ocfs2: Add comment about orphan scanning
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
a81cb88b 125 brelse(bh);
ccd979bd 126
ccd979bd
MF
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 138
9558156b
TM
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
5693486b
JB
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
ccd979bd
MF
208bail:
209 if (err < 0)
210 err = -EIO;
211
ccd979bd
MF
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
9558156b
TM
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
ccd979bd 283
e63aecb6 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
6798d35a 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 293 ret = AOP_TRUNCATED_PAGE;
e63aecb6 294 goto out_inode_unlock;
e9dfc0b2 295 }
ccd979bd
MF
296
297 /*
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
54cb8821 302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
303 * and notice that the page they just read isn't needed.
304 *
305 * XXX sys_readahead() seems to get that wrong?
306 */
307 if (start >= i_size_read(inode)) {
eebd2aa3 308 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
312 }
313
6798d35a
MF
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
318 unlock = 0;
319
ccd979bd
MF
320out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
322out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
324out:
325 if (unlock)
326 unlock_page(page);
ccd979bd
MF
327 return ret;
328}
329
628a24f5
MF
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
ccd979bd
MF
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
9558156b
TM
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 page->index);
ccd979bd 402
9558156b 403 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
404}
405
ccd979bd
MF
406/* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
60b11392
MF
410int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
ccd979bd
MF
417{
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
423
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
427 {
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
434 }
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
438 }
439 return ret;
440}
441
ccd979bd
MF
442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443{
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
448
9558156b
TM
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
ccd979bd
MF
451
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
454 */
455 if (!INODE_JOURNAL(inode)) {
e63aecb6 456 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
461 }
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 }
464
6798d35a
MF
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
ccd979bd
MF
468
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 471 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
472 }
473
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
479 }
480
ccd979bd
MF
481bail:
482 status = err ? 0 : p_blkno;
483
ccd979bd
MF
484 return status;
485}
486
487/*
488 * TODO: Make this into a generic get_blocks function.
489 *
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
493 * this i_blkbits."
494 *
495 * This function is called directly from get_more_blocks in direct-io.c.
496 *
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
499 *
500 * Note that we never bother to allocate blocks here, and thus ignore the
501 * create argument.
ccd979bd
MF
502 */
503static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
504 struct buffer_head *bh_result, int create)
505{
506 int ret;
4f902c37 507 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 508 unsigned int ext_flags;
184d7d20 509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 511
ccd979bd
MF
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
515
25baf2da 516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 517
ccd979bd
MF
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
363041a5 520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 521 &contig_blocks, &ext_flags);
ccd979bd
MF
522 if (ret) {
523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock);
525 ret = -EIO;
526 goto bail;
527 }
528
cbaee472
TM
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531
25baf2da
MF
532 /*
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
49cb8d2d
MF
535 *
536 * Consider an unwritten extent as a hole.
25baf2da 537 */
49cb8d2d 538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 539 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 540 else
25baf2da 541 clear_buffer_mapped(bh_result);
ccd979bd
MF
542
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks < contig_blocks)
546 contig_blocks = max_blocks;
547 bh_result->b_size = contig_blocks << blocksize_bits;
548bail:
549 return ret;
550}
551
2bd63216 552/*
ccd979bd 553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
554 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
555 * to protect io on one node from truncation on another.
ccd979bd
MF
556 */
557static void ocfs2_dio_end_io(struct kiocb *iocb,
558 loff_t offset,
559 ssize_t bytes,
40e2e973
CH
560 void *private,
561 int ret,
562 bool is_async)
ccd979bd 563{
d28c9174 564 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 565 int level;
ccd979bd
MF
566
567 /* this io's submitter should not have unlocked this before we could */
568 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 569
df2d6f26 570 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 571 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 572
ccd979bd 573 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
574
575 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 576 ocfs2_rw_unlock(inode, level);
40e2e973
CH
577
578 if (is_async)
579 aio_complete(iocb, ret, 0);
72c5052d 580 inode_dio_done(inode);
ccd979bd
MF
581}
582
03f981cf
JB
583/*
584 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585 * from ext3. PageChecked() bits have been removed as OCFS2 does not
586 * do journalled data.
587 */
588static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
589{
590 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
591
2b4e30fb 592 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
593}
594
595static int ocfs2_releasepage(struct page *page, gfp_t wait)
596{
597 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
599 if (!page_has_buffers(page))
600 return 0;
2b4e30fb 601 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
602}
603
ccd979bd
MF
604static ssize_t ocfs2_direct_IO(int rw,
605 struct kiocb *iocb,
606 const struct iovec *iov,
607 loff_t offset,
608 unsigned long nr_segs)
609{
610 struct file *file = iocb->ki_filp;
d28c9174 611 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
53013cba 612
6798d35a
MF
613 /*
614 * Fallback to buffered I/O if we see an inode without
615 * extents.
616 */
617 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 return 0;
619
b80474b4
TM
620 /* Fallback to buffered I/O if we are appending. */
621 if (i_size_read(inode) <= offset)
622 return 0;
623
c1e8d35e
TM
624 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 iov, offset, nr_segs,
626 ocfs2_direct_IO_get_blocks,
627 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
628}
629
9517bac6
MF
630static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 u32 cpos,
632 unsigned int *start,
633 unsigned int *end)
634{
635 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 unsigned int cpp;
639
640 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642 cluster_start = cpos % cpp;
643 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645 cluster_end = cluster_start + osb->s_clustersize;
646 }
647
648 BUG_ON(cluster_start > PAGE_SIZE);
649 BUG_ON(cluster_end > PAGE_SIZE);
650
651 if (start)
652 *start = cluster_start;
653 if (end)
654 *end = cluster_end;
655}
656
657/*
658 * 'from' and 'to' are the region in the page to avoid zeroing.
659 *
660 * If pagesize > clustersize, this function will avoid zeroing outside
661 * of the cluster boundary.
662 *
663 * from == to == 0 is code for "zero the entire cluster region"
664 */
665static void ocfs2_clear_page_regions(struct page *page,
666 struct ocfs2_super *osb, u32 cpos,
667 unsigned from, unsigned to)
668{
669 void *kaddr;
670 unsigned int cluster_start, cluster_end;
671
672 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
674 kaddr = kmap_atomic(page, KM_USER0);
675
676 if (from || to) {
677 if (from > cluster_start)
678 memset(kaddr + cluster_start, 0, from - cluster_start);
679 if (to < cluster_end)
680 memset(kaddr + to, 0, cluster_end - to);
681 } else {
682 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683 }
684
685 kunmap_atomic(kaddr, KM_USER0);
686}
687
4e9563fd
MF
688/*
689 * Nonsparse file systems fully allocate before we get to the write
690 * code. This prevents ocfs2_write() from tagging the write as an
691 * allocating one, which means ocfs2_map_page_blocks() might try to
692 * read-in the blocks at the tail of our file. Avoid reading them by
693 * testing i_size against each block offset.
694 */
695static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 unsigned int block_start)
697{
698 u64 offset = page_offset(page) + block_start;
699
700 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 return 1;
702
703 if (i_size_read(inode) > offset)
704 return 1;
705
706 return 0;
707}
708
9517bac6 709/*
ebdec241 710 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
711 * mapping by now though, and the entire write will be allocating or
712 * it won't, so not much need to use BH_New.
713 *
714 * This will also skip zeroing, which is handled externally.
715 */
60b11392
MF
716int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 struct inode *inode, unsigned int from,
718 unsigned int to, int new)
9517bac6
MF
719{
720 int ret = 0;
721 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 unsigned int block_end, block_start;
723 unsigned int bsize = 1 << inode->i_blkbits;
724
725 if (!page_has_buffers(page))
726 create_empty_buffers(page, bsize, 0);
727
728 head = page_buffers(page);
729 for (bh = head, block_start = 0; bh != head || !block_start;
730 bh = bh->b_this_page, block_start += bsize) {
731 block_end = block_start + bsize;
732
3a307ffc
MF
733 clear_buffer_new(bh);
734
9517bac6
MF
735 /*
736 * Ignore blocks outside of our i/o range -
737 * they may belong to unallocated clusters.
738 */
60b11392 739 if (block_start >= to || block_end <= from) {
9517bac6
MF
740 if (PageUptodate(page))
741 set_buffer_uptodate(bh);
742 continue;
743 }
744
745 /*
746 * For an allocating write with cluster size >= page
747 * size, we always write the entire page.
748 */
3a307ffc
MF
749 if (new)
750 set_buffer_new(bh);
9517bac6
MF
751
752 if (!buffer_mapped(bh)) {
753 map_bh(bh, inode->i_sb, *p_blkno);
754 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755 }
756
757 if (PageUptodate(page)) {
758 if (!buffer_uptodate(bh))
759 set_buffer_uptodate(bh);
760 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 761 !buffer_new(bh) &&
4e9563fd 762 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 763 (block_start < from || block_end > to)) {
9517bac6
MF
764 ll_rw_block(READ, 1, &bh);
765 *wait_bh++=bh;
766 }
767
768 *p_blkno = *p_blkno + 1;
769 }
770
771 /*
772 * If we issued read requests - let them complete.
773 */
774 while(wait_bh > wait) {
775 wait_on_buffer(*--wait_bh);
776 if (!buffer_uptodate(*wait_bh))
777 ret = -EIO;
778 }
779
780 if (ret == 0 || !new)
781 return ret;
782
783 /*
784 * If we get -EIO above, zero out any newly allocated blocks
785 * to avoid exposing stale data.
786 */
787 bh = head;
788 block_start = 0;
789 do {
9517bac6
MF
790 block_end = block_start + bsize;
791 if (block_end <= from)
792 goto next_bh;
793 if (block_start >= to)
794 break;
795
eebd2aa3 796 zero_user(page, block_start, bh->b_size);
9517bac6
MF
797 set_buffer_uptodate(bh);
798 mark_buffer_dirty(bh);
799
800next_bh:
801 block_start = block_end;
802 bh = bh->b_this_page;
803 } while (bh != head);
804
805 return ret;
806}
807
3a307ffc
MF
808#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809#define OCFS2_MAX_CTXT_PAGES 1
810#else
811#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812#endif
813
814#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
6af67d82 816/*
3a307ffc 817 * Describe the state of a single cluster to be written to.
6af67d82 818 */
3a307ffc
MF
819struct ocfs2_write_cluster_desc {
820 u32 c_cpos;
821 u32 c_phys;
822 /*
823 * Give this a unique field because c_phys eventually gets
824 * filled.
825 */
826 unsigned c_new;
b27b7cbc 827 unsigned c_unwritten;
e7432675 828 unsigned c_needs_zero;
3a307ffc 829};
6af67d82 830
3a307ffc
MF
831struct ocfs2_write_ctxt {
832 /* Logical cluster position / len of write */
833 u32 w_cpos;
834 u32 w_clen;
6af67d82 835
e7432675
SM
836 /* First cluster allocated in a nonsparse extend */
837 u32 w_first_new_cpos;
838
3a307ffc 839 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 840
3a307ffc
MF
841 /*
842 * This is true if page_size > cluster_size.
843 *
844 * It triggers a set of special cases during write which might
845 * have to deal with allocating writes to partial pages.
846 */
847 unsigned int w_large_pages;
6af67d82 848
3a307ffc
MF
849 /*
850 * Pages involved in this write.
851 *
852 * w_target_page is the page being written to by the user.
853 *
854 * w_pages is an array of pages which always contains
855 * w_target_page, and in the case of an allocating write with
856 * page_size < cluster size, it will contain zero'd and mapped
857 * pages adjacent to w_target_page which need to be written
858 * out in so that future reads from that region will get
859 * zero's.
860 */
3a307ffc 861 unsigned int w_num_pages;
83fd9c7f 862 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 863 struct page *w_target_page;
eeb47d12 864
3a307ffc
MF
865 /*
866 * ocfs2_write_end() uses this to know what the real range to
867 * write in the target should be.
868 */
869 unsigned int w_target_from;
870 unsigned int w_target_to;
871
872 /*
873 * We could use journal_current_handle() but this is cleaner,
874 * IMHO -Mark
875 */
876 handle_t *w_handle;
877
878 struct buffer_head *w_di_bh;
b27b7cbc
MF
879
880 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
881};
882
1d410a6e 883void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
884{
885 int i;
886
1d410a6e
MF
887 for(i = 0; i < num_pages; i++) {
888 if (pages[i]) {
889 unlock_page(pages[i]);
890 mark_page_accessed(pages[i]);
891 page_cache_release(pages[i]);
892 }
6af67d82 893 }
1d410a6e
MF
894}
895
896static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
897{
898 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 899
3a307ffc
MF
900 brelse(wc->w_di_bh);
901 kfree(wc);
902}
903
904static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
905 struct ocfs2_super *osb, loff_t pos,
607d44aa 906 unsigned len, struct buffer_head *di_bh)
3a307ffc 907{
30b8548f 908 u32 cend;
3a307ffc
MF
909 struct ocfs2_write_ctxt *wc;
910
911 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
912 if (!wc)
913 return -ENOMEM;
6af67d82 914
3a307ffc 915 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 916 wc->w_first_new_cpos = UINT_MAX;
30b8548f 917 cend = (pos + len - 1) >> osb->s_clustersize_bits;
918 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
919 get_bh(di_bh);
920 wc->w_di_bh = di_bh;
6af67d82 921
3a307ffc
MF
922 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
923 wc->w_large_pages = 1;
924 else
925 wc->w_large_pages = 0;
926
b27b7cbc
MF
927 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
928
3a307ffc 929 *wcp = wc;
6af67d82 930
3a307ffc 931 return 0;
6af67d82
MF
932}
933
9517bac6 934/*
3a307ffc
MF
935 * If a page has any new buffers, zero them out here, and mark them uptodate
936 * and dirty so they'll be written out (in order to prevent uninitialised
937 * block data from leaking). And clear the new bit.
9517bac6 938 */
3a307ffc 939static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 940{
3a307ffc
MF
941 unsigned int block_start, block_end;
942 struct buffer_head *head, *bh;
9517bac6 943
3a307ffc
MF
944 BUG_ON(!PageLocked(page));
945 if (!page_has_buffers(page))
946 return;
9517bac6 947
3a307ffc
MF
948 bh = head = page_buffers(page);
949 block_start = 0;
950 do {
951 block_end = block_start + bh->b_size;
952
953 if (buffer_new(bh)) {
954 if (block_end > from && block_start < to) {
955 if (!PageUptodate(page)) {
956 unsigned start, end;
3a307ffc
MF
957
958 start = max(from, block_start);
959 end = min(to, block_end);
960
eebd2aa3 961 zero_user_segment(page, start, end);
3a307ffc
MF
962 set_buffer_uptodate(bh);
963 }
964
965 clear_buffer_new(bh);
966 mark_buffer_dirty(bh);
967 }
968 }
9517bac6 969
3a307ffc
MF
970 block_start = block_end;
971 bh = bh->b_this_page;
972 } while (bh != head);
973}
974
975/*
976 * Only called when we have a failure during allocating write to write
977 * zero's to the newly allocated region.
978 */
979static void ocfs2_write_failure(struct inode *inode,
980 struct ocfs2_write_ctxt *wc,
981 loff_t user_pos, unsigned user_len)
982{
983 int i;
5c26a7b7
MF
984 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
985 to = user_pos + user_len;
3a307ffc
MF
986 struct page *tmppage;
987
5c26a7b7 988 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 989
3a307ffc
MF
990 for(i = 0; i < wc->w_num_pages; i++) {
991 tmppage = wc->w_pages[i];
9517bac6 992
961cecbe 993 if (page_has_buffers(tmppage)) {
53ef99ca 994 if (ocfs2_should_order_data(inode))
2b4e30fb 995 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
996
997 block_commit_write(tmppage, from, to);
998 }
9517bac6 999 }
9517bac6
MF
1000}
1001
3a307ffc
MF
1002static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003 struct ocfs2_write_ctxt *wc,
1004 struct page *page, u32 cpos,
1005 loff_t user_pos, unsigned user_len,
1006 int new)
9517bac6 1007{
3a307ffc
MF
1008 int ret;
1009 unsigned int map_from = 0, map_to = 0;
9517bac6 1010 unsigned int cluster_start, cluster_end;
3a307ffc 1011 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1012
3a307ffc 1013 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1014 &cluster_start, &cluster_end);
1015
272b62c1
GR
1016 /* treat the write as new if the a hole/lseek spanned across
1017 * the page boundary.
1018 */
1019 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1020 (page_offset(page) <= user_pos));
1021
3a307ffc
MF
1022 if (page == wc->w_target_page) {
1023 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1024 map_to = map_from + user_len;
1025
1026 if (new)
1027 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1028 cluster_start, cluster_end,
1029 new);
1030 else
1031 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1032 map_from, map_to, new);
1033 if (ret) {
9517bac6
MF
1034 mlog_errno(ret);
1035 goto out;
1036 }
1037
3a307ffc
MF
1038 user_data_from = map_from;
1039 user_data_to = map_to;
9517bac6 1040 if (new) {
3a307ffc
MF
1041 map_from = cluster_start;
1042 map_to = cluster_end;
9517bac6
MF
1043 }
1044 } else {
1045 /*
1046 * If we haven't allocated the new page yet, we
1047 * shouldn't be writing it out without copying user
1048 * data. This is likely a math error from the caller.
1049 */
1050 BUG_ON(!new);
1051
3a307ffc
MF
1052 map_from = cluster_start;
1053 map_to = cluster_end;
9517bac6
MF
1054
1055 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1056 cluster_start, cluster_end, new);
9517bac6
MF
1057 if (ret) {
1058 mlog_errno(ret);
1059 goto out;
1060 }
1061 }
1062
1063 /*
1064 * Parts of newly allocated pages need to be zero'd.
1065 *
1066 * Above, we have also rewritten 'to' and 'from' - as far as
1067 * the rest of the function is concerned, the entire cluster
1068 * range inside of a page needs to be written.
1069 *
1070 * We can skip this if the page is up to date - it's already
1071 * been zero'd from being read in as a hole.
1072 */
1073 if (new && !PageUptodate(page))
1074 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1075 cpos, user_data_from, user_data_to);
9517bac6
MF
1076
1077 flush_dcache_page(page);
1078
9517bac6 1079out:
3a307ffc 1080 return ret;
9517bac6
MF
1081}
1082
1083/*
3a307ffc 1084 * This function will only grab one clusters worth of pages.
9517bac6 1085 */
3a307ffc
MF
1086static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1087 struct ocfs2_write_ctxt *wc,
693c241a
JB
1088 u32 cpos, loff_t user_pos,
1089 unsigned user_len, int new,
7307de80 1090 struct page *mmap_page)
9517bac6 1091{
3a307ffc 1092 int ret = 0, i;
693c241a 1093 unsigned long start, target_index, end_index, index;
9517bac6 1094 struct inode *inode = mapping->host;
693c241a 1095 loff_t last_byte;
9517bac6 1096
3a307ffc 1097 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1098
1099 /*
1100 * Figure out how many pages we'll be manipulating here. For
60b11392 1101 * non allocating write, we just change the one
693c241a
JB
1102 * page. Otherwise, we'll need a whole clusters worth. If we're
1103 * writing past i_size, we only need enough pages to cover the
1104 * last page of the write.
9517bac6 1105 */
9517bac6 1106 if (new) {
3a307ffc
MF
1107 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1108 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1109 /*
1110 * We need the index *past* the last page we could possibly
1111 * touch. This is the page past the end of the write or
1112 * i_size, whichever is greater.
1113 */
1114 last_byte = max(user_pos + user_len, i_size_read(inode));
1115 BUG_ON(last_byte < 1);
1116 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1117 if ((start + wc->w_num_pages) > end_index)
1118 wc->w_num_pages = end_index - start;
9517bac6 1119 } else {
3a307ffc
MF
1120 wc->w_num_pages = 1;
1121 start = target_index;
9517bac6
MF
1122 }
1123
3a307ffc 1124 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1125 index = start + i;
1126
7307de80
MF
1127 if (index == target_index && mmap_page) {
1128 /*
1129 * ocfs2_pagemkwrite() is a little different
1130 * and wants us to directly use the page
1131 * passed in.
1132 */
1133 lock_page(mmap_page);
1134
1135 if (mmap_page->mapping != mapping) {
1136 unlock_page(mmap_page);
1137 /*
1138 * Sanity check - the locking in
1139 * ocfs2_pagemkwrite() should ensure
1140 * that this code doesn't trigger.
1141 */
1142 ret = -EINVAL;
1143 mlog_errno(ret);
1144 goto out;
1145 }
1146
1147 page_cache_get(mmap_page);
1148 wc->w_pages[i] = mmap_page;
1149 } else {
1150 wc->w_pages[i] = find_or_create_page(mapping, index,
1151 GFP_NOFS);
1152 if (!wc->w_pages[i]) {
1153 ret = -ENOMEM;
1154 mlog_errno(ret);
1155 goto out;
1156 }
9517bac6 1157 }
3a307ffc
MF
1158
1159 if (index == target_index)
1160 wc->w_target_page = wc->w_pages[i];
9517bac6 1161 }
3a307ffc
MF
1162out:
1163 return ret;
1164}
1165
1166/*
1167 * Prepare a single cluster for write one cluster into the file.
1168 */
1169static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1170 u32 phys, unsigned int unwritten,
e7432675 1171 unsigned int should_zero,
b27b7cbc 1172 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1173 struct ocfs2_alloc_context *meta_ac,
1174 struct ocfs2_write_ctxt *wc, u32 cpos,
1175 loff_t user_pos, unsigned user_len)
1176{
e7432675 1177 int ret, i, new;
3a307ffc
MF
1178 u64 v_blkno, p_blkno;
1179 struct inode *inode = mapping->host;
f99b9b7c 1180 struct ocfs2_extent_tree et;
3a307ffc
MF
1181
1182 new = phys == 0 ? 1 : 0;
9517bac6 1183 if (new) {
3a307ffc
MF
1184 u32 tmp_pos;
1185
9517bac6
MF
1186 /*
1187 * This is safe to call with the page locks - it won't take
1188 * any additional semaphores or cluster locks.
1189 */
3a307ffc 1190 tmp_pos = cpos;
0eb8d47e
TM
1191 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1192 &tmp_pos, 1, 0, wc->w_di_bh,
1193 wc->w_handle, data_ac,
1194 meta_ac, NULL);
9517bac6
MF
1195 /*
1196 * This shouldn't happen because we must have already
1197 * calculated the correct meta data allocation required. The
1198 * internal tree allocation code should know how to increase
1199 * transaction credits itself.
1200 *
1201 * If need be, we could handle -EAGAIN for a
1202 * RESTART_TRANS here.
1203 */
1204 mlog_bug_on_msg(ret == -EAGAIN,
1205 "Inode %llu: EAGAIN return during allocation.\n",
1206 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1207 if (ret < 0) {
1208 mlog_errno(ret);
1209 goto out;
1210 }
b27b7cbc 1211 } else if (unwritten) {
5e404e9e
JB
1212 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1213 wc->w_di_bh);
f99b9b7c 1214 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1215 wc->w_handle, cpos, 1, phys,
f99b9b7c 1216 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1217 if (ret < 0) {
1218 mlog_errno(ret);
1219 goto out;
1220 }
1221 }
3a307ffc 1222
b27b7cbc 1223 if (should_zero)
3a307ffc 1224 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1225 else
3a307ffc 1226 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1227
3a307ffc
MF
1228 /*
1229 * The only reason this should fail is due to an inability to
1230 * find the extent added.
1231 */
49cb8d2d
MF
1232 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1233 NULL);
9517bac6 1234 if (ret < 0) {
3a307ffc
MF
1235 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236 "at logical block %llu",
1237 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238 (unsigned long long)v_blkno);
9517bac6
MF
1239 goto out;
1240 }
1241
1242 BUG_ON(p_blkno == 0);
1243
3a307ffc
MF
1244 for(i = 0; i < wc->w_num_pages; i++) {
1245 int tmpret;
9517bac6 1246
3a307ffc
MF
1247 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248 wc->w_pages[i], cpos,
b27b7cbc
MF
1249 user_pos, user_len,
1250 should_zero);
3a307ffc
MF
1251 if (tmpret) {
1252 mlog_errno(tmpret);
1253 if (ret == 0)
cbfa9639 1254 ret = tmpret;
3a307ffc 1255 }
9517bac6
MF
1256 }
1257
3a307ffc
MF
1258 /*
1259 * We only have cleanup to do in case of allocating write.
1260 */
1261 if (ret && new)
1262 ocfs2_write_failure(inode, wc, user_pos, user_len);
1263
9517bac6 1264out:
9517bac6 1265
3a307ffc 1266 return ret;
9517bac6
MF
1267}
1268
0d172baa
MF
1269static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270 struct ocfs2_alloc_context *data_ac,
1271 struct ocfs2_alloc_context *meta_ac,
1272 struct ocfs2_write_ctxt *wc,
1273 loff_t pos, unsigned len)
1274{
1275 int ret, i;
db56246c
MF
1276 loff_t cluster_off;
1277 unsigned int local_len = len;
0d172baa 1278 struct ocfs2_write_cluster_desc *desc;
db56246c 1279 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1280
1281 for (i = 0; i < wc->w_clen; i++) {
1282 desc = &wc->w_desc[i];
1283
db56246c
MF
1284 /*
1285 * We have to make sure that the total write passed in
1286 * doesn't extend past a single cluster.
1287 */
1288 local_len = len;
1289 cluster_off = pos & (osb->s_clustersize - 1);
1290 if ((cluster_off + local_len) > osb->s_clustersize)
1291 local_len = osb->s_clustersize - cluster_off;
1292
b27b7cbc 1293 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1294 desc->c_unwritten,
1295 desc->c_needs_zero,
1296 data_ac, meta_ac,
db56246c 1297 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1298 if (ret) {
1299 mlog_errno(ret);
1300 goto out;
1301 }
db56246c
MF
1302
1303 len -= local_len;
1304 pos += local_len;
0d172baa
MF
1305 }
1306
1307 ret = 0;
1308out:
1309 return ret;
1310}
1311
3a307ffc
MF
1312/*
1313 * ocfs2_write_end() wants to know which parts of the target page it
1314 * should complete the write on. It's easiest to compute them ahead of
1315 * time when a more complete view of the write is available.
1316 */
1317static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1318 struct ocfs2_write_ctxt *wc,
1319 loff_t pos, unsigned len, int alloc)
9517bac6 1320{
3a307ffc 1321 struct ocfs2_write_cluster_desc *desc;
9517bac6 1322
3a307ffc
MF
1323 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1324 wc->w_target_to = wc->w_target_from + len;
1325
1326 if (alloc == 0)
1327 return;
1328
1329 /*
1330 * Allocating write - we may have different boundaries based
1331 * on page size and cluster size.
1332 *
1333 * NOTE: We can no longer compute one value from the other as
1334 * the actual write length and user provided length may be
1335 * different.
1336 */
9517bac6 1337
3a307ffc
MF
1338 if (wc->w_large_pages) {
1339 /*
1340 * We only care about the 1st and last cluster within
b27b7cbc 1341 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1342 * value may be extended out to the start/end of a
1343 * newly allocated cluster.
1344 */
1345 desc = &wc->w_desc[0];
e7432675 1346 if (desc->c_needs_zero)
3a307ffc
MF
1347 ocfs2_figure_cluster_boundaries(osb,
1348 desc->c_cpos,
1349 &wc->w_target_from,
1350 NULL);
1351
1352 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1353 if (desc->c_needs_zero)
3a307ffc
MF
1354 ocfs2_figure_cluster_boundaries(osb,
1355 desc->c_cpos,
1356 NULL,
1357 &wc->w_target_to);
1358 } else {
1359 wc->w_target_from = 0;
1360 wc->w_target_to = PAGE_CACHE_SIZE;
1361 }
9517bac6
MF
1362}
1363
0d172baa
MF
1364/*
1365 * Populate each single-cluster write descriptor in the write context
1366 * with information about the i/o to be done.
b27b7cbc
MF
1367 *
1368 * Returns the number of clusters that will have to be allocated, as
1369 * well as a worst case estimate of the number of extent records that
1370 * would have to be created during a write to an unwritten region.
0d172baa
MF
1371 */
1372static int ocfs2_populate_write_desc(struct inode *inode,
1373 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1374 unsigned int *clusters_to_alloc,
1375 unsigned int *extents_to_split)
9517bac6 1376{
0d172baa 1377 int ret;
3a307ffc 1378 struct ocfs2_write_cluster_desc *desc;
0d172baa 1379 unsigned int num_clusters = 0;
b27b7cbc 1380 unsigned int ext_flags = 0;
0d172baa
MF
1381 u32 phys = 0;
1382 int i;
9517bac6 1383
b27b7cbc
MF
1384 *clusters_to_alloc = 0;
1385 *extents_to_split = 0;
1386
3a307ffc
MF
1387 for (i = 0; i < wc->w_clen; i++) {
1388 desc = &wc->w_desc[i];
1389 desc->c_cpos = wc->w_cpos + i;
1390
1391 if (num_clusters == 0) {
b27b7cbc
MF
1392 /*
1393 * Need to look up the next extent record.
1394 */
3a307ffc 1395 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1396 &num_clusters, &ext_flags);
3a307ffc
MF
1397 if (ret) {
1398 mlog_errno(ret);
607d44aa 1399 goto out;
3a307ffc 1400 }
b27b7cbc 1401
293b2f70
TM
1402 /* We should already CoW the refcountd extent. */
1403 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1404
b27b7cbc
MF
1405 /*
1406 * Assume worst case - that we're writing in
1407 * the middle of the extent.
1408 *
1409 * We can assume that the write proceeds from
1410 * left to right, in which case the extent
1411 * insert code is smart enough to coalesce the
1412 * next splits into the previous records created.
1413 */
1414 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1415 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1416 } else if (phys) {
1417 /*
1418 * Only increment phys if it doesn't describe
1419 * a hole.
1420 */
1421 phys++;
1422 }
1423
e7432675
SM
1424 /*
1425 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1426 * file that got extended. w_first_new_cpos tells us
1427 * where the newly allocated clusters are so we can
1428 * zero them.
1429 */
1430 if (desc->c_cpos >= wc->w_first_new_cpos) {
1431 BUG_ON(phys == 0);
1432 desc->c_needs_zero = 1;
1433 }
1434
3a307ffc
MF
1435 desc->c_phys = phys;
1436 if (phys == 0) {
1437 desc->c_new = 1;
e7432675 1438 desc->c_needs_zero = 1;
0d172baa 1439 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1440 }
e7432675
SM
1441
1442 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1443 desc->c_unwritten = 1;
e7432675
SM
1444 desc->c_needs_zero = 1;
1445 }
3a307ffc
MF
1446
1447 num_clusters--;
9517bac6
MF
1448 }
1449
0d172baa
MF
1450 ret = 0;
1451out:
1452 return ret;
1453}
1454
1afc32b9
MF
1455static int ocfs2_write_begin_inline(struct address_space *mapping,
1456 struct inode *inode,
1457 struct ocfs2_write_ctxt *wc)
1458{
1459 int ret;
1460 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1461 struct page *page;
1462 handle_t *handle;
1463 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1464
1465 page = find_or_create_page(mapping, 0, GFP_NOFS);
1466 if (!page) {
1467 ret = -ENOMEM;
1468 mlog_errno(ret);
1469 goto out;
1470 }
1471 /*
1472 * If we don't set w_num_pages then this page won't get unlocked
1473 * and freed on cleanup of the write context.
1474 */
1475 wc->w_pages[0] = wc->w_target_page = page;
1476 wc->w_num_pages = 1;
1477
1478 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1479 if (IS_ERR(handle)) {
1480 ret = PTR_ERR(handle);
1481 mlog_errno(ret);
1482 goto out;
1483 }
1484
0cf2f763 1485 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1486 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1487 if (ret) {
1488 ocfs2_commit_trans(osb, handle);
1489
1490 mlog_errno(ret);
1491 goto out;
1492 }
1493
1494 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1495 ocfs2_set_inode_data_inline(inode, di);
1496
1497 if (!PageUptodate(page)) {
1498 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1499 if (ret) {
1500 ocfs2_commit_trans(osb, handle);
1501
1502 goto out;
1503 }
1504 }
1505
1506 wc->w_handle = handle;
1507out:
1508 return ret;
1509}
1510
1511int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1512{
1513 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1514
0d8a4e0c 1515 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1516 return 1;
1517 return 0;
1518}
1519
1520static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1521 struct inode *inode, loff_t pos,
1522 unsigned len, struct page *mmap_page,
1523 struct ocfs2_write_ctxt *wc)
1524{
1525 int ret, written = 0;
1526 loff_t end = pos + len;
1527 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1528 struct ocfs2_dinode *di = NULL;
1afc32b9 1529
9558156b
TM
1530 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1531 len, (unsigned long long)pos,
1532 oi->ip_dyn_features);
1afc32b9
MF
1533
1534 /*
1535 * Handle inodes which already have inline data 1st.
1536 */
1537 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1538 if (mmap_page == NULL &&
1539 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1540 goto do_inline_write;
1541
1542 /*
1543 * The write won't fit - we have to give this inode an
1544 * inline extent list now.
1545 */
1546 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1547 if (ret)
1548 mlog_errno(ret);
1549 goto out;
1550 }
1551
1552 /*
1553 * Check whether the inode can accept inline data.
1554 */
1555 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1556 return 0;
1557
1558 /*
1559 * Check whether the write can fit.
1560 */
d9ae49d6
TY
1561 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1562 if (mmap_page ||
1563 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1564 return 0;
1565
1566do_inline_write:
1567 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1568 if (ret) {
1569 mlog_errno(ret);
1570 goto out;
1571 }
1572
1573 /*
1574 * This signals to the caller that the data can be written
1575 * inline.
1576 */
1577 written = 1;
1578out:
1579 return written ? written : ret;
1580}
1581
65ed39d6
MF
1582/*
1583 * This function only does anything for file systems which can't
1584 * handle sparse files.
1585 *
1586 * What we want to do here is fill in any hole between the current end
1587 * of allocation and the end of our write. That way the rest of the
1588 * write path can treat it as an non-allocating write, which has no
1589 * special case code for sparse/nonsparse files.
1590 */
5693486b
JB
1591static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1592 struct buffer_head *di_bh,
1593 loff_t pos, unsigned len,
65ed39d6
MF
1594 struct ocfs2_write_ctxt *wc)
1595{
1596 int ret;
65ed39d6
MF
1597 loff_t newsize = pos + len;
1598
5693486b 1599 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1600
1601 if (newsize <= i_size_read(inode))
1602 return 0;
1603
5693486b 1604 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1605 if (ret)
1606 mlog_errno(ret);
1607
e7432675
SM
1608 wc->w_first_new_cpos =
1609 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1610
65ed39d6
MF
1611 return ret;
1612}
1613
5693486b
JB
1614static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1615 loff_t pos)
1616{
1617 int ret = 0;
1618
1619 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 if (pos > i_size_read(inode))
1621 ret = ocfs2_zero_extend(inode, di_bh, pos);
1622
1623 return ret;
1624}
1625
50308d81
TM
1626/*
1627 * Try to flush truncate logs if we can free enough clusters from it.
1628 * As for return value, "< 0" means error, "0" no space and "1" means
1629 * we have freed enough spaces and let the caller try to allocate again.
1630 */
1631static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1632 unsigned int needed)
1633{
1634 tid_t target;
1635 int ret = 0;
1636 unsigned int truncated_clusters;
1637
1638 mutex_lock(&osb->osb_tl_inode->i_mutex);
1639 truncated_clusters = osb->truncated_clusters;
1640 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1641
1642 /*
1643 * Check whether we can succeed in allocating if we free
1644 * the truncate log.
1645 */
1646 if (truncated_clusters < needed)
1647 goto out;
1648
1649 ret = ocfs2_flush_truncate_log(osb);
1650 if (ret) {
1651 mlog_errno(ret);
1652 goto out;
1653 }
1654
1655 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1656 jbd2_log_wait_commit(osb->journal->j_journal, target);
1657 ret = 1;
1658 }
1659out:
1660 return ret;
1661}
1662
0378da0f
TM
1663int ocfs2_write_begin_nolock(struct file *filp,
1664 struct address_space *mapping,
0d172baa
MF
1665 loff_t pos, unsigned len, unsigned flags,
1666 struct page **pagep, void **fsdata,
1667 struct buffer_head *di_bh, struct page *mmap_page)
1668{
e7432675 1669 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1670 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1671 struct ocfs2_write_ctxt *wc;
1672 struct inode *inode = mapping->host;
1673 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1674 struct ocfs2_dinode *di;
1675 struct ocfs2_alloc_context *data_ac = NULL;
1676 struct ocfs2_alloc_context *meta_ac = NULL;
1677 handle_t *handle;
f99b9b7c 1678 struct ocfs2_extent_tree et;
50308d81 1679 int try_free = 1, ret1;
0d172baa 1680
50308d81 1681try_again:
0d172baa
MF
1682 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1683 if (ret) {
1684 mlog_errno(ret);
1685 return ret;
1686 }
1687
1afc32b9
MF
1688 if (ocfs2_supports_inline_data(osb)) {
1689 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1690 mmap_page, wc);
1691 if (ret == 1) {
1692 ret = 0;
1693 goto success;
1694 }
1695 if (ret < 0) {
1696 mlog_errno(ret);
1697 goto out;
1698 }
1699 }
1700
5693486b
JB
1701 if (ocfs2_sparse_alloc(osb))
1702 ret = ocfs2_zero_tail(inode, di_bh, pos);
1703 else
1704 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1705 wc);
65ed39d6
MF
1706 if (ret) {
1707 mlog_errno(ret);
1708 goto out;
1709 }
1710
293b2f70
TM
1711 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1712 if (ret < 0) {
1713 mlog_errno(ret);
1714 goto out;
1715 } else if (ret == 1) {
50308d81 1716 clusters_need = wc->w_clen;
15502712 1717 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1718 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1719 if (ret) {
1720 mlog_errno(ret);
1721 goto out;
1722 }
1723 }
1724
b27b7cbc
MF
1725 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1726 &extents_to_split);
0d172baa
MF
1727 if (ret) {
1728 mlog_errno(ret);
1729 goto out;
1730 }
50308d81 1731 clusters_need += clusters_to_alloc;
0d172baa
MF
1732
1733 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734
9558156b
TM
1735 trace_ocfs2_write_begin_nolock(
1736 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1737 (long long)i_size_read(inode),
1738 le32_to_cpu(di->i_clusters),
1739 pos, len, flags, mmap_page,
1740 clusters_to_alloc, extents_to_split);
1741
3a307ffc
MF
1742 /*
1743 * We set w_target_from, w_target_to here so that
1744 * ocfs2_write_end() knows which range in the target page to
1745 * write out. An allocation requires that we write the entire
1746 * cluster range.
1747 */
b27b7cbc 1748 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1749 /*
1750 * XXX: We are stretching the limits of
b27b7cbc 1751 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1752 * the work to be done.
1753 */
5e404e9e
JB
1754 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1755 wc->w_di_bh);
f99b9b7c 1756 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1757 clusters_to_alloc, extents_to_split,
f99b9b7c 1758 &data_ac, &meta_ac);
9517bac6
MF
1759 if (ret) {
1760 mlog_errno(ret);
607d44aa 1761 goto out;
9517bac6
MF
1762 }
1763
4fe370af
MF
1764 if (data_ac)
1765 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1766
811f933d
TM
1767 credits = ocfs2_calc_extend_credits(inode->i_sb,
1768 &di->id2.i_list,
3a307ffc
MF
1769 clusters_to_alloc);
1770
9517bac6
MF
1771 }
1772
e7432675
SM
1773 /*
1774 * We have to zero sparse allocated clusters, unwritten extent clusters,
1775 * and non-sparse clusters we just extended. For non-sparse writes,
1776 * we know zeros will only be needed in the first and/or last cluster.
1777 */
1778 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1779 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1780 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1781 cluster_of_pages = 1;
1782 else
1783 cluster_of_pages = 0;
1784
1785 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1786
9517bac6
MF
1787 handle = ocfs2_start_trans(osb, credits);
1788 if (IS_ERR(handle)) {
1789 ret = PTR_ERR(handle);
1790 mlog_errno(ret);
607d44aa 1791 goto out;
9517bac6
MF
1792 }
1793
3a307ffc
MF
1794 wc->w_handle = handle;
1795
5dd4056d
CH
1796 if (clusters_to_alloc) {
1797 ret = dquot_alloc_space_nodirty(inode,
1798 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1799 if (ret)
1800 goto out_commit;
a90714c1 1801 }
3a307ffc
MF
1802 /*
1803 * We don't want this to fail in ocfs2_write_end(), so do it
1804 * here.
1805 */
0cf2f763 1806 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1807 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1808 if (ret) {
9517bac6 1809 mlog_errno(ret);
a90714c1 1810 goto out_quota;
9517bac6
MF
1811 }
1812
3a307ffc
MF
1813 /*
1814 * Fill our page array first. That way we've grabbed enough so
1815 * that we can zero and flush if we error after adding the
1816 * extent.
1817 */
693c241a 1818 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1819 cluster_of_pages, mmap_page);
9517bac6
MF
1820 if (ret) {
1821 mlog_errno(ret);
a90714c1 1822 goto out_quota;
9517bac6
MF
1823 }
1824
0d172baa
MF
1825 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1826 len);
1827 if (ret) {
1828 mlog_errno(ret);
a90714c1 1829 goto out_quota;
9517bac6 1830 }
9517bac6 1831
3a307ffc
MF
1832 if (data_ac)
1833 ocfs2_free_alloc_context(data_ac);
1834 if (meta_ac)
1835 ocfs2_free_alloc_context(meta_ac);
9517bac6 1836
1afc32b9 1837success:
3a307ffc
MF
1838 *pagep = wc->w_target_page;
1839 *fsdata = wc;
1840 return 0;
a90714c1
JK
1841out_quota:
1842 if (clusters_to_alloc)
5dd4056d 1843 dquot_free_space(inode,
a90714c1 1844 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1845out_commit:
1846 ocfs2_commit_trans(osb, handle);
1847
9517bac6 1848out:
3a307ffc
MF
1849 ocfs2_free_write_ctxt(wc);
1850
9517bac6
MF
1851 if (data_ac)
1852 ocfs2_free_alloc_context(data_ac);
1853 if (meta_ac)
1854 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1855
1856 if (ret == -ENOSPC && try_free) {
1857 /*
1858 * Try to free some truncate log so that we can have enough
1859 * clusters to allocate.
1860 */
1861 try_free = 0;
1862
1863 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1864 if (ret1 == 1)
1865 goto try_again;
1866
1867 if (ret1 < 0)
1868 mlog_errno(ret1);
1869 }
1870
3a307ffc
MF
1871 return ret;
1872}
1873
b6af1bcd
NP
1874static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1875 loff_t pos, unsigned len, unsigned flags,
1876 struct page **pagep, void **fsdata)
607d44aa
MF
1877{
1878 int ret;
1879 struct buffer_head *di_bh = NULL;
1880 struct inode *inode = mapping->host;
1881
e63aecb6 1882 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1883 if (ret) {
1884 mlog_errno(ret);
1885 return ret;
1886 }
1887
1888 /*
1889 * Take alloc sem here to prevent concurrent lookups. That way
1890 * the mapping, zeroing and tree manipulation within
1891 * ocfs2_write() will be safe against ->readpage(). This
1892 * should also serve to lock out allocation from a shared
1893 * writeable region.
1894 */
1895 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1896
0378da0f 1897 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1898 fsdata, di_bh, NULL);
607d44aa
MF
1899 if (ret) {
1900 mlog_errno(ret);
c934a92d 1901 goto out_fail;
607d44aa
MF
1902 }
1903
1904 brelse(di_bh);
1905
1906 return 0;
1907
607d44aa
MF
1908out_fail:
1909 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1910
1911 brelse(di_bh);
e63aecb6 1912 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1913
1914 return ret;
1915}
1916
1afc32b9
MF
1917static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1918 unsigned len, unsigned *copied,
1919 struct ocfs2_dinode *di,
1920 struct ocfs2_write_ctxt *wc)
1921{
1922 void *kaddr;
1923
1924 if (unlikely(*copied < len)) {
1925 if (!PageUptodate(wc->w_target_page)) {
1926 *copied = 0;
1927 return;
1928 }
1929 }
1930
1931 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1932 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1933 kunmap_atomic(kaddr, KM_USER0);
1934
9558156b
TM
1935 trace_ocfs2_write_end_inline(
1936 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1937 (unsigned long long)pos, *copied,
1938 le16_to_cpu(di->id2.i_data.id_count),
1939 le16_to_cpu(di->i_dyn_features));
1940}
1941
7307de80
MF
1942int ocfs2_write_end_nolock(struct address_space *mapping,
1943 loff_t pos, unsigned len, unsigned copied,
1944 struct page *page, void *fsdata)
3a307ffc
MF
1945{
1946 int i;
1947 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1948 struct inode *inode = mapping->host;
1949 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1950 struct ocfs2_write_ctxt *wc = fsdata;
1951 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952 handle_t *handle = wc->w_handle;
1953 struct page *tmppage;
1954
1afc32b9
MF
1955 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1956 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1957 goto out_write_size;
1958 }
1959
3a307ffc
MF
1960 if (unlikely(copied < len)) {
1961 if (!PageUptodate(wc->w_target_page))
1962 copied = 0;
1963
1964 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1965 start+len);
1966 }
1967 flush_dcache_page(wc->w_target_page);
1968
1969 for(i = 0; i < wc->w_num_pages; i++) {
1970 tmppage = wc->w_pages[i];
1971
1972 if (tmppage == wc->w_target_page) {
1973 from = wc->w_target_from;
1974 to = wc->w_target_to;
1975
1976 BUG_ON(from > PAGE_CACHE_SIZE ||
1977 to > PAGE_CACHE_SIZE ||
1978 to < from);
1979 } else {
1980 /*
1981 * Pages adjacent to the target (if any) imply
1982 * a hole-filling write in which case we want
1983 * to flush their entire range.
1984 */
1985 from = 0;
1986 to = PAGE_CACHE_SIZE;
1987 }
1988
961cecbe 1989 if (page_has_buffers(tmppage)) {
53ef99ca 1990 if (ocfs2_should_order_data(inode))
2b4e30fb 1991 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1992 block_commit_write(tmppage, from, to);
1993 }
3a307ffc
MF
1994 }
1995
1afc32b9 1996out_write_size:
3a307ffc
MF
1997 pos += copied;
1998 if (pos > inode->i_size) {
1999 i_size_write(inode, pos);
2000 mark_inode_dirty(inode);
2001 }
2002 inode->i_blocks = ocfs2_inode_sector_count(inode);
2003 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2004 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2005 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2006 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2007 ocfs2_journal_dirty(handle, wc->w_di_bh);
2008
2009 ocfs2_commit_trans(osb, handle);
59a5e416 2010
b27b7cbc
MF
2011 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2012
607d44aa
MF
2013 ocfs2_free_write_ctxt(wc);
2014
2015 return copied;
2016}
2017
b6af1bcd
NP
2018static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2019 loff_t pos, unsigned len, unsigned copied,
2020 struct page *page, void *fsdata)
607d44aa
MF
2021{
2022 int ret;
2023 struct inode *inode = mapping->host;
2024
2025 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2026
3a307ffc 2027 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2028 ocfs2_inode_unlock(inode, 1);
9517bac6 2029
607d44aa 2030 return ret;
9517bac6
MF
2031}
2032
f5e54d6e 2033const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2034 .readpage = ocfs2_readpage,
2035 .readpages = ocfs2_readpages,
2036 .writepage = ocfs2_writepage,
2037 .write_begin = ocfs2_write_begin,
2038 .write_end = ocfs2_write_end,
2039 .bmap = ocfs2_bmap,
1fca3a05
HH
2040 .direct_IO = ocfs2_direct_IO,
2041 .invalidatepage = ocfs2_invalidatepage,
2042 .releasepage = ocfs2_releasepage,
2043 .migratepage = buffer_migrate_page,
2044 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2045 .error_remove_page = generic_error_remove_page,
ccd979bd 2046};