ocfs2: add missing errno in ocfs2_ioctl_move_extents()
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
7391a294 83 err = -ENOMEM;
ccd979bd
MF
84 mlog(ML_ERROR, "block offset is outside the allocated size: "
85 "%llu\n", (unsigned long long)iblock);
86 goto bail;
87 }
88
89 /* We don't use the page cache to create symlink data, so if
90 * need be, copy it over from the buffer cache. */
91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 iblock;
94 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 if (!buffer_cache_bh) {
7391a294 96 err = -ENOMEM;
ccd979bd
MF
97 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 goto bail;
99 }
100
101 /* we haven't locked out transactions, so a commit
102 * could've happened. Since we've got a reference on
103 * the bh, even if it commits while we're doing the
104 * copy, the data is still good. */
105 if (buffer_jbd(buffer_cache_bh)
106 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 107 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
108 if (!kaddr) {
109 mlog(ML_ERROR, "couldn't kmap!\n");
110 goto bail;
111 }
112 memcpy(kaddr + (bh_result->b_size * iblock),
113 buffer_cache_bh->b_data,
114 bh_result->b_size);
c4bc8dcb 115 kunmap_atomic(kaddr);
ccd979bd
MF
116 set_buffer_uptodate(bh_result);
117 }
118 brelse(buffer_cache_bh);
119 }
120
121 map_bh(bh_result, inode->i_sb,
122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124 err = 0;
125
126bail:
a81cb88b 127 brelse(bh);
ccd979bd 128
ccd979bd
MF
129 return err;
130}
131
6f70fa51
TM
132int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 struct buffer_head *bh_result, int create)
ccd979bd
MF
134{
135 int err = 0;
49cb8d2d 136 unsigned int ext_flags;
628a24f5
MF
137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 u64 p_blkno, count, past_eof;
25baf2da 139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 140
9558156b
TM
141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
143
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
147
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
152 }
153
628a24f5 154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 155 &ext_flags);
ccd979bd
MF
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
ccd979bd
MF
160 goto bail;
161 }
162
628a24f5
MF
163 if (max_blocks < count)
164 count = max_blocks;
165
25baf2da
MF
166 /*
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
ebdec241 170 * allows __block_write_begin() to zero.
c0420ad2
CL
171 *
172 * If we see this on a sparse file system, then a truncate has
173 * raced us and removed the cluster. In this case, we clear
174 * the buffers dirty and uptodate bits and let the buffer code
175 * ignore it as a hole.
25baf2da 176 */
c0420ad2
CL
177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 clear_buffer_dirty(bh_result);
179 clear_buffer_uptodate(bh_result);
180 goto bail;
181 }
25baf2da 182
49cb8d2d
MF
183 /* Treat the unwritten extent as a hole for zeroing purposes. */
184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
185 map_bh(bh_result, inode->i_sb, p_blkno);
186
628a24f5
MF
187 bh_result->b_size = count << inode->i_blkbits;
188
25baf2da
MF
189 if (!ocfs2_sparse_alloc(osb)) {
190 if (p_blkno == 0) {
191 err = -EIO;
192 mlog(ML_ERROR,
193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 (unsigned long long)iblock,
195 (unsigned long long)p_blkno,
196 (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 dump_stack();
1f4cea37 199 goto bail;
25baf2da 200 }
25baf2da 201 }
ccd979bd 202
5693486b 203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
204
205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 (unsigned long long)past_eof);
5693486b
JB
207 if (create && (iblock >= past_eof))
208 set_buffer_new(bh_result);
209
ccd979bd
MF
210bail:
211 if (err < 0)
212 err = -EIO;
213
ccd979bd
MF
214 return err;
215}
216
1afc32b9
MF
217int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 struct buffer_head *di_bh)
6798d35a
MF
219{
220 void *kaddr;
d2849fb2 221 loff_t size;
6798d35a
MF
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
228 }
229
230 size = i_size_read(inode);
231
232 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 234 ocfs2_error(inode->i_sb,
d2849fb2
JK
235 "Inode %llu has with inline data has bad size: %Lu",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
6798d35a
MF
238 return -EROFS;
239 }
240
c4bc8dcb 241 kaddr = kmap_atomic(page);
6798d35a
MF
242 if (size)
243 memcpy(kaddr, di->id2.i_data.id_data, size);
244 /* Clear the remaining part of the page */
245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 flush_dcache_page(page);
c4bc8dcb 247 kunmap_atomic(kaddr);
6798d35a
MF
248
249 SetPageUptodate(page);
250
251 return 0;
252}
253
254static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255{
256 int ret;
257 struct buffer_head *di_bh = NULL;
6798d35a
MF
258
259 BUG_ON(!PageLocked(page));
86c838b0 260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 261
b657c95c 262 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
263 if (ret) {
264 mlog_errno(ret);
265 goto out;
266 }
267
268 ret = ocfs2_read_inline_data(inode, page, di_bh);
269out:
270 unlock_page(page);
271
272 brelse(di_bh);
273 return ret;
274}
275
ccd979bd
MF
276static int ocfs2_readpage(struct file *file, struct page *page)
277{
278 struct inode *inode = page->mapping->host;
6798d35a 279 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 int ret, unlock = 1;
282
9558156b
TM
283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 (page ? page->index : 0));
ccd979bd 285
e63aecb6 286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
292 }
293
6798d35a 294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
295 /*
296 * Unlock the page and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
298 */
e9dfc0b2 299 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
300 unlock_page(page);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
e63aecb6 304 goto out_inode_unlock;
e9dfc0b2 305 }
ccd979bd
MF
306
307 /*
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_page->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
54cb8821 312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
313 * and notice that the page they just read isn't needed.
314 *
315 * XXX sys_readahead() seems to get that wrong?
316 */
317 if (start >= i_size_read(inode)) {
eebd2aa3 318 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
319 SetPageUptodate(page);
320 ret = 0;
321 goto out_alloc;
322 }
323
6798d35a
MF
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, page);
326 else
327 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
328 unlock = 0;
329
ccd979bd
MF
330out_alloc:
331 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
332out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
334out:
335 if (unlock)
336 unlock_page(page);
ccd979bd
MF
337 return ret;
338}
339
628a24f5
MF
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351{
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394}
395
ccd979bd
MF
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
9558156b
TM
409 trace_ocfs2_writepage(
410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 page->index);
ccd979bd 412
9558156b 413 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
414}
415
ccd979bd
MF
416/* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
60b11392
MF
420int walk_page_buffers( handle_t *handle,
421 struct buffer_head *head,
422 unsigned from,
423 unsigned to,
424 int *partial,
425 int (*fn)( handle_t *handle,
426 struct buffer_head *bh))
ccd979bd
MF
427{
428 struct buffer_head *bh;
429 unsigned block_start, block_end;
430 unsigned blocksize = head->b_size;
431 int err, ret = 0;
432 struct buffer_head *next;
433
434 for ( bh = head, block_start = 0;
435 ret == 0 && (bh != head || !block_start);
436 block_start = block_end, bh = next)
437 {
438 next = bh->b_this_page;
439 block_end = block_start + blocksize;
440 if (block_end <= from || block_start >= to) {
441 if (partial && !buffer_uptodate(bh))
442 *partial = 1;
443 continue;
444 }
445 err = (*fn)(handle, bh);
446 if (!ret)
447 ret = err;
448 }
449 return ret;
450}
451
ccd979bd
MF
452static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453{
454 sector_t status;
455 u64 p_blkno = 0;
456 int err = 0;
457 struct inode *inode = mapping->host;
458
9558156b
TM
459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)block);
ccd979bd
MF
461
462 /* We don't need to lock journal system files, since they aren't
463 * accessed concurrently from multiple nodes.
464 */
465 if (!INODE_JOURNAL(inode)) {
e63aecb6 466 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
467 if (err) {
468 if (err != -ENOENT)
469 mlog_errno(err);
470 goto bail;
471 }
472 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 }
474
6798d35a
MF
475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 NULL);
ccd979bd
MF
478
479 if (!INODE_JOURNAL(inode)) {
480 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 481 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
482 }
483
484 if (err) {
485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 (unsigned long long)block);
487 mlog_errno(err);
488 goto bail;
489 }
490
ccd979bd
MF
491bail:
492 status = err ? 0 : p_blkno;
493
ccd979bd
MF
494 return status;
495}
496
497/*
498 * TODO: Make this into a generic get_blocks function.
499 *
500 * From do_direct_io in direct-io.c:
501 * "So what we do is to permit the ->get_blocks function to populate
502 * bh.b_size with the size of IO which is permitted at this offset and
503 * this i_blkbits."
504 *
505 * This function is called directly from get_more_blocks in direct-io.c.
506 *
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
509 *
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
ccd979bd
MF
512 */
513static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
514 struct buffer_head *bh_result, int create)
515{
516 int ret;
4f902c37 517 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 518 unsigned int ext_flags;
184d7d20 519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 521
ccd979bd
MF
522 /* This function won't even be called if the request isn't all
523 * nicely aligned and of the right size, so there's no need
524 * for us to check any of that. */
525
25baf2da 526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 527
ccd979bd
MF
528 /* This figures out the size of the next contiguous block, and
529 * our logical offset */
363041a5 530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 531 &contig_blocks, &ext_flags);
ccd979bd
MF
532 if (ret) {
533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 (unsigned long long)iblock);
535 ret = -EIO;
536 goto bail;
537 }
538
cbaee472
TM
539 /* We should already CoW the refcounted extent in case of create. */
540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
25baf2da
MF
542 /*
543 * get_more_blocks() expects us to describe a hole by clearing
544 * the mapped bit on bh_result().
49cb8d2d
MF
545 *
546 * Consider an unwritten extent as a hole.
25baf2da 547 */
49cb8d2d 548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 549 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 550 else
25baf2da 551 clear_buffer_mapped(bh_result);
ccd979bd
MF
552
553 /* make sure we don't map more than max_blocks blocks here as
554 that's all the kernel will handle at this point. */
555 if (max_blocks < contig_blocks)
556 contig_blocks = max_blocks;
557 bh_result->b_size = contig_blocks << blocksize_bits;
558bail:
559 return ret;
560}
561
2bd63216 562/*
ccd979bd 563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
ccd979bd
MF
566 */
567static void ocfs2_dio_end_io(struct kiocb *iocb,
568 loff_t offset,
569 ssize_t bytes,
7b7a8665 570 void *private)
ccd979bd 571{
496ad9aa 572 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 573 int level;
a11f7e63 574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
ccd979bd
MF
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 578
df2d6f26 579 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 580 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 581
a11f7e63
MF
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
ccd979bd 591 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 594 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
595}
596
03f981cf
JB
597/*
598 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
599 * from ext3. PageChecked() bits have been removed as OCFS2 does not
600 * do journalled data.
601 */
d47992f8
LC
602static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
603 unsigned int length)
03f981cf
JB
604{
605 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
606
e5f8d30d 607 jbd2_journal_invalidatepage(journal, page, offset, length);
03f981cf
JB
608}
609
610static int ocfs2_releasepage(struct page *page, gfp_t wait)
611{
612 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
613
614 if (!page_has_buffers(page))
615 return 0;
2b4e30fb 616 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
617}
618
ccd979bd
MF
619static ssize_t ocfs2_direct_IO(int rw,
620 struct kiocb *iocb,
621 const struct iovec *iov,
622 loff_t offset,
623 unsigned long nr_segs)
624{
625 struct file *file = iocb->ki_filp;
496ad9aa 626 struct inode *inode = file_inode(file)->i_mapping->host;
53013cba 627
6798d35a
MF
628 /*
629 * Fallback to buffered I/O if we see an inode without
630 * extents.
631 */
632 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
633 return 0;
634
b80474b4
TM
635 /* Fallback to buffered I/O if we are appending. */
636 if (i_size_read(inode) <= offset)
637 return 0;
638
c1e8d35e
TM
639 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
640 iov, offset, nr_segs,
641 ocfs2_direct_IO_get_blocks,
642 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
643}
644
9517bac6
MF
645static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
646 u32 cpos,
647 unsigned int *start,
648 unsigned int *end)
649{
650 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
651
652 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
653 unsigned int cpp;
654
655 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
656
657 cluster_start = cpos % cpp;
658 cluster_start = cluster_start << osb->s_clustersize_bits;
659
660 cluster_end = cluster_start + osb->s_clustersize;
661 }
662
663 BUG_ON(cluster_start > PAGE_SIZE);
664 BUG_ON(cluster_end > PAGE_SIZE);
665
666 if (start)
667 *start = cluster_start;
668 if (end)
669 *end = cluster_end;
670}
671
672/*
673 * 'from' and 'to' are the region in the page to avoid zeroing.
674 *
675 * If pagesize > clustersize, this function will avoid zeroing outside
676 * of the cluster boundary.
677 *
678 * from == to == 0 is code for "zero the entire cluster region"
679 */
680static void ocfs2_clear_page_regions(struct page *page,
681 struct ocfs2_super *osb, u32 cpos,
682 unsigned from, unsigned to)
683{
684 void *kaddr;
685 unsigned int cluster_start, cluster_end;
686
687 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
688
c4bc8dcb 689 kaddr = kmap_atomic(page);
9517bac6
MF
690
691 if (from || to) {
692 if (from > cluster_start)
693 memset(kaddr + cluster_start, 0, from - cluster_start);
694 if (to < cluster_end)
695 memset(kaddr + to, 0, cluster_end - to);
696 } else {
697 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
698 }
699
c4bc8dcb 700 kunmap_atomic(kaddr);
9517bac6
MF
701}
702
4e9563fd
MF
703/*
704 * Nonsparse file systems fully allocate before we get to the write
705 * code. This prevents ocfs2_write() from tagging the write as an
706 * allocating one, which means ocfs2_map_page_blocks() might try to
707 * read-in the blocks at the tail of our file. Avoid reading them by
708 * testing i_size against each block offset.
709 */
710static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
711 unsigned int block_start)
712{
713 u64 offset = page_offset(page) + block_start;
714
715 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
716 return 1;
717
718 if (i_size_read(inode) > offset)
719 return 1;
720
721 return 0;
722}
723
9517bac6 724/*
ebdec241 725 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
726 * mapping by now though, and the entire write will be allocating or
727 * it won't, so not much need to use BH_New.
728 *
729 * This will also skip zeroing, which is handled externally.
730 */
60b11392
MF
731int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
732 struct inode *inode, unsigned int from,
733 unsigned int to, int new)
9517bac6
MF
734{
735 int ret = 0;
736 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
737 unsigned int block_end, block_start;
738 unsigned int bsize = 1 << inode->i_blkbits;
739
740 if (!page_has_buffers(page))
741 create_empty_buffers(page, bsize, 0);
742
743 head = page_buffers(page);
744 for (bh = head, block_start = 0; bh != head || !block_start;
745 bh = bh->b_this_page, block_start += bsize) {
746 block_end = block_start + bsize;
747
3a307ffc
MF
748 clear_buffer_new(bh);
749
9517bac6
MF
750 /*
751 * Ignore blocks outside of our i/o range -
752 * they may belong to unallocated clusters.
753 */
60b11392 754 if (block_start >= to || block_end <= from) {
9517bac6
MF
755 if (PageUptodate(page))
756 set_buffer_uptodate(bh);
757 continue;
758 }
759
760 /*
761 * For an allocating write with cluster size >= page
762 * size, we always write the entire page.
763 */
3a307ffc
MF
764 if (new)
765 set_buffer_new(bh);
9517bac6
MF
766
767 if (!buffer_mapped(bh)) {
768 map_bh(bh, inode->i_sb, *p_blkno);
769 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
770 }
771
772 if (PageUptodate(page)) {
773 if (!buffer_uptodate(bh))
774 set_buffer_uptodate(bh);
775 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 776 !buffer_new(bh) &&
4e9563fd 777 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 778 (block_start < from || block_end > to)) {
9517bac6
MF
779 ll_rw_block(READ, 1, &bh);
780 *wait_bh++=bh;
781 }
782
783 *p_blkno = *p_blkno + 1;
784 }
785
786 /*
787 * If we issued read requests - let them complete.
788 */
789 while(wait_bh > wait) {
790 wait_on_buffer(*--wait_bh);
791 if (!buffer_uptodate(*wait_bh))
792 ret = -EIO;
793 }
794
795 if (ret == 0 || !new)
796 return ret;
797
798 /*
799 * If we get -EIO above, zero out any newly allocated blocks
800 * to avoid exposing stale data.
801 */
802 bh = head;
803 block_start = 0;
804 do {
9517bac6
MF
805 block_end = block_start + bsize;
806 if (block_end <= from)
807 goto next_bh;
808 if (block_start >= to)
809 break;
810
eebd2aa3 811 zero_user(page, block_start, bh->b_size);
9517bac6
MF
812 set_buffer_uptodate(bh);
813 mark_buffer_dirty(bh);
814
815next_bh:
816 block_start = block_end;
817 bh = bh->b_this_page;
818 } while (bh != head);
819
820 return ret;
821}
822
3a307ffc
MF
823#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
824#define OCFS2_MAX_CTXT_PAGES 1
825#else
826#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
827#endif
828
829#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
830
6af67d82 831/*
3a307ffc 832 * Describe the state of a single cluster to be written to.
6af67d82 833 */
3a307ffc
MF
834struct ocfs2_write_cluster_desc {
835 u32 c_cpos;
836 u32 c_phys;
837 /*
838 * Give this a unique field because c_phys eventually gets
839 * filled.
840 */
841 unsigned c_new;
b27b7cbc 842 unsigned c_unwritten;
e7432675 843 unsigned c_needs_zero;
3a307ffc 844};
6af67d82 845
3a307ffc
MF
846struct ocfs2_write_ctxt {
847 /* Logical cluster position / len of write */
848 u32 w_cpos;
849 u32 w_clen;
6af67d82 850
e7432675
SM
851 /* First cluster allocated in a nonsparse extend */
852 u32 w_first_new_cpos;
853
3a307ffc 854 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 855
3a307ffc
MF
856 /*
857 * This is true if page_size > cluster_size.
858 *
859 * It triggers a set of special cases during write which might
860 * have to deal with allocating writes to partial pages.
861 */
862 unsigned int w_large_pages;
6af67d82 863
3a307ffc
MF
864 /*
865 * Pages involved in this write.
866 *
867 * w_target_page is the page being written to by the user.
868 *
869 * w_pages is an array of pages which always contains
870 * w_target_page, and in the case of an allocating write with
871 * page_size < cluster size, it will contain zero'd and mapped
872 * pages adjacent to w_target_page which need to be written
873 * out in so that future reads from that region will get
874 * zero's.
875 */
3a307ffc 876 unsigned int w_num_pages;
83fd9c7f 877 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 878 struct page *w_target_page;
eeb47d12 879
5cffff9e
WW
880 /*
881 * w_target_locked is used for page_mkwrite path indicating no unlocking
882 * against w_target_page in ocfs2_write_end_nolock.
883 */
884 unsigned int w_target_locked:1;
885
3a307ffc
MF
886 /*
887 * ocfs2_write_end() uses this to know what the real range to
888 * write in the target should be.
889 */
890 unsigned int w_target_from;
891 unsigned int w_target_to;
892
893 /*
894 * We could use journal_current_handle() but this is cleaner,
895 * IMHO -Mark
896 */
897 handle_t *w_handle;
898
899 struct buffer_head *w_di_bh;
b27b7cbc
MF
900
901 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
902};
903
1d410a6e 904void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
905{
906 int i;
907
1d410a6e
MF
908 for(i = 0; i < num_pages; i++) {
909 if (pages[i]) {
910 unlock_page(pages[i]);
911 mark_page_accessed(pages[i]);
912 page_cache_release(pages[i]);
913 }
6af67d82 914 }
1d410a6e
MF
915}
916
917static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
918{
5cffff9e
WW
919 int i;
920
921 /*
922 * w_target_locked is only set to true in the page_mkwrite() case.
923 * The intent is to allow us to lock the target page from write_begin()
924 * to write_end(). The caller must hold a ref on w_target_page.
925 */
926 if (wc->w_target_locked) {
927 BUG_ON(!wc->w_target_page);
928 for (i = 0; i < wc->w_num_pages; i++) {
929 if (wc->w_target_page == wc->w_pages[i]) {
930 wc->w_pages[i] = NULL;
931 break;
932 }
933 }
934 mark_page_accessed(wc->w_target_page);
935 page_cache_release(wc->w_target_page);
936 }
1d410a6e 937 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 938
3a307ffc
MF
939 brelse(wc->w_di_bh);
940 kfree(wc);
941}
942
943static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
944 struct ocfs2_super *osb, loff_t pos,
607d44aa 945 unsigned len, struct buffer_head *di_bh)
3a307ffc 946{
30b8548f 947 u32 cend;
3a307ffc
MF
948 struct ocfs2_write_ctxt *wc;
949
950 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
951 if (!wc)
952 return -ENOMEM;
6af67d82 953
3a307ffc 954 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 955 wc->w_first_new_cpos = UINT_MAX;
30b8548f 956 cend = (pos + len - 1) >> osb->s_clustersize_bits;
957 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
958 get_bh(di_bh);
959 wc->w_di_bh = di_bh;
6af67d82 960
3a307ffc
MF
961 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
962 wc->w_large_pages = 1;
963 else
964 wc->w_large_pages = 0;
965
b27b7cbc
MF
966 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
967
3a307ffc 968 *wcp = wc;
6af67d82 969
3a307ffc 970 return 0;
6af67d82
MF
971}
972
9517bac6 973/*
3a307ffc
MF
974 * If a page has any new buffers, zero them out here, and mark them uptodate
975 * and dirty so they'll be written out (in order to prevent uninitialised
976 * block data from leaking). And clear the new bit.
9517bac6 977 */
3a307ffc 978static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 979{
3a307ffc
MF
980 unsigned int block_start, block_end;
981 struct buffer_head *head, *bh;
9517bac6 982
3a307ffc
MF
983 BUG_ON(!PageLocked(page));
984 if (!page_has_buffers(page))
985 return;
9517bac6 986
3a307ffc
MF
987 bh = head = page_buffers(page);
988 block_start = 0;
989 do {
990 block_end = block_start + bh->b_size;
991
992 if (buffer_new(bh)) {
993 if (block_end > from && block_start < to) {
994 if (!PageUptodate(page)) {
995 unsigned start, end;
3a307ffc
MF
996
997 start = max(from, block_start);
998 end = min(to, block_end);
999
eebd2aa3 1000 zero_user_segment(page, start, end);
3a307ffc
MF
1001 set_buffer_uptodate(bh);
1002 }
1003
1004 clear_buffer_new(bh);
1005 mark_buffer_dirty(bh);
1006 }
1007 }
9517bac6 1008
3a307ffc
MF
1009 block_start = block_end;
1010 bh = bh->b_this_page;
1011 } while (bh != head);
1012}
1013
1014/*
1015 * Only called when we have a failure during allocating write to write
1016 * zero's to the newly allocated region.
1017 */
1018static void ocfs2_write_failure(struct inode *inode,
1019 struct ocfs2_write_ctxt *wc,
1020 loff_t user_pos, unsigned user_len)
1021{
1022 int i;
5c26a7b7
MF
1023 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1024 to = user_pos + user_len;
3a307ffc
MF
1025 struct page *tmppage;
1026
5c26a7b7 1027 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1028
3a307ffc
MF
1029 for(i = 0; i < wc->w_num_pages; i++) {
1030 tmppage = wc->w_pages[i];
9517bac6 1031
961cecbe 1032 if (page_has_buffers(tmppage)) {
53ef99ca 1033 if (ocfs2_should_order_data(inode))
2b4e30fb 1034 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1035
1036 block_commit_write(tmppage, from, to);
1037 }
9517bac6 1038 }
9517bac6
MF
1039}
1040
3a307ffc
MF
1041static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1042 struct ocfs2_write_ctxt *wc,
1043 struct page *page, u32 cpos,
1044 loff_t user_pos, unsigned user_len,
1045 int new)
9517bac6 1046{
3a307ffc
MF
1047 int ret;
1048 unsigned int map_from = 0, map_to = 0;
9517bac6 1049 unsigned int cluster_start, cluster_end;
3a307ffc 1050 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1051
3a307ffc 1052 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1053 &cluster_start, &cluster_end);
1054
272b62c1
GR
1055 /* treat the write as new if the a hole/lseek spanned across
1056 * the page boundary.
1057 */
1058 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1059 (page_offset(page) <= user_pos));
1060
3a307ffc
MF
1061 if (page == wc->w_target_page) {
1062 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1063 map_to = map_from + user_len;
1064
1065 if (new)
1066 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1067 cluster_start, cluster_end,
1068 new);
1069 else
1070 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071 map_from, map_to, new);
1072 if (ret) {
9517bac6
MF
1073 mlog_errno(ret);
1074 goto out;
1075 }
1076
3a307ffc
MF
1077 user_data_from = map_from;
1078 user_data_to = map_to;
9517bac6 1079 if (new) {
3a307ffc
MF
1080 map_from = cluster_start;
1081 map_to = cluster_end;
9517bac6
MF
1082 }
1083 } else {
1084 /*
1085 * If we haven't allocated the new page yet, we
1086 * shouldn't be writing it out without copying user
1087 * data. This is likely a math error from the caller.
1088 */
1089 BUG_ON(!new);
1090
3a307ffc
MF
1091 map_from = cluster_start;
1092 map_to = cluster_end;
9517bac6
MF
1093
1094 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1095 cluster_start, cluster_end, new);
9517bac6
MF
1096 if (ret) {
1097 mlog_errno(ret);
1098 goto out;
1099 }
1100 }
1101
1102 /*
1103 * Parts of newly allocated pages need to be zero'd.
1104 *
1105 * Above, we have also rewritten 'to' and 'from' - as far as
1106 * the rest of the function is concerned, the entire cluster
1107 * range inside of a page needs to be written.
1108 *
1109 * We can skip this if the page is up to date - it's already
1110 * been zero'd from being read in as a hole.
1111 */
1112 if (new && !PageUptodate(page))
1113 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1114 cpos, user_data_from, user_data_to);
9517bac6
MF
1115
1116 flush_dcache_page(page);
1117
9517bac6 1118out:
3a307ffc 1119 return ret;
9517bac6
MF
1120}
1121
1122/*
3a307ffc 1123 * This function will only grab one clusters worth of pages.
9517bac6 1124 */
3a307ffc
MF
1125static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1126 struct ocfs2_write_ctxt *wc,
693c241a
JB
1127 u32 cpos, loff_t user_pos,
1128 unsigned user_len, int new,
7307de80 1129 struct page *mmap_page)
9517bac6 1130{
3a307ffc 1131 int ret = 0, i;
693c241a 1132 unsigned long start, target_index, end_index, index;
9517bac6 1133 struct inode *inode = mapping->host;
693c241a 1134 loff_t last_byte;
9517bac6 1135
3a307ffc 1136 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1137
1138 /*
1139 * Figure out how many pages we'll be manipulating here. For
60b11392 1140 * non allocating write, we just change the one
693c241a
JB
1141 * page. Otherwise, we'll need a whole clusters worth. If we're
1142 * writing past i_size, we only need enough pages to cover the
1143 * last page of the write.
9517bac6 1144 */
9517bac6 1145 if (new) {
3a307ffc
MF
1146 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1147 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1148 /*
1149 * We need the index *past* the last page we could possibly
1150 * touch. This is the page past the end of the write or
1151 * i_size, whichever is greater.
1152 */
1153 last_byte = max(user_pos + user_len, i_size_read(inode));
1154 BUG_ON(last_byte < 1);
1155 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1156 if ((start + wc->w_num_pages) > end_index)
1157 wc->w_num_pages = end_index - start;
9517bac6 1158 } else {
3a307ffc
MF
1159 wc->w_num_pages = 1;
1160 start = target_index;
9517bac6
MF
1161 }
1162
3a307ffc 1163 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1164 index = start + i;
1165
7307de80
MF
1166 if (index == target_index && mmap_page) {
1167 /*
1168 * ocfs2_pagemkwrite() is a little different
1169 * and wants us to directly use the page
1170 * passed in.
1171 */
1172 lock_page(mmap_page);
1173
5cffff9e 1174 /* Exit and let the caller retry */
7307de80 1175 if (mmap_page->mapping != mapping) {
5cffff9e 1176 WARN_ON(mmap_page->mapping);
7307de80 1177 unlock_page(mmap_page);
5cffff9e 1178 ret = -EAGAIN;
7307de80
MF
1179 goto out;
1180 }
1181
1182 page_cache_get(mmap_page);
1183 wc->w_pages[i] = mmap_page;
5cffff9e 1184 wc->w_target_locked = true;
7307de80
MF
1185 } else {
1186 wc->w_pages[i] = find_or_create_page(mapping, index,
1187 GFP_NOFS);
1188 if (!wc->w_pages[i]) {
1189 ret = -ENOMEM;
1190 mlog_errno(ret);
1191 goto out;
1192 }
9517bac6 1193 }
1269529b 1194 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1195
1196 if (index == target_index)
1197 wc->w_target_page = wc->w_pages[i];
9517bac6 1198 }
3a307ffc 1199out:
5cffff9e
WW
1200 if (ret)
1201 wc->w_target_locked = false;
3a307ffc
MF
1202 return ret;
1203}
1204
1205/*
1206 * Prepare a single cluster for write one cluster into the file.
1207 */
1208static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1209 u32 phys, unsigned int unwritten,
e7432675 1210 unsigned int should_zero,
b27b7cbc 1211 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1212 struct ocfs2_alloc_context *meta_ac,
1213 struct ocfs2_write_ctxt *wc, u32 cpos,
1214 loff_t user_pos, unsigned user_len)
1215{
e7432675 1216 int ret, i, new;
3a307ffc
MF
1217 u64 v_blkno, p_blkno;
1218 struct inode *inode = mapping->host;
f99b9b7c 1219 struct ocfs2_extent_tree et;
3a307ffc
MF
1220
1221 new = phys == 0 ? 1 : 0;
9517bac6 1222 if (new) {
3a307ffc
MF
1223 u32 tmp_pos;
1224
9517bac6
MF
1225 /*
1226 * This is safe to call with the page locks - it won't take
1227 * any additional semaphores or cluster locks.
1228 */
3a307ffc 1229 tmp_pos = cpos;
0eb8d47e
TM
1230 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1231 &tmp_pos, 1, 0, wc->w_di_bh,
1232 wc->w_handle, data_ac,
1233 meta_ac, NULL);
9517bac6
MF
1234 /*
1235 * This shouldn't happen because we must have already
1236 * calculated the correct meta data allocation required. The
1237 * internal tree allocation code should know how to increase
1238 * transaction credits itself.
1239 *
1240 * If need be, we could handle -EAGAIN for a
1241 * RESTART_TRANS here.
1242 */
1243 mlog_bug_on_msg(ret == -EAGAIN,
1244 "Inode %llu: EAGAIN return during allocation.\n",
1245 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1246 if (ret < 0) {
1247 mlog_errno(ret);
1248 goto out;
1249 }
b27b7cbc 1250 } else if (unwritten) {
5e404e9e
JB
1251 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1252 wc->w_di_bh);
f99b9b7c 1253 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1254 wc->w_handle, cpos, 1, phys,
f99b9b7c 1255 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1256 if (ret < 0) {
1257 mlog_errno(ret);
1258 goto out;
1259 }
1260 }
3a307ffc 1261
b27b7cbc 1262 if (should_zero)
3a307ffc 1263 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1264 else
3a307ffc 1265 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1266
3a307ffc
MF
1267 /*
1268 * The only reason this should fail is due to an inability to
1269 * find the extent added.
1270 */
49cb8d2d
MF
1271 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1272 NULL);
9517bac6 1273 if (ret < 0) {
3a307ffc
MF
1274 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1275 "at logical block %llu",
1276 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1277 (unsigned long long)v_blkno);
9517bac6
MF
1278 goto out;
1279 }
1280
1281 BUG_ON(p_blkno == 0);
1282
3a307ffc
MF
1283 for(i = 0; i < wc->w_num_pages; i++) {
1284 int tmpret;
9517bac6 1285
3a307ffc
MF
1286 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1287 wc->w_pages[i], cpos,
b27b7cbc
MF
1288 user_pos, user_len,
1289 should_zero);
3a307ffc
MF
1290 if (tmpret) {
1291 mlog_errno(tmpret);
1292 if (ret == 0)
cbfa9639 1293 ret = tmpret;
3a307ffc 1294 }
9517bac6
MF
1295 }
1296
3a307ffc
MF
1297 /*
1298 * We only have cleanup to do in case of allocating write.
1299 */
1300 if (ret && new)
1301 ocfs2_write_failure(inode, wc, user_pos, user_len);
1302
9517bac6 1303out:
9517bac6 1304
3a307ffc 1305 return ret;
9517bac6
MF
1306}
1307
0d172baa
MF
1308static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1309 struct ocfs2_alloc_context *data_ac,
1310 struct ocfs2_alloc_context *meta_ac,
1311 struct ocfs2_write_ctxt *wc,
1312 loff_t pos, unsigned len)
1313{
1314 int ret, i;
db56246c
MF
1315 loff_t cluster_off;
1316 unsigned int local_len = len;
0d172baa 1317 struct ocfs2_write_cluster_desc *desc;
db56246c 1318 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1319
1320 for (i = 0; i < wc->w_clen; i++) {
1321 desc = &wc->w_desc[i];
1322
db56246c
MF
1323 /*
1324 * We have to make sure that the total write passed in
1325 * doesn't extend past a single cluster.
1326 */
1327 local_len = len;
1328 cluster_off = pos & (osb->s_clustersize - 1);
1329 if ((cluster_off + local_len) > osb->s_clustersize)
1330 local_len = osb->s_clustersize - cluster_off;
1331
b27b7cbc 1332 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1333 desc->c_unwritten,
1334 desc->c_needs_zero,
1335 data_ac, meta_ac,
db56246c 1336 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1337 if (ret) {
1338 mlog_errno(ret);
1339 goto out;
1340 }
db56246c
MF
1341
1342 len -= local_len;
1343 pos += local_len;
0d172baa
MF
1344 }
1345
1346 ret = 0;
1347out:
1348 return ret;
1349}
1350
3a307ffc
MF
1351/*
1352 * ocfs2_write_end() wants to know which parts of the target page it
1353 * should complete the write on. It's easiest to compute them ahead of
1354 * time when a more complete view of the write is available.
1355 */
1356static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1357 struct ocfs2_write_ctxt *wc,
1358 loff_t pos, unsigned len, int alloc)
9517bac6 1359{
3a307ffc 1360 struct ocfs2_write_cluster_desc *desc;
9517bac6 1361
3a307ffc
MF
1362 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1363 wc->w_target_to = wc->w_target_from + len;
1364
1365 if (alloc == 0)
1366 return;
1367
1368 /*
1369 * Allocating write - we may have different boundaries based
1370 * on page size and cluster size.
1371 *
1372 * NOTE: We can no longer compute one value from the other as
1373 * the actual write length and user provided length may be
1374 * different.
1375 */
9517bac6 1376
3a307ffc
MF
1377 if (wc->w_large_pages) {
1378 /*
1379 * We only care about the 1st and last cluster within
b27b7cbc 1380 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1381 * value may be extended out to the start/end of a
1382 * newly allocated cluster.
1383 */
1384 desc = &wc->w_desc[0];
e7432675 1385 if (desc->c_needs_zero)
3a307ffc
MF
1386 ocfs2_figure_cluster_boundaries(osb,
1387 desc->c_cpos,
1388 &wc->w_target_from,
1389 NULL);
1390
1391 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1392 if (desc->c_needs_zero)
3a307ffc
MF
1393 ocfs2_figure_cluster_boundaries(osb,
1394 desc->c_cpos,
1395 NULL,
1396 &wc->w_target_to);
1397 } else {
1398 wc->w_target_from = 0;
1399 wc->w_target_to = PAGE_CACHE_SIZE;
1400 }
9517bac6
MF
1401}
1402
0d172baa
MF
1403/*
1404 * Populate each single-cluster write descriptor in the write context
1405 * with information about the i/o to be done.
b27b7cbc
MF
1406 *
1407 * Returns the number of clusters that will have to be allocated, as
1408 * well as a worst case estimate of the number of extent records that
1409 * would have to be created during a write to an unwritten region.
0d172baa
MF
1410 */
1411static int ocfs2_populate_write_desc(struct inode *inode,
1412 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1413 unsigned int *clusters_to_alloc,
1414 unsigned int *extents_to_split)
9517bac6 1415{
0d172baa 1416 int ret;
3a307ffc 1417 struct ocfs2_write_cluster_desc *desc;
0d172baa 1418 unsigned int num_clusters = 0;
b27b7cbc 1419 unsigned int ext_flags = 0;
0d172baa
MF
1420 u32 phys = 0;
1421 int i;
9517bac6 1422
b27b7cbc
MF
1423 *clusters_to_alloc = 0;
1424 *extents_to_split = 0;
1425
3a307ffc
MF
1426 for (i = 0; i < wc->w_clen; i++) {
1427 desc = &wc->w_desc[i];
1428 desc->c_cpos = wc->w_cpos + i;
1429
1430 if (num_clusters == 0) {
b27b7cbc
MF
1431 /*
1432 * Need to look up the next extent record.
1433 */
3a307ffc 1434 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1435 &num_clusters, &ext_flags);
3a307ffc
MF
1436 if (ret) {
1437 mlog_errno(ret);
607d44aa 1438 goto out;
3a307ffc 1439 }
b27b7cbc 1440
293b2f70
TM
1441 /* We should already CoW the refcountd extent. */
1442 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1443
b27b7cbc
MF
1444 /*
1445 * Assume worst case - that we're writing in
1446 * the middle of the extent.
1447 *
1448 * We can assume that the write proceeds from
1449 * left to right, in which case the extent
1450 * insert code is smart enough to coalesce the
1451 * next splits into the previous records created.
1452 */
1453 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1454 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1455 } else if (phys) {
1456 /*
1457 * Only increment phys if it doesn't describe
1458 * a hole.
1459 */
1460 phys++;
1461 }
1462
e7432675
SM
1463 /*
1464 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1465 * file that got extended. w_first_new_cpos tells us
1466 * where the newly allocated clusters are so we can
1467 * zero them.
1468 */
1469 if (desc->c_cpos >= wc->w_first_new_cpos) {
1470 BUG_ON(phys == 0);
1471 desc->c_needs_zero = 1;
1472 }
1473
3a307ffc
MF
1474 desc->c_phys = phys;
1475 if (phys == 0) {
1476 desc->c_new = 1;
e7432675 1477 desc->c_needs_zero = 1;
0d172baa 1478 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1479 }
e7432675
SM
1480
1481 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1482 desc->c_unwritten = 1;
e7432675
SM
1483 desc->c_needs_zero = 1;
1484 }
3a307ffc
MF
1485
1486 num_clusters--;
9517bac6
MF
1487 }
1488
0d172baa
MF
1489 ret = 0;
1490out:
1491 return ret;
1492}
1493
1afc32b9
MF
1494static int ocfs2_write_begin_inline(struct address_space *mapping,
1495 struct inode *inode,
1496 struct ocfs2_write_ctxt *wc)
1497{
1498 int ret;
1499 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1500 struct page *page;
1501 handle_t *handle;
1502 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1503
1504 page = find_or_create_page(mapping, 0, GFP_NOFS);
1505 if (!page) {
1506 ret = -ENOMEM;
1507 mlog_errno(ret);
1508 goto out;
1509 }
1510 /*
1511 * If we don't set w_num_pages then this page won't get unlocked
1512 * and freed on cleanup of the write context.
1513 */
1514 wc->w_pages[0] = wc->w_target_page = page;
1515 wc->w_num_pages = 1;
1516
1517 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1518 if (IS_ERR(handle)) {
1519 ret = PTR_ERR(handle);
1520 mlog_errno(ret);
1521 goto out;
1522 }
1523
0cf2f763 1524 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1525 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1526 if (ret) {
1527 ocfs2_commit_trans(osb, handle);
1528
1529 mlog_errno(ret);
1530 goto out;
1531 }
1532
1533 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1534 ocfs2_set_inode_data_inline(inode, di);
1535
1536 if (!PageUptodate(page)) {
1537 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1538 if (ret) {
1539 ocfs2_commit_trans(osb, handle);
1540
1541 goto out;
1542 }
1543 }
1544
1545 wc->w_handle = handle;
1546out:
1547 return ret;
1548}
1549
1550int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1551{
1552 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1553
0d8a4e0c 1554 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1555 return 1;
1556 return 0;
1557}
1558
1559static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1560 struct inode *inode, loff_t pos,
1561 unsigned len, struct page *mmap_page,
1562 struct ocfs2_write_ctxt *wc)
1563{
1564 int ret, written = 0;
1565 loff_t end = pos + len;
1566 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1567 struct ocfs2_dinode *di = NULL;
1afc32b9 1568
9558156b
TM
1569 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1570 len, (unsigned long long)pos,
1571 oi->ip_dyn_features);
1afc32b9
MF
1572
1573 /*
1574 * Handle inodes which already have inline data 1st.
1575 */
1576 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1577 if (mmap_page == NULL &&
1578 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1579 goto do_inline_write;
1580
1581 /*
1582 * The write won't fit - we have to give this inode an
1583 * inline extent list now.
1584 */
1585 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1586 if (ret)
1587 mlog_errno(ret);
1588 goto out;
1589 }
1590
1591 /*
1592 * Check whether the inode can accept inline data.
1593 */
1594 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1595 return 0;
1596
1597 /*
1598 * Check whether the write can fit.
1599 */
d9ae49d6
TY
1600 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1601 if (mmap_page ||
1602 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1603 return 0;
1604
1605do_inline_write:
1606 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1607 if (ret) {
1608 mlog_errno(ret);
1609 goto out;
1610 }
1611
1612 /*
1613 * This signals to the caller that the data can be written
1614 * inline.
1615 */
1616 written = 1;
1617out:
1618 return written ? written : ret;
1619}
1620
65ed39d6
MF
1621/*
1622 * This function only does anything for file systems which can't
1623 * handle sparse files.
1624 *
1625 * What we want to do here is fill in any hole between the current end
1626 * of allocation and the end of our write. That way the rest of the
1627 * write path can treat it as an non-allocating write, which has no
1628 * special case code for sparse/nonsparse files.
1629 */
5693486b
JB
1630static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1631 struct buffer_head *di_bh,
1632 loff_t pos, unsigned len,
65ed39d6
MF
1633 struct ocfs2_write_ctxt *wc)
1634{
1635 int ret;
65ed39d6
MF
1636 loff_t newsize = pos + len;
1637
5693486b 1638 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1639
1640 if (newsize <= i_size_read(inode))
1641 return 0;
1642
5693486b 1643 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1644 if (ret)
1645 mlog_errno(ret);
1646
e7432675
SM
1647 wc->w_first_new_cpos =
1648 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1649
65ed39d6
MF
1650 return ret;
1651}
1652
5693486b
JB
1653static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1654 loff_t pos)
1655{
1656 int ret = 0;
1657
1658 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1659 if (pos > i_size_read(inode))
1660 ret = ocfs2_zero_extend(inode, di_bh, pos);
1661
1662 return ret;
1663}
1664
50308d81
TM
1665/*
1666 * Try to flush truncate logs if we can free enough clusters from it.
1667 * As for return value, "< 0" means error, "0" no space and "1" means
1668 * we have freed enough spaces and let the caller try to allocate again.
1669 */
1670static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1671 unsigned int needed)
1672{
1673 tid_t target;
1674 int ret = 0;
1675 unsigned int truncated_clusters;
1676
1677 mutex_lock(&osb->osb_tl_inode->i_mutex);
1678 truncated_clusters = osb->truncated_clusters;
1679 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1680
1681 /*
1682 * Check whether we can succeed in allocating if we free
1683 * the truncate log.
1684 */
1685 if (truncated_clusters < needed)
1686 goto out;
1687
1688 ret = ocfs2_flush_truncate_log(osb);
1689 if (ret) {
1690 mlog_errno(ret);
1691 goto out;
1692 }
1693
1694 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1695 jbd2_log_wait_commit(osb->journal->j_journal, target);
1696 ret = 1;
1697 }
1698out:
1699 return ret;
1700}
1701
0378da0f
TM
1702int ocfs2_write_begin_nolock(struct file *filp,
1703 struct address_space *mapping,
0d172baa
MF
1704 loff_t pos, unsigned len, unsigned flags,
1705 struct page **pagep, void **fsdata,
1706 struct buffer_head *di_bh, struct page *mmap_page)
1707{
e7432675 1708 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1709 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1710 struct ocfs2_write_ctxt *wc;
1711 struct inode *inode = mapping->host;
1712 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1713 struct ocfs2_dinode *di;
1714 struct ocfs2_alloc_context *data_ac = NULL;
1715 struct ocfs2_alloc_context *meta_ac = NULL;
1716 handle_t *handle;
f99b9b7c 1717 struct ocfs2_extent_tree et;
50308d81 1718 int try_free = 1, ret1;
0d172baa 1719
50308d81 1720try_again:
0d172baa
MF
1721 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1722 if (ret) {
1723 mlog_errno(ret);
1724 return ret;
1725 }
1726
1afc32b9
MF
1727 if (ocfs2_supports_inline_data(osb)) {
1728 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1729 mmap_page, wc);
1730 if (ret == 1) {
1731 ret = 0;
1732 goto success;
1733 }
1734 if (ret < 0) {
1735 mlog_errno(ret);
1736 goto out;
1737 }
1738 }
1739
5693486b
JB
1740 if (ocfs2_sparse_alloc(osb))
1741 ret = ocfs2_zero_tail(inode, di_bh, pos);
1742 else
1743 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1744 wc);
65ed39d6
MF
1745 if (ret) {
1746 mlog_errno(ret);
1747 goto out;
1748 }
1749
293b2f70
TM
1750 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1751 if (ret < 0) {
1752 mlog_errno(ret);
1753 goto out;
1754 } else if (ret == 1) {
50308d81 1755 clusters_need = wc->w_clen;
c7dd3392 1756 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1757 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1758 if (ret) {
1759 mlog_errno(ret);
1760 goto out;
1761 }
1762 }
1763
b27b7cbc
MF
1764 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1765 &extents_to_split);
0d172baa
MF
1766 if (ret) {
1767 mlog_errno(ret);
1768 goto out;
1769 }
50308d81 1770 clusters_need += clusters_to_alloc;
0d172baa
MF
1771
1772 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1773
9558156b
TM
1774 trace_ocfs2_write_begin_nolock(
1775 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1776 (long long)i_size_read(inode),
1777 le32_to_cpu(di->i_clusters),
1778 pos, len, flags, mmap_page,
1779 clusters_to_alloc, extents_to_split);
1780
3a307ffc
MF
1781 /*
1782 * We set w_target_from, w_target_to here so that
1783 * ocfs2_write_end() knows which range in the target page to
1784 * write out. An allocation requires that we write the entire
1785 * cluster range.
1786 */
b27b7cbc 1787 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1788 /*
1789 * XXX: We are stretching the limits of
b27b7cbc 1790 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1791 * the work to be done.
1792 */
5e404e9e
JB
1793 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1794 wc->w_di_bh);
f99b9b7c 1795 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1796 clusters_to_alloc, extents_to_split,
f99b9b7c 1797 &data_ac, &meta_ac);
9517bac6
MF
1798 if (ret) {
1799 mlog_errno(ret);
607d44aa 1800 goto out;
9517bac6
MF
1801 }
1802
4fe370af
MF
1803 if (data_ac)
1804 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1805
811f933d 1806 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1807 &di->id2.i_list);
3a307ffc 1808
9517bac6
MF
1809 }
1810
e7432675
SM
1811 /*
1812 * We have to zero sparse allocated clusters, unwritten extent clusters,
1813 * and non-sparse clusters we just extended. For non-sparse writes,
1814 * we know zeros will only be needed in the first and/or last cluster.
1815 */
1816 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1817 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1818 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1819 cluster_of_pages = 1;
1820 else
1821 cluster_of_pages = 0;
1822
1823 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1824
9517bac6
MF
1825 handle = ocfs2_start_trans(osb, credits);
1826 if (IS_ERR(handle)) {
1827 ret = PTR_ERR(handle);
1828 mlog_errno(ret);
607d44aa 1829 goto out;
9517bac6
MF
1830 }
1831
3a307ffc
MF
1832 wc->w_handle = handle;
1833
5dd4056d
CH
1834 if (clusters_to_alloc) {
1835 ret = dquot_alloc_space_nodirty(inode,
1836 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1837 if (ret)
1838 goto out_commit;
a90714c1 1839 }
3a307ffc
MF
1840 /*
1841 * We don't want this to fail in ocfs2_write_end(), so do it
1842 * here.
1843 */
0cf2f763 1844 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1845 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1846 if (ret) {
9517bac6 1847 mlog_errno(ret);
a90714c1 1848 goto out_quota;
9517bac6
MF
1849 }
1850
3a307ffc
MF
1851 /*
1852 * Fill our page array first. That way we've grabbed enough so
1853 * that we can zero and flush if we error after adding the
1854 * extent.
1855 */
693c241a 1856 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1857 cluster_of_pages, mmap_page);
5cffff9e 1858 if (ret && ret != -EAGAIN) {
9517bac6 1859 mlog_errno(ret);
a90714c1 1860 goto out_quota;
9517bac6
MF
1861 }
1862
5cffff9e
WW
1863 /*
1864 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1865 * the target page. In this case, we exit with no error and no target
1866 * page. This will trigger the caller, page_mkwrite(), to re-try
1867 * the operation.
1868 */
1869 if (ret == -EAGAIN) {
1870 BUG_ON(wc->w_target_page);
1871 ret = 0;
1872 goto out_quota;
1873 }
1874
0d172baa
MF
1875 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1876 len);
1877 if (ret) {
1878 mlog_errno(ret);
a90714c1 1879 goto out_quota;
9517bac6 1880 }
9517bac6 1881
3a307ffc
MF
1882 if (data_ac)
1883 ocfs2_free_alloc_context(data_ac);
1884 if (meta_ac)
1885 ocfs2_free_alloc_context(meta_ac);
9517bac6 1886
1afc32b9 1887success:
3a307ffc
MF
1888 *pagep = wc->w_target_page;
1889 *fsdata = wc;
1890 return 0;
a90714c1
JK
1891out_quota:
1892 if (clusters_to_alloc)
5dd4056d 1893 dquot_free_space(inode,
a90714c1 1894 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1895out_commit:
1896 ocfs2_commit_trans(osb, handle);
1897
9517bac6 1898out:
3a307ffc
MF
1899 ocfs2_free_write_ctxt(wc);
1900
9517bac6
MF
1901 if (data_ac)
1902 ocfs2_free_alloc_context(data_ac);
1903 if (meta_ac)
1904 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1905
1906 if (ret == -ENOSPC && try_free) {
1907 /*
1908 * Try to free some truncate log so that we can have enough
1909 * clusters to allocate.
1910 */
1911 try_free = 0;
1912
1913 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1914 if (ret1 == 1)
1915 goto try_again;
1916
1917 if (ret1 < 0)
1918 mlog_errno(ret1);
1919 }
1920
3a307ffc
MF
1921 return ret;
1922}
1923
b6af1bcd
NP
1924static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1925 loff_t pos, unsigned len, unsigned flags,
1926 struct page **pagep, void **fsdata)
607d44aa
MF
1927{
1928 int ret;
1929 struct buffer_head *di_bh = NULL;
1930 struct inode *inode = mapping->host;
1931
e63aecb6 1932 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1933 if (ret) {
1934 mlog_errno(ret);
1935 return ret;
1936 }
1937
1938 /*
1939 * Take alloc sem here to prevent concurrent lookups. That way
1940 * the mapping, zeroing and tree manipulation within
1941 * ocfs2_write() will be safe against ->readpage(). This
1942 * should also serve to lock out allocation from a shared
1943 * writeable region.
1944 */
1945 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1946
0378da0f 1947 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1948 fsdata, di_bh, NULL);
607d44aa
MF
1949 if (ret) {
1950 mlog_errno(ret);
c934a92d 1951 goto out_fail;
607d44aa
MF
1952 }
1953
1954 brelse(di_bh);
1955
1956 return 0;
1957
607d44aa
MF
1958out_fail:
1959 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1960
1961 brelse(di_bh);
e63aecb6 1962 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1963
1964 return ret;
1965}
1966
1afc32b9
MF
1967static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1968 unsigned len, unsigned *copied,
1969 struct ocfs2_dinode *di,
1970 struct ocfs2_write_ctxt *wc)
1971{
1972 void *kaddr;
1973
1974 if (unlikely(*copied < len)) {
1975 if (!PageUptodate(wc->w_target_page)) {
1976 *copied = 0;
1977 return;
1978 }
1979 }
1980
c4bc8dcb 1981 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1982 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1983 kunmap_atomic(kaddr);
1afc32b9 1984
9558156b
TM
1985 trace_ocfs2_write_end_inline(
1986 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1987 (unsigned long long)pos, *copied,
1988 le16_to_cpu(di->id2.i_data.id_count),
1989 le16_to_cpu(di->i_dyn_features));
1990}
1991
7307de80
MF
1992int ocfs2_write_end_nolock(struct address_space *mapping,
1993 loff_t pos, unsigned len, unsigned copied,
1994 struct page *page, void *fsdata)
3a307ffc
MF
1995{
1996 int i;
1997 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1998 struct inode *inode = mapping->host;
1999 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2000 struct ocfs2_write_ctxt *wc = fsdata;
2001 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2002 handle_t *handle = wc->w_handle;
2003 struct page *tmppage;
2004
1afc32b9
MF
2005 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2006 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2007 goto out_write_size;
2008 }
2009
3a307ffc
MF
2010 if (unlikely(copied < len)) {
2011 if (!PageUptodate(wc->w_target_page))
2012 copied = 0;
2013
2014 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2015 start+len);
2016 }
2017 flush_dcache_page(wc->w_target_page);
2018
2019 for(i = 0; i < wc->w_num_pages; i++) {
2020 tmppage = wc->w_pages[i];
2021
2022 if (tmppage == wc->w_target_page) {
2023 from = wc->w_target_from;
2024 to = wc->w_target_to;
2025
2026 BUG_ON(from > PAGE_CACHE_SIZE ||
2027 to > PAGE_CACHE_SIZE ||
2028 to < from);
2029 } else {
2030 /*
2031 * Pages adjacent to the target (if any) imply
2032 * a hole-filling write in which case we want
2033 * to flush their entire range.
2034 */
2035 from = 0;
2036 to = PAGE_CACHE_SIZE;
2037 }
2038
961cecbe 2039 if (page_has_buffers(tmppage)) {
53ef99ca 2040 if (ocfs2_should_order_data(inode))
2b4e30fb 2041 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2042 block_commit_write(tmppage, from, to);
2043 }
3a307ffc
MF
2044 }
2045
1afc32b9 2046out_write_size:
3a307ffc 2047 pos += copied;
f17c20dd 2048 if (pos > i_size_read(inode)) {
3a307ffc
MF
2049 i_size_write(inode, pos);
2050 mark_inode_dirty(inode);
2051 }
2052 inode->i_blocks = ocfs2_inode_sector_count(inode);
2053 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2054 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2055 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2056 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2057 ocfs2_journal_dirty(handle, wc->w_di_bh);
2058
2059 ocfs2_commit_trans(osb, handle);
59a5e416 2060
b27b7cbc
MF
2061 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2062
607d44aa
MF
2063 ocfs2_free_write_ctxt(wc);
2064
2065 return copied;
2066}
2067
b6af1bcd
NP
2068static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069 loff_t pos, unsigned len, unsigned copied,
2070 struct page *page, void *fsdata)
607d44aa
MF
2071{
2072 int ret;
2073 struct inode *inode = mapping->host;
2074
2075 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2076
3a307ffc 2077 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2078 ocfs2_inode_unlock(inode, 1);
9517bac6 2079
607d44aa 2080 return ret;
9517bac6
MF
2081}
2082
f5e54d6e 2083const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2084 .readpage = ocfs2_readpage,
2085 .readpages = ocfs2_readpages,
2086 .writepage = ocfs2_writepage,
2087 .write_begin = ocfs2_write_begin,
2088 .write_end = ocfs2_write_end,
2089 .bmap = ocfs2_bmap,
1fca3a05
HH
2090 .direct_IO = ocfs2_direct_IO,
2091 .invalidatepage = ocfs2_invalidatepage,
2092 .releasepage = ocfs2_releasepage,
2093 .migratepage = buffer_migrate_page,
2094 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2095 .error_remove_page = generic_error_remove_page,
ccd979bd 2096};