scripts/faddr2line: fix location of start_kernel in comment
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
3e4c56d4 137static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139{
140 int ret = 0;
141 struct ocfs2_inode_info *oi = OCFS2_I(inode);
142
143 down_read(&oi->ip_alloc_sem);
144 ret = ocfs2_get_block(inode, iblock, bh_result, create);
145 up_read(&oi->ip_alloc_sem);
146
147 return ret;
148}
149
6f70fa51
TM
150int ocfs2_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh_result, int create)
ccd979bd
MF
152{
153 int err = 0;
49cb8d2d 154 unsigned int ext_flags;
628a24f5
MF
155 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
156 u64 p_blkno, count, past_eof;
25baf2da 157 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 158
9558156b
TM
159 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
160 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
161
162 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
163 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
164 inode, inode->i_ino);
165
166 if (S_ISLNK(inode->i_mode)) {
167 /* this always does I/O for some reason. */
168 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
169 goto bail;
170 }
171
628a24f5 172 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 173 &ext_flags);
ccd979bd
MF
174 if (err) {
175 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
176 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
177 (unsigned long long)p_blkno);
ccd979bd
MF
178 goto bail;
179 }
180
628a24f5
MF
181 if (max_blocks < count)
182 count = max_blocks;
183
25baf2da
MF
184 /*
185 * ocfs2 never allocates in this function - the only time we
186 * need to use BH_New is when we're extending i_size on a file
187 * system which doesn't support holes, in which case BH_New
ebdec241 188 * allows __block_write_begin() to zero.
c0420ad2
CL
189 *
190 * If we see this on a sparse file system, then a truncate has
191 * raced us and removed the cluster. In this case, we clear
192 * the buffers dirty and uptodate bits and let the buffer code
193 * ignore it as a hole.
25baf2da 194 */
c0420ad2
CL
195 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
196 clear_buffer_dirty(bh_result);
197 clear_buffer_uptodate(bh_result);
198 goto bail;
199 }
25baf2da 200
49cb8d2d
MF
201 /* Treat the unwritten extent as a hole for zeroing purposes. */
202 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
203 map_bh(bh_result, inode->i_sb, p_blkno);
204
628a24f5
MF
205 bh_result->b_size = count << inode->i_blkbits;
206
25baf2da
MF
207 if (!ocfs2_sparse_alloc(osb)) {
208 if (p_blkno == 0) {
209 err = -EIO;
210 mlog(ML_ERROR,
211 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
212 (unsigned long long)iblock,
213 (unsigned long long)p_blkno,
214 (unsigned long long)OCFS2_I(inode)->ip_blkno);
215 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
216 dump_stack();
1f4cea37 217 goto bail;
25baf2da 218 }
25baf2da 219 }
ccd979bd 220
5693486b 221 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
222
223 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
224 (unsigned long long)past_eof);
5693486b
JB
225 if (create && (iblock >= past_eof))
226 set_buffer_new(bh_result);
227
ccd979bd
MF
228bail:
229 if (err < 0)
230 err = -EIO;
231
ccd979bd
MF
232 return err;
233}
234
1afc32b9
MF
235int ocfs2_read_inline_data(struct inode *inode, struct page *page,
236 struct buffer_head *di_bh)
6798d35a
MF
237{
238 void *kaddr;
d2849fb2 239 loff_t size;
6798d35a
MF
240 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
241
242 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
7ecef14a 243 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
6798d35a
MF
244 (unsigned long long)OCFS2_I(inode)->ip_blkno);
245 return -EROFS;
246 }
247
248 size = i_size_read(inode);
249
09cbfeaf 250 if (size > PAGE_SIZE ||
d9ae49d6 251 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 252 ocfs2_error(inode->i_sb,
7ecef14a 253 "Inode %llu has with inline data has bad size: %Lu\n",
d2849fb2
JK
254 (unsigned long long)OCFS2_I(inode)->ip_blkno,
255 (unsigned long long)size);
6798d35a
MF
256 return -EROFS;
257 }
258
c4bc8dcb 259 kaddr = kmap_atomic(page);
6798d35a
MF
260 if (size)
261 memcpy(kaddr, di->id2.i_data.id_data, size);
262 /* Clear the remaining part of the page */
09cbfeaf 263 memset(kaddr + size, 0, PAGE_SIZE - size);
6798d35a 264 flush_dcache_page(page);
c4bc8dcb 265 kunmap_atomic(kaddr);
6798d35a
MF
266
267 SetPageUptodate(page);
268
269 return 0;
270}
271
272static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
273{
274 int ret;
275 struct buffer_head *di_bh = NULL;
6798d35a
MF
276
277 BUG_ON(!PageLocked(page));
86c838b0 278 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 279
b657c95c 280 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
281 if (ret) {
282 mlog_errno(ret);
283 goto out;
284 }
285
286 ret = ocfs2_read_inline_data(inode, page, di_bh);
287out:
288 unlock_page(page);
289
290 brelse(di_bh);
291 return ret;
292}
293
ccd979bd
MF
294static int ocfs2_readpage(struct file *file, struct page *page)
295{
296 struct inode *inode = page->mapping->host;
6798d35a 297 struct ocfs2_inode_info *oi = OCFS2_I(inode);
09cbfeaf 298 loff_t start = (loff_t)page->index << PAGE_SHIFT;
ccd979bd
MF
299 int ret, unlock = 1;
300
9558156b
TM
301 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
302 (page ? page->index : 0));
ccd979bd 303
e63aecb6 304 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
305 if (ret != 0) {
306 if (ret == AOP_TRUNCATED_PAGE)
307 unlock = 0;
308 mlog_errno(ret);
309 goto out;
310 }
311
6798d35a 312 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
313 /*
314 * Unlock the page and cycle ip_alloc_sem so that we don't
315 * busyloop waiting for ip_alloc_sem to unlock
316 */
e9dfc0b2 317 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
318 unlock_page(page);
319 unlock = 0;
320 down_read(&oi->ip_alloc_sem);
321 up_read(&oi->ip_alloc_sem);
e63aecb6 322 goto out_inode_unlock;
e9dfc0b2 323 }
ccd979bd
MF
324
325 /*
326 * i_size might have just been updated as we grabed the meta lock. We
327 * might now be discovering a truncate that hit on another node.
328 * block_read_full_page->get_block freaks out if it is asked to read
329 * beyond the end of a file, so we check here. Callers
54cb8821 330 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
331 * and notice that the page they just read isn't needed.
332 *
333 * XXX sys_readahead() seems to get that wrong?
334 */
335 if (start >= i_size_read(inode)) {
eebd2aa3 336 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
337 SetPageUptodate(page);
338 ret = 0;
339 goto out_alloc;
340 }
341
6798d35a
MF
342 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
343 ret = ocfs2_readpage_inline(inode, page);
344 else
345 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
346 unlock = 0;
347
ccd979bd 348out_alloc:
d324cd4c 349 up_read(&oi->ip_alloc_sem);
e63aecb6
MF
350out_inode_unlock:
351 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
352out:
353 if (unlock)
354 unlock_page(page);
ccd979bd
MF
355 return ret;
356}
357
628a24f5
MF
358/*
359 * This is used only for read-ahead. Failures or difficult to handle
360 * situations are safe to ignore.
361 *
362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
363 * are quite large (243 extents on 4k blocks), so most inodes don't
364 * grow out to a tree. If need be, detecting boundary extents could
365 * trivially be added in a future version of ocfs2_get_block().
366 */
367static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
368 struct list_head *pages, unsigned nr_pages)
369{
370 int ret, err = -EIO;
371 struct inode *inode = mapping->host;
372 struct ocfs2_inode_info *oi = OCFS2_I(inode);
373 loff_t start;
374 struct page *last;
375
376 /*
377 * Use the nonblocking flag for the dlm code to avoid page
378 * lock inversion, but don't bother with retrying.
379 */
380 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
381 if (ret)
382 return err;
383
384 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
385 ocfs2_inode_unlock(inode, 0);
386 return err;
387 }
388
389 /*
390 * Don't bother with inline-data. There isn't anything
391 * to read-ahead in that case anyway...
392 */
393 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
394 goto out_unlock;
395
396 /*
397 * Check whether a remote node truncated this file - we just
398 * drop out in that case as it's not worth handling here.
399 */
400 last = list_entry(pages->prev, struct page, lru);
09cbfeaf 401 start = (loff_t)last->index << PAGE_SHIFT;
628a24f5
MF
402 if (start >= i_size_read(inode))
403 goto out_unlock;
404
405 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
406
407out_unlock:
408 up_read(&oi->ip_alloc_sem);
409 ocfs2_inode_unlock(inode, 0);
410
411 return err;
412}
413
ccd979bd
MF
414/* Note: Because we don't support holes, our allocation has
415 * already happened (allocation writes zeros to the file data)
416 * so we don't have to worry about ordered writes in
417 * ocfs2_writepage.
418 *
419 * ->writepage is called during the process of invalidating the page cache
420 * during blocked lock processing. It can't block on any cluster locks
421 * to during block mapping. It's relying on the fact that the block
422 * mapping can't have disappeared under the dirty pages that it is
423 * being asked to write back.
424 */
425static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
426{
9558156b
TM
427 trace_ocfs2_writepage(
428 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
429 page->index);
ccd979bd 430
9558156b 431 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
432}
433
ccd979bd
MF
434/* Taken from ext3. We don't necessarily need the full blown
435 * functionality yet, but IMHO it's better to cut and paste the whole
436 * thing so we can avoid introducing our own bugs (and easily pick up
437 * their fixes when they happen) --Mark */
60b11392
MF
438int walk_page_buffers( handle_t *handle,
439 struct buffer_head *head,
440 unsigned from,
441 unsigned to,
442 int *partial,
443 int (*fn)( handle_t *handle,
444 struct buffer_head *bh))
ccd979bd
MF
445{
446 struct buffer_head *bh;
447 unsigned block_start, block_end;
448 unsigned blocksize = head->b_size;
449 int err, ret = 0;
450 struct buffer_head *next;
451
452 for ( bh = head, block_start = 0;
453 ret == 0 && (bh != head || !block_start);
454 block_start = block_end, bh = next)
455 {
456 next = bh->b_this_page;
457 block_end = block_start + blocksize;
458 if (block_end <= from || block_start >= to) {
459 if (partial && !buffer_uptodate(bh))
460 *partial = 1;
461 continue;
462 }
463 err = (*fn)(handle, bh);
464 if (!ret)
465 ret = err;
466 }
467 return ret;
468}
469
ccd979bd
MF
470static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
471{
472 sector_t status;
473 u64 p_blkno = 0;
474 int err = 0;
475 struct inode *inode = mapping->host;
476
9558156b
TM
477 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)block);
ccd979bd 479
06a70305
DW
480 /*
481 * The swap code (ab-)uses ->bmap to get a block mapping and then
482 * bypasseѕ the file system for actual I/O. We really can't allow
483 * that on refcounted inodes, so we have to skip out here. And yes,
484 * 0 is the magic code for a bmap error..
485 */
486 if (ocfs2_is_refcount_inode(inode))
487 return 0;
488
ccd979bd
MF
489 /* We don't need to lock journal system files, since they aren't
490 * accessed concurrently from multiple nodes.
491 */
492 if (!INODE_JOURNAL(inode)) {
e63aecb6 493 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
494 if (err) {
495 if (err != -ENOENT)
496 mlog_errno(err);
497 goto bail;
498 }
499 down_read(&OCFS2_I(inode)->ip_alloc_sem);
500 }
501
6798d35a
MF
502 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
503 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
504 NULL);
ccd979bd
MF
505
506 if (!INODE_JOURNAL(inode)) {
507 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 508 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
509 }
510
511 if (err) {
512 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
513 (unsigned long long)block);
514 mlog_errno(err);
515 goto bail;
516 }
517
ccd979bd
MF
518bail:
519 status = err ? 0 : p_blkno;
520
ccd979bd
MF
521 return status;
522}
523
03f981cf
JB
524static int ocfs2_releasepage(struct page *page, gfp_t wait)
525{
03f981cf
JB
526 if (!page_has_buffers(page))
527 return 0;
41ecc345 528 return try_to_free_buffers(page);
03f981cf
JB
529}
530
9517bac6
MF
531static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
532 u32 cpos,
533 unsigned int *start,
534 unsigned int *end)
535{
09cbfeaf 536 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
9517bac6 537
09cbfeaf 538 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
9517bac6
MF
539 unsigned int cpp;
540
09cbfeaf 541 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
9517bac6
MF
542
543 cluster_start = cpos % cpp;
544 cluster_start = cluster_start << osb->s_clustersize_bits;
545
546 cluster_end = cluster_start + osb->s_clustersize;
547 }
548
549 BUG_ON(cluster_start > PAGE_SIZE);
550 BUG_ON(cluster_end > PAGE_SIZE);
551
552 if (start)
553 *start = cluster_start;
554 if (end)
555 *end = cluster_end;
556}
557
558/*
559 * 'from' and 'to' are the region in the page to avoid zeroing.
560 *
561 * If pagesize > clustersize, this function will avoid zeroing outside
562 * of the cluster boundary.
563 *
564 * from == to == 0 is code for "zero the entire cluster region"
565 */
566static void ocfs2_clear_page_regions(struct page *page,
567 struct ocfs2_super *osb, u32 cpos,
568 unsigned from, unsigned to)
569{
570 void *kaddr;
571 unsigned int cluster_start, cluster_end;
572
573 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
574
c4bc8dcb 575 kaddr = kmap_atomic(page);
9517bac6
MF
576
577 if (from || to) {
578 if (from > cluster_start)
579 memset(kaddr + cluster_start, 0, from - cluster_start);
580 if (to < cluster_end)
581 memset(kaddr + to, 0, cluster_end - to);
582 } else {
583 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
584 }
585
c4bc8dcb 586 kunmap_atomic(kaddr);
9517bac6
MF
587}
588
4e9563fd
MF
589/*
590 * Nonsparse file systems fully allocate before we get to the write
591 * code. This prevents ocfs2_write() from tagging the write as an
592 * allocating one, which means ocfs2_map_page_blocks() might try to
593 * read-in the blocks at the tail of our file. Avoid reading them by
594 * testing i_size against each block offset.
595 */
596static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
597 unsigned int block_start)
598{
599 u64 offset = page_offset(page) + block_start;
600
601 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
602 return 1;
603
604 if (i_size_read(inode) > offset)
605 return 1;
606
607 return 0;
608}
609
9517bac6 610/*
ebdec241 611 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
612 * mapping by now though, and the entire write will be allocating or
613 * it won't, so not much need to use BH_New.
614 *
615 * This will also skip zeroing, which is handled externally.
616 */
60b11392
MF
617int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
618 struct inode *inode, unsigned int from,
619 unsigned int to, int new)
9517bac6
MF
620{
621 int ret = 0;
622 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
623 unsigned int block_end, block_start;
93407472 624 unsigned int bsize = i_blocksize(inode);
9517bac6
MF
625
626 if (!page_has_buffers(page))
627 create_empty_buffers(page, bsize, 0);
628
629 head = page_buffers(page);
630 for (bh = head, block_start = 0; bh != head || !block_start;
631 bh = bh->b_this_page, block_start += bsize) {
632 block_end = block_start + bsize;
633
3a307ffc
MF
634 clear_buffer_new(bh);
635
9517bac6
MF
636 /*
637 * Ignore blocks outside of our i/o range -
638 * they may belong to unallocated clusters.
639 */
60b11392 640 if (block_start >= to || block_end <= from) {
9517bac6
MF
641 if (PageUptodate(page))
642 set_buffer_uptodate(bh);
643 continue;
644 }
645
646 /*
647 * For an allocating write with cluster size >= page
648 * size, we always write the entire page.
649 */
3a307ffc
MF
650 if (new)
651 set_buffer_new(bh);
9517bac6
MF
652
653 if (!buffer_mapped(bh)) {
654 map_bh(bh, inode->i_sb, *p_blkno);
e64855c6 655 clean_bdev_bh_alias(bh);
9517bac6
MF
656 }
657
658 if (PageUptodate(page)) {
659 if (!buffer_uptodate(bh))
660 set_buffer_uptodate(bh);
661 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 662 !buffer_new(bh) &&
4e9563fd 663 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 664 (block_start < from || block_end > to)) {
dfec8a14 665 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
9517bac6
MF
666 *wait_bh++=bh;
667 }
668
669 *p_blkno = *p_blkno + 1;
670 }
671
672 /*
673 * If we issued read requests - let them complete.
674 */
675 while(wait_bh > wait) {
676 wait_on_buffer(*--wait_bh);
677 if (!buffer_uptodate(*wait_bh))
678 ret = -EIO;
679 }
680
681 if (ret == 0 || !new)
682 return ret;
683
684 /*
685 * If we get -EIO above, zero out any newly allocated blocks
686 * to avoid exposing stale data.
687 */
688 bh = head;
689 block_start = 0;
690 do {
9517bac6
MF
691 block_end = block_start + bsize;
692 if (block_end <= from)
693 goto next_bh;
694 if (block_start >= to)
695 break;
696
eebd2aa3 697 zero_user(page, block_start, bh->b_size);
9517bac6
MF
698 set_buffer_uptodate(bh);
699 mark_buffer_dirty(bh);
700
701next_bh:
702 block_start = block_end;
703 bh = bh->b_this_page;
704 } while (bh != head);
705
706 return ret;
707}
708
ea1754a0 709#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
3a307ffc
MF
710#define OCFS2_MAX_CTXT_PAGES 1
711#else
09cbfeaf 712#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
3a307ffc
MF
713#endif
714
09cbfeaf 715#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
3a307ffc 716
4506cfb6
RD
717struct ocfs2_unwritten_extent {
718 struct list_head ue_node;
719 struct list_head ue_ip_node;
720 u32 ue_cpos;
721 u32 ue_phys;
722};
723
6af67d82 724/*
3a307ffc 725 * Describe the state of a single cluster to be written to.
6af67d82 726 */
3a307ffc
MF
727struct ocfs2_write_cluster_desc {
728 u32 c_cpos;
729 u32 c_phys;
730 /*
731 * Give this a unique field because c_phys eventually gets
732 * filled.
733 */
734 unsigned c_new;
b46637d5 735 unsigned c_clear_unwritten;
e7432675 736 unsigned c_needs_zero;
3a307ffc 737};
6af67d82 738
3a307ffc
MF
739struct ocfs2_write_ctxt {
740 /* Logical cluster position / len of write */
741 u32 w_cpos;
742 u32 w_clen;
6af67d82 743
e7432675
SM
744 /* First cluster allocated in a nonsparse extend */
745 u32 w_first_new_cpos;
746
c1ad1e3c
RD
747 /* Type of caller. Must be one of buffer, mmap, direct. */
748 ocfs2_write_type_t w_type;
749
3a307ffc 750 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 751
3a307ffc
MF
752 /*
753 * This is true if page_size > cluster_size.
754 *
755 * It triggers a set of special cases during write which might
756 * have to deal with allocating writes to partial pages.
757 */
758 unsigned int w_large_pages;
6af67d82 759
3a307ffc
MF
760 /*
761 * Pages involved in this write.
762 *
763 * w_target_page is the page being written to by the user.
764 *
765 * w_pages is an array of pages which always contains
766 * w_target_page, and in the case of an allocating write with
767 * page_size < cluster size, it will contain zero'd and mapped
768 * pages adjacent to w_target_page which need to be written
769 * out in so that future reads from that region will get
770 * zero's.
771 */
3a307ffc 772 unsigned int w_num_pages;
83fd9c7f 773 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 774 struct page *w_target_page;
eeb47d12 775
5cffff9e
WW
776 /*
777 * w_target_locked is used for page_mkwrite path indicating no unlocking
778 * against w_target_page in ocfs2_write_end_nolock.
779 */
780 unsigned int w_target_locked:1;
781
3a307ffc
MF
782 /*
783 * ocfs2_write_end() uses this to know what the real range to
784 * write in the target should be.
785 */
786 unsigned int w_target_from;
787 unsigned int w_target_to;
788
789 /*
790 * We could use journal_current_handle() but this is cleaner,
791 * IMHO -Mark
792 */
793 handle_t *w_handle;
794
795 struct buffer_head *w_di_bh;
b27b7cbc
MF
796
797 struct ocfs2_cached_dealloc_ctxt w_dealloc;
4506cfb6
RD
798
799 struct list_head w_unwritten_list;
63de8bd9 800 unsigned int w_unwritten_count;
3a307ffc
MF
801};
802
1d410a6e 803void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
804{
805 int i;
806
1d410a6e
MF
807 for(i = 0; i < num_pages; i++) {
808 if (pages[i]) {
809 unlock_page(pages[i]);
810 mark_page_accessed(pages[i]);
09cbfeaf 811 put_page(pages[i]);
1d410a6e 812 }
6af67d82 813 }
1d410a6e
MF
814}
815
136f49b9 816static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 817{
5cffff9e
WW
818 int i;
819
820 /*
821 * w_target_locked is only set to true in the page_mkwrite() case.
822 * The intent is to allow us to lock the target page from write_begin()
823 * to write_end(). The caller must hold a ref on w_target_page.
824 */
825 if (wc->w_target_locked) {
826 BUG_ON(!wc->w_target_page);
827 for (i = 0; i < wc->w_num_pages; i++) {
828 if (wc->w_target_page == wc->w_pages[i]) {
829 wc->w_pages[i] = NULL;
830 break;
831 }
832 }
833 mark_page_accessed(wc->w_target_page);
09cbfeaf 834 put_page(wc->w_target_page);
5cffff9e 835 }
1d410a6e 836 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 837}
6af67d82 838
4506cfb6
RD
839static void ocfs2_free_unwritten_list(struct inode *inode,
840 struct list_head *head)
841{
842 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 843 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
4506cfb6 844
c15471f7
RD
845 list_for_each_entry_safe(ue, tmp, head, ue_node) {
846 list_del(&ue->ue_node);
4506cfb6 847 spin_lock(&oi->ip_lock);
c15471f7 848 list_del(&ue->ue_ip_node);
4506cfb6 849 spin_unlock(&oi->ip_lock);
c15471f7 850 kfree(ue);
4506cfb6
RD
851 }
852}
853
854static void ocfs2_free_write_ctxt(struct inode *inode,
855 struct ocfs2_write_ctxt *wc)
136f49b9 856{
4506cfb6 857 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
136f49b9 858 ocfs2_unlock_pages(wc);
3a307ffc
MF
859 brelse(wc->w_di_bh);
860 kfree(wc);
861}
862
863static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
864 struct ocfs2_super *osb, loff_t pos,
c1ad1e3c
RD
865 unsigned len, ocfs2_write_type_t type,
866 struct buffer_head *di_bh)
3a307ffc 867{
30b8548f 868 u32 cend;
3a307ffc
MF
869 struct ocfs2_write_ctxt *wc;
870
871 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
872 if (!wc)
873 return -ENOMEM;
6af67d82 874
3a307ffc 875 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 876 wc->w_first_new_cpos = UINT_MAX;
30b8548f 877 cend = (pos + len - 1) >> osb->s_clustersize_bits;
878 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
879 get_bh(di_bh);
880 wc->w_di_bh = di_bh;
c1ad1e3c 881 wc->w_type = type;
6af67d82 882
09cbfeaf 883 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
3a307ffc
MF
884 wc->w_large_pages = 1;
885 else
886 wc->w_large_pages = 0;
887
b27b7cbc 888 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
4506cfb6 889 INIT_LIST_HEAD(&wc->w_unwritten_list);
b27b7cbc 890
3a307ffc 891 *wcp = wc;
6af67d82 892
3a307ffc 893 return 0;
6af67d82
MF
894}
895
9517bac6 896/*
3a307ffc
MF
897 * If a page has any new buffers, zero them out here, and mark them uptodate
898 * and dirty so they'll be written out (in order to prevent uninitialised
899 * block data from leaking). And clear the new bit.
9517bac6 900 */
3a307ffc 901static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 902{
3a307ffc
MF
903 unsigned int block_start, block_end;
904 struct buffer_head *head, *bh;
9517bac6 905
3a307ffc
MF
906 BUG_ON(!PageLocked(page));
907 if (!page_has_buffers(page))
908 return;
9517bac6 909
3a307ffc
MF
910 bh = head = page_buffers(page);
911 block_start = 0;
912 do {
913 block_end = block_start + bh->b_size;
914
915 if (buffer_new(bh)) {
916 if (block_end > from && block_start < to) {
917 if (!PageUptodate(page)) {
918 unsigned start, end;
3a307ffc
MF
919
920 start = max(from, block_start);
921 end = min(to, block_end);
922
eebd2aa3 923 zero_user_segment(page, start, end);
3a307ffc
MF
924 set_buffer_uptodate(bh);
925 }
926
927 clear_buffer_new(bh);
928 mark_buffer_dirty(bh);
929 }
930 }
9517bac6 931
3a307ffc
MF
932 block_start = block_end;
933 bh = bh->b_this_page;
934 } while (bh != head);
935}
936
937/*
938 * Only called when we have a failure during allocating write to write
939 * zero's to the newly allocated region.
940 */
941static void ocfs2_write_failure(struct inode *inode,
942 struct ocfs2_write_ctxt *wc,
943 loff_t user_pos, unsigned user_len)
944{
945 int i;
09cbfeaf 946 unsigned from = user_pos & (PAGE_SIZE - 1),
5c26a7b7 947 to = user_pos + user_len;
3a307ffc
MF
948 struct page *tmppage;
949
65c4db8c
RD
950 if (wc->w_target_page)
951 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 952
3a307ffc
MF
953 for(i = 0; i < wc->w_num_pages; i++) {
954 tmppage = wc->w_pages[i];
9517bac6 955
65c4db8c 956 if (tmppage && page_has_buffers(tmppage)) {
53ef99ca 957 if (ocfs2_should_order_data(inode))
2b4e30fb 958 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
959
960 block_commit_write(tmppage, from, to);
961 }
9517bac6 962 }
9517bac6
MF
963}
964
3a307ffc
MF
965static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
966 struct ocfs2_write_ctxt *wc,
967 struct page *page, u32 cpos,
968 loff_t user_pos, unsigned user_len,
969 int new)
9517bac6 970{
3a307ffc
MF
971 int ret;
972 unsigned int map_from = 0, map_to = 0;
9517bac6 973 unsigned int cluster_start, cluster_end;
3a307ffc 974 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 975
3a307ffc 976 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
977 &cluster_start, &cluster_end);
978
272b62c1
GR
979 /* treat the write as new if the a hole/lseek spanned across
980 * the page boundary.
981 */
982 new = new | ((i_size_read(inode) <= page_offset(page)) &&
983 (page_offset(page) <= user_pos));
984
3a307ffc 985 if (page == wc->w_target_page) {
09cbfeaf 986 map_from = user_pos & (PAGE_SIZE - 1);
3a307ffc
MF
987 map_to = map_from + user_len;
988
989 if (new)
990 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
991 cluster_start, cluster_end,
992 new);
993 else
994 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
995 map_from, map_to, new);
996 if (ret) {
9517bac6
MF
997 mlog_errno(ret);
998 goto out;
999 }
1000
3a307ffc
MF
1001 user_data_from = map_from;
1002 user_data_to = map_to;
9517bac6 1003 if (new) {
3a307ffc
MF
1004 map_from = cluster_start;
1005 map_to = cluster_end;
9517bac6
MF
1006 }
1007 } else {
1008 /*
1009 * If we haven't allocated the new page yet, we
1010 * shouldn't be writing it out without copying user
1011 * data. This is likely a math error from the caller.
1012 */
1013 BUG_ON(!new);
1014
3a307ffc
MF
1015 map_from = cluster_start;
1016 map_to = cluster_end;
9517bac6
MF
1017
1018 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1019 cluster_start, cluster_end, new);
9517bac6
MF
1020 if (ret) {
1021 mlog_errno(ret);
1022 goto out;
1023 }
1024 }
1025
1026 /*
1027 * Parts of newly allocated pages need to be zero'd.
1028 *
1029 * Above, we have also rewritten 'to' and 'from' - as far as
1030 * the rest of the function is concerned, the entire cluster
1031 * range inside of a page needs to be written.
1032 *
1033 * We can skip this if the page is up to date - it's already
1034 * been zero'd from being read in as a hole.
1035 */
1036 if (new && !PageUptodate(page))
1037 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1038 cpos, user_data_from, user_data_to);
9517bac6
MF
1039
1040 flush_dcache_page(page);
1041
9517bac6 1042out:
3a307ffc 1043 return ret;
9517bac6
MF
1044}
1045
1046/*
3a307ffc 1047 * This function will only grab one clusters worth of pages.
9517bac6 1048 */
3a307ffc
MF
1049static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1050 struct ocfs2_write_ctxt *wc,
693c241a
JB
1051 u32 cpos, loff_t user_pos,
1052 unsigned user_len, int new,
7307de80 1053 struct page *mmap_page)
9517bac6 1054{
3a307ffc 1055 int ret = 0, i;
693c241a 1056 unsigned long start, target_index, end_index, index;
9517bac6 1057 struct inode *inode = mapping->host;
693c241a 1058 loff_t last_byte;
9517bac6 1059
09cbfeaf 1060 target_index = user_pos >> PAGE_SHIFT;
9517bac6
MF
1061
1062 /*
1063 * Figure out how many pages we'll be manipulating here. For
60b11392 1064 * non allocating write, we just change the one
693c241a
JB
1065 * page. Otherwise, we'll need a whole clusters worth. If we're
1066 * writing past i_size, we only need enough pages to cover the
1067 * last page of the write.
9517bac6 1068 */
9517bac6 1069 if (new) {
3a307ffc
MF
1070 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1071 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1072 /*
1073 * We need the index *past* the last page we could possibly
1074 * touch. This is the page past the end of the write or
1075 * i_size, whichever is greater.
1076 */
1077 last_byte = max(user_pos + user_len, i_size_read(inode));
1078 BUG_ON(last_byte < 1);
09cbfeaf 1079 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
693c241a
JB
1080 if ((start + wc->w_num_pages) > end_index)
1081 wc->w_num_pages = end_index - start;
9517bac6 1082 } else {
3a307ffc
MF
1083 wc->w_num_pages = 1;
1084 start = target_index;
9517bac6 1085 }
09cbfeaf 1086 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
9517bac6 1087
3a307ffc 1088 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1089 index = start + i;
1090
65c4db8c
RD
1091 if (index >= target_index && index <= end_index &&
1092 wc->w_type == OCFS2_WRITE_MMAP) {
7307de80
MF
1093 /*
1094 * ocfs2_pagemkwrite() is a little different
1095 * and wants us to directly use the page
1096 * passed in.
1097 */
1098 lock_page(mmap_page);
1099
5cffff9e 1100 /* Exit and let the caller retry */
7307de80 1101 if (mmap_page->mapping != mapping) {
5cffff9e 1102 WARN_ON(mmap_page->mapping);
7307de80 1103 unlock_page(mmap_page);
5cffff9e 1104 ret = -EAGAIN;
7307de80
MF
1105 goto out;
1106 }
1107
09cbfeaf 1108 get_page(mmap_page);
7307de80 1109 wc->w_pages[i] = mmap_page;
5cffff9e 1110 wc->w_target_locked = true;
65c4db8c
RD
1111 } else if (index >= target_index && index <= end_index &&
1112 wc->w_type == OCFS2_WRITE_DIRECT) {
1113 /* Direct write has no mapping page. */
1114 wc->w_pages[i] = NULL;
1115 continue;
7307de80
MF
1116 } else {
1117 wc->w_pages[i] = find_or_create_page(mapping, index,
1118 GFP_NOFS);
1119 if (!wc->w_pages[i]) {
1120 ret = -ENOMEM;
1121 mlog_errno(ret);
1122 goto out;
1123 }
9517bac6 1124 }
1269529b 1125 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1126
1127 if (index == target_index)
1128 wc->w_target_page = wc->w_pages[i];
9517bac6 1129 }
3a307ffc 1130out:
5cffff9e
WW
1131 if (ret)
1132 wc->w_target_locked = false;
3a307ffc
MF
1133 return ret;
1134}
1135
1136/*
1137 * Prepare a single cluster for write one cluster into the file.
1138 */
1139static int ocfs2_write_cluster(struct address_space *mapping,
2de6a3c7 1140 u32 *phys, unsigned int new,
b46637d5 1141 unsigned int clear_unwritten,
e7432675 1142 unsigned int should_zero,
b27b7cbc 1143 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1144 struct ocfs2_alloc_context *meta_ac,
1145 struct ocfs2_write_ctxt *wc, u32 cpos,
1146 loff_t user_pos, unsigned user_len)
1147{
b46637d5 1148 int ret, i;
2de6a3c7 1149 u64 p_blkno;
3a307ffc 1150 struct inode *inode = mapping->host;
f99b9b7c 1151 struct ocfs2_extent_tree et;
2de6a3c7 1152 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
3a307ffc 1153
9517bac6 1154 if (new) {
3a307ffc
MF
1155 u32 tmp_pos;
1156
9517bac6
MF
1157 /*
1158 * This is safe to call with the page locks - it won't take
1159 * any additional semaphores or cluster locks.
1160 */
3a307ffc 1161 tmp_pos = cpos;
0eb8d47e 1162 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
b46637d5
RD
1163 &tmp_pos, 1, !clear_unwritten,
1164 wc->w_di_bh, wc->w_handle,
1165 data_ac, meta_ac, NULL);
9517bac6
MF
1166 /*
1167 * This shouldn't happen because we must have already
1168 * calculated the correct meta data allocation required. The
1169 * internal tree allocation code should know how to increase
1170 * transaction credits itself.
1171 *
1172 * If need be, we could handle -EAGAIN for a
1173 * RESTART_TRANS here.
1174 */
1175 mlog_bug_on_msg(ret == -EAGAIN,
1176 "Inode %llu: EAGAIN return during allocation.\n",
1177 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1178 if (ret < 0) {
1179 mlog_errno(ret);
1180 goto out;
1181 }
b46637d5 1182 } else if (clear_unwritten) {
5e404e9e
JB
1183 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1184 wc->w_di_bh);
f99b9b7c 1185 ret = ocfs2_mark_extent_written(inode, &et,
2de6a3c7 1186 wc->w_handle, cpos, 1, *phys,
f99b9b7c 1187 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1188 if (ret < 0) {
1189 mlog_errno(ret);
1190 goto out;
1191 }
1192 }
3a307ffc 1193
3a307ffc
MF
1194 /*
1195 * The only reason this should fail is due to an inability to
1196 * find the extent added.
1197 */
2de6a3c7 1198 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
9517bac6 1199 if (ret < 0) {
61fb9ea4 1200 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
2de6a3c7
RD
1201 "at logical cluster %u",
1202 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
9517bac6
MF
1203 goto out;
1204 }
1205
2de6a3c7
RD
1206 BUG_ON(*phys == 0);
1207
1208 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1209 if (!should_zero)
1210 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
9517bac6 1211
3a307ffc
MF
1212 for(i = 0; i < wc->w_num_pages; i++) {
1213 int tmpret;
9517bac6 1214
65c4db8c
RD
1215 /* This is the direct io target page. */
1216 if (wc->w_pages[i] == NULL) {
1217 p_blkno++;
1218 continue;
1219 }
1220
3a307ffc
MF
1221 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1222 wc->w_pages[i], cpos,
b27b7cbc
MF
1223 user_pos, user_len,
1224 should_zero);
3a307ffc
MF
1225 if (tmpret) {
1226 mlog_errno(tmpret);
1227 if (ret == 0)
cbfa9639 1228 ret = tmpret;
3a307ffc 1229 }
9517bac6
MF
1230 }
1231
3a307ffc
MF
1232 /*
1233 * We only have cleanup to do in case of allocating write.
1234 */
1235 if (ret && new)
1236 ocfs2_write_failure(inode, wc, user_pos, user_len);
1237
9517bac6 1238out:
9517bac6 1239
3a307ffc 1240 return ret;
9517bac6
MF
1241}
1242
0d172baa
MF
1243static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1244 struct ocfs2_alloc_context *data_ac,
1245 struct ocfs2_alloc_context *meta_ac,
1246 struct ocfs2_write_ctxt *wc,
1247 loff_t pos, unsigned len)
1248{
1249 int ret, i;
db56246c
MF
1250 loff_t cluster_off;
1251 unsigned int local_len = len;
0d172baa 1252 struct ocfs2_write_cluster_desc *desc;
db56246c 1253 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1254
1255 for (i = 0; i < wc->w_clen; i++) {
1256 desc = &wc->w_desc[i];
1257
db56246c
MF
1258 /*
1259 * We have to make sure that the total write passed in
1260 * doesn't extend past a single cluster.
1261 */
1262 local_len = len;
1263 cluster_off = pos & (osb->s_clustersize - 1);
1264 if ((cluster_off + local_len) > osb->s_clustersize)
1265 local_len = osb->s_clustersize - cluster_off;
1266
2de6a3c7 1267 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
b46637d5
RD
1268 desc->c_new,
1269 desc->c_clear_unwritten,
e7432675
SM
1270 desc->c_needs_zero,
1271 data_ac, meta_ac,
db56246c 1272 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1273 if (ret) {
1274 mlog_errno(ret);
1275 goto out;
1276 }
db56246c
MF
1277
1278 len -= local_len;
1279 pos += local_len;
0d172baa
MF
1280 }
1281
1282 ret = 0;
1283out:
1284 return ret;
1285}
1286
3a307ffc
MF
1287/*
1288 * ocfs2_write_end() wants to know which parts of the target page it
1289 * should complete the write on. It's easiest to compute them ahead of
1290 * time when a more complete view of the write is available.
1291 */
1292static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1293 struct ocfs2_write_ctxt *wc,
1294 loff_t pos, unsigned len, int alloc)
9517bac6 1295{
3a307ffc 1296 struct ocfs2_write_cluster_desc *desc;
9517bac6 1297
09cbfeaf 1298 wc->w_target_from = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1299 wc->w_target_to = wc->w_target_from + len;
1300
1301 if (alloc == 0)
1302 return;
1303
1304 /*
1305 * Allocating write - we may have different boundaries based
1306 * on page size and cluster size.
1307 *
1308 * NOTE: We can no longer compute one value from the other as
1309 * the actual write length and user provided length may be
1310 * different.
1311 */
9517bac6 1312
3a307ffc
MF
1313 if (wc->w_large_pages) {
1314 /*
1315 * We only care about the 1st and last cluster within
b27b7cbc 1316 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1317 * value may be extended out to the start/end of a
1318 * newly allocated cluster.
1319 */
1320 desc = &wc->w_desc[0];
e7432675 1321 if (desc->c_needs_zero)
3a307ffc
MF
1322 ocfs2_figure_cluster_boundaries(osb,
1323 desc->c_cpos,
1324 &wc->w_target_from,
1325 NULL);
1326
1327 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1328 if (desc->c_needs_zero)
3a307ffc
MF
1329 ocfs2_figure_cluster_boundaries(osb,
1330 desc->c_cpos,
1331 NULL,
1332 &wc->w_target_to);
1333 } else {
1334 wc->w_target_from = 0;
09cbfeaf 1335 wc->w_target_to = PAGE_SIZE;
3a307ffc 1336 }
9517bac6
MF
1337}
1338
4506cfb6
RD
1339/*
1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1342 * by the direct io procedure.
1343 * If this is a new extent that allocated by direct io, we should mark it in
1344 * the ip_unwritten_list.
1345 */
1346static int ocfs2_unwritten_check(struct inode *inode,
1347 struct ocfs2_write_ctxt *wc,
1348 struct ocfs2_write_cluster_desc *desc)
1349{
1350 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 1351 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
4506cfb6
RD
1352 int ret = 0;
1353
1354 if (!desc->c_needs_zero)
1355 return 0;
1356
1357retry:
1358 spin_lock(&oi->ip_lock);
1359 /* Needs not to zero no metter buffer or direct. The one who is zero
1360 * the cluster is doing zero. And he will clear unwritten after all
1361 * cluster io finished. */
c15471f7
RD
1362 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1363 if (desc->c_cpos == ue->ue_cpos) {
4506cfb6
RD
1364 BUG_ON(desc->c_new);
1365 desc->c_needs_zero = 0;
1366 desc->c_clear_unwritten = 0;
1367 goto unlock;
1368 }
1369 }
1370
1371 if (wc->w_type != OCFS2_WRITE_DIRECT)
1372 goto unlock;
1373
1374 if (new == NULL) {
1375 spin_unlock(&oi->ip_lock);
1376 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1377 GFP_NOFS);
1378 if (new == NULL) {
1379 ret = -ENOMEM;
1380 goto out;
1381 }
1382 goto retry;
1383 }
1384 /* This direct write will doing zero. */
1385 new->ue_cpos = desc->c_cpos;
1386 new->ue_phys = desc->c_phys;
1387 desc->c_clear_unwritten = 0;
1388 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1389 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
63de8bd9 1390 wc->w_unwritten_count++;
4506cfb6
RD
1391 new = NULL;
1392unlock:
1393 spin_unlock(&oi->ip_lock);
1394out:
0ae1c2db 1395 kfree(new);
4506cfb6
RD
1396 return ret;
1397}
1398
0d172baa
MF
1399/*
1400 * Populate each single-cluster write descriptor in the write context
1401 * with information about the i/o to be done.
b27b7cbc
MF
1402 *
1403 * Returns the number of clusters that will have to be allocated, as
1404 * well as a worst case estimate of the number of extent records that
1405 * would have to be created during a write to an unwritten region.
0d172baa
MF
1406 */
1407static int ocfs2_populate_write_desc(struct inode *inode,
1408 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1409 unsigned int *clusters_to_alloc,
1410 unsigned int *extents_to_split)
9517bac6 1411{
0d172baa 1412 int ret;
3a307ffc 1413 struct ocfs2_write_cluster_desc *desc;
0d172baa 1414 unsigned int num_clusters = 0;
b27b7cbc 1415 unsigned int ext_flags = 0;
0d172baa
MF
1416 u32 phys = 0;
1417 int i;
9517bac6 1418
b27b7cbc
MF
1419 *clusters_to_alloc = 0;
1420 *extents_to_split = 0;
1421
3a307ffc
MF
1422 for (i = 0; i < wc->w_clen; i++) {
1423 desc = &wc->w_desc[i];
1424 desc->c_cpos = wc->w_cpos + i;
1425
1426 if (num_clusters == 0) {
b27b7cbc
MF
1427 /*
1428 * Need to look up the next extent record.
1429 */
3a307ffc 1430 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1431 &num_clusters, &ext_flags);
3a307ffc
MF
1432 if (ret) {
1433 mlog_errno(ret);
607d44aa 1434 goto out;
3a307ffc 1435 }
b27b7cbc 1436
293b2f70
TM
1437 /* We should already CoW the refcountd extent. */
1438 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1439
b27b7cbc
MF
1440 /*
1441 * Assume worst case - that we're writing in
1442 * the middle of the extent.
1443 *
1444 * We can assume that the write proceeds from
1445 * left to right, in which case the extent
1446 * insert code is smart enough to coalesce the
1447 * next splits into the previous records created.
1448 */
1449 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1450 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1451 } else if (phys) {
1452 /*
1453 * Only increment phys if it doesn't describe
1454 * a hole.
1455 */
1456 phys++;
1457 }
1458
e7432675
SM
1459 /*
1460 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1461 * file that got extended. w_first_new_cpos tells us
1462 * where the newly allocated clusters are so we can
1463 * zero them.
1464 */
1465 if (desc->c_cpos >= wc->w_first_new_cpos) {
1466 BUG_ON(phys == 0);
1467 desc->c_needs_zero = 1;
1468 }
1469
3a307ffc
MF
1470 desc->c_phys = phys;
1471 if (phys == 0) {
1472 desc->c_new = 1;
e7432675 1473 desc->c_needs_zero = 1;
b46637d5 1474 desc->c_clear_unwritten = 1;
0d172baa 1475 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1476 }
e7432675
SM
1477
1478 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b46637d5 1479 desc->c_clear_unwritten = 1;
e7432675
SM
1480 desc->c_needs_zero = 1;
1481 }
3a307ffc 1482
4506cfb6
RD
1483 ret = ocfs2_unwritten_check(inode, wc, desc);
1484 if (ret) {
1485 mlog_errno(ret);
1486 goto out;
1487 }
1488
3a307ffc 1489 num_clusters--;
9517bac6
MF
1490 }
1491
0d172baa
MF
1492 ret = 0;
1493out:
1494 return ret;
1495}
1496
1afc32b9
MF
1497static int ocfs2_write_begin_inline(struct address_space *mapping,
1498 struct inode *inode,
1499 struct ocfs2_write_ctxt *wc)
1500{
1501 int ret;
1502 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503 struct page *page;
1504 handle_t *handle;
1505 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506
f775da2f
JB
1507 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1508 if (IS_ERR(handle)) {
1509 ret = PTR_ERR(handle);
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513
1afc32b9
MF
1514 page = find_or_create_page(mapping, 0, GFP_NOFS);
1515 if (!page) {
f775da2f 1516 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1517 ret = -ENOMEM;
1518 mlog_errno(ret);
1519 goto out;
1520 }
1521 /*
1522 * If we don't set w_num_pages then this page won't get unlocked
1523 * and freed on cleanup of the write context.
1524 */
1525 wc->w_pages[0] = wc->w_target_page = page;
1526 wc->w_num_pages = 1;
1527
0cf2f763 1528 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1529 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1530 if (ret) {
1531 ocfs2_commit_trans(osb, handle);
1532
1533 mlog_errno(ret);
1534 goto out;
1535 }
1536
1537 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1538 ocfs2_set_inode_data_inline(inode, di);
1539
1540 if (!PageUptodate(page)) {
1541 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1542 if (ret) {
1543 ocfs2_commit_trans(osb, handle);
1544
1545 goto out;
1546 }
1547 }
1548
1549 wc->w_handle = handle;
1550out:
1551 return ret;
1552}
1553
1554int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1555{
1556 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1557
0d8a4e0c 1558 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1559 return 1;
1560 return 0;
1561}
1562
1563static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1564 struct inode *inode, loff_t pos,
1565 unsigned len, struct page *mmap_page,
1566 struct ocfs2_write_ctxt *wc)
1567{
1568 int ret, written = 0;
1569 loff_t end = pos + len;
1570 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1571 struct ocfs2_dinode *di = NULL;
1afc32b9 1572
9558156b
TM
1573 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1574 len, (unsigned long long)pos,
1575 oi->ip_dyn_features);
1afc32b9
MF
1576
1577 /*
1578 * Handle inodes which already have inline data 1st.
1579 */
1580 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1581 if (mmap_page == NULL &&
1582 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1583 goto do_inline_write;
1584
1585 /*
1586 * The write won't fit - we have to give this inode an
1587 * inline extent list now.
1588 */
1589 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1590 if (ret)
1591 mlog_errno(ret);
1592 goto out;
1593 }
1594
1595 /*
1596 * Check whether the inode can accept inline data.
1597 */
1598 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1599 return 0;
1600
1601 /*
1602 * Check whether the write can fit.
1603 */
d9ae49d6
TY
1604 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1605 if (mmap_page ||
1606 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1607 return 0;
1608
1609do_inline_write:
1610 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1611 if (ret) {
1612 mlog_errno(ret);
1613 goto out;
1614 }
1615
1616 /*
1617 * This signals to the caller that the data can be written
1618 * inline.
1619 */
1620 written = 1;
1621out:
1622 return written ? written : ret;
1623}
1624
65ed39d6
MF
1625/*
1626 * This function only does anything for file systems which can't
1627 * handle sparse files.
1628 *
1629 * What we want to do here is fill in any hole between the current end
1630 * of allocation and the end of our write. That way the rest of the
1631 * write path can treat it as an non-allocating write, which has no
1632 * special case code for sparse/nonsparse files.
1633 */
5693486b
JB
1634static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1635 struct buffer_head *di_bh,
1636 loff_t pos, unsigned len,
65ed39d6
MF
1637 struct ocfs2_write_ctxt *wc)
1638{
1639 int ret;
65ed39d6
MF
1640 loff_t newsize = pos + len;
1641
5693486b 1642 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1643
1644 if (newsize <= i_size_read(inode))
1645 return 0;
1646
5693486b 1647 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1648 if (ret)
1649 mlog_errno(ret);
1650
46e62556
RD
1651 /* There is no wc if this is call from direct. */
1652 if (wc)
1653 wc->w_first_new_cpos =
1654 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
e7432675 1655
65ed39d6
MF
1656 return ret;
1657}
1658
5693486b
JB
1659static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1660 loff_t pos)
1661{
1662 int ret = 0;
1663
1664 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1665 if (pos > i_size_read(inode))
1666 ret = ocfs2_zero_extend(inode, di_bh, pos);
1667
1668 return ret;
1669}
1670
c1ad1e3c
RD
1671int ocfs2_write_begin_nolock(struct address_space *mapping,
1672 loff_t pos, unsigned len, ocfs2_write_type_t type,
0d172baa
MF
1673 struct page **pagep, void **fsdata,
1674 struct buffer_head *di_bh, struct page *mmap_page)
1675{
e7432675 1676 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1677 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1678 struct ocfs2_write_ctxt *wc;
1679 struct inode *inode = mapping->host;
1680 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1681 struct ocfs2_dinode *di;
1682 struct ocfs2_alloc_context *data_ac = NULL;
1683 struct ocfs2_alloc_context *meta_ac = NULL;
1684 handle_t *handle;
f99b9b7c 1685 struct ocfs2_extent_tree et;
50308d81 1686 int try_free = 1, ret1;
0d172baa 1687
50308d81 1688try_again:
c1ad1e3c 1689 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
0d172baa
MF
1690 if (ret) {
1691 mlog_errno(ret);
1692 return ret;
1693 }
1694
1afc32b9
MF
1695 if (ocfs2_supports_inline_data(osb)) {
1696 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1697 mmap_page, wc);
1698 if (ret == 1) {
1699 ret = 0;
1700 goto success;
1701 }
1702 if (ret < 0) {
1703 mlog_errno(ret);
1704 goto out;
1705 }
1706 }
1707
46e62556
RD
1708 /* Direct io change i_size late, should not zero tail here. */
1709 if (type != OCFS2_WRITE_DIRECT) {
1710 if (ocfs2_sparse_alloc(osb))
1711 ret = ocfs2_zero_tail(inode, di_bh, pos);
1712 else
1713 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1714 len, wc);
1715 if (ret) {
1716 mlog_errno(ret);
1717 goto out;
1718 }
65ed39d6
MF
1719 }
1720
293b2f70
TM
1721 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1722 if (ret < 0) {
1723 mlog_errno(ret);
1724 goto out;
1725 } else if (ret == 1) {
50308d81 1726 clusters_need = wc->w_clen;
c7dd3392 1727 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1728 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1729 if (ret) {
1730 mlog_errno(ret);
1731 goto out;
1732 }
1733 }
1734
b27b7cbc
MF
1735 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1736 &extents_to_split);
0d172baa
MF
1737 if (ret) {
1738 mlog_errno(ret);
1739 goto out;
1740 }
50308d81 1741 clusters_need += clusters_to_alloc;
0d172baa
MF
1742
1743 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1744
9558156b
TM
1745 trace_ocfs2_write_begin_nolock(
1746 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1747 (long long)i_size_read(inode),
1748 le32_to_cpu(di->i_clusters),
c1ad1e3c 1749 pos, len, type, mmap_page,
9558156b
TM
1750 clusters_to_alloc, extents_to_split);
1751
3a307ffc
MF
1752 /*
1753 * We set w_target_from, w_target_to here so that
1754 * ocfs2_write_end() knows which range in the target page to
1755 * write out. An allocation requires that we write the entire
1756 * cluster range.
1757 */
b27b7cbc 1758 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1759 /*
1760 * XXX: We are stretching the limits of
b27b7cbc 1761 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1762 * the work to be done.
1763 */
5e404e9e
JB
1764 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1765 wc->w_di_bh);
f99b9b7c 1766 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1767 clusters_to_alloc, extents_to_split,
f99b9b7c 1768 &data_ac, &meta_ac);
9517bac6
MF
1769 if (ret) {
1770 mlog_errno(ret);
607d44aa 1771 goto out;
9517bac6
MF
1772 }
1773
4fe370af
MF
1774 if (data_ac)
1775 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1776
811f933d 1777 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1778 &di->id2.i_list);
46e62556
RD
1779 } else if (type == OCFS2_WRITE_DIRECT)
1780 /* direct write needs not to start trans if no extents alloc. */
1781 goto success;
9517bac6 1782
e7432675
SM
1783 /*
1784 * We have to zero sparse allocated clusters, unwritten extent clusters,
1785 * and non-sparse clusters we just extended. For non-sparse writes,
1786 * we know zeros will only be needed in the first and/or last cluster.
1787 */
4506cfb6
RD
1788 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1789 wc->w_desc[wc->w_clen - 1].c_needs_zero))
e7432675
SM
1790 cluster_of_pages = 1;
1791 else
1792 cluster_of_pages = 0;
1793
1794 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1795
9517bac6
MF
1796 handle = ocfs2_start_trans(osb, credits);
1797 if (IS_ERR(handle)) {
1798 ret = PTR_ERR(handle);
1799 mlog_errno(ret);
607d44aa 1800 goto out;
9517bac6
MF
1801 }
1802
3a307ffc
MF
1803 wc->w_handle = handle;
1804
5dd4056d
CH
1805 if (clusters_to_alloc) {
1806 ret = dquot_alloc_space_nodirty(inode,
1807 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1808 if (ret)
1809 goto out_commit;
a90714c1 1810 }
7f27ec97 1811
0cf2f763 1812 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1813 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1814 if (ret) {
9517bac6 1815 mlog_errno(ret);
a90714c1 1816 goto out_quota;
9517bac6
MF
1817 }
1818
3a307ffc
MF
1819 /*
1820 * Fill our page array first. That way we've grabbed enough so
1821 * that we can zero and flush if we error after adding the
1822 * extent.
1823 */
693c241a 1824 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1825 cluster_of_pages, mmap_page);
5cffff9e 1826 if (ret && ret != -EAGAIN) {
9517bac6 1827 mlog_errno(ret);
a90714c1 1828 goto out_quota;
9517bac6
MF
1829 }
1830
5cffff9e
WW
1831 /*
1832 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1833 * the target page. In this case, we exit with no error and no target
1834 * page. This will trigger the caller, page_mkwrite(), to re-try
1835 * the operation.
1836 */
1837 if (ret == -EAGAIN) {
1838 BUG_ON(wc->w_target_page);
1839 ret = 0;
1840 goto out_quota;
1841 }
1842
0d172baa
MF
1843 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1844 len);
1845 if (ret) {
1846 mlog_errno(ret);
a90714c1 1847 goto out_quota;
9517bac6 1848 }
9517bac6 1849
3a307ffc
MF
1850 if (data_ac)
1851 ocfs2_free_alloc_context(data_ac);
1852 if (meta_ac)
1853 ocfs2_free_alloc_context(meta_ac);
9517bac6 1854
1afc32b9 1855success:
65c4db8c
RD
1856 if (pagep)
1857 *pagep = wc->w_target_page;
3a307ffc
MF
1858 *fsdata = wc;
1859 return 0;
a90714c1
JK
1860out_quota:
1861 if (clusters_to_alloc)
5dd4056d 1862 dquot_free_space(inode,
a90714c1 1863 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1864out_commit:
1865 ocfs2_commit_trans(osb, handle);
1866
9517bac6 1867out:
c33f0785
ER
1868 /*
1869 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1870 * even in case of error here like ENOSPC and ENOMEM. So, we need
1871 * to unlock the target page manually to prevent deadlocks when
1872 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1873 * to VM code.
1874 */
1875 if (wc->w_target_locked)
1876 unlock_page(mmap_page);
1877
4506cfb6 1878 ocfs2_free_write_ctxt(inode, wc);
3a307ffc 1879
b1214e47 1880 if (data_ac) {
9517bac6 1881 ocfs2_free_alloc_context(data_ac);
b1214e47
X
1882 data_ac = NULL;
1883 }
1884 if (meta_ac) {
9517bac6 1885 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
1886 meta_ac = NULL;
1887 }
50308d81
TM
1888
1889 if (ret == -ENOSPC && try_free) {
1890 /*
1891 * Try to free some truncate log so that we can have enough
1892 * clusters to allocate.
1893 */
1894 try_free = 0;
1895
1896 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1897 if (ret1 == 1)
1898 goto try_again;
1899
1900 if (ret1 < 0)
1901 mlog_errno(ret1);
1902 }
1903
3a307ffc
MF
1904 return ret;
1905}
1906
b6af1bcd
NP
1907static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1908 loff_t pos, unsigned len, unsigned flags,
1909 struct page **pagep, void **fsdata)
607d44aa
MF
1910{
1911 int ret;
1912 struct buffer_head *di_bh = NULL;
1913 struct inode *inode = mapping->host;
1914
e63aecb6 1915 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1916 if (ret) {
1917 mlog_errno(ret);
1918 return ret;
1919 }
1920
1921 /*
1922 * Take alloc sem here to prevent concurrent lookups. That way
1923 * the mapping, zeroing and tree manipulation within
1924 * ocfs2_write() will be safe against ->readpage(). This
1925 * should also serve to lock out allocation from a shared
1926 * writeable region.
1927 */
1928 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1929
c1ad1e3c
RD
1930 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1931 pagep, fsdata, di_bh, NULL);
607d44aa
MF
1932 if (ret) {
1933 mlog_errno(ret);
c934a92d 1934 goto out_fail;
607d44aa
MF
1935 }
1936
1937 brelse(di_bh);
1938
1939 return 0;
1940
607d44aa
MF
1941out_fail:
1942 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1943
1944 brelse(di_bh);
e63aecb6 1945 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1946
1947 return ret;
1948}
1949
1afc32b9
MF
1950static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1951 unsigned len, unsigned *copied,
1952 struct ocfs2_dinode *di,
1953 struct ocfs2_write_ctxt *wc)
1954{
1955 void *kaddr;
1956
1957 if (unlikely(*copied < len)) {
1958 if (!PageUptodate(wc->w_target_page)) {
1959 *copied = 0;
1960 return;
1961 }
1962 }
1963
c4bc8dcb 1964 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1965 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1966 kunmap_atomic(kaddr);
1afc32b9 1967
9558156b
TM
1968 trace_ocfs2_write_end_inline(
1969 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1970 (unsigned long long)pos, *copied,
1971 le16_to_cpu(di->id2.i_data.id_count),
1972 le16_to_cpu(di->i_dyn_features));
1973}
1974
7307de80 1975int ocfs2_write_end_nolock(struct address_space *mapping,
07f38d97 1976 loff_t pos, unsigned len, unsigned copied, void *fsdata)
3a307ffc 1977{
7f27ec97 1978 int i, ret;
09cbfeaf 1979 unsigned from, to, start = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1980 struct inode *inode = mapping->host;
1981 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1982 struct ocfs2_write_ctxt *wc = fsdata;
1983 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1984 handle_t *handle = wc->w_handle;
1985 struct page *tmppage;
1986
4506cfb6
RD
1987 BUG_ON(!list_empty(&wc->w_unwritten_list));
1988
46e62556
RD
1989 if (handle) {
1990 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1991 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1992 if (ret) {
1993 copied = ret;
1994 mlog_errno(ret);
1995 goto out;
1996 }
7f27ec97 1997 }
1998
1afc32b9
MF
1999 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2000 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2001 goto out_write_size;
2002 }
2003
65c4db8c 2004 if (unlikely(copied < len) && wc->w_target_page) {
3a307ffc
MF
2005 if (!PageUptodate(wc->w_target_page))
2006 copied = 0;
2007
2008 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2009 start+len);
2010 }
65c4db8c
RD
2011 if (wc->w_target_page)
2012 flush_dcache_page(wc->w_target_page);
3a307ffc
MF
2013
2014 for(i = 0; i < wc->w_num_pages; i++) {
2015 tmppage = wc->w_pages[i];
2016
65c4db8c
RD
2017 /* This is the direct io target page. */
2018 if (tmppage == NULL)
2019 continue;
2020
3a307ffc
MF
2021 if (tmppage == wc->w_target_page) {
2022 from = wc->w_target_from;
2023 to = wc->w_target_to;
2024
09cbfeaf
KS
2025 BUG_ON(from > PAGE_SIZE ||
2026 to > PAGE_SIZE ||
3a307ffc
MF
2027 to < from);
2028 } else {
2029 /*
2030 * Pages adjacent to the target (if any) imply
2031 * a hole-filling write in which case we want
2032 * to flush their entire range.
2033 */
2034 from = 0;
09cbfeaf 2035 to = PAGE_SIZE;
3a307ffc
MF
2036 }
2037
961cecbe 2038 if (page_has_buffers(tmppage)) {
46e62556
RD
2039 if (handle && ocfs2_should_order_data(inode))
2040 ocfs2_jbd2_file_inode(handle, inode);
961cecbe
SM
2041 block_commit_write(tmppage, from, to);
2042 }
3a307ffc
MF
2043 }
2044
1afc32b9 2045out_write_size:
46e62556
RD
2046 /* Direct io do not update i_size here. */
2047 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2048 pos += copied;
2049 if (pos > i_size_read(inode)) {
2050 i_size_write(inode, pos);
2051 mark_inode_dirty(inode);
2052 }
2053 inode->i_blocks = ocfs2_inode_sector_count(inode);
2054 di->i_size = cpu_to_le64((u64)i_size_read(inode));
078cd827 2055 inode->i_mtime = inode->i_ctime = current_time(inode);
46e62556
RD
2056 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2057 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2058 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2059 }
2060 if (handle)
2061 ocfs2_journal_dirty(handle, wc->w_di_bh);
3a307ffc 2062
7f27ec97 2063out:
136f49b9
JB
2064 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2065 * lock, or it will cause a deadlock since journal commit threads holds
2066 * this lock and will ask for the page lock when flushing the data.
2067 * put it here to preserve the unlock order.
2068 */
2069 ocfs2_unlock_pages(wc);
2070
46e62556
RD
2071 if (handle)
2072 ocfs2_commit_trans(osb, handle);
59a5e416 2073
b27b7cbc
MF
2074 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2075
136f49b9
JB
2076 brelse(wc->w_di_bh);
2077 kfree(wc);
607d44aa
MF
2078
2079 return copied;
2080}
2081
b6af1bcd
NP
2082static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2083 loff_t pos, unsigned len, unsigned copied,
2084 struct page *page, void *fsdata)
607d44aa
MF
2085{
2086 int ret;
2087 struct inode *inode = mapping->host;
2088
07f38d97 2089 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
607d44aa 2090
3a307ffc 2091 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2092 ocfs2_inode_unlock(inode, 1);
9517bac6 2093
607d44aa 2094 return ret;
9517bac6
MF
2095}
2096
c15471f7
RD
2097struct ocfs2_dio_write_ctxt {
2098 struct list_head dw_zero_list;
2099 unsigned dw_zero_count;
2100 int dw_orphaned;
2101 pid_t dw_writer_pid;
2102};
2103
2104static struct ocfs2_dio_write_ctxt *
2105ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2106{
2107 struct ocfs2_dio_write_ctxt *dwc = NULL;
2108
2109 if (bh->b_private)
2110 return bh->b_private;
2111
2112 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2113 if (dwc == NULL)
2114 return NULL;
2115 INIT_LIST_HEAD(&dwc->dw_zero_list);
2116 dwc->dw_zero_count = 0;
2117 dwc->dw_orphaned = 0;
2118 dwc->dw_writer_pid = task_pid_nr(current);
2119 bh->b_private = dwc;
2120 *alloc = 1;
2121
2122 return dwc;
2123}
2124
2125static void ocfs2_dio_free_write_ctx(struct inode *inode,
2126 struct ocfs2_dio_write_ctxt *dwc)
2127{
2128 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2129 kfree(dwc);
2130}
2131
2132/*
2133 * TODO: Make this into a generic get_blocks function.
2134 *
2135 * From do_direct_io in direct-io.c:
2136 * "So what we do is to permit the ->get_blocks function to populate
2137 * bh.b_size with the size of IO which is permitted at this offset and
2138 * this i_blkbits."
2139 *
2140 * This function is called directly from get_more_blocks in direct-io.c.
2141 *
2142 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2143 * fs_count, map_bh, dio->rw == WRITE);
2144 */
3e4c56d4 2145static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
c15471f7
RD
2146 struct buffer_head *bh_result, int create)
2147{
2148 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2149 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2150 struct ocfs2_write_ctxt *wc;
2151 struct ocfs2_write_cluster_desc *desc = NULL;
2152 struct ocfs2_dio_write_ctxt *dwc = NULL;
2153 struct buffer_head *di_bh = NULL;
2154 u64 p_blkno;
2155 loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2156 unsigned len, total_len = bh_result->b_size;
2157 int ret = 0, first_get_block = 0;
2158
2159 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2160 len = min(total_len, len);
2161
2162 mlog(0, "get block of %lu at %llu:%u req %u\n",
2163 inode->i_ino, pos, len, total_len);
2164
ce170828
RD
2165 /*
2166 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2167 * we may need to add it to orphan dir. So can not fall to fast path
2168 * while file size will be changed.
2169 */
2170 if (pos + total_len <= i_size_read(inode)) {
a86a72a4 2171
3e4c56d4 2172 /* This is the fast path for re-write. */
2173 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
ce170828
RD
2174 if (buffer_mapped(bh_result) &&
2175 !buffer_new(bh_result) &&
2176 ret == 0)
2177 goto out;
c15471f7 2178
ce170828
RD
2179 /* Clear state set by ocfs2_get_block. */
2180 bh_result->b_state = 0;
2181 }
c15471f7
RD
2182
2183 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2184 if (unlikely(dwc == NULL)) {
2185 ret = -ENOMEM;
2186 mlog_errno(ret);
2187 goto out;
2188 }
2189
2190 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2191 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2192 !dwc->dw_orphaned) {
2193 /*
2194 * when we are going to alloc extents beyond file size, add the
2195 * inode to orphan dir, so we can recall those spaces when
2196 * system crashed during write.
2197 */
2198 ret = ocfs2_add_inode_to_orphan(osb, inode);
2199 if (ret < 0) {
2200 mlog_errno(ret);
2201 goto out;
2202 }
2203 dwc->dw_orphaned = 1;
2204 }
2205
2206 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2207 if (ret) {
2208 mlog_errno(ret);
2209 goto out;
2210 }
2211
a86a72a4
RD
2212 down_write(&oi->ip_alloc_sem);
2213
c15471f7 2214 if (first_get_block) {
1119d3c0 2215 if (ocfs2_sparse_alloc(osb))
c15471f7
RD
2216 ret = ocfs2_zero_tail(inode, di_bh, pos);
2217 else
2218 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2219 total_len, NULL);
2220 if (ret < 0) {
2221 mlog_errno(ret);
2222 goto unlock;
2223 }
2224 }
2225
2226 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2227 OCFS2_WRITE_DIRECT, NULL,
2228 (void **)&wc, di_bh, NULL);
2229 if (ret) {
2230 mlog_errno(ret);
2231 goto unlock;
2232 }
2233
2234 desc = &wc->w_desc[0];
2235
2236 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2237 BUG_ON(p_blkno == 0);
2238 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2239
2240 map_bh(bh_result, inode->i_sb, p_blkno);
2241 bh_result->b_size = len;
2242 if (desc->c_needs_zero)
2243 set_buffer_new(bh_result);
2244
2245 /* May sleep in end_io. It should not happen in a irq context. So defer
2246 * it to dio work queue. */
2247 set_buffer_defer_completion(bh_result);
2248
2249 if (!list_empty(&wc->w_unwritten_list)) {
2250 struct ocfs2_unwritten_extent *ue = NULL;
2251
2252 ue = list_first_entry(&wc->w_unwritten_list,
2253 struct ocfs2_unwritten_extent,
2254 ue_node);
2255 BUG_ON(ue->ue_cpos != desc->c_cpos);
2256 /* The physical address may be 0, fill it. */
2257 ue->ue_phys = desc->c_phys;
2258
2259 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
63de8bd9 2260 dwc->dw_zero_count += wc->w_unwritten_count;
c15471f7
RD
2261 }
2262
07f38d97 2263 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
c15471f7
RD
2264 BUG_ON(ret != len);
2265 ret = 0;
2266unlock:
a86a72a4 2267 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2268 ocfs2_inode_unlock(inode, 1);
2269 brelse(di_bh);
2270out:
2271 if (ret < 0)
2272 ret = -EIO;
2273 return ret;
2274}
2275
08554955
DW
2276static int ocfs2_dio_end_io_write(struct inode *inode,
2277 struct ocfs2_dio_write_ctxt *dwc,
2278 loff_t offset,
2279 ssize_t bytes)
c15471f7
RD
2280{
2281 struct ocfs2_cached_dealloc_ctxt dealloc;
2282 struct ocfs2_extent_tree et;
2283 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2285 struct ocfs2_unwritten_extent *ue = NULL;
2286 struct buffer_head *di_bh = NULL;
2287 struct ocfs2_dinode *di;
2288 struct ocfs2_alloc_context *data_ac = NULL;
2289 struct ocfs2_alloc_context *meta_ac = NULL;
2290 handle_t *handle = NULL;
2291 loff_t end = offset + bytes;
2292 int ret = 0, credits = 0, locked = 0;
2293
2294 ocfs2_init_dealloc_ctxt(&dealloc);
2295
2296 /* We do clear unwritten, delete orphan, change i_size here. If neither
2297 * of these happen, we can skip all this. */
2298 if (list_empty(&dwc->dw_zero_list) &&
2299 end <= i_size_read(inode) &&
2300 !dwc->dw_orphaned)
2301 goto out;
2302
c15471f7
RD
2303 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2304 * are in that context. */
2305 if (dwc->dw_writer_pid != task_pid_nr(current)) {
7b9743eb 2306 inode_lock(inode);
c15471f7
RD
2307 locked = 1;
2308 }
2309
a86a72a4
RD
2310 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2311 if (ret < 0) {
2312 mlog_errno(ret);
2313 goto out;
2314 }
2315
2316 down_write(&oi->ip_alloc_sem);
2317
c15471f7
RD
2318 /* Delete orphan before acquire i_mutex. */
2319 if (dwc->dw_orphaned) {
2320 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2321
2322 end = end > i_size_read(inode) ? end : 0;
2323
2324 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2325 !!end, end);
2326 if (ret < 0)
2327 mlog_errno(ret);
2328 }
2329
aef73a61 2330 di = (struct ocfs2_dinode *)di_bh->b_data;
c15471f7
RD
2331
2332 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2333
71a36944
CG
2334 /* Attach dealloc with extent tree in case that we may reuse extents
2335 * which are already unlinked from current extent tree due to extent
2336 * rotation and merging.
2337 */
2338 et.et_dealloc = &dealloc;
2339
c15471f7
RD
2340 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2341 &data_ac, &meta_ac);
28888681
RD
2342 if (ret) {
2343 mlog_errno(ret);
2344 goto unlock;
2345 }
c15471f7
RD
2346
2347 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2348
2349 handle = ocfs2_start_trans(osb, credits);
2350 if (IS_ERR(handle)) {
2351 ret = PTR_ERR(handle);
2352 mlog_errno(ret);
2353 goto unlock;
2354 }
2355 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2356 OCFS2_JOURNAL_ACCESS_WRITE);
2357 if (ret) {
2358 mlog_errno(ret);
2359 goto commit;
2360 }
2361
2362 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2363 ret = ocfs2_mark_extent_written(inode, &et, handle,
2364 ue->ue_cpos, 1,
2365 ue->ue_phys,
2366 meta_ac, &dealloc);
2367 if (ret < 0) {
2368 mlog_errno(ret);
2369 break;
2370 }
2371 }
2372
2373 if (end > i_size_read(inode)) {
2374 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2375 if (ret < 0)
2376 mlog_errno(ret);
2377 }
2378commit:
2379 ocfs2_commit_trans(osb, handle);
2380unlock:
a86a72a4 2381 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2382 ocfs2_inode_unlock(inode, 1);
2383 brelse(di_bh);
2384out:
c15471f7
RD
2385 if (data_ac)
2386 ocfs2_free_alloc_context(data_ac);
2387 if (meta_ac)
2388 ocfs2_free_alloc_context(meta_ac);
28888681
RD
2389 ocfs2_run_deallocs(osb, &dealloc);
2390 if (locked)
7b9743eb 2391 inode_unlock(inode);
28888681 2392 ocfs2_dio_free_write_ctx(inode, dwc);
08554955
DW
2393
2394 return ret;
c15471f7
RD
2395}
2396
2397/*
2398 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2399 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2400 * to protect io on one node from truncation on another.
2401 */
2402static int ocfs2_dio_end_io(struct kiocb *iocb,
2403 loff_t offset,
2404 ssize_t bytes,
2405 void *private)
2406{
2407 struct inode *inode = file_inode(iocb->ki_filp);
2408 int level;
08554955 2409 int ret = 0;
c15471f7
RD
2410
2411 /* this io's submitter should not have unlocked this before we could */
2412 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2413
dbf896fc 2414 if (bytes > 0 && private)
08554955 2415 ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
c15471f7
RD
2416
2417 ocfs2_iocb_clear_rw_locked(iocb);
2418
2419 level = ocfs2_iocb_rw_locked_level(iocb);
2420 ocfs2_rw_unlock(inode, level);
08554955 2421 return ret;
c15471f7
RD
2422}
2423
c8b8e32d 2424static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
c15471f7
RD
2425{
2426 struct file *file = iocb->ki_filp;
93c76a3d 2427 struct inode *inode = file->f_mapping->host;
c15471f7 2428 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
c15471f7
RD
2429 get_block_t *get_block;
2430
2431 /*
2432 * Fallback to buffered I/O if we see an inode without
2433 * extents.
2434 */
2435 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2436 return 0;
2437
2438 /* Fallback to buffered I/O if we do not support append dio. */
c8b8e32d
CH
2439 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2440 !ocfs2_supports_append_dio(osb))
c15471f7
RD
2441 return 0;
2442
2443 if (iov_iter_rw(iter) == READ)
3e4c56d4 2444 get_block = ocfs2_lock_get_block;
c15471f7 2445 else
3e4c56d4 2446 get_block = ocfs2_dio_wr_get_block;
c15471f7
RD
2447
2448 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
c8b8e32d 2449 iter, get_block,
c15471f7
RD
2450 ocfs2_dio_end_io, NULL, 0);
2451}
2452
f5e54d6e 2453const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2454 .readpage = ocfs2_readpage,
2455 .readpages = ocfs2_readpages,
2456 .writepage = ocfs2_writepage,
2457 .write_begin = ocfs2_write_begin,
2458 .write_end = ocfs2_write_end,
2459 .bmap = ocfs2_bmap,
1fca3a05 2460 .direct_IO = ocfs2_direct_IO,
41ecc345 2461 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2462 .releasepage = ocfs2_releasepage,
2463 .migratepage = buffer_migrate_page,
2464 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2465 .error_remove_page = generic_error_remove_page,
ccd979bd 2466};