nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
328970de 1// SPDX-License-Identifier: GPL-2.0-or-later
fa60ce2c 2/*
ccd979bd 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
ccd979bd
MF
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/highmem.h>
9#include <linux/pagemap.h>
10#include <asm/byteorder.h>
9517bac6 11#include <linux/swap.h>
628a24f5 12#include <linux/mpage.h>
a90714c1 13#include <linux/quotaops.h>
24c40b32 14#include <linux/blkdev.h>
e2e40f2c 15#include <linux/uio.h>
f86196ea 16#include <linux/mm.h>
ccd979bd 17
ccd979bd
MF
18#include <cluster/masklog.h>
19
20#include "ocfs2.h"
21
22#include "alloc.h"
23#include "aops.h"
24#include "dlmglue.h"
25#include "extent_map.h"
26#include "file.h"
27#include "inode.h"
28#include "journal.h"
9517bac6 29#include "suballoc.h"
ccd979bd
MF
30#include "super.h"
31#include "symlink.h"
293b2f70 32#include "refcounttree.h"
9558156b 33#include "ocfs2_trace.h"
ccd979bd
MF
34
35#include "buffer_head_io.h"
24c40b32
JQ
36#include "dir.h"
37#include "namei.h"
38#include "sysfile.h"
ccd979bd
MF
39
40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42{
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
9558156b
TM
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
b657c95c 63 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
ccd979bd
MF
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
7391a294 72 err = -ENOMEM;
ccd979bd
MF
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
7391a294 85 err = -ENOMEM;
ccd979bd
MF
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 96 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
c4bc8dcb 104 kunmap_atomic(kaddr);
ccd979bd
MF
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115bail:
a81cb88b 116 brelse(bh);
ccd979bd 117
ccd979bd
MF
118 return err;
119}
120
3e4c56d4 121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123{
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132}
133
6f70fa51
TM
134int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
ccd979bd
MF
136{
137 int err = 0;
49cb8d2d 138 unsigned int ext_flags;
628a24f5
MF
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
25baf2da 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 142
9558156b
TM
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
628a24f5 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 157 &ext_flags);
ccd979bd
MF
158 if (err) {
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
ccd979bd
MF
162 goto bail;
163 }
164
628a24f5
MF
165 if (max_blocks < count)
166 count = max_blocks;
167
25baf2da
MF
168 /*
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
ebdec241 172 * allows __block_write_begin() to zero.
c0420ad2
CL
173 *
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
25baf2da 178 */
c0420ad2
CL
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
182 goto bail;
183 }
25baf2da 184
49cb8d2d
MF
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
187 map_bh(bh_result, inode->i_sb, p_blkno);
188
628a24f5
MF
189 bh_result->b_size = count << inode->i_blkbits;
190
25baf2da
MF
191 if (!ocfs2_sparse_alloc(osb)) {
192 if (p_blkno == 0) {
193 err = -EIO;
194 mlog(ML_ERROR,
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 dump_stack();
1f4cea37 201 goto bail;
25baf2da 202 }
25baf2da 203 }
ccd979bd 204
5693486b 205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
206
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
5693486b
JB
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
211
ccd979bd
MF
212bail:
213 if (err < 0)
214 err = -EIO;
215
ccd979bd
MF
216 return err;
217}
218
1afc32b9
MF
219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
6798d35a
MF
221{
222 void *kaddr;
d2849fb2 223 loff_t size;
6798d35a
MF
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
7ecef14a 227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
6798d35a
MF
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 return -EROFS;
230 }
231
232 size = i_size_read(inode);
233
09cbfeaf 234 if (size > PAGE_SIZE ||
d9ae49d6 235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 236 ocfs2_error(inode->i_sb,
7ecef14a 237 "Inode %llu has with inline data has bad size: %Lu\n",
d2849fb2
JK
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
6798d35a
MF
240 return -EROFS;
241 }
242
c4bc8dcb 243 kaddr = kmap_atomic(page);
6798d35a
MF
244 if (size)
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
09cbfeaf 247 memset(kaddr + size, 0, PAGE_SIZE - size);
6798d35a 248 flush_dcache_page(page);
c4bc8dcb 249 kunmap_atomic(kaddr);
6798d35a
MF
250
251 SetPageUptodate(page);
252
253 return 0;
254}
255
256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257{
258 int ret;
259 struct buffer_head *di_bh = NULL;
6798d35a
MF
260
261 BUG_ON(!PageLocked(page));
86c838b0 262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 263
b657c95c 264 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
265 if (ret) {
266 mlog_errno(ret);
267 goto out;
268 }
269
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
271out:
272 unlock_page(page);
273
274 brelse(di_bh);
275 return ret;
276}
277
ccd979bd
MF
278static int ocfs2_readpage(struct file *file, struct page *page)
279{
280 struct inode *inode = page->mapping->host;
6798d35a 281 struct ocfs2_inode_info *oi = OCFS2_I(inode);
09cbfeaf 282 loff_t start = (loff_t)page->index << PAGE_SHIFT;
ccd979bd
MF
283 int ret, unlock = 1;
284
9558156b
TM
285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
286 (page ? page->index : 0));
ccd979bd 287
e63aecb6 288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
289 if (ret != 0) {
290 if (ret == AOP_TRUNCATED_PAGE)
291 unlock = 0;
292 mlog_errno(ret);
293 goto out;
294 }
295
6798d35a 296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
297 /*
298 * Unlock the page and cycle ip_alloc_sem so that we don't
299 * busyloop waiting for ip_alloc_sem to unlock
300 */
e9dfc0b2 301 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
302 unlock_page(page);
303 unlock = 0;
304 down_read(&oi->ip_alloc_sem);
305 up_read(&oi->ip_alloc_sem);
e63aecb6 306 goto out_inode_unlock;
e9dfc0b2 307 }
ccd979bd
MF
308
309 /*
310 * i_size might have just been updated as we grabed the meta lock. We
311 * might now be discovering a truncate that hit on another node.
312 * block_read_full_page->get_block freaks out if it is asked to read
313 * beyond the end of a file, so we check here. Callers
54cb8821 314 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
315 * and notice that the page they just read isn't needed.
316 *
317 * XXX sys_readahead() seems to get that wrong?
318 */
319 if (start >= i_size_read(inode)) {
eebd2aa3 320 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
321 SetPageUptodate(page);
322 ret = 0;
323 goto out_alloc;
324 }
325
6798d35a
MF
326 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
327 ret = ocfs2_readpage_inline(inode, page);
328 else
329 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
330 unlock = 0;
331
ccd979bd 332out_alloc:
d324cd4c 333 up_read(&oi->ip_alloc_sem);
e63aecb6
MF
334out_inode_unlock:
335 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
336out:
337 if (unlock)
338 unlock_page(page);
ccd979bd
MF
339 return ret;
340}
341
628a24f5
MF
342/*
343 * This is used only for read-ahead. Failures or difficult to handle
344 * situations are safe to ignore.
345 *
346 * Right now, we don't bother with BH_Boundary - in-inode extent lists
347 * are quite large (243 extents on 4k blocks), so most inodes don't
348 * grow out to a tree. If need be, detecting boundary extents could
349 * trivially be added in a future version of ocfs2_get_block().
350 */
d4388340 351static void ocfs2_readahead(struct readahead_control *rac)
628a24f5 352{
d4388340
MWO
353 int ret;
354 struct inode *inode = rac->mapping->host;
628a24f5 355 struct ocfs2_inode_info *oi = OCFS2_I(inode);
628a24f5
MF
356
357 /*
358 * Use the nonblocking flag for the dlm code to avoid page
359 * lock inversion, but don't bother with retrying.
360 */
361 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
362 if (ret)
d4388340 363 return;
628a24f5 364
d4388340
MWO
365 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
366 goto out_unlock;
628a24f5
MF
367
368 /*
369 * Don't bother with inline-data. There isn't anything
370 * to read-ahead in that case anyway...
371 */
372 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
d4388340 373 goto out_up;
628a24f5
MF
374
375 /*
376 * Check whether a remote node truncated this file - we just
377 * drop out in that case as it's not worth handling here.
378 */
d4388340
MWO
379 if (readahead_pos(rac) >= i_size_read(inode))
380 goto out_up;
628a24f5 381
d4388340 382 mpage_readahead(rac, ocfs2_get_block);
628a24f5 383
d4388340 384out_up:
628a24f5 385 up_read(&oi->ip_alloc_sem);
d4388340 386out_unlock:
628a24f5 387 ocfs2_inode_unlock(inode, 0);
628a24f5
MF
388}
389
ccd979bd
MF
390/* Note: Because we don't support holes, our allocation has
391 * already happened (allocation writes zeros to the file data)
392 * so we don't have to worry about ordered writes in
393 * ocfs2_writepage.
394 *
395 * ->writepage is called during the process of invalidating the page cache
396 * during blocked lock processing. It can't block on any cluster locks
397 * to during block mapping. It's relying on the fact that the block
398 * mapping can't have disappeared under the dirty pages that it is
399 * being asked to write back.
400 */
401static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
402{
9558156b
TM
403 trace_ocfs2_writepage(
404 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
405 page->index);
ccd979bd 406
9558156b 407 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
408}
409
ccd979bd
MF
410/* Taken from ext3. We don't necessarily need the full blown
411 * functionality yet, but IMHO it's better to cut and paste the whole
412 * thing so we can avoid introducing our own bugs (and easily pick up
413 * their fixes when they happen) --Mark */
60b11392
MF
414int walk_page_buffers( handle_t *handle,
415 struct buffer_head *head,
416 unsigned from,
417 unsigned to,
418 int *partial,
419 int (*fn)( handle_t *handle,
420 struct buffer_head *bh))
ccd979bd
MF
421{
422 struct buffer_head *bh;
423 unsigned block_start, block_end;
424 unsigned blocksize = head->b_size;
425 int err, ret = 0;
426 struct buffer_head *next;
427
428 for ( bh = head, block_start = 0;
429 ret == 0 && (bh != head || !block_start);
430 block_start = block_end, bh = next)
431 {
432 next = bh->b_this_page;
433 block_end = block_start + blocksize;
434 if (block_end <= from || block_start >= to) {
435 if (partial && !buffer_uptodate(bh))
436 *partial = 1;
437 continue;
438 }
439 err = (*fn)(handle, bh);
440 if (!ret)
441 ret = err;
442 }
443 return ret;
444}
445
ccd979bd
MF
446static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447{
448 sector_t status;
449 u64 p_blkno = 0;
450 int err = 0;
451 struct inode *inode = mapping->host;
452
9558156b
TM
453 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
454 (unsigned long long)block);
ccd979bd 455
06a70305
DW
456 /*
457 * The swap code (ab-)uses ->bmap to get a block mapping and then
458 * bypasseѕ the file system for actual I/O. We really can't allow
459 * that on refcounted inodes, so we have to skip out here. And yes,
460 * 0 is the magic code for a bmap error..
461 */
462 if (ocfs2_is_refcount_inode(inode))
463 return 0;
464
ccd979bd
MF
465 /* We don't need to lock journal system files, since they aren't
466 * accessed concurrently from multiple nodes.
467 */
468 if (!INODE_JOURNAL(inode)) {
e63aecb6 469 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
470 if (err) {
471 if (err != -ENOENT)
472 mlog_errno(err);
473 goto bail;
474 }
475 down_read(&OCFS2_I(inode)->ip_alloc_sem);
476 }
477
6798d35a
MF
478 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
479 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
480 NULL);
ccd979bd
MF
481
482 if (!INODE_JOURNAL(inode)) {
483 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 484 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
485 }
486
487 if (err) {
488 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
489 (unsigned long long)block);
490 mlog_errno(err);
491 goto bail;
492 }
493
ccd979bd
MF
494bail:
495 status = err ? 0 : p_blkno;
496
ccd979bd
MF
497 return status;
498}
499
03f981cf
JB
500static int ocfs2_releasepage(struct page *page, gfp_t wait)
501{
03f981cf
JB
502 if (!page_has_buffers(page))
503 return 0;
41ecc345 504 return try_to_free_buffers(page);
03f981cf
JB
505}
506
9517bac6
MF
507static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
508 u32 cpos,
509 unsigned int *start,
510 unsigned int *end)
511{
09cbfeaf 512 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
9517bac6 513
09cbfeaf 514 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
9517bac6
MF
515 unsigned int cpp;
516
09cbfeaf 517 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
9517bac6
MF
518
519 cluster_start = cpos % cpp;
520 cluster_start = cluster_start << osb->s_clustersize_bits;
521
522 cluster_end = cluster_start + osb->s_clustersize;
523 }
524
525 BUG_ON(cluster_start > PAGE_SIZE);
526 BUG_ON(cluster_end > PAGE_SIZE);
527
528 if (start)
529 *start = cluster_start;
530 if (end)
531 *end = cluster_end;
532}
533
534/*
535 * 'from' and 'to' are the region in the page to avoid zeroing.
536 *
537 * If pagesize > clustersize, this function will avoid zeroing outside
538 * of the cluster boundary.
539 *
540 * from == to == 0 is code for "zero the entire cluster region"
541 */
542static void ocfs2_clear_page_regions(struct page *page,
543 struct ocfs2_super *osb, u32 cpos,
544 unsigned from, unsigned to)
545{
546 void *kaddr;
547 unsigned int cluster_start, cluster_end;
548
549 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
550
c4bc8dcb 551 kaddr = kmap_atomic(page);
9517bac6
MF
552
553 if (from || to) {
554 if (from > cluster_start)
555 memset(kaddr + cluster_start, 0, from - cluster_start);
556 if (to < cluster_end)
557 memset(kaddr + to, 0, cluster_end - to);
558 } else {
559 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
560 }
561
c4bc8dcb 562 kunmap_atomic(kaddr);
9517bac6
MF
563}
564
4e9563fd
MF
565/*
566 * Nonsparse file systems fully allocate before we get to the write
567 * code. This prevents ocfs2_write() from tagging the write as an
568 * allocating one, which means ocfs2_map_page_blocks() might try to
569 * read-in the blocks at the tail of our file. Avoid reading them by
570 * testing i_size against each block offset.
571 */
572static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
573 unsigned int block_start)
574{
575 u64 offset = page_offset(page) + block_start;
576
577 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
578 return 1;
579
580 if (i_size_read(inode) > offset)
581 return 1;
582
583 return 0;
584}
585
9517bac6 586/*
ebdec241 587 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
588 * mapping by now though, and the entire write will be allocating or
589 * it won't, so not much need to use BH_New.
590 *
591 * This will also skip zeroing, which is handled externally.
592 */
60b11392
MF
593int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
594 struct inode *inode, unsigned int from,
595 unsigned int to, int new)
9517bac6
MF
596{
597 int ret = 0;
598 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
599 unsigned int block_end, block_start;
93407472 600 unsigned int bsize = i_blocksize(inode);
9517bac6
MF
601
602 if (!page_has_buffers(page))
603 create_empty_buffers(page, bsize, 0);
604
605 head = page_buffers(page);
606 for (bh = head, block_start = 0; bh != head || !block_start;
607 bh = bh->b_this_page, block_start += bsize) {
608 block_end = block_start + bsize;
609
3a307ffc
MF
610 clear_buffer_new(bh);
611
9517bac6
MF
612 /*
613 * Ignore blocks outside of our i/o range -
614 * they may belong to unallocated clusters.
615 */
60b11392 616 if (block_start >= to || block_end <= from) {
9517bac6
MF
617 if (PageUptodate(page))
618 set_buffer_uptodate(bh);
619 continue;
620 }
621
622 /*
623 * For an allocating write with cluster size >= page
624 * size, we always write the entire page.
625 */
3a307ffc
MF
626 if (new)
627 set_buffer_new(bh);
9517bac6
MF
628
629 if (!buffer_mapped(bh)) {
630 map_bh(bh, inode->i_sb, *p_blkno);
e64855c6 631 clean_bdev_bh_alias(bh);
9517bac6
MF
632 }
633
634 if (PageUptodate(page)) {
01f01399 635 set_buffer_uptodate(bh);
9517bac6 636 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 637 !buffer_new(bh) &&
4e9563fd 638 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 639 (block_start < from || block_end > to)) {
dfec8a14 640 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
9517bac6
MF
641 *wait_bh++=bh;
642 }
643
644 *p_blkno = *p_blkno + 1;
645 }
646
647 /*
648 * If we issued read requests - let them complete.
649 */
650 while(wait_bh > wait) {
651 wait_on_buffer(*--wait_bh);
652 if (!buffer_uptodate(*wait_bh))
653 ret = -EIO;
654 }
655
656 if (ret == 0 || !new)
657 return ret;
658
659 /*
660 * If we get -EIO above, zero out any newly allocated blocks
661 * to avoid exposing stale data.
662 */
663 bh = head;
664 block_start = 0;
665 do {
9517bac6
MF
666 block_end = block_start + bsize;
667 if (block_end <= from)
668 goto next_bh;
669 if (block_start >= to)
670 break;
671
eebd2aa3 672 zero_user(page, block_start, bh->b_size);
9517bac6
MF
673 set_buffer_uptodate(bh);
674 mark_buffer_dirty(bh);
675
676next_bh:
677 block_start = block_end;
678 bh = bh->b_this_page;
679 } while (bh != head);
680
681 return ret;
682}
683
ea1754a0 684#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
3a307ffc
MF
685#define OCFS2_MAX_CTXT_PAGES 1
686#else
09cbfeaf 687#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
3a307ffc
MF
688#endif
689
09cbfeaf 690#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
3a307ffc 691
4506cfb6
RD
692struct ocfs2_unwritten_extent {
693 struct list_head ue_node;
694 struct list_head ue_ip_node;
695 u32 ue_cpos;
696 u32 ue_phys;
697};
698
6af67d82 699/*
3a307ffc 700 * Describe the state of a single cluster to be written to.
6af67d82 701 */
3a307ffc
MF
702struct ocfs2_write_cluster_desc {
703 u32 c_cpos;
704 u32 c_phys;
705 /*
706 * Give this a unique field because c_phys eventually gets
707 * filled.
708 */
709 unsigned c_new;
b46637d5 710 unsigned c_clear_unwritten;
e7432675 711 unsigned c_needs_zero;
3a307ffc 712};
6af67d82 713
3a307ffc
MF
714struct ocfs2_write_ctxt {
715 /* Logical cluster position / len of write */
716 u32 w_cpos;
717 u32 w_clen;
6af67d82 718
e7432675
SM
719 /* First cluster allocated in a nonsparse extend */
720 u32 w_first_new_cpos;
721
c1ad1e3c
RD
722 /* Type of caller. Must be one of buffer, mmap, direct. */
723 ocfs2_write_type_t w_type;
724
3a307ffc 725 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 726
3a307ffc
MF
727 /*
728 * This is true if page_size > cluster_size.
729 *
730 * It triggers a set of special cases during write which might
731 * have to deal with allocating writes to partial pages.
732 */
733 unsigned int w_large_pages;
6af67d82 734
3a307ffc
MF
735 /*
736 * Pages involved in this write.
737 *
738 * w_target_page is the page being written to by the user.
739 *
740 * w_pages is an array of pages which always contains
741 * w_target_page, and in the case of an allocating write with
742 * page_size < cluster size, it will contain zero'd and mapped
743 * pages adjacent to w_target_page which need to be written
744 * out in so that future reads from that region will get
745 * zero's.
746 */
3a307ffc 747 unsigned int w_num_pages;
83fd9c7f 748 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 749 struct page *w_target_page;
eeb47d12 750
5cffff9e
WW
751 /*
752 * w_target_locked is used for page_mkwrite path indicating no unlocking
753 * against w_target_page in ocfs2_write_end_nolock.
754 */
755 unsigned int w_target_locked:1;
756
3a307ffc
MF
757 /*
758 * ocfs2_write_end() uses this to know what the real range to
759 * write in the target should be.
760 */
761 unsigned int w_target_from;
762 unsigned int w_target_to;
763
764 /*
765 * We could use journal_current_handle() but this is cleaner,
766 * IMHO -Mark
767 */
768 handle_t *w_handle;
769
770 struct buffer_head *w_di_bh;
b27b7cbc
MF
771
772 struct ocfs2_cached_dealloc_ctxt w_dealloc;
4506cfb6
RD
773
774 struct list_head w_unwritten_list;
63de8bd9 775 unsigned int w_unwritten_count;
3a307ffc
MF
776};
777
1d410a6e 778void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
779{
780 int i;
781
1d410a6e
MF
782 for(i = 0; i < num_pages; i++) {
783 if (pages[i]) {
784 unlock_page(pages[i]);
785 mark_page_accessed(pages[i]);
09cbfeaf 786 put_page(pages[i]);
1d410a6e 787 }
6af67d82 788 }
1d410a6e
MF
789}
790
136f49b9 791static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 792{
5cffff9e
WW
793 int i;
794
795 /*
796 * w_target_locked is only set to true in the page_mkwrite() case.
797 * The intent is to allow us to lock the target page from write_begin()
798 * to write_end(). The caller must hold a ref on w_target_page.
799 */
800 if (wc->w_target_locked) {
801 BUG_ON(!wc->w_target_page);
802 for (i = 0; i < wc->w_num_pages; i++) {
803 if (wc->w_target_page == wc->w_pages[i]) {
804 wc->w_pages[i] = NULL;
805 break;
806 }
807 }
808 mark_page_accessed(wc->w_target_page);
09cbfeaf 809 put_page(wc->w_target_page);
5cffff9e 810 }
1d410a6e 811 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 812}
6af67d82 813
4506cfb6
RD
814static void ocfs2_free_unwritten_list(struct inode *inode,
815 struct list_head *head)
816{
817 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 818 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
4506cfb6 819
c15471f7
RD
820 list_for_each_entry_safe(ue, tmp, head, ue_node) {
821 list_del(&ue->ue_node);
4506cfb6 822 spin_lock(&oi->ip_lock);
c15471f7 823 list_del(&ue->ue_ip_node);
4506cfb6 824 spin_unlock(&oi->ip_lock);
c15471f7 825 kfree(ue);
4506cfb6
RD
826 }
827}
828
829static void ocfs2_free_write_ctxt(struct inode *inode,
830 struct ocfs2_write_ctxt *wc)
136f49b9 831{
4506cfb6 832 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
136f49b9 833 ocfs2_unlock_pages(wc);
3a307ffc
MF
834 brelse(wc->w_di_bh);
835 kfree(wc);
836}
837
838static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
839 struct ocfs2_super *osb, loff_t pos,
c1ad1e3c
RD
840 unsigned len, ocfs2_write_type_t type,
841 struct buffer_head *di_bh)
3a307ffc 842{
30b8548f 843 u32 cend;
3a307ffc
MF
844 struct ocfs2_write_ctxt *wc;
845
846 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
847 if (!wc)
848 return -ENOMEM;
6af67d82 849
3a307ffc 850 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 851 wc->w_first_new_cpos = UINT_MAX;
30b8548f 852 cend = (pos + len - 1) >> osb->s_clustersize_bits;
853 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
854 get_bh(di_bh);
855 wc->w_di_bh = di_bh;
c1ad1e3c 856 wc->w_type = type;
6af67d82 857
09cbfeaf 858 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
3a307ffc
MF
859 wc->w_large_pages = 1;
860 else
861 wc->w_large_pages = 0;
862
b27b7cbc 863 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
4506cfb6 864 INIT_LIST_HEAD(&wc->w_unwritten_list);
b27b7cbc 865
3a307ffc 866 *wcp = wc;
6af67d82 867
3a307ffc 868 return 0;
6af67d82
MF
869}
870
9517bac6 871/*
3a307ffc
MF
872 * If a page has any new buffers, zero them out here, and mark them uptodate
873 * and dirty so they'll be written out (in order to prevent uninitialised
874 * block data from leaking). And clear the new bit.
9517bac6 875 */
3a307ffc 876static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 877{
3a307ffc
MF
878 unsigned int block_start, block_end;
879 struct buffer_head *head, *bh;
9517bac6 880
3a307ffc
MF
881 BUG_ON(!PageLocked(page));
882 if (!page_has_buffers(page))
883 return;
9517bac6 884
3a307ffc
MF
885 bh = head = page_buffers(page);
886 block_start = 0;
887 do {
888 block_end = block_start + bh->b_size;
889
890 if (buffer_new(bh)) {
891 if (block_end > from && block_start < to) {
892 if (!PageUptodate(page)) {
893 unsigned start, end;
3a307ffc
MF
894
895 start = max(from, block_start);
896 end = min(to, block_end);
897
eebd2aa3 898 zero_user_segment(page, start, end);
3a307ffc
MF
899 set_buffer_uptodate(bh);
900 }
901
902 clear_buffer_new(bh);
903 mark_buffer_dirty(bh);
904 }
905 }
9517bac6 906
3a307ffc
MF
907 block_start = block_end;
908 bh = bh->b_this_page;
909 } while (bh != head);
910}
911
912/*
913 * Only called when we have a failure during allocating write to write
914 * zero's to the newly allocated region.
915 */
916static void ocfs2_write_failure(struct inode *inode,
917 struct ocfs2_write_ctxt *wc,
918 loff_t user_pos, unsigned user_len)
919{
920 int i;
09cbfeaf 921 unsigned from = user_pos & (PAGE_SIZE - 1),
5c26a7b7 922 to = user_pos + user_len;
3a307ffc
MF
923 struct page *tmppage;
924
65c4db8c
RD
925 if (wc->w_target_page)
926 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 927
3a307ffc
MF
928 for(i = 0; i < wc->w_num_pages; i++) {
929 tmppage = wc->w_pages[i];
9517bac6 930
65c4db8c 931 if (tmppage && page_has_buffers(tmppage)) {
53ef99ca 932 if (ocfs2_should_order_data(inode))
bbd0f327
JQ
933 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
934 user_pos, user_len);
961cecbe
SM
935
936 block_commit_write(tmppage, from, to);
937 }
9517bac6 938 }
9517bac6
MF
939}
940
3a307ffc
MF
941static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
942 struct ocfs2_write_ctxt *wc,
943 struct page *page, u32 cpos,
944 loff_t user_pos, unsigned user_len,
945 int new)
9517bac6 946{
3a307ffc
MF
947 int ret;
948 unsigned int map_from = 0, map_to = 0;
9517bac6 949 unsigned int cluster_start, cluster_end;
3a307ffc 950 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 951
3a307ffc 952 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
953 &cluster_start, &cluster_end);
954
272b62c1
GR
955 /* treat the write as new if the a hole/lseek spanned across
956 * the page boundary.
957 */
958 new = new | ((i_size_read(inode) <= page_offset(page)) &&
959 (page_offset(page) <= user_pos));
960
3a307ffc 961 if (page == wc->w_target_page) {
09cbfeaf 962 map_from = user_pos & (PAGE_SIZE - 1);
3a307ffc
MF
963 map_to = map_from + user_len;
964
965 if (new)
966 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
967 cluster_start, cluster_end,
968 new);
969 else
970 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
971 map_from, map_to, new);
972 if (ret) {
9517bac6
MF
973 mlog_errno(ret);
974 goto out;
975 }
976
3a307ffc
MF
977 user_data_from = map_from;
978 user_data_to = map_to;
9517bac6 979 if (new) {
3a307ffc
MF
980 map_from = cluster_start;
981 map_to = cluster_end;
9517bac6
MF
982 }
983 } else {
984 /*
985 * If we haven't allocated the new page yet, we
986 * shouldn't be writing it out without copying user
987 * data. This is likely a math error from the caller.
988 */
989 BUG_ON(!new);
990
3a307ffc
MF
991 map_from = cluster_start;
992 map_to = cluster_end;
9517bac6
MF
993
994 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 995 cluster_start, cluster_end, new);
9517bac6
MF
996 if (ret) {
997 mlog_errno(ret);
998 goto out;
999 }
1000 }
1001
1002 /*
1003 * Parts of newly allocated pages need to be zero'd.
1004 *
1005 * Above, we have also rewritten 'to' and 'from' - as far as
1006 * the rest of the function is concerned, the entire cluster
1007 * range inside of a page needs to be written.
1008 *
1009 * We can skip this if the page is up to date - it's already
1010 * been zero'd from being read in as a hole.
1011 */
1012 if (new && !PageUptodate(page))
1013 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1014 cpos, user_data_from, user_data_to);
9517bac6
MF
1015
1016 flush_dcache_page(page);
1017
9517bac6 1018out:
3a307ffc 1019 return ret;
9517bac6
MF
1020}
1021
1022/*
3a307ffc 1023 * This function will only grab one clusters worth of pages.
9517bac6 1024 */
3a307ffc
MF
1025static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1026 struct ocfs2_write_ctxt *wc,
693c241a
JB
1027 u32 cpos, loff_t user_pos,
1028 unsigned user_len, int new,
7307de80 1029 struct page *mmap_page)
9517bac6 1030{
3a307ffc 1031 int ret = 0, i;
693c241a 1032 unsigned long start, target_index, end_index, index;
9517bac6 1033 struct inode *inode = mapping->host;
693c241a 1034 loff_t last_byte;
9517bac6 1035
09cbfeaf 1036 target_index = user_pos >> PAGE_SHIFT;
9517bac6
MF
1037
1038 /*
1039 * Figure out how many pages we'll be manipulating here. For
60b11392 1040 * non allocating write, we just change the one
693c241a
JB
1041 * page. Otherwise, we'll need a whole clusters worth. If we're
1042 * writing past i_size, we only need enough pages to cover the
1043 * last page of the write.
9517bac6 1044 */
9517bac6 1045 if (new) {
3a307ffc
MF
1046 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1047 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1048 /*
1049 * We need the index *past* the last page we could possibly
1050 * touch. This is the page past the end of the write or
1051 * i_size, whichever is greater.
1052 */
1053 last_byte = max(user_pos + user_len, i_size_read(inode));
1054 BUG_ON(last_byte < 1);
09cbfeaf 1055 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
693c241a
JB
1056 if ((start + wc->w_num_pages) > end_index)
1057 wc->w_num_pages = end_index - start;
9517bac6 1058 } else {
3a307ffc
MF
1059 wc->w_num_pages = 1;
1060 start = target_index;
9517bac6 1061 }
09cbfeaf 1062 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
9517bac6 1063
3a307ffc 1064 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1065 index = start + i;
1066
65c4db8c
RD
1067 if (index >= target_index && index <= end_index &&
1068 wc->w_type == OCFS2_WRITE_MMAP) {
7307de80
MF
1069 /*
1070 * ocfs2_pagemkwrite() is a little different
1071 * and wants us to directly use the page
1072 * passed in.
1073 */
1074 lock_page(mmap_page);
1075
5cffff9e 1076 /* Exit and let the caller retry */
7307de80 1077 if (mmap_page->mapping != mapping) {
5cffff9e 1078 WARN_ON(mmap_page->mapping);
7307de80 1079 unlock_page(mmap_page);
5cffff9e 1080 ret = -EAGAIN;
7307de80
MF
1081 goto out;
1082 }
1083
09cbfeaf 1084 get_page(mmap_page);
7307de80 1085 wc->w_pages[i] = mmap_page;
5cffff9e 1086 wc->w_target_locked = true;
65c4db8c
RD
1087 } else if (index >= target_index && index <= end_index &&
1088 wc->w_type == OCFS2_WRITE_DIRECT) {
1089 /* Direct write has no mapping page. */
1090 wc->w_pages[i] = NULL;
1091 continue;
7307de80
MF
1092 } else {
1093 wc->w_pages[i] = find_or_create_page(mapping, index,
1094 GFP_NOFS);
1095 if (!wc->w_pages[i]) {
1096 ret = -ENOMEM;
1097 mlog_errno(ret);
1098 goto out;
1099 }
9517bac6 1100 }
1269529b 1101 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1102
1103 if (index == target_index)
1104 wc->w_target_page = wc->w_pages[i];
9517bac6 1105 }
3a307ffc 1106out:
5cffff9e
WW
1107 if (ret)
1108 wc->w_target_locked = false;
3a307ffc
MF
1109 return ret;
1110}
1111
1112/*
1113 * Prepare a single cluster for write one cluster into the file.
1114 */
1115static int ocfs2_write_cluster(struct address_space *mapping,
2de6a3c7 1116 u32 *phys, unsigned int new,
b46637d5 1117 unsigned int clear_unwritten,
e7432675 1118 unsigned int should_zero,
b27b7cbc 1119 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1120 struct ocfs2_alloc_context *meta_ac,
1121 struct ocfs2_write_ctxt *wc, u32 cpos,
1122 loff_t user_pos, unsigned user_len)
1123{
b46637d5 1124 int ret, i;
2de6a3c7 1125 u64 p_blkno;
3a307ffc 1126 struct inode *inode = mapping->host;
f99b9b7c 1127 struct ocfs2_extent_tree et;
2de6a3c7 1128 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
3a307ffc 1129
9517bac6 1130 if (new) {
3a307ffc
MF
1131 u32 tmp_pos;
1132
9517bac6
MF
1133 /*
1134 * This is safe to call with the page locks - it won't take
1135 * any additional semaphores or cluster locks.
1136 */
3a307ffc 1137 tmp_pos = cpos;
0eb8d47e 1138 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
b46637d5
RD
1139 &tmp_pos, 1, !clear_unwritten,
1140 wc->w_di_bh, wc->w_handle,
1141 data_ac, meta_ac, NULL);
9517bac6
MF
1142 /*
1143 * This shouldn't happen because we must have already
1144 * calculated the correct meta data allocation required. The
1145 * internal tree allocation code should know how to increase
1146 * transaction credits itself.
1147 *
1148 * If need be, we could handle -EAGAIN for a
1149 * RESTART_TRANS here.
1150 */
1151 mlog_bug_on_msg(ret == -EAGAIN,
1152 "Inode %llu: EAGAIN return during allocation.\n",
1153 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1154 if (ret < 0) {
1155 mlog_errno(ret);
1156 goto out;
1157 }
b46637d5 1158 } else if (clear_unwritten) {
5e404e9e
JB
1159 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1160 wc->w_di_bh);
f99b9b7c 1161 ret = ocfs2_mark_extent_written(inode, &et,
2de6a3c7 1162 wc->w_handle, cpos, 1, *phys,
f99b9b7c 1163 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1164 if (ret < 0) {
1165 mlog_errno(ret);
1166 goto out;
1167 }
1168 }
3a307ffc 1169
3a307ffc
MF
1170 /*
1171 * The only reason this should fail is due to an inability to
1172 * find the extent added.
1173 */
2de6a3c7 1174 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
9517bac6 1175 if (ret < 0) {
61fb9ea4 1176 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
2de6a3c7
RD
1177 "at logical cluster %u",
1178 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
9517bac6
MF
1179 goto out;
1180 }
1181
2de6a3c7
RD
1182 BUG_ON(*phys == 0);
1183
1184 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1185 if (!should_zero)
1186 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
9517bac6 1187
3a307ffc
MF
1188 for(i = 0; i < wc->w_num_pages; i++) {
1189 int tmpret;
9517bac6 1190
65c4db8c
RD
1191 /* This is the direct io target page. */
1192 if (wc->w_pages[i] == NULL) {
1193 p_blkno++;
1194 continue;
1195 }
1196
3a307ffc
MF
1197 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1198 wc->w_pages[i], cpos,
b27b7cbc
MF
1199 user_pos, user_len,
1200 should_zero);
3a307ffc
MF
1201 if (tmpret) {
1202 mlog_errno(tmpret);
1203 if (ret == 0)
cbfa9639 1204 ret = tmpret;
3a307ffc 1205 }
9517bac6
MF
1206 }
1207
3a307ffc
MF
1208 /*
1209 * We only have cleanup to do in case of allocating write.
1210 */
1211 if (ret && new)
1212 ocfs2_write_failure(inode, wc, user_pos, user_len);
1213
9517bac6 1214out:
9517bac6 1215
3a307ffc 1216 return ret;
9517bac6
MF
1217}
1218
0d172baa
MF
1219static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1220 struct ocfs2_alloc_context *data_ac,
1221 struct ocfs2_alloc_context *meta_ac,
1222 struct ocfs2_write_ctxt *wc,
1223 loff_t pos, unsigned len)
1224{
1225 int ret, i;
db56246c
MF
1226 loff_t cluster_off;
1227 unsigned int local_len = len;
0d172baa 1228 struct ocfs2_write_cluster_desc *desc;
db56246c 1229 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1230
1231 for (i = 0; i < wc->w_clen; i++) {
1232 desc = &wc->w_desc[i];
1233
db56246c
MF
1234 /*
1235 * We have to make sure that the total write passed in
1236 * doesn't extend past a single cluster.
1237 */
1238 local_len = len;
1239 cluster_off = pos & (osb->s_clustersize - 1);
1240 if ((cluster_off + local_len) > osb->s_clustersize)
1241 local_len = osb->s_clustersize - cluster_off;
1242
2de6a3c7 1243 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
b46637d5
RD
1244 desc->c_new,
1245 desc->c_clear_unwritten,
e7432675
SM
1246 desc->c_needs_zero,
1247 data_ac, meta_ac,
db56246c 1248 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1249 if (ret) {
1250 mlog_errno(ret);
1251 goto out;
1252 }
db56246c
MF
1253
1254 len -= local_len;
1255 pos += local_len;
0d172baa
MF
1256 }
1257
1258 ret = 0;
1259out:
1260 return ret;
1261}
1262
3a307ffc
MF
1263/*
1264 * ocfs2_write_end() wants to know which parts of the target page it
1265 * should complete the write on. It's easiest to compute them ahead of
1266 * time when a more complete view of the write is available.
1267 */
1268static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1269 struct ocfs2_write_ctxt *wc,
1270 loff_t pos, unsigned len, int alloc)
9517bac6 1271{
3a307ffc 1272 struct ocfs2_write_cluster_desc *desc;
9517bac6 1273
09cbfeaf 1274 wc->w_target_from = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1275 wc->w_target_to = wc->w_target_from + len;
1276
1277 if (alloc == 0)
1278 return;
1279
1280 /*
1281 * Allocating write - we may have different boundaries based
1282 * on page size and cluster size.
1283 *
1284 * NOTE: We can no longer compute one value from the other as
1285 * the actual write length and user provided length may be
1286 * different.
1287 */
9517bac6 1288
3a307ffc
MF
1289 if (wc->w_large_pages) {
1290 /*
1291 * We only care about the 1st and last cluster within
b27b7cbc 1292 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1293 * value may be extended out to the start/end of a
1294 * newly allocated cluster.
1295 */
1296 desc = &wc->w_desc[0];
e7432675 1297 if (desc->c_needs_zero)
3a307ffc
MF
1298 ocfs2_figure_cluster_boundaries(osb,
1299 desc->c_cpos,
1300 &wc->w_target_from,
1301 NULL);
1302
1303 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1304 if (desc->c_needs_zero)
3a307ffc
MF
1305 ocfs2_figure_cluster_boundaries(osb,
1306 desc->c_cpos,
1307 NULL,
1308 &wc->w_target_to);
1309 } else {
1310 wc->w_target_from = 0;
09cbfeaf 1311 wc->w_target_to = PAGE_SIZE;
3a307ffc 1312 }
9517bac6
MF
1313}
1314
4506cfb6
RD
1315/*
1316 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1317 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1318 * by the direct io procedure.
1319 * If this is a new extent that allocated by direct io, we should mark it in
1320 * the ip_unwritten_list.
1321 */
1322static int ocfs2_unwritten_check(struct inode *inode,
1323 struct ocfs2_write_ctxt *wc,
1324 struct ocfs2_write_cluster_desc *desc)
1325{
1326 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 1327 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
4506cfb6
RD
1328 int ret = 0;
1329
1330 if (!desc->c_needs_zero)
1331 return 0;
1332
1333retry:
1334 spin_lock(&oi->ip_lock);
1335 /* Needs not to zero no metter buffer or direct. The one who is zero
1336 * the cluster is doing zero. And he will clear unwritten after all
1337 * cluster io finished. */
c15471f7
RD
1338 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1339 if (desc->c_cpos == ue->ue_cpos) {
4506cfb6
RD
1340 BUG_ON(desc->c_new);
1341 desc->c_needs_zero = 0;
1342 desc->c_clear_unwritten = 0;
1343 goto unlock;
1344 }
1345 }
1346
1347 if (wc->w_type != OCFS2_WRITE_DIRECT)
1348 goto unlock;
1349
1350 if (new == NULL) {
1351 spin_unlock(&oi->ip_lock);
1352 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1353 GFP_NOFS);
1354 if (new == NULL) {
1355 ret = -ENOMEM;
1356 goto out;
1357 }
1358 goto retry;
1359 }
1360 /* This direct write will doing zero. */
1361 new->ue_cpos = desc->c_cpos;
1362 new->ue_phys = desc->c_phys;
1363 desc->c_clear_unwritten = 0;
1364 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1365 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
63de8bd9 1366 wc->w_unwritten_count++;
4506cfb6
RD
1367 new = NULL;
1368unlock:
1369 spin_unlock(&oi->ip_lock);
1370out:
0ae1c2db 1371 kfree(new);
4506cfb6
RD
1372 return ret;
1373}
1374
0d172baa
MF
1375/*
1376 * Populate each single-cluster write descriptor in the write context
1377 * with information about the i/o to be done.
b27b7cbc
MF
1378 *
1379 * Returns the number of clusters that will have to be allocated, as
1380 * well as a worst case estimate of the number of extent records that
1381 * would have to be created during a write to an unwritten region.
0d172baa
MF
1382 */
1383static int ocfs2_populate_write_desc(struct inode *inode,
1384 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1385 unsigned int *clusters_to_alloc,
1386 unsigned int *extents_to_split)
9517bac6 1387{
0d172baa 1388 int ret;
3a307ffc 1389 struct ocfs2_write_cluster_desc *desc;
0d172baa 1390 unsigned int num_clusters = 0;
b27b7cbc 1391 unsigned int ext_flags = 0;
0d172baa
MF
1392 u32 phys = 0;
1393 int i;
9517bac6 1394
b27b7cbc
MF
1395 *clusters_to_alloc = 0;
1396 *extents_to_split = 0;
1397
3a307ffc
MF
1398 for (i = 0; i < wc->w_clen; i++) {
1399 desc = &wc->w_desc[i];
1400 desc->c_cpos = wc->w_cpos + i;
1401
1402 if (num_clusters == 0) {
b27b7cbc
MF
1403 /*
1404 * Need to look up the next extent record.
1405 */
3a307ffc 1406 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1407 &num_clusters, &ext_flags);
3a307ffc
MF
1408 if (ret) {
1409 mlog_errno(ret);
607d44aa 1410 goto out;
3a307ffc 1411 }
b27b7cbc 1412
293b2f70
TM
1413 /* We should already CoW the refcountd extent. */
1414 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1415
b27b7cbc
MF
1416 /*
1417 * Assume worst case - that we're writing in
1418 * the middle of the extent.
1419 *
1420 * We can assume that the write proceeds from
1421 * left to right, in which case the extent
1422 * insert code is smart enough to coalesce the
1423 * next splits into the previous records created.
1424 */
1425 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1426 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1427 } else if (phys) {
1428 /*
1429 * Only increment phys if it doesn't describe
1430 * a hole.
1431 */
1432 phys++;
1433 }
1434
e7432675
SM
1435 /*
1436 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1437 * file that got extended. w_first_new_cpos tells us
1438 * where the newly allocated clusters are so we can
1439 * zero them.
1440 */
1441 if (desc->c_cpos >= wc->w_first_new_cpos) {
1442 BUG_ON(phys == 0);
1443 desc->c_needs_zero = 1;
1444 }
1445
3a307ffc
MF
1446 desc->c_phys = phys;
1447 if (phys == 0) {
1448 desc->c_new = 1;
e7432675 1449 desc->c_needs_zero = 1;
b46637d5 1450 desc->c_clear_unwritten = 1;
0d172baa 1451 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1452 }
e7432675
SM
1453
1454 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b46637d5 1455 desc->c_clear_unwritten = 1;
e7432675
SM
1456 desc->c_needs_zero = 1;
1457 }
3a307ffc 1458
4506cfb6
RD
1459 ret = ocfs2_unwritten_check(inode, wc, desc);
1460 if (ret) {
1461 mlog_errno(ret);
1462 goto out;
1463 }
1464
3a307ffc 1465 num_clusters--;
9517bac6
MF
1466 }
1467
0d172baa
MF
1468 ret = 0;
1469out:
1470 return ret;
1471}
1472
1afc32b9
MF
1473static int ocfs2_write_begin_inline(struct address_space *mapping,
1474 struct inode *inode,
1475 struct ocfs2_write_ctxt *wc)
1476{
1477 int ret;
1478 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1479 struct page *page;
1480 handle_t *handle;
1481 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1482
f775da2f
JB
1483 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1486 mlog_errno(ret);
1487 goto out;
1488 }
1489
1afc32b9
MF
1490 page = find_or_create_page(mapping, 0, GFP_NOFS);
1491 if (!page) {
f775da2f 1492 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1493 ret = -ENOMEM;
1494 mlog_errno(ret);
1495 goto out;
1496 }
1497 /*
1498 * If we don't set w_num_pages then this page won't get unlocked
1499 * and freed on cleanup of the write context.
1500 */
1501 wc->w_pages[0] = wc->w_target_page = page;
1502 wc->w_num_pages = 1;
1503
0cf2f763 1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1505 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1506 if (ret) {
1507 ocfs2_commit_trans(osb, handle);
1508
1509 mlog_errno(ret);
1510 goto out;
1511 }
1512
1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 ocfs2_set_inode_data_inline(inode, di);
1515
1516 if (!PageUptodate(page)) {
1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1520
1521 goto out;
1522 }
1523 }
1524
1525 wc->w_handle = handle;
1526out:
1527 return ret;
1528}
1529
1530int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531{
1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
0d8a4e0c 1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1535 return 1;
1536 return 0;
1537}
1538
1539static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 struct inode *inode, loff_t pos,
1541 unsigned len, struct page *mmap_page,
1542 struct ocfs2_write_ctxt *wc)
1543{
1544 int ret, written = 0;
1545 loff_t end = pos + len;
1546 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1547 struct ocfs2_dinode *di = NULL;
1afc32b9 1548
9558156b
TM
1549 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550 len, (unsigned long long)pos,
1551 oi->ip_dyn_features);
1afc32b9
MF
1552
1553 /*
1554 * Handle inodes which already have inline data 1st.
1555 */
1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 if (mmap_page == NULL &&
1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 goto do_inline_write;
1560
1561 /*
1562 * The write won't fit - we have to give this inode an
1563 * inline extent list now.
1564 */
1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566 if (ret)
1567 mlog_errno(ret);
1568 goto out;
1569 }
1570
1571 /*
1572 * Check whether the inode can accept inline data.
1573 */
1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575 return 0;
1576
1577 /*
1578 * Check whether the write can fit.
1579 */
d9ae49d6
TY
1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581 if (mmap_page ||
1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1583 return 0;
1584
1585do_inline_write:
1586 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587 if (ret) {
1588 mlog_errno(ret);
1589 goto out;
1590 }
1591
1592 /*
1593 * This signals to the caller that the data can be written
1594 * inline.
1595 */
1596 written = 1;
1597out:
1598 return written ? written : ret;
1599}
1600
65ed39d6
MF
1601/*
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1604 *
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1609 */
5693486b
JB
1610static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 struct buffer_head *di_bh,
1612 loff_t pos, unsigned len,
65ed39d6
MF
1613 struct ocfs2_write_ctxt *wc)
1614{
1615 int ret;
65ed39d6
MF
1616 loff_t newsize = pos + len;
1617
5693486b 1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1619
1620 if (newsize <= i_size_read(inode))
1621 return 0;
1622
5693486b 1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1624 if (ret)
1625 mlog_errno(ret);
1626
46e62556
RD
1627 /* There is no wc if this is call from direct. */
1628 if (wc)
1629 wc->w_first_new_cpos =
1630 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
e7432675 1631
65ed39d6
MF
1632 return ret;
1633}
1634
5693486b
JB
1635static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1636 loff_t pos)
1637{
1638 int ret = 0;
1639
1640 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641 if (pos > i_size_read(inode))
1642 ret = ocfs2_zero_extend(inode, di_bh, pos);
1643
1644 return ret;
1645}
1646
c1ad1e3c
RD
1647int ocfs2_write_begin_nolock(struct address_space *mapping,
1648 loff_t pos, unsigned len, ocfs2_write_type_t type,
0d172baa
MF
1649 struct page **pagep, void **fsdata,
1650 struct buffer_head *di_bh, struct page *mmap_page)
1651{
e7432675 1652 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1653 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1654 struct ocfs2_write_ctxt *wc;
1655 struct inode *inode = mapping->host;
1656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657 struct ocfs2_dinode *di;
1658 struct ocfs2_alloc_context *data_ac = NULL;
1659 struct ocfs2_alloc_context *meta_ac = NULL;
1660 handle_t *handle;
f99b9b7c 1661 struct ocfs2_extent_tree et;
50308d81 1662 int try_free = 1, ret1;
0d172baa 1663
50308d81 1664try_again:
c1ad1e3c 1665 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
0d172baa
MF
1666 if (ret) {
1667 mlog_errno(ret);
1668 return ret;
1669 }
1670
1afc32b9
MF
1671 if (ocfs2_supports_inline_data(osb)) {
1672 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1673 mmap_page, wc);
1674 if (ret == 1) {
1675 ret = 0;
1676 goto success;
1677 }
1678 if (ret < 0) {
1679 mlog_errno(ret);
1680 goto out;
1681 }
1682 }
1683
46e62556
RD
1684 /* Direct io change i_size late, should not zero tail here. */
1685 if (type != OCFS2_WRITE_DIRECT) {
1686 if (ocfs2_sparse_alloc(osb))
1687 ret = ocfs2_zero_tail(inode, di_bh, pos);
1688 else
1689 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1690 len, wc);
1691 if (ret) {
1692 mlog_errno(ret);
1693 goto out;
1694 }
65ed39d6
MF
1695 }
1696
293b2f70
TM
1697 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1698 if (ret < 0) {
1699 mlog_errno(ret);
1700 goto out;
1701 } else if (ret == 1) {
50308d81 1702 clusters_need = wc->w_clen;
c7dd3392 1703 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1704 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1705 if (ret) {
1706 mlog_errno(ret);
1707 goto out;
1708 }
1709 }
1710
b27b7cbc
MF
1711 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1712 &extents_to_split);
0d172baa
MF
1713 if (ret) {
1714 mlog_errno(ret);
1715 goto out;
1716 }
50308d81 1717 clusters_need += clusters_to_alloc;
0d172baa
MF
1718
1719 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1720
9558156b
TM
1721 trace_ocfs2_write_begin_nolock(
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (long long)i_size_read(inode),
1724 le32_to_cpu(di->i_clusters),
c1ad1e3c 1725 pos, len, type, mmap_page,
9558156b
TM
1726 clusters_to_alloc, extents_to_split);
1727
3a307ffc
MF
1728 /*
1729 * We set w_target_from, w_target_to here so that
1730 * ocfs2_write_end() knows which range in the target page to
1731 * write out. An allocation requires that we write the entire
1732 * cluster range.
1733 */
b27b7cbc 1734 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1735 /*
1736 * XXX: We are stretching the limits of
b27b7cbc 1737 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1738 * the work to be done.
1739 */
5e404e9e
JB
1740 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1741 wc->w_di_bh);
f99b9b7c 1742 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1743 clusters_to_alloc, extents_to_split,
f99b9b7c 1744 &data_ac, &meta_ac);
9517bac6
MF
1745 if (ret) {
1746 mlog_errno(ret);
607d44aa 1747 goto out;
9517bac6
MF
1748 }
1749
4fe370af
MF
1750 if (data_ac)
1751 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1752
811f933d 1753 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1754 &di->id2.i_list);
46e62556
RD
1755 } else if (type == OCFS2_WRITE_DIRECT)
1756 /* direct write needs not to start trans if no extents alloc. */
1757 goto success;
9517bac6 1758
e7432675
SM
1759 /*
1760 * We have to zero sparse allocated clusters, unwritten extent clusters,
1761 * and non-sparse clusters we just extended. For non-sparse writes,
1762 * we know zeros will only be needed in the first and/or last cluster.
1763 */
4506cfb6
RD
1764 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1765 wc->w_desc[wc->w_clen - 1].c_needs_zero))
e7432675
SM
1766 cluster_of_pages = 1;
1767 else
1768 cluster_of_pages = 0;
1769
1770 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1771
9517bac6
MF
1772 handle = ocfs2_start_trans(osb, credits);
1773 if (IS_ERR(handle)) {
1774 ret = PTR_ERR(handle);
1775 mlog_errno(ret);
607d44aa 1776 goto out;
9517bac6
MF
1777 }
1778
3a307ffc
MF
1779 wc->w_handle = handle;
1780
5dd4056d
CH
1781 if (clusters_to_alloc) {
1782 ret = dquot_alloc_space_nodirty(inode,
1783 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1784 if (ret)
1785 goto out_commit;
a90714c1 1786 }
7f27ec97 1787
0cf2f763 1788 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1789 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1790 if (ret) {
9517bac6 1791 mlog_errno(ret);
a90714c1 1792 goto out_quota;
9517bac6
MF
1793 }
1794
3a307ffc
MF
1795 /*
1796 * Fill our page array first. That way we've grabbed enough so
1797 * that we can zero and flush if we error after adding the
1798 * extent.
1799 */
693c241a 1800 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1801 cluster_of_pages, mmap_page);
e07bf00c
JQ
1802 if (ret) {
1803 /*
1804 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1805 * the target page. In this case, we exit with no error and no target
1806 * page. This will trigger the caller, page_mkwrite(), to re-try
1807 * the operation.
1808 */
1809 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1810 BUG_ON(wc->w_target_page);
1811 ret = 0;
1812 goto out_quota;
1813 }
9517bac6 1814
e07bf00c 1815 mlog_errno(ret);
5cffff9e
WW
1816 goto out_quota;
1817 }
1818
0d172baa
MF
1819 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1820 len);
1821 if (ret) {
1822 mlog_errno(ret);
a90714c1 1823 goto out_quota;
9517bac6 1824 }
9517bac6 1825
3a307ffc
MF
1826 if (data_ac)
1827 ocfs2_free_alloc_context(data_ac);
1828 if (meta_ac)
1829 ocfs2_free_alloc_context(meta_ac);
9517bac6 1830
1afc32b9 1831success:
65c4db8c
RD
1832 if (pagep)
1833 *pagep = wc->w_target_page;
3a307ffc
MF
1834 *fsdata = wc;
1835 return 0;
a90714c1
JK
1836out_quota:
1837 if (clusters_to_alloc)
5dd4056d 1838 dquot_free_space(inode,
a90714c1 1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1840out_commit:
1841 ocfs2_commit_trans(osb, handle);
1842
9517bac6 1843out:
c33f0785
ER
1844 /*
1845 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1846 * even in case of error here like ENOSPC and ENOMEM. So, we need
1847 * to unlock the target page manually to prevent deadlocks when
1848 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1849 * to VM code.
1850 */
1851 if (wc->w_target_locked)
1852 unlock_page(mmap_page);
1853
4506cfb6 1854 ocfs2_free_write_ctxt(inode, wc);
3a307ffc 1855
b1214e47 1856 if (data_ac) {
9517bac6 1857 ocfs2_free_alloc_context(data_ac);
b1214e47
X
1858 data_ac = NULL;
1859 }
1860 if (meta_ac) {
9517bac6 1861 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
1862 meta_ac = NULL;
1863 }
50308d81
TM
1864
1865 if (ret == -ENOSPC && try_free) {
1866 /*
1867 * Try to free some truncate log so that we can have enough
1868 * clusters to allocate.
1869 */
1870 try_free = 0;
1871
1872 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1873 if (ret1 == 1)
1874 goto try_again;
1875
1876 if (ret1 < 0)
1877 mlog_errno(ret1);
1878 }
1879
3a307ffc
MF
1880 return ret;
1881}
1882
b6af1bcd
NP
1883static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1884 loff_t pos, unsigned len, unsigned flags,
1885 struct page **pagep, void **fsdata)
607d44aa
MF
1886{
1887 int ret;
1888 struct buffer_head *di_bh = NULL;
1889 struct inode *inode = mapping->host;
1890
e63aecb6 1891 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1892 if (ret) {
1893 mlog_errno(ret);
1894 return ret;
1895 }
1896
1897 /*
1898 * Take alloc sem here to prevent concurrent lookups. That way
1899 * the mapping, zeroing and tree manipulation within
1900 * ocfs2_write() will be safe against ->readpage(). This
1901 * should also serve to lock out allocation from a shared
1902 * writeable region.
1903 */
1904 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1905
c1ad1e3c
RD
1906 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1907 pagep, fsdata, di_bh, NULL);
607d44aa
MF
1908 if (ret) {
1909 mlog_errno(ret);
c934a92d 1910 goto out_fail;
607d44aa
MF
1911 }
1912
1913 brelse(di_bh);
1914
1915 return 0;
1916
607d44aa
MF
1917out_fail:
1918 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1919
1920 brelse(di_bh);
e63aecb6 1921 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1922
1923 return ret;
1924}
1925
1afc32b9
MF
1926static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1927 unsigned len, unsigned *copied,
1928 struct ocfs2_dinode *di,
1929 struct ocfs2_write_ctxt *wc)
1930{
1931 void *kaddr;
1932
1933 if (unlikely(*copied < len)) {
1934 if (!PageUptodate(wc->w_target_page)) {
1935 *copied = 0;
1936 return;
1937 }
1938 }
1939
c4bc8dcb 1940 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1941 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1942 kunmap_atomic(kaddr);
1afc32b9 1943
9558156b
TM
1944 trace_ocfs2_write_end_inline(
1945 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1946 (unsigned long long)pos, *copied,
1947 le16_to_cpu(di->id2.i_data.id_count),
1948 le16_to_cpu(di->i_dyn_features));
1949}
1950
7307de80 1951int ocfs2_write_end_nolock(struct address_space *mapping,
07f38d97 1952 loff_t pos, unsigned len, unsigned copied, void *fsdata)
3a307ffc 1953{
7f27ec97 1954 int i, ret;
09cbfeaf 1955 unsigned from, to, start = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1956 struct inode *inode = mapping->host;
1957 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1958 struct ocfs2_write_ctxt *wc = fsdata;
1959 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1960 handle_t *handle = wc->w_handle;
1961 struct page *tmppage;
1962
4506cfb6
RD
1963 BUG_ON(!list_empty(&wc->w_unwritten_list));
1964
46e62556
RD
1965 if (handle) {
1966 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1967 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1968 if (ret) {
1969 copied = ret;
1970 mlog_errno(ret);
1971 goto out;
1972 }
7f27ec97 1973 }
1974
1afc32b9
MF
1975 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1976 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1977 goto out_write_size;
1978 }
1979
65c4db8c 1980 if (unlikely(copied < len) && wc->w_target_page) {
3a307ffc
MF
1981 if (!PageUptodate(wc->w_target_page))
1982 copied = 0;
1983
1984 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1985 start+len);
1986 }
65c4db8c
RD
1987 if (wc->w_target_page)
1988 flush_dcache_page(wc->w_target_page);
3a307ffc
MF
1989
1990 for(i = 0; i < wc->w_num_pages; i++) {
1991 tmppage = wc->w_pages[i];
1992
65c4db8c
RD
1993 /* This is the direct io target page. */
1994 if (tmppage == NULL)
1995 continue;
1996
3a307ffc
MF
1997 if (tmppage == wc->w_target_page) {
1998 from = wc->w_target_from;
1999 to = wc->w_target_to;
2000
09cbfeaf
KS
2001 BUG_ON(from > PAGE_SIZE ||
2002 to > PAGE_SIZE ||
3a307ffc
MF
2003 to < from);
2004 } else {
2005 /*
2006 * Pages adjacent to the target (if any) imply
2007 * a hole-filling write in which case we want
2008 * to flush their entire range.
2009 */
2010 from = 0;
09cbfeaf 2011 to = PAGE_SIZE;
3a307ffc
MF
2012 }
2013
961cecbe 2014 if (page_has_buffers(tmppage)) {
bbd0f327
JQ
2015 if (handle && ocfs2_should_order_data(inode)) {
2016 loff_t start_byte =
2017 ((loff_t)tmppage->index << PAGE_SHIFT) +
2018 from;
2019 loff_t length = to - from;
2020 ocfs2_jbd2_inode_add_write(handle, inode,
2021 start_byte, length);
2022 }
961cecbe
SM
2023 block_commit_write(tmppage, from, to);
2024 }
3a307ffc
MF
2025 }
2026
1afc32b9 2027out_write_size:
46e62556
RD
2028 /* Direct io do not update i_size here. */
2029 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2030 pos += copied;
2031 if (pos > i_size_read(inode)) {
2032 i_size_write(inode, pos);
2033 mark_inode_dirty(inode);
2034 }
2035 inode->i_blocks = ocfs2_inode_sector_count(inode);
2036 di->i_size = cpu_to_le64((u64)i_size_read(inode));
078cd827 2037 inode->i_mtime = inode->i_ctime = current_time(inode);
46e62556
RD
2038 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2039 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
583fee3e
JJB
2040 if (handle)
2041 ocfs2_update_inode_fsync_trans(handle, inode, 1);
46e62556
RD
2042 }
2043 if (handle)
2044 ocfs2_journal_dirty(handle, wc->w_di_bh);
3a307ffc 2045
7f27ec97 2046out:
136f49b9
JB
2047 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2048 * lock, or it will cause a deadlock since journal commit threads holds
2049 * this lock and will ask for the page lock when flushing the data.
2050 * put it here to preserve the unlock order.
2051 */
2052 ocfs2_unlock_pages(wc);
2053
46e62556
RD
2054 if (handle)
2055 ocfs2_commit_trans(osb, handle);
59a5e416 2056
b27b7cbc
MF
2057 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2058
136f49b9
JB
2059 brelse(wc->w_di_bh);
2060 kfree(wc);
607d44aa
MF
2061
2062 return copied;
2063}
2064
b6af1bcd
NP
2065static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2066 loff_t pos, unsigned len, unsigned copied,
2067 struct page *page, void *fsdata)
607d44aa
MF
2068{
2069 int ret;
2070 struct inode *inode = mapping->host;
2071
07f38d97 2072 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
607d44aa 2073
3a307ffc 2074 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2075 ocfs2_inode_unlock(inode, 1);
9517bac6 2076
607d44aa 2077 return ret;
9517bac6
MF
2078}
2079
c15471f7
RD
2080struct ocfs2_dio_write_ctxt {
2081 struct list_head dw_zero_list;
2082 unsigned dw_zero_count;
2083 int dw_orphaned;
2084 pid_t dw_writer_pid;
2085};
2086
2087static struct ocfs2_dio_write_ctxt *
2088ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2089{
2090 struct ocfs2_dio_write_ctxt *dwc = NULL;
2091
2092 if (bh->b_private)
2093 return bh->b_private;
2094
2095 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2096 if (dwc == NULL)
2097 return NULL;
2098 INIT_LIST_HEAD(&dwc->dw_zero_list);
2099 dwc->dw_zero_count = 0;
2100 dwc->dw_orphaned = 0;
2101 dwc->dw_writer_pid = task_pid_nr(current);
2102 bh->b_private = dwc;
2103 *alloc = 1;
2104
2105 return dwc;
2106}
2107
2108static void ocfs2_dio_free_write_ctx(struct inode *inode,
2109 struct ocfs2_dio_write_ctxt *dwc)
2110{
2111 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2112 kfree(dwc);
2113}
2114
2115/*
2116 * TODO: Make this into a generic get_blocks function.
2117 *
2118 * From do_direct_io in direct-io.c:
2119 * "So what we do is to permit the ->get_blocks function to populate
2120 * bh.b_size with the size of IO which is permitted at this offset and
2121 * this i_blkbits."
2122 *
2123 * This function is called directly from get_more_blocks in direct-io.c.
2124 *
2125 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2126 * fs_count, map_bh, dio->rw == WRITE);
2127 */
3e4c56d4 2128static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
c15471f7
RD
2129 struct buffer_head *bh_result, int create)
2130{
2131 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2132 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2133 struct ocfs2_write_ctxt *wc;
2134 struct ocfs2_write_cluster_desc *desc = NULL;
2135 struct ocfs2_dio_write_ctxt *dwc = NULL;
2136 struct buffer_head *di_bh = NULL;
2137 u64 p_blkno;
7a243c82
JG
2138 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2139 loff_t pos = iblock << i_blkbits;
2140 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
c15471f7
RD
2141 unsigned len, total_len = bh_result->b_size;
2142 int ret = 0, first_get_block = 0;
2143
2144 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2145 len = min(total_len, len);
2146
7a243c82
JG
2147 /*
2148 * bh_result->b_size is count in get_more_blocks according to write
2149 * "pos" and "end", we need map twice to return different buffer state:
2150 * 1. area in file size, not set NEW;
2151 * 2. area out file size, set NEW.
2152 *
2153 * iblock endblk
2154 * |--------|---------|---------|---------
2155 * |<-------area in file------->|
2156 */
2157
2158 if ((iblock <= endblk) &&
2159 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2160 len = (endblk - iblock + 1) << i_blkbits;
2161
c15471f7
RD
2162 mlog(0, "get block of %lu at %llu:%u req %u\n",
2163 inode->i_ino, pos, len, total_len);
2164
ce170828
RD
2165 /*
2166 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2167 * we may need to add it to orphan dir. So can not fall to fast path
2168 * while file size will be changed.
2169 */
2170 if (pos + total_len <= i_size_read(inode)) {
a86a72a4 2171
3e4c56d4 2172 /* This is the fast path for re-write. */
2173 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
ce170828
RD
2174 if (buffer_mapped(bh_result) &&
2175 !buffer_new(bh_result) &&
2176 ret == 0)
2177 goto out;
c15471f7 2178
ce170828
RD
2179 /* Clear state set by ocfs2_get_block. */
2180 bh_result->b_state = 0;
2181 }
c15471f7
RD
2182
2183 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2184 if (unlikely(dwc == NULL)) {
2185 ret = -ENOMEM;
2186 mlog_errno(ret);
2187 goto out;
2188 }
2189
2190 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2191 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2192 !dwc->dw_orphaned) {
2193 /*
2194 * when we are going to alloc extents beyond file size, add the
2195 * inode to orphan dir, so we can recall those spaces when
2196 * system crashed during write.
2197 */
2198 ret = ocfs2_add_inode_to_orphan(osb, inode);
2199 if (ret < 0) {
2200 mlog_errno(ret);
2201 goto out;
2202 }
2203 dwc->dw_orphaned = 1;
2204 }
2205
2206 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2207 if (ret) {
2208 mlog_errno(ret);
2209 goto out;
2210 }
2211
a86a72a4
RD
2212 down_write(&oi->ip_alloc_sem);
2213
c15471f7 2214 if (first_get_block) {
1119d3c0 2215 if (ocfs2_sparse_alloc(osb))
c15471f7
RD
2216 ret = ocfs2_zero_tail(inode, di_bh, pos);
2217 else
2218 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2219 total_len, NULL);
2220 if (ret < 0) {
2221 mlog_errno(ret);
2222 goto unlock;
2223 }
2224 }
2225
2226 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2227 OCFS2_WRITE_DIRECT, NULL,
2228 (void **)&wc, di_bh, NULL);
2229 if (ret) {
2230 mlog_errno(ret);
2231 goto unlock;
2232 }
2233
2234 desc = &wc->w_desc[0];
2235
2236 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2237 BUG_ON(p_blkno == 0);
2238 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2239
2240 map_bh(bh_result, inode->i_sb, p_blkno);
2241 bh_result->b_size = len;
2242 if (desc->c_needs_zero)
2243 set_buffer_new(bh_result);
2244
7a243c82
JG
2245 if (iblock > endblk)
2246 set_buffer_new(bh_result);
2247
c15471f7
RD
2248 /* May sleep in end_io. It should not happen in a irq context. So defer
2249 * it to dio work queue. */
2250 set_buffer_defer_completion(bh_result);
2251
2252 if (!list_empty(&wc->w_unwritten_list)) {
2253 struct ocfs2_unwritten_extent *ue = NULL;
2254
2255 ue = list_first_entry(&wc->w_unwritten_list,
2256 struct ocfs2_unwritten_extent,
2257 ue_node);
2258 BUG_ON(ue->ue_cpos != desc->c_cpos);
2259 /* The physical address may be 0, fill it. */
2260 ue->ue_phys = desc->c_phys;
2261
2262 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
63de8bd9 2263 dwc->dw_zero_count += wc->w_unwritten_count;
c15471f7
RD
2264 }
2265
07f38d97 2266 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
c15471f7
RD
2267 BUG_ON(ret != len);
2268 ret = 0;
2269unlock:
a86a72a4 2270 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2271 ocfs2_inode_unlock(inode, 1);
2272 brelse(di_bh);
2273out:
2274 if (ret < 0)
2275 ret = -EIO;
2276 return ret;
2277}
2278
08554955
DW
2279static int ocfs2_dio_end_io_write(struct inode *inode,
2280 struct ocfs2_dio_write_ctxt *dwc,
2281 loff_t offset,
2282 ssize_t bytes)
c15471f7
RD
2283{
2284 struct ocfs2_cached_dealloc_ctxt dealloc;
2285 struct ocfs2_extent_tree et;
2286 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2287 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2288 struct ocfs2_unwritten_extent *ue = NULL;
2289 struct buffer_head *di_bh = NULL;
2290 struct ocfs2_dinode *di;
2291 struct ocfs2_alloc_context *data_ac = NULL;
2292 struct ocfs2_alloc_context *meta_ac = NULL;
2293 handle_t *handle = NULL;
2294 loff_t end = offset + bytes;
90bd070a 2295 int ret = 0, credits = 0;
c15471f7
RD
2296
2297 ocfs2_init_dealloc_ctxt(&dealloc);
2298
2299 /* We do clear unwritten, delete orphan, change i_size here. If neither
2300 * of these happen, we can skip all this. */
2301 if (list_empty(&dwc->dw_zero_list) &&
2302 end <= i_size_read(inode) &&
2303 !dwc->dw_orphaned)
2304 goto out;
2305
a86a72a4
RD
2306 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2307 if (ret < 0) {
2308 mlog_errno(ret);
2309 goto out;
2310 }
2311
2312 down_write(&oi->ip_alloc_sem);
2313
c15471f7
RD
2314 /* Delete orphan before acquire i_mutex. */
2315 if (dwc->dw_orphaned) {
2316 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2317
2318 end = end > i_size_read(inode) ? end : 0;
2319
2320 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2321 !!end, end);
2322 if (ret < 0)
2323 mlog_errno(ret);
2324 }
2325
aef73a61 2326 di = (struct ocfs2_dinode *)di_bh->b_data;
c15471f7
RD
2327
2328 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2329
71a36944
CG
2330 /* Attach dealloc with extent tree in case that we may reuse extents
2331 * which are already unlinked from current extent tree due to extent
2332 * rotation and merging.
2333 */
2334 et.et_dealloc = &dealloc;
2335
c15471f7
RD
2336 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2337 &data_ac, &meta_ac);
28888681
RD
2338 if (ret) {
2339 mlog_errno(ret);
2340 goto unlock;
2341 }
c15471f7
RD
2342
2343 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2344
2345 handle = ocfs2_start_trans(osb, credits);
2346 if (IS_ERR(handle)) {
2347 ret = PTR_ERR(handle);
2348 mlog_errno(ret);
2349 goto unlock;
2350 }
2351 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2352 OCFS2_JOURNAL_ACCESS_WRITE);
2353 if (ret) {
2354 mlog_errno(ret);
2355 goto commit;
2356 }
2357
2358 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2359 ret = ocfs2_mark_extent_written(inode, &et, handle,
2360 ue->ue_cpos, 1,
2361 ue->ue_phys,
2362 meta_ac, &dealloc);
2363 if (ret < 0) {
2364 mlog_errno(ret);
2365 break;
2366 }
2367 }
2368
2369 if (end > i_size_read(inode)) {
2370 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2371 if (ret < 0)
2372 mlog_errno(ret);
2373 }
2374commit:
2375 ocfs2_commit_trans(osb, handle);
2376unlock:
a86a72a4 2377 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2378 ocfs2_inode_unlock(inode, 1);
2379 brelse(di_bh);
2380out:
c15471f7
RD
2381 if (data_ac)
2382 ocfs2_free_alloc_context(data_ac);
2383 if (meta_ac)
2384 ocfs2_free_alloc_context(meta_ac);
28888681 2385 ocfs2_run_deallocs(osb, &dealloc);
28888681 2386 ocfs2_dio_free_write_ctx(inode, dwc);
08554955
DW
2387
2388 return ret;
c15471f7
RD
2389}
2390
2391/*
2392 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2393 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2394 * to protect io on one node from truncation on another.
2395 */
2396static int ocfs2_dio_end_io(struct kiocb *iocb,
2397 loff_t offset,
2398 ssize_t bytes,
2399 void *private)
2400{
2401 struct inode *inode = file_inode(iocb->ki_filp);
2402 int level;
08554955 2403 int ret = 0;
c15471f7
RD
2404
2405 /* this io's submitter should not have unlocked this before we could */
2406 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2407
5040f8df
WW
2408 if (bytes <= 0)
2409 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2410 (long long)bytes);
2411 if (private) {
2412 if (bytes > 0)
2413 ret = ocfs2_dio_end_io_write(inode, private, offset,
2414 bytes);
2415 else
2416 ocfs2_dio_free_write_ctx(inode, private);
2417 }
c15471f7
RD
2418
2419 ocfs2_iocb_clear_rw_locked(iocb);
2420
2421 level = ocfs2_iocb_rw_locked_level(iocb);
2422 ocfs2_rw_unlock(inode, level);
08554955 2423 return ret;
c15471f7
RD
2424}
2425
c8b8e32d 2426static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
c15471f7
RD
2427{
2428 struct file *file = iocb->ki_filp;
93c76a3d 2429 struct inode *inode = file->f_mapping->host;
c15471f7 2430 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
c15471f7
RD
2431 get_block_t *get_block;
2432
2433 /*
2434 * Fallback to buffered I/O if we see an inode without
2435 * extents.
2436 */
2437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2438 return 0;
2439
2440 /* Fallback to buffered I/O if we do not support append dio. */
c8b8e32d
CH
2441 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2442 !ocfs2_supports_append_dio(osb))
c15471f7
RD
2443 return 0;
2444
2445 if (iov_iter_rw(iter) == READ)
3e4c56d4 2446 get_block = ocfs2_lock_get_block;
c15471f7 2447 else
3e4c56d4 2448 get_block = ocfs2_dio_wr_get_block;
c15471f7
RD
2449
2450 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
c8b8e32d 2451 iter, get_block,
c15471f7
RD
2452 ocfs2_dio_end_io, NULL, 0);
2453}
2454
f5e54d6e 2455const struct address_space_operations ocfs2_aops = {
0af57378 2456 .set_page_dirty = __set_page_dirty_buffers,
1fca3a05 2457 .readpage = ocfs2_readpage,
d4388340 2458 .readahead = ocfs2_readahead,
1fca3a05
HH
2459 .writepage = ocfs2_writepage,
2460 .write_begin = ocfs2_write_begin,
2461 .write_end = ocfs2_write_end,
2462 .bmap = ocfs2_bmap,
1fca3a05 2463 .direct_IO = ocfs2_direct_IO,
7ba13abb 2464 .invalidate_folio = block_invalidate_folio,
1fca3a05
HH
2465 .releasepage = ocfs2_releasepage,
2466 .migratepage = buffer_migrate_page,
2467 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2468 .error_remove_page = generic_error_remove_page,
ccd979bd 2469};