clear_err(journal);
ccd979bd
MF
1025 }
1026}
1027
539d8264 1028int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
ccd979bd
MF
1029{
1030 int status = 0;
1031 struct ocfs2_super *osb;
1032
1033 mlog_entry_void();
1034
b1f3550f 1035 BUG_ON(!journal);
ccd979bd
MF
1036
1037 osb = journal->j_osb;
1038
2b4e30fb 1039 status = jbd2_journal_load(journal->j_journal);
ccd979bd
MF
1040 if (status < 0) {
1041 mlog(ML_ERROR, "Failed to load journal!\n");
1042 goto done;
1043 }
1044
1045 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1046
539d8264 1047 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
ccd979bd
MF
1048 if (status < 0) {
1049 mlog_errno(status);
1050 goto done;
1051 }
1052
1053 /* Launch the commit thread */
c271c5c2
SM
1054 if (!local) {
1055 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1056 "ocfs2cmt");
1057 if (IS_ERR(osb->commit_task)) {
1058 status = PTR_ERR(osb->commit_task);
1059 osb->commit_task = NULL;
1060 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1061 "error=%d", status);
1062 goto done;
1063 }
1064 } else
ccd979bd 1065 osb->commit_task = NULL;
ccd979bd
MF
1066
1067done:
1068 mlog_exit(status);
1069 return status;
1070}
1071
1072
1073/* 'full' flag tells us whether we clear out all blocks or if we just
1074 * mark the journal clean */
1075int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1076{
1077 int status;
1078
1079 mlog_entry_void();
1080
ebdec83b 1081 BUG_ON(!journal);
ccd979bd 1082
2b4e30fb 1083 status = jbd2_journal_wipe(journal->j_journal, full);
ccd979bd
MF
1084 if (status < 0) {
1085 mlog_errno(status);
1086 goto bail;
1087 }
1088
539d8264 1089 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
ccd979bd
MF
1090 if (status < 0)
1091 mlog_errno(status);
1092
1093bail:
1094 mlog_exit(status);
1095 return status;
1096}
1097
553abd04
JB
1098static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1099{
1100 int empty;
1101 struct ocfs2_recovery_map *rm = osb->recovery_map;
1102
1103 spin_lock(&osb->osb_lock);
1104 empty = (rm->rm_used == 0);
1105 spin_unlock(&osb->osb_lock);
1106
1107 return empty;
1108}
1109
1110void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1111{
1112 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1113}
1114
ccd979bd
MF
1115/*
1116 * JBD Might read a cached version of another nodes journal file. We
1117 * don't want this as this file changes often and we get no
1118 * notification on those changes. The only way to be sure that we've
1119 * got the most up to date version of those blocks then is to force
1120 * read them off disk. Just searching through the buffer cache won't
1121 * work as there may be pages backing this file which are still marked
1122 * up to date. We know things can't change on this file underneath us
1123 * as we have the lock by now :)
1124 */
1125static int ocfs2_force_read_journal(struct inode *inode)
1126{
1127 int status = 0;
4f902c37 1128 int i;
8110b073 1129 u64 v_blkno, p_blkno, p_blocks, num_blocks;
4f902c37 1130#define CONCURRENT_JOURNAL_FILL 32ULL
ccd979bd
MF
1131 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1132
1133 mlog_entry_void();
1134
ccd979bd
MF
1135 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1136
8110b073 1137 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
ccd979bd 1138 v_blkno = 0;
8110b073 1139 while (v_blkno < num_blocks) {
ccd979bd 1140 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
49cb8d2d 1141 &p_blkno, &p_blocks, NULL);
ccd979bd
MF
1142 if (status < 0) {
1143 mlog_errno(status);
1144 goto bail;
1145 }
1146
1147 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1148 p_blocks = CONCURRENT_JOURNAL_FILL;
1149
dd4a2c2b
MF
1150 /* We are reading journal data which should not
1151 * be put in the uptodate cache */
da1e9098
JB
1152 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1153 p_blkno, p_blocks, bhs);
ccd979bd
MF
1154 if (status < 0) {
1155 mlog_errno(status);
1156 goto bail;
1157 }
1158
1159 for(i = 0; i < p_blocks; i++) {
1160 brelse(bhs[i]);
1161 bhs[i] = NULL;
1162 }
1163
1164 v_blkno += p_blocks;
1165 }
1166
1167bail:
1168 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
a81cb88b 1169 brelse(bhs[i]);
ccd979bd
MF
1170 mlog_exit(status);
1171 return status;
1172}
1173
1174struct ocfs2_la_recovery_item {
1175 struct list_head lri_list;
1176 int lri_slot;
1177 struct ocfs2_dinode *lri_la_dinode;
1178 struct ocfs2_dinode *lri_tl_dinode;
2205363d 1179 struct ocfs2_quota_recovery *lri_qrec;
ccd979bd
MF
1180};
1181
1182/* Does the second half of the recovery process. By this point, the
1183 * node is marked clean and can actually be considered recovered,
1184 * hence it's no longer in the recovery map, but there's still some
1185 * cleanup we can do which shouldn't happen within the recovery thread
1186 * as locking in that context becomes very difficult if we are to take
1187 * recovering nodes into account.
1188 *
1189 * NOTE: This function can and will sleep on recovery of other nodes
1190 * during cluster locking, just like any other ocfs2 process.
1191 */
c4028958 1192void ocfs2_complete_recovery(struct work_struct *work)
ccd979bd
MF
1193{
1194 int ret;
c4028958
DH
1195 struct ocfs2_journal *journal =
1196 container_of(work, struct ocfs2_journal, j_recovery_work);
1197 struct ocfs2_super *osb = journal->j_osb;
ccd979bd 1198 struct ocfs2_dinode *la_dinode, *tl_dinode;
800deef3 1199 struct ocfs2_la_recovery_item *item, *n;
2205363d 1200 struct ocfs2_quota_recovery *qrec;
ccd979bd
MF
1201 LIST_HEAD(tmp_la_list);
1202
1203 mlog_entry_void();
1204
1205 mlog(0, "completing recovery from keventd\n");
1206
1207 spin_lock(&journal->j_lock);
1208 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1209 spin_unlock(&journal->j_lock);
1210
800deef3 1211 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
ccd979bd
MF
1212 list_del_init(&item->lri_list);
1213
1214 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1215
19ece546
JK
1216 ocfs2_wait_on_quotas(osb);
1217
ccd979bd
MF
1218 la_dinode = item->lri_la_dinode;
1219 if (la_dinode) {
b0697053 1220 mlog(0, "Clean up local alloc %llu\n",
1ca1a111 1221 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
ccd979bd
MF
1222
1223 ret = ocfs2_complete_local_alloc_recovery(osb,
1224 la_dinode);
1225 if (ret < 0)
1226 mlog_errno(ret);
1227
1228 kfree(la_dinode);
1229 }
1230
1231 tl_dinode = item->lri_tl_dinode;
1232 if (tl_dinode) {
b0697053 1233 mlog(0, "Clean up truncate log %llu\n",
1ca1a111 1234 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
ccd979bd
MF
1235
1236 ret = ocfs2_complete_truncate_log_recovery(osb,
1237 tl_dinode);
1238 if (ret < 0)
1239 mlog_errno(ret);
1240
1241 kfree(tl_dinode);
1242 }
1243
1244 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1245 if (ret < 0)
1246 mlog_errno(ret);
1247
2205363d
JK
1248 qrec = item->lri_qrec;
1249 if (qrec) {
1250 mlog(0, "Recovering quota files");
1251 ret = ocfs2_finish_quota_recovery(osb, qrec,
1252 item->lri_slot);
1253 if (ret < 0)
1254 mlog_errno(ret);
1255 /* Recovery info is already freed now */
1256 }
1257
ccd979bd
MF
1258 kfree(item);
1259 }
1260
1261 mlog(0, "Recovery completion\n");
1262 mlog_exit_void();
1263}
1264
1265/* NOTE: This function always eats your references to la_dinode and
1266 * tl_dinode, either manually on error, or by passing them to
1267 * ocfs2_complete_recovery */
1268static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1269 int slot_num,
1270 struct ocfs2_dinode *la_dinode,
2205363d
JK
1271 struct ocfs2_dinode *tl_dinode,
1272 struct ocfs2_quota_recovery *qrec)
ccd979bd
MF
1273{
1274 struct ocfs2_la_recovery_item *item;
1275
afae00ab 1276 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
ccd979bd
MF
1277 if (!item) {
1278 /* Though we wish to avoid it, we are in fact safe in
1279 * skipping local alloc cleanup as fsck.ocfs2 is more
1280 * than capable of reclaiming unused space. */
1281 if (la_dinode)
1282 kfree(la_dinode);
1283
1284 if (tl_dinode)
1285 kfree(tl_dinode);
1286
2205363d
JK
1287 if (qrec)
1288 ocfs2_free_quota_recovery(qrec);
1289
ccd979bd
MF
1290 mlog_errno(-ENOMEM);
1291 return;
1292 }
1293
1294 INIT_LIST_HEAD(&item->lri_list);
1295 item->lri_la_dinode = la_dinode;
1296 item->lri_slot = slot_num;
1297 item->lri_tl_dinode = tl_dinode;
2205363d 1298 item->lri_qrec = qrec;
ccd979bd
MF
1299
1300 spin_lock(&journal->j_lock);
1301 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1302 queue_work(ocfs2_wq, &journal->j_recovery_work);
1303 spin_unlock(&journal->j_lock);
1304}
1305
1306/* Called by the mount code to queue recovery the last part of
9140db04 1307 * recovery for it's own and offline slot(s). */
ccd979bd
MF
1308void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1309{
1310 struct ocfs2_journal *journal = osb->journal;
1311
9140db04
SE
1312 /* No need to queue up our truncate_log as regular cleanup will catch
1313 * that */
1314 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1315 osb->local_alloc_copy, NULL, NULL);
1316 ocfs2_schedule_truncate_log_flush(osb, 0);
ccd979bd 1317
9140db04
SE
1318 osb->local_alloc_copy = NULL;
1319 osb->dirty = 0;
1320
1321 /* queue to recover orphan slots for all offline slots */
1322 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1323 ocfs2_queue_replay_slots(osb);
1324 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1325}
1326
2205363d
JK
1327void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1328{
1329 if (osb->quota_rec) {
1330 ocfs2_queue_recovery_completion(osb->journal,
1331 osb->slot_num,
1332 NULL,
1333 NULL,
1334 osb->quota_rec);
1335 osb->quota_rec = NULL;
1336 }
1337}
1338
ccd979bd
MF
1339static int __ocfs2_recovery_thread(void *arg)
1340{
2205363d 1341 int status, node_num, slot_num;
ccd979bd 1342 struct ocfs2_super *osb = arg;
553abd04 1343 struct ocfs2_recovery_map *rm = osb->recovery_map;
2205363d
JK
1344 int *rm_quota = NULL;
1345 int rm_quota_used = 0, i;
1346 struct ocfs2_quota_recovery *qrec;
ccd979bd
MF
1347
1348 mlog_entry_void();
1349
1350 status = ocfs2_wait_on_mount(osb);
1351 if (status < 0) {
1352 goto bail;
1353 }
1354
2205363d
JK
1355 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1356 if (!rm_quota) {
1357 status = -ENOMEM;
1358 goto bail;
1359 }
ccd979bd
MF
1360restart:
1361 status = ocfs2_super_lock(osb, 1);
1362 if (status < 0) {
1363 mlog_errno(status);
1364 goto bail;
1365 }
1366
9140db04
SE
1367 status = ocfs2_compute_replay_slots(osb);
1368 if (status < 0)
1369 mlog_errno(status);
1370
1371 /* queue recovery for our own slot */
1372 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1373 NULL, NULL);
1374
553abd04
JB
1375 spin_lock(&osb->osb_lock);
1376 while (rm->rm_used) {
1377 /* It's always safe to remove entry zero, as we won't
1378 * clear it until ocfs2_recover_node() has succeeded. */
1379 node_num = rm->rm_entries[0];
1380 spin_unlock(&osb->osb_lock);
2205363d
JK
1381 mlog(0, "checking node %d\n", node_num);
1382 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1383 if (slot_num == -ENOENT) {
1384 status = 0;
1385 mlog(0, "no slot for this node, so no recovery"
1386 "required.\n");
1387 goto skip_recovery;
1388 }
1389 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1390
1391 /* It is a bit subtle with quota recovery. We cannot do it
1392 * immediately because we have to obtain cluster locks from
1393 * quota files and we also don't want to just skip it because
1394 * then quota usage would be out of sync until some node takes
1395 * the slot. So we remember which nodes need quota recovery
1396 * and when everything else is done, we recover quotas. */
1397 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1398 if (i == rm_quota_used)
1399 rm_quota[rm_quota_used++] = slot_num;
1400
1401 status = ocfs2_recover_node(osb, node_num, slot_num);
1402skip_recovery:
553abd04
JB
1403 if (!status) {
1404 ocfs2_recovery_map_clear(osb, node_num);
1405 } else {
ccd979bd
MF
1406 mlog(ML_ERROR,
1407 "Error %d recovering node %d on device (%u,%u)!\n",
1408 status, node_num,
1409 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1410 mlog(ML_ERROR, "Volume requires unmount.\n");
ccd979bd
MF
1411 }
1412
553abd04 1413 spin_lock(&osb->osb_lock);
ccd979bd 1414 }
553abd04
JB
1415 spin_unlock(&osb->osb_lock);
1416 mlog(0, "All nodes recovered\n");
1417
539d8264
SM
1418 /* Refresh all journal recovery generations from disk */
1419 status = ocfs2_check_journals_nolocks(osb);
1420 status = (status == -EROFS) ? 0 : status;
1421 if (status < 0)
1422 mlog_errno(status);
1423
2205363d
JK
1424 /* Now it is right time to recover quotas... We have to do this under
1425 * superblock lock so that noone can start using the slot (and crash)
1426 * before we recover it */
1427 for (i = 0; i < rm_quota_used; i++) {
1428 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1429 if (IS_ERR(qrec)) {
1430 status = PTR_ERR(qrec);
1431 mlog_errno(status);
1432 continue;
1433 }
1434 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1435 NULL, NULL, qrec);
1436 }
1437
ccd979bd
MF
1438 ocfs2_super_unlock(osb, 1);
1439
9140db04
SE
1440 /* queue recovery for offline slots */
1441 ocfs2_queue_replay_slots(osb);
ccd979bd
MF
1442
1443bail:
c74ec2f7 1444 mutex_lock(&osb->recovery_lock);
553abd04 1445 if (!status && !ocfs2_recovery_completed(osb)) {
c74ec2f7 1446 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
1447 goto restart;
1448 }
1449
9140db04 1450 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1451 osb->recovery_thread_task = NULL;
1452 mb(); /* sync with ocfs2_recovery_thread_running */
1453 wake_up(&osb->recovery_event);
1454
c74ec2f7 1455 mutex_unlock(&osb->recovery_lock);
ccd979bd 1456
2205363d
JK
1457 if (rm_quota)
1458 kfree(rm_quota);
1459
ccd979bd
MF
1460 mlog_exit(status);
1461 /* no one is callint kthread_stop() for us so the kthread() api
1462 * requires that we call do_exit(). And it isn't exported, but
1463 * complete_and_exit() seems to be a minimal wrapper around it. */
1464 complete_and_exit(NULL, status);
1465 return status;
1466}
1467
1468void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1469{
1470 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1471 node_num, osb->node_num);
1472
c74ec2f7 1473 mutex_lock(&osb->recovery_lock);
ccd979bd
MF
1474 if (osb->disable_recovery)
1475 goto out;
1476
1477 /* People waiting on recovery will wait on
1478 * the recovery map to empty. */
553abd04
JB
1479 if (ocfs2_recovery_map_set(osb, node_num))
1480 mlog(0, "node %d already in recovery map.\n", node_num);
ccd979bd
MF
1481
1482 mlog(0, "starting recovery thread...\n");
1483
1484 if (osb->recovery_thread_task)
1485 goto out;
1486
1487 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
78427043 1488 "ocfs2rec");
ccd979bd
MF
1489 if (IS_ERR(osb->recovery_thread_task)) {
1490 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1491 osb->recovery_thread_task = NULL;
1492 }
1493
1494out:
c74ec2f7 1495 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
1496 wake_up(&osb->recovery_event);
1497
1498 mlog_exit_void();
1499}
1500
539d8264
SM
1501static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1502 int slot_num,
1503 struct buffer_head **bh,
1504 struct inode **ret_inode)
1505{
1506 int status = -EACCES;
1507 struct inode *inode = NULL;
1508
1509 BUG_ON(slot_num >= osb->max_slots);
1510
1511 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1512 slot_num);
1513 if (!inode || is_bad_inode(inode)) {
1514 mlog_errno(status);
1515 goto bail;
1516 }
1517 SET_INODE_JOURNAL(inode);
1518
b657c95c 1519 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
539d8264
SM
1520 if (status < 0) {
1521 mlog_errno(status);
1522 goto bail;
1523 }
1524
1525 status = 0;
1526
1527bail:
1528 if (inode) {
1529 if (status || !ret_inode)
1530 iput(inode);
1531 else
1532 *ret_inode = inode;
1533 }
1534 return status;
1535}
1536
ccd979bd
MF
1537/* Does the actual journal replay and marks the journal inode as
1538 * clean. Will only replay if the journal inode is marked dirty. */
1539static int ocfs2_replay_journal(struct ocfs2_super *osb,
1540 int node_num,
1541 int slot_num)
1542{
1543 int status;
1544 int got_lock = 0;
1545 unsigned int flags;
1546 struct inode *inode = NULL;
1547 struct ocfs2_dinode *fe;
1548 journal_t *journal = NULL;
1549 struct buffer_head *bh = NULL;
539d8264 1550 u32 slot_reco_gen;
ccd979bd 1551
539d8264
SM
1552 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1553 if (status) {
ccd979bd
MF
1554 mlog_errno(status);
1555 goto done;
1556 }
539d8264
SM
1557
1558 fe = (struct ocfs2_dinode *)bh->b_data;
1559 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1560 brelse(bh);
1561 bh = NULL;
1562
1563 /*
1564 * As the fs recovery is asynchronous, there is a small chance that
1565 * another node mounted (and recovered) the slot before the recovery
1566 * thread could get the lock. To handle that, we dirty read the journal
1567 * inode for that slot to get the recovery generation. If it is
1568 * different than what we expected, the slot has been recovered.
1569 * If not, it needs recovery.
1570 */
1571 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1572 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1573 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1574 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1575 status = -EBUSY;
ccd979bd
MF
1576 goto done;
1577 }
539d8264
SM
1578
1579 /* Continue with recovery as the journal has not yet been recovered */
ccd979bd 1580
e63aecb6 1581 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd 1582 if (status < 0) {
e63aecb6 1583 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
ccd979bd
MF
1584 if (status != -ERESTARTSYS)
1585 mlog(ML_ERROR, "Could not lock journal!\n");
1586 goto done;
1587 }
1588 got_lock = 1;
1589
1590 fe = (struct ocfs2_dinode *) bh->b_data;
1591
1592 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
539d8264 1593 slot_reco_gen = ocfs2_get_recovery_generation(fe);
ccd979bd
MF
1594
1595 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1596 mlog(0, "No recovery required for node %d\n", node_num);
539d8264
SM
1597 /* Refresh recovery generation for the slot */
1598 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
ccd979bd
MF
1599 goto done;
1600 }
1601
9140db04
SE
1602 /* we need to run complete recovery for offline orphan slots */
1603 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1604
ccd979bd
MF
1605 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1606 node_num, slot_num,
1607 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1608
1609 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1610
1611 status = ocfs2_force_read_journal(inode);
1612 if (status < 0) {
1613 mlog_errno(status);
1614 goto done;
1615 }
1616
1617 mlog(0, "calling journal_init_inode\n");
2b4e30fb 1618 journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
1619 if (journal == NULL) {
1620 mlog(ML_ERROR, "Linux journal layer error\n");
1621 status = -EIO;
1622 goto done;
1623 }
1624
2b4e30fb 1625 status = jbd2_journal_load(journal);
ccd979bd
MF
1626 if (status < 0) {
1627 mlog_errno(status);
1628 if (!igrab(inode))
1629 BUG();
2b4e30fb 1630 jbd2_journal_destroy(journal);
ccd979bd
MF
1631 goto done;
1632 }
1633
1634 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1635
1636 /* wipe the journal */
1637 mlog(0, "flushing the journal.\n");
2b4e30fb
JB
1638 jbd2_journal_lock_updates(journal);
1639 status = jbd2_journal_flush(journal);
1640 jbd2_journal_unlock_updates(journal);
ccd979bd
MF
1641 if (status < 0)
1642 mlog_errno(status);
1643
1644 /* This will mark the node clean */
1645 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1646 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1647 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1648
539d8264
SM
1649 /* Increment recovery generation to indicate successful recovery */
1650 ocfs2_bump_recovery_generation(fe);
1651 osb->slot_recovery_generations[slot_num] =
1652 ocfs2_get_recovery_generation(fe);
1653
13723d00 1654 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 1655 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
ccd979bd
MF
1656 if (status < 0)
1657 mlog_errno(status);
1658
1659 if (!igrab(inode))
1660 BUG();
1661
2b4e30fb 1662 jbd2_journal_destroy(journal);
ccd979bd
MF
1663
1664done:
1665 /* drop the lock on this nodes journal */
1666 if (got_lock)
e63aecb6 1667 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1668
1669 if (inode)
1670 iput(inode);
1671
a81cb88b 1672 brelse(bh);
ccd979bd
MF
1673
1674 mlog_exit(status);
1675 return status;
1676}
1677
1678/*
1679 * Do the most important parts of node recovery:
1680 * - Replay it's journal
1681 * - Stamp a clean local allocator file
1682 * - Stamp a clean truncate log
1683 * - Mark the node clean
1684 *
1685 * If this function completes without error, a node in OCFS2 can be
1686 * said to have been safely recovered. As a result, failure during the
1687 * second part of a nodes recovery process (local alloc recovery) is
1688 * far less concerning.
1689 */
1690static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 1691 int node_num, int slot_num)
ccd979bd
MF
1692{
1693 int status = 0;
ccd979bd
MF
1694 struct ocfs2_dinode *la_copy = NULL;
1695 struct ocfs2_dinode *tl_copy = NULL;
1696
2205363d
JK
1697 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1698 node_num, slot_num, osb->node_num);
ccd979bd
MF
1699
1700 /* Should not ever be called to recover ourselves -- in that
1701 * case we should've called ocfs2_journal_load instead. */
ebdec83b 1702 BUG_ON(osb->node_num == node_num);
ccd979bd 1703
ccd979bd
MF
1704 status = ocfs2_replay_journal(osb, node_num, slot_num);
1705 if (status < 0) {
539d8264
SM
1706 if (status == -EBUSY) {
1707 mlog(0, "Skipping recovery for slot %u (node %u) "
1708 "as another node has recovered it\n", slot_num,
1709 node_num);
1710 status = 0;
1711 goto done;
1712 }
ccd979bd
MF
1713 mlog_errno(status);
1714 goto done;
1715 }
1716
1717 /* Stamp a clean local alloc file AFTER recovering the journal... */
1718 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1719 if (status < 0) {
1720 mlog_errno(status);
1721 goto done;
1722 }
1723
1724 /* An error from begin_truncate_log_recovery is not
1725 * serious enough to warrant halting the rest of
1726 * recovery. */
1727 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1728 if (status < 0)
1729 mlog_errno(status);
1730
1731 /* Likewise, this would be a strange but ultimately not so
1732 * harmful place to get an error... */
8e8a4603 1733 status = ocfs2_clear_slot(osb, slot_num);
ccd979bd
MF
1734 if (status < 0)
1735 mlog_errno(status);
1736
1737 /* This will kfree the memory pointed to by la_copy and tl_copy */
1738 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
2205363d 1739 tl_copy, NULL);
ccd979bd
MF
1740
1741 status = 0;
1742done:
1743
1744 mlog_exit(status);
1745 return status;
1746}
1747
1748/* Test node liveness by trylocking his journal. If we get the lock,
1749 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750 * still alive (we couldn't get the lock) and < 0 on error. */
1751static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1752 int slot_num)
1753{
1754 int status, flags;
1755 struct inode *inode = NULL;
1756
1757 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1758 slot_num);
1759 if (inode == NULL) {
1760 mlog(ML_ERROR, "access error\n");
1761 status = -EACCES;
1762 goto bail;
1763 }
1764 if (is_bad_inode(inode)) {
1765 mlog(ML_ERROR, "access error (bad inode)\n");
1766 iput(inode);
1767 inode = NULL;
1768 status = -EACCES;
1769 goto bail;
1770 }
1771 SET_INODE_JOURNAL(inode);
1772
1773 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
e63aecb6 1774 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
ccd979bd
MF
1775 if (status < 0) {
1776 if (status != -EAGAIN)
1777 mlog_errno(status);
1778 goto bail;
1779 }
1780
e63aecb6 1781 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1782bail:
1783 if (inode)
1784 iput(inode);
1785
1786 return status;
1787}
1788
1789/* Call this underneath ocfs2_super_lock. It also assumes that the
1790 * slot info struct has been updated from disk. */
1791int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1792{
d85b20e4
JB
1793 unsigned int node_num;
1794 int status, i;
a1af7d15 1795 u32 gen;
539d8264
SM
1796 struct buffer_head *bh = NULL;
1797 struct ocfs2_dinode *di;
ccd979bd
MF
1798
1799 /* This is called with the super block cluster lock, so we
1800 * know that the slot map can't change underneath us. */
1801
d85b20e4 1802 for (i = 0; i < osb->max_slots; i++) {
539d8264
SM
1803 /* Read journal inode to get the recovery generation */
1804 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1805 if (status) {
1806 mlog_errno(status);
1807 goto bail;
1808 }
1809 di = (struct ocfs2_dinode *)bh->b_data;
a1af7d15 1810 gen = ocfs2_get_recovery_generation(di);
539d8264
SM
1811 brelse(bh);
1812 bh = NULL;
1813
a1af7d15
MF
1814 spin_lock(&osb->osb_lock);
1815 osb->slot_recovery_generations[i] = gen;
1816
539d8264
SM
1817 mlog(0, "Slot %u recovery generation is %u\n", i,
1818 osb->slot_recovery_generations[i]);
1819
a1af7d15
MF
1820 if (i == osb->slot_num) {
1821 spin_unlock(&osb->osb_lock);
ccd979bd 1822 continue;
a1af7d15 1823 }
d85b20e4
JB
1824
1825 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
a1af7d15
MF
1826 if (status == -ENOENT) {
1827 spin_unlock(&osb->osb_lock);
ccd979bd 1828 continue;
a1af7d15 1829 }
ccd979bd 1830
a1af7d15
MF
1831 if (__ocfs2_recovery_map_test(osb, node_num)) {
1832 spin_unlock(&osb->osb_lock);
ccd979bd 1833 continue;
a1af7d15 1834 }
d85b20e4 1835 spin_unlock(&osb->osb_lock);
ccd979bd
MF
1836
1837 /* Ok, we have a slot occupied by another node which
1838 * is not in the recovery map. We trylock his journal
1839 * file here to test if he's alive. */
1840 status = ocfs2_trylock_journal(osb, i);
1841 if (!status) {
1842 /* Since we're called from mount, we know that
1843 * the recovery thread can't race us on
1844 * setting / checking the recovery bits. */
1845 ocfs2_recovery_thread(osb, node_num);
1846 } else if ((status < 0) && (status != -EAGAIN)) {
1847 mlog_errno(status);
1848 goto bail;
1849 }
ccd979bd 1850 }
ccd979bd
MF
1851
1852 status = 0;
1853bail:
1854 mlog_exit(status);
1855 return status;
1856}
1857
83273932
SE
1858/*
1859 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1860 * randomness to the timeout to minimize multple nodes firing the timer at the
1861 * same time.
1862 */
1863static inline unsigned long ocfs2_orphan_scan_timeout(void)
1864{
1865 unsigned long time;
1866
1867 get_random_bytes(&time, sizeof(time));
1868 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1869 return msecs_to_jiffies(time);
1870}
1871
1872/*
1873 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1874 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1875 * is done to catch any orphans that are left over in orphan directories.
1876 *
1877 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1878 * seconds. It gets an EX lock on os_lockres and checks sequence number
1879 * stored in LVB. If the sequence number has changed, it means some other
1880 * node has done the scan. This node skips the scan and tracks the
1881 * sequence number. If the sequence number didn't change, it means a scan
1882 * hasn't happened. The node queues a scan and increments the
1883 * sequence number in the LVB.
1884 */
1885void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1886{
1887 struct ocfs2_orphan_scan *os;
1888 int status, i;
1889 u32 seqno = 0;
1890
1891 os = &osb->osb_orphan_scan;
1892
692684e1
SM
1893 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1894 goto out;
1895
df152c24 1896 status = ocfs2_orphan_scan_lock(osb, &seqno);
83273932
SE
1897 if (status < 0) {
1898 if (status != -EAGAIN)
1899 mlog_errno(status);
1900 goto out;
1901 }
1902
692684e1
SM
1903 /* Do no queue the tasks if the volume is being umounted */
1904 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1905 goto unlock;
1906
83273932
SE
1907 if (os->os_seqno != seqno) {
1908 os->os_seqno = seqno;
1909 goto unlock;
1910 }
1911
1912 for (i = 0; i < osb->max_slots; i++)
1913 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1914 NULL);
1915 /*
1916 * We queued a recovery on orphan slots, increment the sequence
1917 * number and update LVB so other node will skip the scan for a while
1918 */
1919 seqno++;
15633a22
SE
1920 os->os_count++;
1921 os->os_scantime = CURRENT_TIME;
83273932 1922unlock:
df152c24 1923 ocfs2_orphan_scan_unlock(osb, seqno);
83273932
SE
1924out:
1925 return;
1926}
1927
1928/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1929void ocfs2_orphan_scan_work(struct work_struct *work)
1930{
1931 struct ocfs2_orphan_scan *os;
1932 struct ocfs2_super *osb;
1933
1934 os = container_of(work, struct ocfs2_orphan_scan,
1935 os_orphan_scan_work.work);
1936 osb = os->os_osb;
1937
1938 mutex_lock(&os->os_lock);
1939 ocfs2_queue_orphan_scan(osb);
692684e1
SM
1940 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1941 schedule_delayed_work(&os->os_orphan_scan_work,
1942 ocfs2_orphan_scan_timeout());
83273932
SE
1943 mutex_unlock(&os->os_lock);
1944}
1945
1946void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1947{
1948 struct ocfs2_orphan_scan *os;
1949
1950 os = &osb->osb_orphan_scan;
df152c24
SM
1951 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1952 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1953 mutex_lock(&os->os_lock);
1954 cancel_delayed_work(&os->os_orphan_scan_work);
1955 mutex_unlock(&os->os_lock);
1956 }
83273932
SE
1957}
1958
df152c24 1959void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
83273932
SE
1960{
1961 struct ocfs2_orphan_scan *os;
1962
1963 os = &osb->osb_orphan_scan;
1964 os->os_osb = osb;
15633a22 1965 os->os_count = 0;
3211949f 1966 os->os_seqno = 0;
83273932 1967 mutex_init(&os->os_lock);
df152c24 1968 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
8b712cd5 1969}
83273932 1970
8b712cd5
JM
1971void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1972{
1973 struct ocfs2_orphan_scan *os;
1974
1975 os = &osb->osb_orphan_scan;
1976 os->os_scantime = CURRENT_TIME;
df152c24
SM
1977 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1978 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1979 else {
1980 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1981 schedule_delayed_work(&os->os_orphan_scan_work,
1982 ocfs2_orphan_scan_timeout());
1983 }
83273932
SE
1984}
1985
5eae5b96
MF
1986struct ocfs2_orphan_filldir_priv {
1987 struct inode *head;
1988 struct ocfs2_super *osb;
1989};
1990
1991static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1992 loff_t pos, u64 ino, unsigned type)
1993{
1994 struct ocfs2_orphan_filldir_priv *p = priv;
1995 struct inode *iter;
1996
1997 if (name_len == 1 && !strncmp(".", name, 1))
1998 return 0;
1999 if (name_len == 2 && !strncmp("..", name, 2))
2000 return 0;
2001
2002 /* Skip bad inodes so that recovery can continue */
2003 iter = ocfs2_iget(p->osb, ino,
5fa0613e 2004 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
5eae5b96
MF
2005 if (IS_ERR(iter))
2006 return 0;
2007
2008 mlog(0, "queue orphan %llu\n",
2009 (unsigned long long)OCFS2_I(iter)->ip_blkno);
2010 /* No locking is required for the next_orphan queue as there
2011 * is only ever a single process doing orphan recovery. */
2012 OCFS2_I(iter)->ip_next_orphan = p->head;
2013 p->head = iter;
2014
2015 return 0;
2016}
2017
b4df6ed8
MF
2018static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2019 int slot,
2020 struct inode **head)
ccd979bd 2021{
b4df6ed8 2022 int status;
ccd979bd 2023 struct inode *orphan_dir_inode = NULL;
5eae5b96
MF
2024 struct ocfs2_orphan_filldir_priv priv;
2025 loff_t pos = 0;
2026
2027 priv.osb = osb;
2028 priv.head = *head;
ccd979bd
MF
2029
2030 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2031 ORPHAN_DIR_SYSTEM_INODE,
2032 slot);
2033 if (!orphan_dir_inode) {
2034 status = -ENOENT;
2035 mlog_errno(status);
b4df6ed8
MF
2036 return status;
2037 }
ccd979bd 2038
1b1dcc1b 2039 mutex_lock(&orphan_dir_inode->i_mutex);
e63aecb6 2040 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
ccd979bd 2041 if (status < 0) {
ccd979bd
MF
2042 mlog_errno(status);
2043 goto out;
2044 }
ccd979bd 2045
5eae5b96
MF
2046 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2047 ocfs2_orphan_filldir);
2048 if (status) {
2049 mlog_errno(status);
a86370fb 2050 goto out_cluster;
ccd979bd 2051 }
ccd979bd 2052
5eae5b96
MF
2053 *head = priv.head;
2054
a86370fb 2055out_cluster:
e63aecb6 2056 ocfs2_inode_unlock(orphan_dir_inode, 0);
b4df6ed8
MF
2057out:
2058 mutex_unlock(&orphan_dir_inode->i_mutex);
ccd979bd 2059 iput(orphan_dir_inode);
b4df6ed8
MF
2060 return status;
2061}
2062
2063static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2064 int slot)
2065{
2066 int ret;
2067
2068 spin_lock(&osb->osb_lock);
2069 ret = !osb->osb_orphan_wipes[slot];
2070 spin_unlock(&osb->osb_lock);
2071 return ret;
2072}
2073
2074static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2075 int slot)
2076{
2077 spin_lock(&osb->osb_lock);
2078 /* Mark ourselves such that new processes in delete_inode()
2079 * know to quit early. */
2080 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2081 while (osb->osb_orphan_wipes[slot]) {
2082 /* If any processes are already in the middle of an
2083 * orphan wipe on this dir, then we need to wait for
2084 * them. */
2085 spin_unlock(&osb->osb_lock);
2086 wait_event_interruptible(osb->osb_wipe_event,
2087 ocfs2_orphan_recovery_can_continue(osb, slot));
2088 spin_lock(&osb->osb_lock);
2089 }
2090 spin_unlock(&osb->osb_lock);
2091}
2092
2093static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2094 int slot)
2095{
2096 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2097}
2098
2099/*
2100 * Orphan recovery. Each mounted node has it's own orphan dir which we
2101 * must run during recovery. Our strategy here is to build a list of
2102 * the inodes in the orphan dir and iget/iput them. The VFS does
2103 * (most) of the rest of the work.
2104 *
2105 * Orphan recovery can happen at any time, not just mount so we have a
2106 * couple of extra considerations.
2107 *
2108 * - We grab as many inodes as we can under the orphan dir lock -
2109 * doing iget() outside the orphan dir risks getting a reference on
2110 * an invalid inode.
2111 * - We must be sure not to deadlock with other processes on the
2112 * system wanting to run delete_inode(). This can happen when they go
2113 * to lock the orphan dir and the orphan recovery process attempts to
2114 * iget() inside the orphan dir lock. This can be avoided by
2115 * advertising our state to ocfs2_delete_inode().
2116 */
2117static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2118 int slot)
2119{
2120 int ret = 0;
2121 struct inode *inode = NULL;
2122 struct inode *iter;
2123 struct ocfs2_inode_info *oi;
2124
2125 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2126
2127 ocfs2_mark_recovering_orphan_dir(osb, slot);
2128 ret = ocfs2_queue_orphans(osb, slot, &inode);
2129 ocfs2_clear_recovering_orphan_dir(osb, slot);
2130
2131 /* Error here should be noted, but we want to continue with as
2132 * many queued inodes as we've got. */
2133 if (ret)
2134 mlog_errno(ret);
ccd979bd
MF
2135
2136 while (inode) {
2137 oi = OCFS2_I(inode);
b0697053 2138 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
ccd979bd
MF
2139
2140 iter = oi->ip_next_orphan;
2141
2142 spin_lock(&oi->ip_lock);
34d024f8
MF
2143 /* The remote delete code may have set these on the
2144 * assumption that the other node would wipe them
2145 * successfully. If they are still in the node's
2146 * orphan dir, we need to reset that state. */
ccd979bd
MF
2147 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2148
2149 /* Set the proper information to get us going into
2150 * ocfs2_delete_inode. */
2151 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
ccd979bd
MF
2152 spin_unlock(&oi->ip_lock);
2153
2154 iput(inode);
2155
2156 inode = iter;
2157 }
2158
b4df6ed8 2159 return ret;
ccd979bd
MF
2160}
2161
19ece546 2162static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
ccd979bd
MF
2163{
2164 /* This check is good because ocfs2 will wait on our recovery
2165 * thread before changing it to something other than MOUNTED
2166 * or DISABLED. */
2167 wait_event(osb->osb_mount_event,
19ece546
JK
2168 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2169 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
ccd979bd
MF
2170 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2171
2172 /* If there's an error on mount, then we may never get to the
2173 * MOUNTED flag, but this is set right before
2174 * dismount_volume() so we can trust it. */
2175 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2176 mlog(0, "mount error, exiting!\n");
2177 return -EBUSY;
2178 }
2179
2180 return 0;
2181}
2182
2183static int ocfs2_commit_thread(void *arg)
2184{
2185 int status;
2186 struct ocfs2_super *osb = arg;
2187 struct ocfs2_journal *journal = osb->journal;
2188
2189 /* we can trust j_num_trans here because _should_stop() is only set in
2190 * shutdown and nobody other than ourselves should be able to start
2191 * transactions. committing on shutdown might take a few iterations
2192 * as final transactions put deleted inodes on the list */
2193 while (!(kthread_should_stop() &&
2194 atomic_read(&journal->j_num_trans) == 0)) {
2195
745ae8ba
MF
2196 wait_event_interruptible(osb->checkpoint_event,
2197 atomic_read(&journal->j_num_trans)
2198 || kthread_should_stop());
ccd979bd
MF
2199
2200 status = ocfs2_commit_cache(osb);
2201 if (status < 0)
2202 mlog_errno(status);
2203
2204 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2205 mlog(ML_KTHREAD,
2206 "commit_thread: %u transactions pending on "
2207 "shutdown\n",
2208 atomic_read(&journal->j_num_trans));
2209 }
2210 }
2211
2212 return 0;
2213}
2214
539d8264
SM
2215/* Reads all the journal inodes without taking any cluster locks. Used
2216 * for hard readonly access to determine whether any journal requires
2217 * recovery. Also used to refresh the recovery generation numbers after
2218 * a journal has been recovered by another node.
2219 */
ccd979bd
MF
2220int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2221{
2222 int ret = 0;
2223 unsigned int slot;
539d8264 2224 struct buffer_head *di_bh = NULL;
ccd979bd 2225 struct ocfs2_dinode *di;
539d8264 2226 int journal_dirty = 0;
ccd979bd
MF
2227
2228 for(slot = 0; slot < osb->max_slots; slot++) {
539d8264
SM
2229 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2230 if (ret) {
ccd979bd
MF
2231 mlog_errno(ret);
2232 goto out;
2233 }
2234
2235 di = (struct ocfs2_dinode *) di_bh->b_data;
2236
539d8264
SM
2237 osb->slot_recovery_generations[slot] =
2238 ocfs2_get_recovery_generation(di);
2239
ccd979bd
MF
2240 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2241 OCFS2_JOURNAL_DIRTY_FL)
539d8264 2242 journal_dirty = 1;
ccd979bd
MF
2243
2244 brelse(di_bh);
539d8264 2245 di_bh = NULL;
ccd979bd
MF
2246 }
2247
2248out:
539d8264
SM
2249 if (journal_dirty)
2250 ret = -EROFS;
ccd979bd
MF
2251 return ret;
2252}