jbd2: Convert release_buffer_page() to use a folio
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
328970de 1// SPDX-License-Identifier: GPL-2.0-or-later
fa60ce2c 2/*
ccd979bd 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
ccd979bd
MF
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/highmem.h>
9#include <linux/pagemap.h>
10#include <asm/byteorder.h>
9517bac6 11#include <linux/swap.h>
628a24f5 12#include <linux/mpage.h>
a90714c1 13#include <linux/quotaops.h>
24c40b32 14#include <linux/blkdev.h>
e2e40f2c 15#include <linux/uio.h>
f86196ea 16#include <linux/mm.h>
ccd979bd 17
ccd979bd
MF
18#include <cluster/masklog.h>
19
20#include "ocfs2.h"
21
22#include "alloc.h"
23#include "aops.h"
24#include "dlmglue.h"
25#include "extent_map.h"
26#include "file.h"
27#include "inode.h"
28#include "journal.h"
9517bac6 29#include "suballoc.h"
ccd979bd
MF
30#include "super.h"
31#include "symlink.h"
293b2f70 32#include "refcounttree.h"
9558156b 33#include "ocfs2_trace.h"
ccd979bd
MF
34
35#include "buffer_head_io.h"
24c40b32
JQ
36#include "dir.h"
37#include "namei.h"
38#include "sysfile.h"
ccd979bd
MF
39
40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42{
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
9558156b
TM
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
b657c95c 63 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
ccd979bd
MF
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
7391a294 72 err = -ENOMEM;
ccd979bd
MF
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
7391a294 85 err = -ENOMEM;
ccd979bd
MF
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 96 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
c4bc8dcb 104 kunmap_atomic(kaddr);
ccd979bd
MF
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115bail:
a81cb88b 116 brelse(bh);
ccd979bd 117
ccd979bd
MF
118 return err;
119}
120
3e4c56d4 121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123{
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132}
133
6f70fa51
TM
134int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
ccd979bd
MF
136{
137 int err = 0;
49cb8d2d 138 unsigned int ext_flags;
628a24f5
MF
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
25baf2da 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 142
9558156b
TM
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
628a24f5 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 157 &ext_flags);
ccd979bd
MF
158 if (err) {
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
ccd979bd
MF
162 goto bail;
163 }
164
628a24f5
MF
165 if (max_blocks < count)
166 count = max_blocks;
167
25baf2da
MF
168 /*
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
ebdec241 172 * allows __block_write_begin() to zero.
c0420ad2
CL
173 *
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
25baf2da 178 */
c0420ad2
CL
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
182 goto bail;
183 }
25baf2da 184
49cb8d2d
MF
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
187 map_bh(bh_result, inode->i_sb, p_blkno);
188
628a24f5
MF
189 bh_result->b_size = count << inode->i_blkbits;
190
25baf2da
MF
191 if (!ocfs2_sparse_alloc(osb)) {
192 if (p_blkno == 0) {
193 err = -EIO;
194 mlog(ML_ERROR,
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 dump_stack();
1f4cea37 201 goto bail;
25baf2da 202 }
25baf2da 203 }
ccd979bd 204
5693486b 205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
206
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
5693486b
JB
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
211
ccd979bd
MF
212bail:
213 if (err < 0)
214 err = -EIO;
215
ccd979bd
MF
216 return err;
217}
218
1afc32b9
MF
219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
6798d35a
MF
221{
222 void *kaddr;
d2849fb2 223 loff_t size;
6798d35a
MF
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
7ecef14a 227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
6798d35a
MF
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 return -EROFS;
230 }
231
232 size = i_size_read(inode);
233
09cbfeaf 234 if (size > PAGE_SIZE ||
d9ae49d6 235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 236 ocfs2_error(inode->i_sb,
7ecef14a 237 "Inode %llu has with inline data has bad size: %Lu\n",
d2849fb2
JK
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
6798d35a
MF
240 return -EROFS;
241 }
242
c4bc8dcb 243 kaddr = kmap_atomic(page);
6798d35a
MF
244 if (size)
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
09cbfeaf 247 memset(kaddr + size, 0, PAGE_SIZE - size);
6798d35a 248 flush_dcache_page(page);
c4bc8dcb 249 kunmap_atomic(kaddr);
6798d35a
MF
250
251 SetPageUptodate(page);
252
253 return 0;
254}
255
256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257{
258 int ret;
259 struct buffer_head *di_bh = NULL;
6798d35a
MF
260
261 BUG_ON(!PageLocked(page));
86c838b0 262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 263
b657c95c 264 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
265 if (ret) {
266 mlog_errno(ret);
267 goto out;
268 }
269
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
271out:
272 unlock_page(page);
273
274 brelse(di_bh);
275 return ret;
276}
277
bb9263fc 278static int ocfs2_read_folio(struct file *file, struct folio *folio)
ccd979bd 279{
bb9263fc 280 struct page *page = &folio->page;
ccd979bd 281 struct inode *inode = page->mapping->host;
6798d35a 282 struct ocfs2_inode_info *oi = OCFS2_I(inode);
09cbfeaf 283 loff_t start = (loff_t)page->index << PAGE_SHIFT;
ccd979bd
MF
284 int ret, unlock = 1;
285
9558156b
TM
286 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
287 (page ? page->index : 0));
ccd979bd 288
e63aecb6 289 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
290 if (ret != 0) {
291 if (ret == AOP_TRUNCATED_PAGE)
292 unlock = 0;
293 mlog_errno(ret);
294 goto out;
295 }
296
6798d35a 297 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
298 /*
299 * Unlock the page and cycle ip_alloc_sem so that we don't
300 * busyloop waiting for ip_alloc_sem to unlock
301 */
e9dfc0b2 302 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
303 unlock_page(page);
304 unlock = 0;
305 down_read(&oi->ip_alloc_sem);
306 up_read(&oi->ip_alloc_sem);
e63aecb6 307 goto out_inode_unlock;
e9dfc0b2 308 }
ccd979bd
MF
309
310 /*
311 * i_size might have just been updated as we grabed the meta lock. We
312 * might now be discovering a truncate that hit on another node.
2c69e205 313 * block_read_full_folio->get_block freaks out if it is asked to read
ccd979bd 314 * beyond the end of a file, so we check here. Callers
54cb8821 315 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
316 * and notice that the page they just read isn't needed.
317 *
318 * XXX sys_readahead() seems to get that wrong?
319 */
320 if (start >= i_size_read(inode)) {
eebd2aa3 321 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
322 SetPageUptodate(page);
323 ret = 0;
324 goto out_alloc;
325 }
326
6798d35a
MF
327 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
328 ret = ocfs2_readpage_inline(inode, page);
329 else
2c69e205 330 ret = block_read_full_folio(page_folio(page), ocfs2_get_block);
ccd979bd
MF
331 unlock = 0;
332
ccd979bd 333out_alloc:
d324cd4c 334 up_read(&oi->ip_alloc_sem);
e63aecb6
MF
335out_inode_unlock:
336 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
337out:
338 if (unlock)
339 unlock_page(page);
ccd979bd
MF
340 return ret;
341}
342
628a24f5
MF
343/*
344 * This is used only for read-ahead. Failures or difficult to handle
345 * situations are safe to ignore.
346 *
347 * Right now, we don't bother with BH_Boundary - in-inode extent lists
348 * are quite large (243 extents on 4k blocks), so most inodes don't
349 * grow out to a tree. If need be, detecting boundary extents could
350 * trivially be added in a future version of ocfs2_get_block().
351 */
d4388340 352static void ocfs2_readahead(struct readahead_control *rac)
628a24f5 353{
d4388340
MWO
354 int ret;
355 struct inode *inode = rac->mapping->host;
628a24f5 356 struct ocfs2_inode_info *oi = OCFS2_I(inode);
628a24f5
MF
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
d4388340 364 return;
628a24f5 365
d4388340
MWO
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
367 goto out_unlock;
628a24f5
MF
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
d4388340 374 goto out_up;
628a24f5
MF
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
d4388340
MWO
380 if (readahead_pos(rac) >= i_size_read(inode))
381 goto out_up;
628a24f5 382
d4388340 383 mpage_readahead(rac, ocfs2_get_block);
628a24f5 384
d4388340 385out_up:
628a24f5 386 up_read(&oi->ip_alloc_sem);
d4388340 387out_unlock:
628a24f5 388 ocfs2_inode_unlock(inode, 0);
628a24f5
MF
389}
390
ccd979bd
MF
391/* Note: Because we don't support holes, our allocation has
392 * already happened (allocation writes zeros to the file data)
393 * so we don't have to worry about ordered writes in
394 * ocfs2_writepage.
395 *
396 * ->writepage is called during the process of invalidating the page cache
397 * during blocked lock processing. It can't block on any cluster locks
398 * to during block mapping. It's relying on the fact that the block
399 * mapping can't have disappeared under the dirty pages that it is
400 * being asked to write back.
401 */
402static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
403{
9558156b
TM
404 trace_ocfs2_writepage(
405 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
406 page->index);
ccd979bd 407
9558156b 408 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
409}
410
ccd979bd
MF
411/* Taken from ext3. We don't necessarily need the full blown
412 * functionality yet, but IMHO it's better to cut and paste the whole
413 * thing so we can avoid introducing our own bugs (and easily pick up
414 * their fixes when they happen) --Mark */
60b11392
MF
415int walk_page_buffers( handle_t *handle,
416 struct buffer_head *head,
417 unsigned from,
418 unsigned to,
419 int *partial,
420 int (*fn)( handle_t *handle,
421 struct buffer_head *bh))
ccd979bd
MF
422{
423 struct buffer_head *bh;
424 unsigned block_start, block_end;
425 unsigned blocksize = head->b_size;
426 int err, ret = 0;
427 struct buffer_head *next;
428
429 for ( bh = head, block_start = 0;
430 ret == 0 && (bh != head || !block_start);
431 block_start = block_end, bh = next)
432 {
433 next = bh->b_this_page;
434 block_end = block_start + blocksize;
435 if (block_end <= from || block_start >= to) {
436 if (partial && !buffer_uptodate(bh))
437 *partial = 1;
438 continue;
439 }
440 err = (*fn)(handle, bh);
441 if (!ret)
442 ret = err;
443 }
444 return ret;
445}
446
ccd979bd
MF
447static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
448{
449 sector_t status;
450 u64 p_blkno = 0;
451 int err = 0;
452 struct inode *inode = mapping->host;
453
9558156b
TM
454 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
455 (unsigned long long)block);
ccd979bd 456
06a70305
DW
457 /*
458 * The swap code (ab-)uses ->bmap to get a block mapping and then
459 * bypasseѕ the file system for actual I/O. We really can't allow
460 * that on refcounted inodes, so we have to skip out here. And yes,
461 * 0 is the magic code for a bmap error..
462 */
463 if (ocfs2_is_refcount_inode(inode))
464 return 0;
465
ccd979bd
MF
466 /* We don't need to lock journal system files, since they aren't
467 * accessed concurrently from multiple nodes.
468 */
469 if (!INODE_JOURNAL(inode)) {
e63aecb6 470 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
471 if (err) {
472 if (err != -ENOENT)
473 mlog_errno(err);
474 goto bail;
475 }
476 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477 }
478
6798d35a
MF
479 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481 NULL);
ccd979bd
MF
482
483 if (!INODE_JOURNAL(inode)) {
484 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 485 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
486 }
487
488 if (err) {
489 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490 (unsigned long long)block);
491 mlog_errno(err);
492 goto bail;
493 }
494
ccd979bd
MF
495bail:
496 status = err ? 0 : p_blkno;
497
ccd979bd
MF
498 return status;
499}
500
eca66389 501static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
03f981cf 502{
eca66389
MWO
503 if (!folio_buffers(folio))
504 return false;
505 return try_to_free_buffers(&folio->page);
03f981cf
JB
506}
507
9517bac6
MF
508static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
509 u32 cpos,
510 unsigned int *start,
511 unsigned int *end)
512{
09cbfeaf 513 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
9517bac6 514
09cbfeaf 515 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
9517bac6
MF
516 unsigned int cpp;
517
09cbfeaf 518 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
9517bac6
MF
519
520 cluster_start = cpos % cpp;
521 cluster_start = cluster_start << osb->s_clustersize_bits;
522
523 cluster_end = cluster_start + osb->s_clustersize;
524 }
525
526 BUG_ON(cluster_start > PAGE_SIZE);
527 BUG_ON(cluster_end > PAGE_SIZE);
528
529 if (start)
530 *start = cluster_start;
531 if (end)
532 *end = cluster_end;
533}
534
535/*
536 * 'from' and 'to' are the region in the page to avoid zeroing.
537 *
538 * If pagesize > clustersize, this function will avoid zeroing outside
539 * of the cluster boundary.
540 *
541 * from == to == 0 is code for "zero the entire cluster region"
542 */
543static void ocfs2_clear_page_regions(struct page *page,
544 struct ocfs2_super *osb, u32 cpos,
545 unsigned from, unsigned to)
546{
547 void *kaddr;
548 unsigned int cluster_start, cluster_end;
549
550 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
551
c4bc8dcb 552 kaddr = kmap_atomic(page);
9517bac6
MF
553
554 if (from || to) {
555 if (from > cluster_start)
556 memset(kaddr + cluster_start, 0, from - cluster_start);
557 if (to < cluster_end)
558 memset(kaddr + to, 0, cluster_end - to);
559 } else {
560 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
561 }
562
c4bc8dcb 563 kunmap_atomic(kaddr);
9517bac6
MF
564}
565
4e9563fd
MF
566/*
567 * Nonsparse file systems fully allocate before we get to the write
568 * code. This prevents ocfs2_write() from tagging the write as an
569 * allocating one, which means ocfs2_map_page_blocks() might try to
570 * read-in the blocks at the tail of our file. Avoid reading them by
571 * testing i_size against each block offset.
572 */
573static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
574 unsigned int block_start)
575{
576 u64 offset = page_offset(page) + block_start;
577
578 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
579 return 1;
580
581 if (i_size_read(inode) > offset)
582 return 1;
583
584 return 0;
585}
586
9517bac6 587/*
ebdec241 588 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
589 * mapping by now though, and the entire write will be allocating or
590 * it won't, so not much need to use BH_New.
591 *
592 * This will also skip zeroing, which is handled externally.
593 */
60b11392
MF
594int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
595 struct inode *inode, unsigned int from,
596 unsigned int to, int new)
9517bac6
MF
597{
598 int ret = 0;
599 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
600 unsigned int block_end, block_start;
93407472 601 unsigned int bsize = i_blocksize(inode);
9517bac6
MF
602
603 if (!page_has_buffers(page))
604 create_empty_buffers(page, bsize, 0);
605
606 head = page_buffers(page);
607 for (bh = head, block_start = 0; bh != head || !block_start;
608 bh = bh->b_this_page, block_start += bsize) {
609 block_end = block_start + bsize;
610
3a307ffc
MF
611 clear_buffer_new(bh);
612
9517bac6
MF
613 /*
614 * Ignore blocks outside of our i/o range -
615 * they may belong to unallocated clusters.
616 */
60b11392 617 if (block_start >= to || block_end <= from) {
9517bac6
MF
618 if (PageUptodate(page))
619 set_buffer_uptodate(bh);
620 continue;
621 }
622
623 /*
624 * For an allocating write with cluster size >= page
625 * size, we always write the entire page.
626 */
3a307ffc
MF
627 if (new)
628 set_buffer_new(bh);
9517bac6
MF
629
630 if (!buffer_mapped(bh)) {
631 map_bh(bh, inode->i_sb, *p_blkno);
e64855c6 632 clean_bdev_bh_alias(bh);
9517bac6
MF
633 }
634
635 if (PageUptodate(page)) {
01f01399 636 set_buffer_uptodate(bh);
9517bac6 637 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 638 !buffer_new(bh) &&
4e9563fd 639 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 640 (block_start < from || block_end > to)) {
dfec8a14 641 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
9517bac6
MF
642 *wait_bh++=bh;
643 }
644
645 *p_blkno = *p_blkno + 1;
646 }
647
648 /*
649 * If we issued read requests - let them complete.
650 */
651 while(wait_bh > wait) {
652 wait_on_buffer(*--wait_bh);
653 if (!buffer_uptodate(*wait_bh))
654 ret = -EIO;
655 }
656
657 if (ret == 0 || !new)
658 return ret;
659
660 /*
661 * If we get -EIO above, zero out any newly allocated blocks
662 * to avoid exposing stale data.
663 */
664 bh = head;
665 block_start = 0;
666 do {
9517bac6
MF
667 block_end = block_start + bsize;
668 if (block_end <= from)
669 goto next_bh;
670 if (block_start >= to)
671 break;
672
eebd2aa3 673 zero_user(page, block_start, bh->b_size);
9517bac6
MF
674 set_buffer_uptodate(bh);
675 mark_buffer_dirty(bh);
676
677next_bh:
678 block_start = block_end;
679 bh = bh->b_this_page;
680 } while (bh != head);
681
682 return ret;
683}
684
ea1754a0 685#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
3a307ffc
MF
686#define OCFS2_MAX_CTXT_PAGES 1
687#else
09cbfeaf 688#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
3a307ffc
MF
689#endif
690
09cbfeaf 691#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
3a307ffc 692
4506cfb6
RD
693struct ocfs2_unwritten_extent {
694 struct list_head ue_node;
695 struct list_head ue_ip_node;
696 u32 ue_cpos;
697 u32 ue_phys;
698};
699
6af67d82 700/*
3a307ffc 701 * Describe the state of a single cluster to be written to.
6af67d82 702 */
3a307ffc
MF
703struct ocfs2_write_cluster_desc {
704 u32 c_cpos;
705 u32 c_phys;
706 /*
707 * Give this a unique field because c_phys eventually gets
708 * filled.
709 */
710 unsigned c_new;
b46637d5 711 unsigned c_clear_unwritten;
e7432675 712 unsigned c_needs_zero;
3a307ffc 713};
6af67d82 714
3a307ffc
MF
715struct ocfs2_write_ctxt {
716 /* Logical cluster position / len of write */
717 u32 w_cpos;
718 u32 w_clen;
6af67d82 719
e7432675
SM
720 /* First cluster allocated in a nonsparse extend */
721 u32 w_first_new_cpos;
722
c1ad1e3c
RD
723 /* Type of caller. Must be one of buffer, mmap, direct. */
724 ocfs2_write_type_t w_type;
725
3a307ffc 726 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 727
3a307ffc
MF
728 /*
729 * This is true if page_size > cluster_size.
730 *
731 * It triggers a set of special cases during write which might
732 * have to deal with allocating writes to partial pages.
733 */
734 unsigned int w_large_pages;
6af67d82 735
3a307ffc
MF
736 /*
737 * Pages involved in this write.
738 *
739 * w_target_page is the page being written to by the user.
740 *
741 * w_pages is an array of pages which always contains
742 * w_target_page, and in the case of an allocating write with
743 * page_size < cluster size, it will contain zero'd and mapped
744 * pages adjacent to w_target_page which need to be written
745 * out in so that future reads from that region will get
746 * zero's.
747 */
3a307ffc 748 unsigned int w_num_pages;
83fd9c7f 749 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 750 struct page *w_target_page;
eeb47d12 751
5cffff9e
WW
752 /*
753 * w_target_locked is used for page_mkwrite path indicating no unlocking
754 * against w_target_page in ocfs2_write_end_nolock.
755 */
756 unsigned int w_target_locked:1;
757
3a307ffc
MF
758 /*
759 * ocfs2_write_end() uses this to know what the real range to
760 * write in the target should be.
761 */
762 unsigned int w_target_from;
763 unsigned int w_target_to;
764
765 /*
766 * We could use journal_current_handle() but this is cleaner,
767 * IMHO -Mark
768 */
769 handle_t *w_handle;
770
771 struct buffer_head *w_di_bh;
b27b7cbc
MF
772
773 struct ocfs2_cached_dealloc_ctxt w_dealloc;
4506cfb6
RD
774
775 struct list_head w_unwritten_list;
63de8bd9 776 unsigned int w_unwritten_count;
3a307ffc
MF
777};
778
1d410a6e 779void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
780{
781 int i;
782
1d410a6e
MF
783 for(i = 0; i < num_pages; i++) {
784 if (pages[i]) {
785 unlock_page(pages[i]);
786 mark_page_accessed(pages[i]);
09cbfeaf 787 put_page(pages[i]);
1d410a6e 788 }
6af67d82 789 }
1d410a6e
MF
790}
791
136f49b9 792static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 793{
5cffff9e
WW
794 int i;
795
796 /*
797 * w_target_locked is only set to true in the page_mkwrite() case.
798 * The intent is to allow us to lock the target page from write_begin()
799 * to write_end(). The caller must hold a ref on w_target_page.
800 */
801 if (wc->w_target_locked) {
802 BUG_ON(!wc->w_target_page);
803 for (i = 0; i < wc->w_num_pages; i++) {
804 if (wc->w_target_page == wc->w_pages[i]) {
805 wc->w_pages[i] = NULL;
806 break;
807 }
808 }
809 mark_page_accessed(wc->w_target_page);
09cbfeaf 810 put_page(wc->w_target_page);
5cffff9e 811 }
1d410a6e 812 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 813}
6af67d82 814
4506cfb6
RD
815static void ocfs2_free_unwritten_list(struct inode *inode,
816 struct list_head *head)
817{
818 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 819 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
4506cfb6 820
c15471f7
RD
821 list_for_each_entry_safe(ue, tmp, head, ue_node) {
822 list_del(&ue->ue_node);
4506cfb6 823 spin_lock(&oi->ip_lock);
c15471f7 824 list_del(&ue->ue_ip_node);
4506cfb6 825 spin_unlock(&oi->ip_lock);
c15471f7 826 kfree(ue);
4506cfb6
RD
827 }
828}
829
830static void ocfs2_free_write_ctxt(struct inode *inode,
831 struct ocfs2_write_ctxt *wc)
136f49b9 832{
4506cfb6 833 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
136f49b9 834 ocfs2_unlock_pages(wc);
3a307ffc
MF
835 brelse(wc->w_di_bh);
836 kfree(wc);
837}
838
839static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
840 struct ocfs2_super *osb, loff_t pos,
c1ad1e3c
RD
841 unsigned len, ocfs2_write_type_t type,
842 struct buffer_head *di_bh)
3a307ffc 843{
30b8548f 844 u32 cend;
3a307ffc
MF
845 struct ocfs2_write_ctxt *wc;
846
847 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
848 if (!wc)
849 return -ENOMEM;
6af67d82 850
3a307ffc 851 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 852 wc->w_first_new_cpos = UINT_MAX;
30b8548f 853 cend = (pos + len - 1) >> osb->s_clustersize_bits;
854 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
855 get_bh(di_bh);
856 wc->w_di_bh = di_bh;
c1ad1e3c 857 wc->w_type = type;
6af67d82 858
09cbfeaf 859 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
3a307ffc
MF
860 wc->w_large_pages = 1;
861 else
862 wc->w_large_pages = 0;
863
b27b7cbc 864 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
4506cfb6 865 INIT_LIST_HEAD(&wc->w_unwritten_list);
b27b7cbc 866
3a307ffc 867 *wcp = wc;
6af67d82 868
3a307ffc 869 return 0;
6af67d82
MF
870}
871
9517bac6 872/*
3a307ffc
MF
873 * If a page has any new buffers, zero them out here, and mark them uptodate
874 * and dirty so they'll be written out (in order to prevent uninitialised
875 * block data from leaking). And clear the new bit.
9517bac6 876 */
3a307ffc 877static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 878{
3a307ffc
MF
879 unsigned int block_start, block_end;
880 struct buffer_head *head, *bh;
9517bac6 881
3a307ffc
MF
882 BUG_ON(!PageLocked(page));
883 if (!page_has_buffers(page))
884 return;
9517bac6 885
3a307ffc
MF
886 bh = head = page_buffers(page);
887 block_start = 0;
888 do {
889 block_end = block_start + bh->b_size;
890
891 if (buffer_new(bh)) {
892 if (block_end > from && block_start < to) {
893 if (!PageUptodate(page)) {
894 unsigned start, end;
3a307ffc
MF
895
896 start = max(from, block_start);
897 end = min(to, block_end);
898
eebd2aa3 899 zero_user_segment(page, start, end);
3a307ffc
MF
900 set_buffer_uptodate(bh);
901 }
902
903 clear_buffer_new(bh);
904 mark_buffer_dirty(bh);
905 }
906 }
9517bac6 907
3a307ffc
MF
908 block_start = block_end;
909 bh = bh->b_this_page;
910 } while (bh != head);
911}
912
913/*
914 * Only called when we have a failure during allocating write to write
915 * zero's to the newly allocated region.
916 */
917static void ocfs2_write_failure(struct inode *inode,
918 struct ocfs2_write_ctxt *wc,
919 loff_t user_pos, unsigned user_len)
920{
921 int i;
09cbfeaf 922 unsigned from = user_pos & (PAGE_SIZE - 1),
5c26a7b7 923 to = user_pos + user_len;
3a307ffc
MF
924 struct page *tmppage;
925
65c4db8c
RD
926 if (wc->w_target_page)
927 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 928
3a307ffc
MF
929 for(i = 0; i < wc->w_num_pages; i++) {
930 tmppage = wc->w_pages[i];
9517bac6 931
65c4db8c 932 if (tmppage && page_has_buffers(tmppage)) {
53ef99ca 933 if (ocfs2_should_order_data(inode))
bbd0f327
JQ
934 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
935 user_pos, user_len);
961cecbe
SM
936
937 block_commit_write(tmppage, from, to);
938 }
9517bac6 939 }
9517bac6
MF
940}
941
3a307ffc
MF
942static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
943 struct ocfs2_write_ctxt *wc,
944 struct page *page, u32 cpos,
945 loff_t user_pos, unsigned user_len,
946 int new)
9517bac6 947{
3a307ffc
MF
948 int ret;
949 unsigned int map_from = 0, map_to = 0;
9517bac6 950 unsigned int cluster_start, cluster_end;
3a307ffc 951 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 952
3a307ffc 953 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
954 &cluster_start, &cluster_end);
955
272b62c1
GR
956 /* treat the write as new if the a hole/lseek spanned across
957 * the page boundary.
958 */
959 new = new | ((i_size_read(inode) <= page_offset(page)) &&
960 (page_offset(page) <= user_pos));
961
3a307ffc 962 if (page == wc->w_target_page) {
09cbfeaf 963 map_from = user_pos & (PAGE_SIZE - 1);
3a307ffc
MF
964 map_to = map_from + user_len;
965
966 if (new)
967 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968 cluster_start, cluster_end,
969 new);
970 else
971 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972 map_from, map_to, new);
973 if (ret) {
9517bac6
MF
974 mlog_errno(ret);
975 goto out;
976 }
977
3a307ffc
MF
978 user_data_from = map_from;
979 user_data_to = map_to;
9517bac6 980 if (new) {
3a307ffc
MF
981 map_from = cluster_start;
982 map_to = cluster_end;
9517bac6
MF
983 }
984 } else {
985 /*
986 * If we haven't allocated the new page yet, we
987 * shouldn't be writing it out without copying user
988 * data. This is likely a math error from the caller.
989 */
990 BUG_ON(!new);
991
3a307ffc
MF
992 map_from = cluster_start;
993 map_to = cluster_end;
9517bac6
MF
994
995 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 996 cluster_start, cluster_end, new);
9517bac6
MF
997 if (ret) {
998 mlog_errno(ret);
999 goto out;
1000 }
1001 }
1002
1003 /*
1004 * Parts of newly allocated pages need to be zero'd.
1005 *
1006 * Above, we have also rewritten 'to' and 'from' - as far as
1007 * the rest of the function is concerned, the entire cluster
1008 * range inside of a page needs to be written.
1009 *
1010 * We can skip this if the page is up to date - it's already
1011 * been zero'd from being read in as a hole.
1012 */
1013 if (new && !PageUptodate(page))
1014 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1015 cpos, user_data_from, user_data_to);
9517bac6
MF
1016
1017 flush_dcache_page(page);
1018
9517bac6 1019out:
3a307ffc 1020 return ret;
9517bac6
MF
1021}
1022
1023/*
3a307ffc 1024 * This function will only grab one clusters worth of pages.
9517bac6 1025 */
3a307ffc
MF
1026static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027 struct ocfs2_write_ctxt *wc,
693c241a
JB
1028 u32 cpos, loff_t user_pos,
1029 unsigned user_len, int new,
7307de80 1030 struct page *mmap_page)
9517bac6 1031{
3a307ffc 1032 int ret = 0, i;
693c241a 1033 unsigned long start, target_index, end_index, index;
9517bac6 1034 struct inode *inode = mapping->host;
693c241a 1035 loff_t last_byte;
9517bac6 1036
09cbfeaf 1037 target_index = user_pos >> PAGE_SHIFT;
9517bac6
MF
1038
1039 /*
1040 * Figure out how many pages we'll be manipulating here. For
60b11392 1041 * non allocating write, we just change the one
693c241a
JB
1042 * page. Otherwise, we'll need a whole clusters worth. If we're
1043 * writing past i_size, we only need enough pages to cover the
1044 * last page of the write.
9517bac6 1045 */
9517bac6 1046 if (new) {
3a307ffc
MF
1047 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1049 /*
1050 * We need the index *past* the last page we could possibly
1051 * touch. This is the page past the end of the write or
1052 * i_size, whichever is greater.
1053 */
1054 last_byte = max(user_pos + user_len, i_size_read(inode));
1055 BUG_ON(last_byte < 1);
09cbfeaf 1056 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
693c241a
JB
1057 if ((start + wc->w_num_pages) > end_index)
1058 wc->w_num_pages = end_index - start;
9517bac6 1059 } else {
3a307ffc
MF
1060 wc->w_num_pages = 1;
1061 start = target_index;
9517bac6 1062 }
09cbfeaf 1063 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
9517bac6 1064
3a307ffc 1065 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1066 index = start + i;
1067
65c4db8c
RD
1068 if (index >= target_index && index <= end_index &&
1069 wc->w_type == OCFS2_WRITE_MMAP) {
7307de80
MF
1070 /*
1071 * ocfs2_pagemkwrite() is a little different
1072 * and wants us to directly use the page
1073 * passed in.
1074 */
1075 lock_page(mmap_page);
1076
5cffff9e 1077 /* Exit and let the caller retry */
7307de80 1078 if (mmap_page->mapping != mapping) {
5cffff9e 1079 WARN_ON(mmap_page->mapping);
7307de80 1080 unlock_page(mmap_page);
5cffff9e 1081 ret = -EAGAIN;
7307de80
MF
1082 goto out;
1083 }
1084
09cbfeaf 1085 get_page(mmap_page);
7307de80 1086 wc->w_pages[i] = mmap_page;
5cffff9e 1087 wc->w_target_locked = true;
65c4db8c
RD
1088 } else if (index >= target_index && index <= end_index &&
1089 wc->w_type == OCFS2_WRITE_DIRECT) {
1090 /* Direct write has no mapping page. */
1091 wc->w_pages[i] = NULL;
1092 continue;
7307de80
MF
1093 } else {
1094 wc->w_pages[i] = find_or_create_page(mapping, index,
1095 GFP_NOFS);
1096 if (!wc->w_pages[i]) {
1097 ret = -ENOMEM;
1098 mlog_errno(ret);
1099 goto out;
1100 }
9517bac6 1101 }
1269529b 1102 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1103
1104 if (index == target_index)
1105 wc->w_target_page = wc->w_pages[i];
9517bac6 1106 }
3a307ffc 1107out:
5cffff9e
WW
1108 if (ret)
1109 wc->w_target_locked = false;
3a307ffc
MF
1110 return ret;
1111}
1112
1113/*
1114 * Prepare a single cluster for write one cluster into the file.
1115 */
1116static int ocfs2_write_cluster(struct address_space *mapping,
2de6a3c7 1117 u32 *phys, unsigned int new,
b46637d5 1118 unsigned int clear_unwritten,
e7432675 1119 unsigned int should_zero,
b27b7cbc 1120 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1121 struct ocfs2_alloc_context *meta_ac,
1122 struct ocfs2_write_ctxt *wc, u32 cpos,
1123 loff_t user_pos, unsigned user_len)
1124{
b46637d5 1125 int ret, i;
2de6a3c7 1126 u64 p_blkno;
3a307ffc 1127 struct inode *inode = mapping->host;
f99b9b7c 1128 struct ocfs2_extent_tree et;
2de6a3c7 1129 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
3a307ffc 1130
9517bac6 1131 if (new) {
3a307ffc
MF
1132 u32 tmp_pos;
1133
9517bac6
MF
1134 /*
1135 * This is safe to call with the page locks - it won't take
1136 * any additional semaphores or cluster locks.
1137 */
3a307ffc 1138 tmp_pos = cpos;
0eb8d47e 1139 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
b46637d5
RD
1140 &tmp_pos, 1, !clear_unwritten,
1141 wc->w_di_bh, wc->w_handle,
1142 data_ac, meta_ac, NULL);
9517bac6
MF
1143 /*
1144 * This shouldn't happen because we must have already
1145 * calculated the correct meta data allocation required. The
1146 * internal tree allocation code should know how to increase
1147 * transaction credits itself.
1148 *
1149 * If need be, we could handle -EAGAIN for a
1150 * RESTART_TRANS here.
1151 */
1152 mlog_bug_on_msg(ret == -EAGAIN,
1153 "Inode %llu: EAGAIN return during allocation.\n",
1154 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1155 if (ret < 0) {
1156 mlog_errno(ret);
1157 goto out;
1158 }
b46637d5 1159 } else if (clear_unwritten) {
5e404e9e
JB
1160 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161 wc->w_di_bh);
f99b9b7c 1162 ret = ocfs2_mark_extent_written(inode, &et,
2de6a3c7 1163 wc->w_handle, cpos, 1, *phys,
f99b9b7c 1164 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1165 if (ret < 0) {
1166 mlog_errno(ret);
1167 goto out;
1168 }
1169 }
3a307ffc 1170
3a307ffc
MF
1171 /*
1172 * The only reason this should fail is due to an inability to
1173 * find the extent added.
1174 */
2de6a3c7 1175 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
9517bac6 1176 if (ret < 0) {
61fb9ea4 1177 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
2de6a3c7
RD
1178 "at logical cluster %u",
1179 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
9517bac6
MF
1180 goto out;
1181 }
1182
2de6a3c7
RD
1183 BUG_ON(*phys == 0);
1184
1185 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186 if (!should_zero)
1187 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
9517bac6 1188
3a307ffc
MF
1189 for(i = 0; i < wc->w_num_pages; i++) {
1190 int tmpret;
9517bac6 1191
65c4db8c
RD
1192 /* This is the direct io target page. */
1193 if (wc->w_pages[i] == NULL) {
1194 p_blkno++;
1195 continue;
1196 }
1197
3a307ffc
MF
1198 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199 wc->w_pages[i], cpos,
b27b7cbc
MF
1200 user_pos, user_len,
1201 should_zero);
3a307ffc
MF
1202 if (tmpret) {
1203 mlog_errno(tmpret);
1204 if (ret == 0)
cbfa9639 1205 ret = tmpret;
3a307ffc 1206 }
9517bac6
MF
1207 }
1208
3a307ffc
MF
1209 /*
1210 * We only have cleanup to do in case of allocating write.
1211 */
1212 if (ret && new)
1213 ocfs2_write_failure(inode, wc, user_pos, user_len);
1214
9517bac6 1215out:
9517bac6 1216
3a307ffc 1217 return ret;
9517bac6
MF
1218}
1219
0d172baa
MF
1220static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221 struct ocfs2_alloc_context *data_ac,
1222 struct ocfs2_alloc_context *meta_ac,
1223 struct ocfs2_write_ctxt *wc,
1224 loff_t pos, unsigned len)
1225{
1226 int ret, i;
db56246c
MF
1227 loff_t cluster_off;
1228 unsigned int local_len = len;
0d172baa 1229 struct ocfs2_write_cluster_desc *desc;
db56246c 1230 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1231
1232 for (i = 0; i < wc->w_clen; i++) {
1233 desc = &wc->w_desc[i];
1234
db56246c
MF
1235 /*
1236 * We have to make sure that the total write passed in
1237 * doesn't extend past a single cluster.
1238 */
1239 local_len = len;
1240 cluster_off = pos & (osb->s_clustersize - 1);
1241 if ((cluster_off + local_len) > osb->s_clustersize)
1242 local_len = osb->s_clustersize - cluster_off;
1243
2de6a3c7 1244 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
b46637d5
RD
1245 desc->c_new,
1246 desc->c_clear_unwritten,
e7432675
SM
1247 desc->c_needs_zero,
1248 data_ac, meta_ac,
db56246c 1249 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1250 if (ret) {
1251 mlog_errno(ret);
1252 goto out;
1253 }
db56246c
MF
1254
1255 len -= local_len;
1256 pos += local_len;
0d172baa
MF
1257 }
1258
1259 ret = 0;
1260out:
1261 return ret;
1262}
1263
3a307ffc
MF
1264/*
1265 * ocfs2_write_end() wants to know which parts of the target page it
1266 * should complete the write on. It's easiest to compute them ahead of
1267 * time when a more complete view of the write is available.
1268 */
1269static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270 struct ocfs2_write_ctxt *wc,
1271 loff_t pos, unsigned len, int alloc)
9517bac6 1272{
3a307ffc 1273 struct ocfs2_write_cluster_desc *desc;
9517bac6 1274
09cbfeaf 1275 wc->w_target_from = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1276 wc->w_target_to = wc->w_target_from + len;
1277
1278 if (alloc == 0)
1279 return;
1280
1281 /*
1282 * Allocating write - we may have different boundaries based
1283 * on page size and cluster size.
1284 *
1285 * NOTE: We can no longer compute one value from the other as
1286 * the actual write length and user provided length may be
1287 * different.
1288 */
9517bac6 1289
3a307ffc
MF
1290 if (wc->w_large_pages) {
1291 /*
1292 * We only care about the 1st and last cluster within
b27b7cbc 1293 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1294 * value may be extended out to the start/end of a
1295 * newly allocated cluster.
1296 */
1297 desc = &wc->w_desc[0];
e7432675 1298 if (desc->c_needs_zero)
3a307ffc
MF
1299 ocfs2_figure_cluster_boundaries(osb,
1300 desc->c_cpos,
1301 &wc->w_target_from,
1302 NULL);
1303
1304 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1305 if (desc->c_needs_zero)
3a307ffc
MF
1306 ocfs2_figure_cluster_boundaries(osb,
1307 desc->c_cpos,
1308 NULL,
1309 &wc->w_target_to);
1310 } else {
1311 wc->w_target_from = 0;
09cbfeaf 1312 wc->w_target_to = PAGE_SIZE;
3a307ffc 1313 }
9517bac6
MF
1314}
1315
4506cfb6
RD
1316/*
1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319 * by the direct io procedure.
1320 * If this is a new extent that allocated by direct io, we should mark it in
1321 * the ip_unwritten_list.
1322 */
1323static int ocfs2_unwritten_check(struct inode *inode,
1324 struct ocfs2_write_ctxt *wc,
1325 struct ocfs2_write_cluster_desc *desc)
1326{
1327 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 1328 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
4506cfb6
RD
1329 int ret = 0;
1330
1331 if (!desc->c_needs_zero)
1332 return 0;
1333
1334retry:
1335 spin_lock(&oi->ip_lock);
1336 /* Needs not to zero no metter buffer or direct. The one who is zero
1337 * the cluster is doing zero. And he will clear unwritten after all
1338 * cluster io finished. */
c15471f7
RD
1339 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340 if (desc->c_cpos == ue->ue_cpos) {
4506cfb6
RD
1341 BUG_ON(desc->c_new);
1342 desc->c_needs_zero = 0;
1343 desc->c_clear_unwritten = 0;
1344 goto unlock;
1345 }
1346 }
1347
1348 if (wc->w_type != OCFS2_WRITE_DIRECT)
1349 goto unlock;
1350
1351 if (new == NULL) {
1352 spin_unlock(&oi->ip_lock);
1353 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354 GFP_NOFS);
1355 if (new == NULL) {
1356 ret = -ENOMEM;
1357 goto out;
1358 }
1359 goto retry;
1360 }
1361 /* This direct write will doing zero. */
1362 new->ue_cpos = desc->c_cpos;
1363 new->ue_phys = desc->c_phys;
1364 desc->c_clear_unwritten = 0;
1365 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
63de8bd9 1367 wc->w_unwritten_count++;
4506cfb6
RD
1368 new = NULL;
1369unlock:
1370 spin_unlock(&oi->ip_lock);
1371out:
0ae1c2db 1372 kfree(new);
4506cfb6
RD
1373 return ret;
1374}
1375
0d172baa
MF
1376/*
1377 * Populate each single-cluster write descriptor in the write context
1378 * with information about the i/o to be done.
b27b7cbc
MF
1379 *
1380 * Returns the number of clusters that will have to be allocated, as
1381 * well as a worst case estimate of the number of extent records that
1382 * would have to be created during a write to an unwritten region.
0d172baa
MF
1383 */
1384static int ocfs2_populate_write_desc(struct inode *inode,
1385 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1386 unsigned int *clusters_to_alloc,
1387 unsigned int *extents_to_split)
9517bac6 1388{
0d172baa 1389 int ret;
3a307ffc 1390 struct ocfs2_write_cluster_desc *desc;
0d172baa 1391 unsigned int num_clusters = 0;
b27b7cbc 1392 unsigned int ext_flags = 0;
0d172baa
MF
1393 u32 phys = 0;
1394 int i;
9517bac6 1395
b27b7cbc
MF
1396 *clusters_to_alloc = 0;
1397 *extents_to_split = 0;
1398
3a307ffc
MF
1399 for (i = 0; i < wc->w_clen; i++) {
1400 desc = &wc->w_desc[i];
1401 desc->c_cpos = wc->w_cpos + i;
1402
1403 if (num_clusters == 0) {
b27b7cbc
MF
1404 /*
1405 * Need to look up the next extent record.
1406 */
3a307ffc 1407 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1408 &num_clusters, &ext_flags);
3a307ffc
MF
1409 if (ret) {
1410 mlog_errno(ret);
607d44aa 1411 goto out;
3a307ffc 1412 }
b27b7cbc 1413
293b2f70
TM
1414 /* We should already CoW the refcountd extent. */
1415 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416
b27b7cbc
MF
1417 /*
1418 * Assume worst case - that we're writing in
1419 * the middle of the extent.
1420 *
1421 * We can assume that the write proceeds from
1422 * left to right, in which case the extent
1423 * insert code is smart enough to coalesce the
1424 * next splits into the previous records created.
1425 */
1426 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1428 } else if (phys) {
1429 /*
1430 * Only increment phys if it doesn't describe
1431 * a hole.
1432 */
1433 phys++;
1434 }
1435
e7432675
SM
1436 /*
1437 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438 * file that got extended. w_first_new_cpos tells us
1439 * where the newly allocated clusters are so we can
1440 * zero them.
1441 */
1442 if (desc->c_cpos >= wc->w_first_new_cpos) {
1443 BUG_ON(phys == 0);
1444 desc->c_needs_zero = 1;
1445 }
1446
3a307ffc
MF
1447 desc->c_phys = phys;
1448 if (phys == 0) {
1449 desc->c_new = 1;
e7432675 1450 desc->c_needs_zero = 1;
b46637d5 1451 desc->c_clear_unwritten = 1;
0d172baa 1452 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1453 }
e7432675
SM
1454
1455 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b46637d5 1456 desc->c_clear_unwritten = 1;
e7432675
SM
1457 desc->c_needs_zero = 1;
1458 }
3a307ffc 1459
4506cfb6
RD
1460 ret = ocfs2_unwritten_check(inode, wc, desc);
1461 if (ret) {
1462 mlog_errno(ret);
1463 goto out;
1464 }
1465
3a307ffc 1466 num_clusters--;
9517bac6
MF
1467 }
1468
0d172baa
MF
1469 ret = 0;
1470out:
1471 return ret;
1472}
1473
1afc32b9
MF
1474static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 struct inode *inode,
1476 struct ocfs2_write_ctxt *wc)
1477{
1478 int ret;
1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 struct page *page;
1481 handle_t *handle;
1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
f775da2f
JB
1484 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485 if (IS_ERR(handle)) {
1486 ret = PTR_ERR(handle);
1487 mlog_errno(ret);
1488 goto out;
1489 }
1490
1afc32b9
MF
1491 page = find_or_create_page(mapping, 0, GFP_NOFS);
1492 if (!page) {
f775da2f 1493 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1494 ret = -ENOMEM;
1495 mlog_errno(ret);
1496 goto out;
1497 }
1498 /*
1499 * If we don't set w_num_pages then this page won't get unlocked
1500 * and freed on cleanup of the write context.
1501 */
1502 wc->w_pages[0] = wc->w_target_page = page;
1503 wc->w_num_pages = 1;
1504
0cf2f763 1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1506 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1507 if (ret) {
1508 ocfs2_commit_trans(osb, handle);
1509
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513
1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 ocfs2_set_inode_data_inline(inode, di);
1516
1517 if (!PageUptodate(page)) {
1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 if (ret) {
1520 ocfs2_commit_trans(osb, handle);
1521
1522 goto out;
1523 }
1524 }
1525
1526 wc->w_handle = handle;
1527out:
1528 return ret;
1529}
1530
1531int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532{
1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
0d8a4e0c 1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1536 return 1;
1537 return 0;
1538}
1539
1540static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 struct inode *inode, loff_t pos,
1542 unsigned len, struct page *mmap_page,
1543 struct ocfs2_write_ctxt *wc)
1544{
1545 int ret, written = 0;
1546 loff_t end = pos + len;
1547 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1548 struct ocfs2_dinode *di = NULL;
1afc32b9 1549
9558156b
TM
1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 len, (unsigned long long)pos,
1552 oi->ip_dyn_features);
1afc32b9
MF
1553
1554 /*
1555 * Handle inodes which already have inline data 1st.
1556 */
1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 if (mmap_page == NULL &&
1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 goto do_inline_write;
1561
1562 /*
1563 * The write won't fit - we have to give this inode an
1564 * inline extent list now.
1565 */
1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 if (ret)
1568 mlog_errno(ret);
1569 goto out;
1570 }
1571
1572 /*
1573 * Check whether the inode can accept inline data.
1574 */
1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 return 0;
1577
1578 /*
1579 * Check whether the write can fit.
1580 */
d9ae49d6
TY
1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 if (mmap_page ||
1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1584 return 0;
1585
1586do_inline_write:
1587 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 if (ret) {
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * This signals to the caller that the data can be written
1595 * inline.
1596 */
1597 written = 1;
1598out:
1599 return written ? written : ret;
1600}
1601
65ed39d6
MF
1602/*
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1605 *
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1610 */
5693486b
JB
1611static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 struct buffer_head *di_bh,
1613 loff_t pos, unsigned len,
65ed39d6
MF
1614 struct ocfs2_write_ctxt *wc)
1615{
1616 int ret;
65ed39d6
MF
1617 loff_t newsize = pos + len;
1618
5693486b 1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1620
1621 if (newsize <= i_size_read(inode))
1622 return 0;
1623
5693486b 1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1625 if (ret)
1626 mlog_errno(ret);
1627
46e62556
RD
1628 /* There is no wc if this is call from direct. */
1629 if (wc)
1630 wc->w_first_new_cpos =
1631 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
e7432675 1632
65ed39d6
MF
1633 return ret;
1634}
1635
5693486b
JB
1636static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637 loff_t pos)
1638{
1639 int ret = 0;
1640
1641 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 if (pos > i_size_read(inode))
1643 ret = ocfs2_zero_extend(inode, di_bh, pos);
1644
1645 return ret;
1646}
1647
c1ad1e3c
RD
1648int ocfs2_write_begin_nolock(struct address_space *mapping,
1649 loff_t pos, unsigned len, ocfs2_write_type_t type,
0d172baa
MF
1650 struct page **pagep, void **fsdata,
1651 struct buffer_head *di_bh, struct page *mmap_page)
1652{
e7432675 1653 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1654 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1655 struct ocfs2_write_ctxt *wc;
1656 struct inode *inode = mapping->host;
1657 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1658 struct ocfs2_dinode *di;
1659 struct ocfs2_alloc_context *data_ac = NULL;
1660 struct ocfs2_alloc_context *meta_ac = NULL;
1661 handle_t *handle;
f99b9b7c 1662 struct ocfs2_extent_tree et;
50308d81 1663 int try_free = 1, ret1;
0d172baa 1664
50308d81 1665try_again:
c1ad1e3c 1666 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
0d172baa
MF
1667 if (ret) {
1668 mlog_errno(ret);
1669 return ret;
1670 }
1671
1afc32b9
MF
1672 if (ocfs2_supports_inline_data(osb)) {
1673 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1674 mmap_page, wc);
1675 if (ret == 1) {
1676 ret = 0;
1677 goto success;
1678 }
1679 if (ret < 0) {
1680 mlog_errno(ret);
1681 goto out;
1682 }
1683 }
1684
46e62556
RD
1685 /* Direct io change i_size late, should not zero tail here. */
1686 if (type != OCFS2_WRITE_DIRECT) {
1687 if (ocfs2_sparse_alloc(osb))
1688 ret = ocfs2_zero_tail(inode, di_bh, pos);
1689 else
1690 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1691 len, wc);
1692 if (ret) {
1693 mlog_errno(ret);
1694 goto out;
1695 }
65ed39d6
MF
1696 }
1697
293b2f70
TM
1698 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1699 if (ret < 0) {
1700 mlog_errno(ret);
1701 goto out;
1702 } else if (ret == 1) {
50308d81 1703 clusters_need = wc->w_clen;
c7dd3392 1704 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1705 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1706 if (ret) {
1707 mlog_errno(ret);
1708 goto out;
1709 }
1710 }
1711
b27b7cbc
MF
1712 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1713 &extents_to_split);
0d172baa
MF
1714 if (ret) {
1715 mlog_errno(ret);
1716 goto out;
1717 }
50308d81 1718 clusters_need += clusters_to_alloc;
0d172baa
MF
1719
1720 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1721
9558156b
TM
1722 trace_ocfs2_write_begin_nolock(
1723 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1724 (long long)i_size_read(inode),
1725 le32_to_cpu(di->i_clusters),
c1ad1e3c 1726 pos, len, type, mmap_page,
9558156b
TM
1727 clusters_to_alloc, extents_to_split);
1728
3a307ffc
MF
1729 /*
1730 * We set w_target_from, w_target_to here so that
1731 * ocfs2_write_end() knows which range in the target page to
1732 * write out. An allocation requires that we write the entire
1733 * cluster range.
1734 */
b27b7cbc 1735 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1736 /*
1737 * XXX: We are stretching the limits of
b27b7cbc 1738 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1739 * the work to be done.
1740 */
5e404e9e
JB
1741 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1742 wc->w_di_bh);
f99b9b7c 1743 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1744 clusters_to_alloc, extents_to_split,
f99b9b7c 1745 &data_ac, &meta_ac);
9517bac6
MF
1746 if (ret) {
1747 mlog_errno(ret);
607d44aa 1748 goto out;
9517bac6
MF
1749 }
1750
4fe370af
MF
1751 if (data_ac)
1752 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1753
811f933d 1754 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1755 &di->id2.i_list);
46e62556
RD
1756 } else if (type == OCFS2_WRITE_DIRECT)
1757 /* direct write needs not to start trans if no extents alloc. */
1758 goto success;
9517bac6 1759
e7432675
SM
1760 /*
1761 * We have to zero sparse allocated clusters, unwritten extent clusters,
1762 * and non-sparse clusters we just extended. For non-sparse writes,
1763 * we know zeros will only be needed in the first and/or last cluster.
1764 */
4506cfb6
RD
1765 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1766 wc->w_desc[wc->w_clen - 1].c_needs_zero))
e7432675
SM
1767 cluster_of_pages = 1;
1768 else
1769 cluster_of_pages = 0;
1770
1771 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1772
9517bac6
MF
1773 handle = ocfs2_start_trans(osb, credits);
1774 if (IS_ERR(handle)) {
1775 ret = PTR_ERR(handle);
1776 mlog_errno(ret);
607d44aa 1777 goto out;
9517bac6
MF
1778 }
1779
3a307ffc
MF
1780 wc->w_handle = handle;
1781
5dd4056d
CH
1782 if (clusters_to_alloc) {
1783 ret = dquot_alloc_space_nodirty(inode,
1784 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1785 if (ret)
1786 goto out_commit;
a90714c1 1787 }
7f27ec97 1788
0cf2f763 1789 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1790 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1791 if (ret) {
9517bac6 1792 mlog_errno(ret);
a90714c1 1793 goto out_quota;
9517bac6
MF
1794 }
1795
3a307ffc
MF
1796 /*
1797 * Fill our page array first. That way we've grabbed enough so
1798 * that we can zero and flush if we error after adding the
1799 * extent.
1800 */
693c241a 1801 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1802 cluster_of_pages, mmap_page);
e07bf00c
JQ
1803 if (ret) {
1804 /*
1805 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1806 * the target page. In this case, we exit with no error and no target
1807 * page. This will trigger the caller, page_mkwrite(), to re-try
1808 * the operation.
1809 */
1810 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1811 BUG_ON(wc->w_target_page);
1812 ret = 0;
1813 goto out_quota;
1814 }
9517bac6 1815
e07bf00c 1816 mlog_errno(ret);
5cffff9e
WW
1817 goto out_quota;
1818 }
1819
0d172baa
MF
1820 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1821 len);
1822 if (ret) {
1823 mlog_errno(ret);
a90714c1 1824 goto out_quota;
9517bac6 1825 }
9517bac6 1826
3a307ffc
MF
1827 if (data_ac)
1828 ocfs2_free_alloc_context(data_ac);
1829 if (meta_ac)
1830 ocfs2_free_alloc_context(meta_ac);
9517bac6 1831
1afc32b9 1832success:
65c4db8c
RD
1833 if (pagep)
1834 *pagep = wc->w_target_page;
3a307ffc
MF
1835 *fsdata = wc;
1836 return 0;
a90714c1
JK
1837out_quota:
1838 if (clusters_to_alloc)
5dd4056d 1839 dquot_free_space(inode,
a90714c1 1840 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1841out_commit:
1842 ocfs2_commit_trans(osb, handle);
1843
9517bac6 1844out:
c33f0785
ER
1845 /*
1846 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1847 * even in case of error here like ENOSPC and ENOMEM. So, we need
1848 * to unlock the target page manually to prevent deadlocks when
1849 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1850 * to VM code.
1851 */
1852 if (wc->w_target_locked)
1853 unlock_page(mmap_page);
1854
4506cfb6 1855 ocfs2_free_write_ctxt(inode, wc);
3a307ffc 1856
b1214e47 1857 if (data_ac) {
9517bac6 1858 ocfs2_free_alloc_context(data_ac);
b1214e47
X
1859 data_ac = NULL;
1860 }
1861 if (meta_ac) {
9517bac6 1862 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
1863 meta_ac = NULL;
1864 }
50308d81
TM
1865
1866 if (ret == -ENOSPC && try_free) {
1867 /*
1868 * Try to free some truncate log so that we can have enough
1869 * clusters to allocate.
1870 */
1871 try_free = 0;
1872
1873 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1874 if (ret1 == 1)
1875 goto try_again;
1876
1877 if (ret1 < 0)
1878 mlog_errno(ret1);
1879 }
1880
3a307ffc
MF
1881 return ret;
1882}
1883
b6af1bcd 1884static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
9d6b0cd7 1885 loff_t pos, unsigned len,
b6af1bcd 1886 struct page **pagep, void **fsdata)
607d44aa
MF
1887{
1888 int ret;
1889 struct buffer_head *di_bh = NULL;
1890 struct inode *inode = mapping->host;
1891
e63aecb6 1892 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1893 if (ret) {
1894 mlog_errno(ret);
1895 return ret;
1896 }
1897
1898 /*
1899 * Take alloc sem here to prevent concurrent lookups. That way
1900 * the mapping, zeroing and tree manipulation within
2c69e205 1901 * ocfs2_write() will be safe against ->read_folio(). This
607d44aa
MF
1902 * should also serve to lock out allocation from a shared
1903 * writeable region.
1904 */
1905 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1906
c1ad1e3c
RD
1907 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1908 pagep, fsdata, di_bh, NULL);
607d44aa
MF
1909 if (ret) {
1910 mlog_errno(ret);
c934a92d 1911 goto out_fail;
607d44aa
MF
1912 }
1913
1914 brelse(di_bh);
1915
1916 return 0;
1917
607d44aa
MF
1918out_fail:
1919 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1920
1921 brelse(di_bh);
e63aecb6 1922 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1923
1924 return ret;
1925}
1926
1afc32b9
MF
1927static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1928 unsigned len, unsigned *copied,
1929 struct ocfs2_dinode *di,
1930 struct ocfs2_write_ctxt *wc)
1931{
1932 void *kaddr;
1933
1934 if (unlikely(*copied < len)) {
1935 if (!PageUptodate(wc->w_target_page)) {
1936 *copied = 0;
1937 return;
1938 }
1939 }
1940
c4bc8dcb 1941 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1942 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1943 kunmap_atomic(kaddr);
1afc32b9 1944
9558156b
TM
1945 trace_ocfs2_write_end_inline(
1946 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1947 (unsigned long long)pos, *copied,
1948 le16_to_cpu(di->id2.i_data.id_count),
1949 le16_to_cpu(di->i_dyn_features));
1950}
1951
7307de80 1952int ocfs2_write_end_nolock(struct address_space *mapping,
07f38d97 1953 loff_t pos, unsigned len, unsigned copied, void *fsdata)
3a307ffc 1954{
7f27ec97 1955 int i, ret;
09cbfeaf 1956 unsigned from, to, start = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1957 struct inode *inode = mapping->host;
1958 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1959 struct ocfs2_write_ctxt *wc = fsdata;
1960 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1961 handle_t *handle = wc->w_handle;
1962 struct page *tmppage;
1963
4506cfb6
RD
1964 BUG_ON(!list_empty(&wc->w_unwritten_list));
1965
46e62556
RD
1966 if (handle) {
1967 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1968 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1969 if (ret) {
1970 copied = ret;
1971 mlog_errno(ret);
1972 goto out;
1973 }
7f27ec97 1974 }
1975
1afc32b9
MF
1976 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1977 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1978 goto out_write_size;
1979 }
1980
65c4db8c 1981 if (unlikely(copied < len) && wc->w_target_page) {
3a307ffc
MF
1982 if (!PageUptodate(wc->w_target_page))
1983 copied = 0;
1984
1985 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1986 start+len);
1987 }
65c4db8c
RD
1988 if (wc->w_target_page)
1989 flush_dcache_page(wc->w_target_page);
3a307ffc
MF
1990
1991 for(i = 0; i < wc->w_num_pages; i++) {
1992 tmppage = wc->w_pages[i];
1993
65c4db8c
RD
1994 /* This is the direct io target page. */
1995 if (tmppage == NULL)
1996 continue;
1997
3a307ffc
MF
1998 if (tmppage == wc->w_target_page) {
1999 from = wc->w_target_from;
2000 to = wc->w_target_to;
2001
09cbfeaf
KS
2002 BUG_ON(from > PAGE_SIZE ||
2003 to > PAGE_SIZE ||
3a307ffc
MF
2004 to < from);
2005 } else {
2006 /*
2007 * Pages adjacent to the target (if any) imply
2008 * a hole-filling write in which case we want
2009 * to flush their entire range.
2010 */
2011 from = 0;
09cbfeaf 2012 to = PAGE_SIZE;
3a307ffc
MF
2013 }
2014
961cecbe 2015 if (page_has_buffers(tmppage)) {
bbd0f327
JQ
2016 if (handle && ocfs2_should_order_data(inode)) {
2017 loff_t start_byte =
2018 ((loff_t)tmppage->index << PAGE_SHIFT) +
2019 from;
2020 loff_t length = to - from;
2021 ocfs2_jbd2_inode_add_write(handle, inode,
2022 start_byte, length);
2023 }
961cecbe
SM
2024 block_commit_write(tmppage, from, to);
2025 }
3a307ffc
MF
2026 }
2027
1afc32b9 2028out_write_size:
46e62556
RD
2029 /* Direct io do not update i_size here. */
2030 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2031 pos += copied;
2032 if (pos > i_size_read(inode)) {
2033 i_size_write(inode, pos);
2034 mark_inode_dirty(inode);
2035 }
2036 inode->i_blocks = ocfs2_inode_sector_count(inode);
2037 di->i_size = cpu_to_le64((u64)i_size_read(inode));
078cd827 2038 inode->i_mtime = inode->i_ctime = current_time(inode);
46e62556
RD
2039 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
583fee3e
JJB
2041 if (handle)
2042 ocfs2_update_inode_fsync_trans(handle, inode, 1);
46e62556
RD
2043 }
2044 if (handle)
2045 ocfs2_journal_dirty(handle, wc->w_di_bh);
3a307ffc 2046
7f27ec97 2047out:
136f49b9
JB
2048 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2049 * lock, or it will cause a deadlock since journal commit threads holds
2050 * this lock and will ask for the page lock when flushing the data.
2051 * put it here to preserve the unlock order.
2052 */
2053 ocfs2_unlock_pages(wc);
2054
46e62556
RD
2055 if (handle)
2056 ocfs2_commit_trans(osb, handle);
59a5e416 2057
b27b7cbc
MF
2058 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2059
136f49b9
JB
2060 brelse(wc->w_di_bh);
2061 kfree(wc);
607d44aa
MF
2062
2063 return copied;
2064}
2065
b6af1bcd
NP
2066static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2067 loff_t pos, unsigned len, unsigned copied,
2068 struct page *page, void *fsdata)
607d44aa
MF
2069{
2070 int ret;
2071 struct inode *inode = mapping->host;
2072
07f38d97 2073 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
607d44aa 2074
3a307ffc 2075 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2076 ocfs2_inode_unlock(inode, 1);
9517bac6 2077
607d44aa 2078 return ret;
9517bac6
MF
2079}
2080
c15471f7
RD
2081struct ocfs2_dio_write_ctxt {
2082 struct list_head dw_zero_list;
2083 unsigned dw_zero_count;
2084 int dw_orphaned;
2085 pid_t dw_writer_pid;
2086};
2087
2088static struct ocfs2_dio_write_ctxt *
2089ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2090{
2091 struct ocfs2_dio_write_ctxt *dwc = NULL;
2092
2093 if (bh->b_private)
2094 return bh->b_private;
2095
2096 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2097 if (dwc == NULL)
2098 return NULL;
2099 INIT_LIST_HEAD(&dwc->dw_zero_list);
2100 dwc->dw_zero_count = 0;
2101 dwc->dw_orphaned = 0;
2102 dwc->dw_writer_pid = task_pid_nr(current);
2103 bh->b_private = dwc;
2104 *alloc = 1;
2105
2106 return dwc;
2107}
2108
2109static void ocfs2_dio_free_write_ctx(struct inode *inode,
2110 struct ocfs2_dio_write_ctxt *dwc)
2111{
2112 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2113 kfree(dwc);
2114}
2115
2116/*
2117 * TODO: Make this into a generic get_blocks function.
2118 *
2119 * From do_direct_io in direct-io.c:
2120 * "So what we do is to permit the ->get_blocks function to populate
2121 * bh.b_size with the size of IO which is permitted at this offset and
2122 * this i_blkbits."
2123 *
2124 * This function is called directly from get_more_blocks in direct-io.c.
2125 *
2126 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2127 * fs_count, map_bh, dio->rw == WRITE);
2128 */
3e4c56d4 2129static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
c15471f7
RD
2130 struct buffer_head *bh_result, int create)
2131{
2132 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2133 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2134 struct ocfs2_write_ctxt *wc;
2135 struct ocfs2_write_cluster_desc *desc = NULL;
2136 struct ocfs2_dio_write_ctxt *dwc = NULL;
2137 struct buffer_head *di_bh = NULL;
2138 u64 p_blkno;
7a243c82
JG
2139 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2140 loff_t pos = iblock << i_blkbits;
2141 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
c15471f7
RD
2142 unsigned len, total_len = bh_result->b_size;
2143 int ret = 0, first_get_block = 0;
2144
2145 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2146 len = min(total_len, len);
2147
7a243c82
JG
2148 /*
2149 * bh_result->b_size is count in get_more_blocks according to write
2150 * "pos" and "end", we need map twice to return different buffer state:
2151 * 1. area in file size, not set NEW;
2152 * 2. area out file size, set NEW.
2153 *
2154 * iblock endblk
2155 * |--------|---------|---------|---------
2156 * |<-------area in file------->|
2157 */
2158
2159 if ((iblock <= endblk) &&
2160 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2161 len = (endblk - iblock + 1) << i_blkbits;
2162
c15471f7
RD
2163 mlog(0, "get block of %lu at %llu:%u req %u\n",
2164 inode->i_ino, pos, len, total_len);
2165
ce170828
RD
2166 /*
2167 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168 * we may need to add it to orphan dir. So can not fall to fast path
2169 * while file size will be changed.
2170 */
2171 if (pos + total_len <= i_size_read(inode)) {
a86a72a4 2172
3e4c56d4 2173 /* This is the fast path for re-write. */
2174 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
ce170828
RD
2175 if (buffer_mapped(bh_result) &&
2176 !buffer_new(bh_result) &&
2177 ret == 0)
2178 goto out;
c15471f7 2179
ce170828
RD
2180 /* Clear state set by ocfs2_get_block. */
2181 bh_result->b_state = 0;
2182 }
c15471f7
RD
2183
2184 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185 if (unlikely(dwc == NULL)) {
2186 ret = -ENOMEM;
2187 mlog_errno(ret);
2188 goto out;
2189 }
2190
2191 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193 !dwc->dw_orphaned) {
2194 /*
2195 * when we are going to alloc extents beyond file size, add the
2196 * inode to orphan dir, so we can recall those spaces when
2197 * system crashed during write.
2198 */
2199 ret = ocfs2_add_inode_to_orphan(osb, inode);
2200 if (ret < 0) {
2201 mlog_errno(ret);
2202 goto out;
2203 }
2204 dwc->dw_orphaned = 1;
2205 }
2206
2207 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208 if (ret) {
2209 mlog_errno(ret);
2210 goto out;
2211 }
2212
a86a72a4
RD
2213 down_write(&oi->ip_alloc_sem);
2214
c15471f7 2215 if (first_get_block) {
1119d3c0 2216 if (ocfs2_sparse_alloc(osb))
c15471f7
RD
2217 ret = ocfs2_zero_tail(inode, di_bh, pos);
2218 else
2219 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220 total_len, NULL);
2221 if (ret < 0) {
2222 mlog_errno(ret);
2223 goto unlock;
2224 }
2225 }
2226
2227 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228 OCFS2_WRITE_DIRECT, NULL,
2229 (void **)&wc, di_bh, NULL);
2230 if (ret) {
2231 mlog_errno(ret);
2232 goto unlock;
2233 }
2234
2235 desc = &wc->w_desc[0];
2236
2237 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238 BUG_ON(p_blkno == 0);
2239 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241 map_bh(bh_result, inode->i_sb, p_blkno);
2242 bh_result->b_size = len;
2243 if (desc->c_needs_zero)
2244 set_buffer_new(bh_result);
2245
7a243c82
JG
2246 if (iblock > endblk)
2247 set_buffer_new(bh_result);
2248
c15471f7
RD
2249 /* May sleep in end_io. It should not happen in a irq context. So defer
2250 * it to dio work queue. */
2251 set_buffer_defer_completion(bh_result);
2252
2253 if (!list_empty(&wc->w_unwritten_list)) {
2254 struct ocfs2_unwritten_extent *ue = NULL;
2255
2256 ue = list_first_entry(&wc->w_unwritten_list,
2257 struct ocfs2_unwritten_extent,
2258 ue_node);
2259 BUG_ON(ue->ue_cpos != desc->c_cpos);
2260 /* The physical address may be 0, fill it. */
2261 ue->ue_phys = desc->c_phys;
2262
2263 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
63de8bd9 2264 dwc->dw_zero_count += wc->w_unwritten_count;
c15471f7
RD
2265 }
2266
07f38d97 2267 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
c15471f7
RD
2268 BUG_ON(ret != len);
2269 ret = 0;
2270unlock:
a86a72a4 2271 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2272 ocfs2_inode_unlock(inode, 1);
2273 brelse(di_bh);
2274out:
2275 if (ret < 0)
2276 ret = -EIO;
2277 return ret;
2278}
2279
08554955
DW
2280static int ocfs2_dio_end_io_write(struct inode *inode,
2281 struct ocfs2_dio_write_ctxt *dwc,
2282 loff_t offset,
2283 ssize_t bytes)
c15471f7
RD
2284{
2285 struct ocfs2_cached_dealloc_ctxt dealloc;
2286 struct ocfs2_extent_tree et;
2287 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2288 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2289 struct ocfs2_unwritten_extent *ue = NULL;
2290 struct buffer_head *di_bh = NULL;
2291 struct ocfs2_dinode *di;
2292 struct ocfs2_alloc_context *data_ac = NULL;
2293 struct ocfs2_alloc_context *meta_ac = NULL;
2294 handle_t *handle = NULL;
2295 loff_t end = offset + bytes;
90bd070a 2296 int ret = 0, credits = 0;
c15471f7
RD
2297
2298 ocfs2_init_dealloc_ctxt(&dealloc);
2299
2300 /* We do clear unwritten, delete orphan, change i_size here. If neither
2301 * of these happen, we can skip all this. */
2302 if (list_empty(&dwc->dw_zero_list) &&
2303 end <= i_size_read(inode) &&
2304 !dwc->dw_orphaned)
2305 goto out;
2306
a86a72a4
RD
2307 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2308 if (ret < 0) {
2309 mlog_errno(ret);
2310 goto out;
2311 }
2312
2313 down_write(&oi->ip_alloc_sem);
2314
137cebf9 2315 /* Delete orphan before acquire i_rwsem. */
c15471f7
RD
2316 if (dwc->dw_orphaned) {
2317 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2318
2319 end = end > i_size_read(inode) ? end : 0;
2320
2321 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2322 !!end, end);
2323 if (ret < 0)
2324 mlog_errno(ret);
2325 }
2326
aef73a61 2327 di = (struct ocfs2_dinode *)di_bh->b_data;
c15471f7
RD
2328
2329 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2330
71a36944
CG
2331 /* Attach dealloc with extent tree in case that we may reuse extents
2332 * which are already unlinked from current extent tree due to extent
2333 * rotation and merging.
2334 */
2335 et.et_dealloc = &dealloc;
2336
c15471f7
RD
2337 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2338 &data_ac, &meta_ac);
28888681
RD
2339 if (ret) {
2340 mlog_errno(ret);
2341 goto unlock;
2342 }
c15471f7
RD
2343
2344 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2345
2346 handle = ocfs2_start_trans(osb, credits);
2347 if (IS_ERR(handle)) {
2348 ret = PTR_ERR(handle);
2349 mlog_errno(ret);
2350 goto unlock;
2351 }
2352 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2353 OCFS2_JOURNAL_ACCESS_WRITE);
2354 if (ret) {
2355 mlog_errno(ret);
2356 goto commit;
2357 }
2358
2359 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2360 ret = ocfs2_mark_extent_written(inode, &et, handle,
2361 ue->ue_cpos, 1,
2362 ue->ue_phys,
2363 meta_ac, &dealloc);
2364 if (ret < 0) {
2365 mlog_errno(ret);
2366 break;
2367 }
2368 }
2369
2370 if (end > i_size_read(inode)) {
2371 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2372 if (ret < 0)
2373 mlog_errno(ret);
2374 }
2375commit:
2376 ocfs2_commit_trans(osb, handle);
2377unlock:
a86a72a4 2378 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2379 ocfs2_inode_unlock(inode, 1);
2380 brelse(di_bh);
2381out:
c15471f7
RD
2382 if (data_ac)
2383 ocfs2_free_alloc_context(data_ac);
2384 if (meta_ac)
2385 ocfs2_free_alloc_context(meta_ac);
28888681 2386 ocfs2_run_deallocs(osb, &dealloc);
28888681 2387 ocfs2_dio_free_write_ctx(inode, dwc);
08554955
DW
2388
2389 return ret;
c15471f7
RD
2390}
2391
2392/*
2393 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2394 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2395 * to protect io on one node from truncation on another.
2396 */
2397static int ocfs2_dio_end_io(struct kiocb *iocb,
2398 loff_t offset,
2399 ssize_t bytes,
2400 void *private)
2401{
2402 struct inode *inode = file_inode(iocb->ki_filp);
2403 int level;
08554955 2404 int ret = 0;
c15471f7
RD
2405
2406 /* this io's submitter should not have unlocked this before we could */
2407 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2408
5040f8df
WW
2409 if (bytes <= 0)
2410 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2411 (long long)bytes);
2412 if (private) {
2413 if (bytes > 0)
2414 ret = ocfs2_dio_end_io_write(inode, private, offset,
2415 bytes);
2416 else
2417 ocfs2_dio_free_write_ctx(inode, private);
2418 }
c15471f7
RD
2419
2420 ocfs2_iocb_clear_rw_locked(iocb);
2421
2422 level = ocfs2_iocb_rw_locked_level(iocb);
2423 ocfs2_rw_unlock(inode, level);
08554955 2424 return ret;
c15471f7
RD
2425}
2426
c8b8e32d 2427static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
c15471f7
RD
2428{
2429 struct file *file = iocb->ki_filp;
93c76a3d 2430 struct inode *inode = file->f_mapping->host;
c15471f7 2431 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
c15471f7
RD
2432 get_block_t *get_block;
2433
2434 /*
2435 * Fallback to buffered I/O if we see an inode without
2436 * extents.
2437 */
2438 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2439 return 0;
2440
2441 /* Fallback to buffered I/O if we do not support append dio. */
c8b8e32d
CH
2442 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2443 !ocfs2_supports_append_dio(osb))
c15471f7
RD
2444 return 0;
2445
2446 if (iov_iter_rw(iter) == READ)
3e4c56d4 2447 get_block = ocfs2_lock_get_block;
c15471f7 2448 else
3e4c56d4 2449 get_block = ocfs2_dio_wr_get_block;
c15471f7
RD
2450
2451 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
c8b8e32d 2452 iter, get_block,
c15471f7
RD
2453 ocfs2_dio_end_io, NULL, 0);
2454}
2455
f5e54d6e 2456const struct address_space_operations ocfs2_aops = {
e621900a 2457 .dirty_folio = block_dirty_folio,
bb9263fc 2458 .read_folio = ocfs2_read_folio,
d4388340 2459 .readahead = ocfs2_readahead,
1fca3a05
HH
2460 .writepage = ocfs2_writepage,
2461 .write_begin = ocfs2_write_begin,
2462 .write_end = ocfs2_write_end,
2463 .bmap = ocfs2_bmap,
1fca3a05 2464 .direct_IO = ocfs2_direct_IO,
7ba13abb 2465 .invalidate_folio = block_invalidate_folio,
eca66389 2466 .release_folio = ocfs2_release_folio,
1fca3a05
HH
2467 .migratepage = buffer_migrate_page,
2468 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2469 .error_remove_page = generic_error_remove_page,
ccd979bd 2470};