treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 144
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
f86196ea 33#include <linux/mm.h>
ccd979bd 34
ccd979bd
MF
35#include <cluster/masklog.h>
36
37#include "ocfs2.h"
38
39#include "alloc.h"
40#include "aops.h"
41#include "dlmglue.h"
42#include "extent_map.h"
43#include "file.h"
44#include "inode.h"
45#include "journal.h"
9517bac6 46#include "suballoc.h"
ccd979bd
MF
47#include "super.h"
48#include "symlink.h"
293b2f70 49#include "refcounttree.h"
9558156b 50#include "ocfs2_trace.h"
ccd979bd
MF
51
52#include "buffer_head_io.h"
24c40b32
JQ
53#include "dir.h"
54#include "namei.h"
55#include "sysfile.h"
ccd979bd
MF
56
57static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
58 struct buffer_head *bh_result, int create)
59{
60 int err = -EIO;
61 int status;
62 struct ocfs2_dinode *fe = NULL;
63 struct buffer_head *bh = NULL;
64 struct buffer_head *buffer_cache_bh = NULL;
65 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
66 void *kaddr;
67
9558156b
TM
68 trace_ocfs2_symlink_get_block(
69 (unsigned long long)OCFS2_I(inode)->ip_blkno,
70 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
71
72 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
73
74 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
75 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
76 (unsigned long long)iblock);
77 goto bail;
78 }
79
b657c95c 80 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
81 if (status < 0) {
82 mlog_errno(status);
83 goto bail;
84 }
85 fe = (struct ocfs2_dinode *) bh->b_data;
86
ccd979bd
MF
87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88 le32_to_cpu(fe->i_clusters))) {
7391a294 89 err = -ENOMEM;
ccd979bd
MF
90 mlog(ML_ERROR, "block offset is outside the allocated size: "
91 "%llu\n", (unsigned long long)iblock);
92 goto bail;
93 }
94
95 /* We don't use the page cache to create symlink data, so if
96 * need be, copy it over from the buffer cache. */
97 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
98 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
99 iblock;
100 buffer_cache_bh = sb_getblk(osb->sb, blkno);
101 if (!buffer_cache_bh) {
7391a294 102 err = -ENOMEM;
ccd979bd
MF
103 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
104 goto bail;
105 }
106
107 /* we haven't locked out transactions, so a commit
108 * could've happened. Since we've got a reference on
109 * the bh, even if it commits while we're doing the
110 * copy, the data is still good. */
111 if (buffer_jbd(buffer_cache_bh)
112 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 113 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
114 if (!kaddr) {
115 mlog(ML_ERROR, "couldn't kmap!\n");
116 goto bail;
117 }
118 memcpy(kaddr + (bh_result->b_size * iblock),
119 buffer_cache_bh->b_data,
120 bh_result->b_size);
c4bc8dcb 121 kunmap_atomic(kaddr);
ccd979bd
MF
122 set_buffer_uptodate(bh_result);
123 }
124 brelse(buffer_cache_bh);
125 }
126
127 map_bh(bh_result, inode->i_sb,
128 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
129
130 err = 0;
131
132bail:
a81cb88b 133 brelse(bh);
ccd979bd 134
ccd979bd
MF
135 return err;
136}
137
3e4c56d4 138static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
139 struct buffer_head *bh_result, int create)
140{
141 int ret = 0;
142 struct ocfs2_inode_info *oi = OCFS2_I(inode);
143
144 down_read(&oi->ip_alloc_sem);
145 ret = ocfs2_get_block(inode, iblock, bh_result, create);
146 up_read(&oi->ip_alloc_sem);
147
148 return ret;
149}
150
6f70fa51
TM
151int ocfs2_get_block(struct inode *inode, sector_t iblock,
152 struct buffer_head *bh_result, int create)
ccd979bd
MF
153{
154 int err = 0;
49cb8d2d 155 unsigned int ext_flags;
628a24f5
MF
156 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
157 u64 p_blkno, count, past_eof;
25baf2da 158 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 159
9558156b
TM
160 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
161 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
162
163 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
164 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
165 inode, inode->i_ino);
166
167 if (S_ISLNK(inode->i_mode)) {
168 /* this always does I/O for some reason. */
169 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
170 goto bail;
171 }
172
628a24f5 173 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 174 &ext_flags);
ccd979bd
MF
175 if (err) {
176 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
177 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
178 (unsigned long long)p_blkno);
ccd979bd
MF
179 goto bail;
180 }
181
628a24f5
MF
182 if (max_blocks < count)
183 count = max_blocks;
184
25baf2da
MF
185 /*
186 * ocfs2 never allocates in this function - the only time we
187 * need to use BH_New is when we're extending i_size on a file
188 * system which doesn't support holes, in which case BH_New
ebdec241 189 * allows __block_write_begin() to zero.
c0420ad2
CL
190 *
191 * If we see this on a sparse file system, then a truncate has
192 * raced us and removed the cluster. In this case, we clear
193 * the buffers dirty and uptodate bits and let the buffer code
194 * ignore it as a hole.
25baf2da 195 */
c0420ad2
CL
196 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
197 clear_buffer_dirty(bh_result);
198 clear_buffer_uptodate(bh_result);
199 goto bail;
200 }
25baf2da 201
49cb8d2d
MF
202 /* Treat the unwritten extent as a hole for zeroing purposes. */
203 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
204 map_bh(bh_result, inode->i_sb, p_blkno);
205
628a24f5
MF
206 bh_result->b_size = count << inode->i_blkbits;
207
25baf2da
MF
208 if (!ocfs2_sparse_alloc(osb)) {
209 if (p_blkno == 0) {
210 err = -EIO;
211 mlog(ML_ERROR,
212 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
213 (unsigned long long)iblock,
214 (unsigned long long)p_blkno,
215 (unsigned long long)OCFS2_I(inode)->ip_blkno);
216 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
217 dump_stack();
1f4cea37 218 goto bail;
25baf2da 219 }
25baf2da 220 }
ccd979bd 221
5693486b 222 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
223
224 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
225 (unsigned long long)past_eof);
5693486b
JB
226 if (create && (iblock >= past_eof))
227 set_buffer_new(bh_result);
228
ccd979bd
MF
229bail:
230 if (err < 0)
231 err = -EIO;
232
ccd979bd
MF
233 return err;
234}
235
1afc32b9
MF
236int ocfs2_read_inline_data(struct inode *inode, struct page *page,
237 struct buffer_head *di_bh)
6798d35a
MF
238{
239 void *kaddr;
d2849fb2 240 loff_t size;
6798d35a
MF
241 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
242
243 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
7ecef14a 244 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
6798d35a
MF
245 (unsigned long long)OCFS2_I(inode)->ip_blkno);
246 return -EROFS;
247 }
248
249 size = i_size_read(inode);
250
09cbfeaf 251 if (size > PAGE_SIZE ||
d9ae49d6 252 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 253 ocfs2_error(inode->i_sb,
7ecef14a 254 "Inode %llu has with inline data has bad size: %Lu\n",
d2849fb2
JK
255 (unsigned long long)OCFS2_I(inode)->ip_blkno,
256 (unsigned long long)size);
6798d35a
MF
257 return -EROFS;
258 }
259
c4bc8dcb 260 kaddr = kmap_atomic(page);
6798d35a
MF
261 if (size)
262 memcpy(kaddr, di->id2.i_data.id_data, size);
263 /* Clear the remaining part of the page */
09cbfeaf 264 memset(kaddr + size, 0, PAGE_SIZE - size);
6798d35a 265 flush_dcache_page(page);
c4bc8dcb 266 kunmap_atomic(kaddr);
6798d35a
MF
267
268 SetPageUptodate(page);
269
270 return 0;
271}
272
273static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
274{
275 int ret;
276 struct buffer_head *di_bh = NULL;
6798d35a
MF
277
278 BUG_ON(!PageLocked(page));
86c838b0 279 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 280
b657c95c 281 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
282 if (ret) {
283 mlog_errno(ret);
284 goto out;
285 }
286
287 ret = ocfs2_read_inline_data(inode, page, di_bh);
288out:
289 unlock_page(page);
290
291 brelse(di_bh);
292 return ret;
293}
294
ccd979bd
MF
295static int ocfs2_readpage(struct file *file, struct page *page)
296{
297 struct inode *inode = page->mapping->host;
6798d35a 298 struct ocfs2_inode_info *oi = OCFS2_I(inode);
09cbfeaf 299 loff_t start = (loff_t)page->index << PAGE_SHIFT;
ccd979bd
MF
300 int ret, unlock = 1;
301
9558156b
TM
302 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
303 (page ? page->index : 0));
ccd979bd 304
e63aecb6 305 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
306 if (ret != 0) {
307 if (ret == AOP_TRUNCATED_PAGE)
308 unlock = 0;
309 mlog_errno(ret);
310 goto out;
311 }
312
6798d35a 313 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
314 /*
315 * Unlock the page and cycle ip_alloc_sem so that we don't
316 * busyloop waiting for ip_alloc_sem to unlock
317 */
e9dfc0b2 318 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
319 unlock_page(page);
320 unlock = 0;
321 down_read(&oi->ip_alloc_sem);
322 up_read(&oi->ip_alloc_sem);
e63aecb6 323 goto out_inode_unlock;
e9dfc0b2 324 }
ccd979bd
MF
325
326 /*
327 * i_size might have just been updated as we grabed the meta lock. We
328 * might now be discovering a truncate that hit on another node.
329 * block_read_full_page->get_block freaks out if it is asked to read
330 * beyond the end of a file, so we check here. Callers
54cb8821 331 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
332 * and notice that the page they just read isn't needed.
333 *
334 * XXX sys_readahead() seems to get that wrong?
335 */
336 if (start >= i_size_read(inode)) {
eebd2aa3 337 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
338 SetPageUptodate(page);
339 ret = 0;
340 goto out_alloc;
341 }
342
6798d35a
MF
343 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
344 ret = ocfs2_readpage_inline(inode, page);
345 else
346 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
347 unlock = 0;
348
ccd979bd 349out_alloc:
d324cd4c 350 up_read(&oi->ip_alloc_sem);
e63aecb6
MF
351out_inode_unlock:
352 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
353out:
354 if (unlock)
355 unlock_page(page);
ccd979bd
MF
356 return ret;
357}
358
628a24f5
MF
359/*
360 * This is used only for read-ahead. Failures or difficult to handle
361 * situations are safe to ignore.
362 *
363 * Right now, we don't bother with BH_Boundary - in-inode extent lists
364 * are quite large (243 extents on 4k blocks), so most inodes don't
365 * grow out to a tree. If need be, detecting boundary extents could
366 * trivially be added in a future version of ocfs2_get_block().
367 */
368static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
369 struct list_head *pages, unsigned nr_pages)
370{
371 int ret, err = -EIO;
372 struct inode *inode = mapping->host;
373 struct ocfs2_inode_info *oi = OCFS2_I(inode);
374 loff_t start;
375 struct page *last;
376
377 /*
378 * Use the nonblocking flag for the dlm code to avoid page
379 * lock inversion, but don't bother with retrying.
380 */
381 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
382 if (ret)
383 return err;
384
385 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
386 ocfs2_inode_unlock(inode, 0);
387 return err;
388 }
389
390 /*
391 * Don't bother with inline-data. There isn't anything
392 * to read-ahead in that case anyway...
393 */
394 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
395 goto out_unlock;
396
397 /*
398 * Check whether a remote node truncated this file - we just
399 * drop out in that case as it's not worth handling here.
400 */
f86196ea 401 last = lru_to_page(pages);
09cbfeaf 402 start = (loff_t)last->index << PAGE_SHIFT;
628a24f5
MF
403 if (start >= i_size_read(inode))
404 goto out_unlock;
405
406 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
407
408out_unlock:
409 up_read(&oi->ip_alloc_sem);
410 ocfs2_inode_unlock(inode, 0);
411
412 return err;
413}
414
ccd979bd
MF
415/* Note: Because we don't support holes, our allocation has
416 * already happened (allocation writes zeros to the file data)
417 * so we don't have to worry about ordered writes in
418 * ocfs2_writepage.
419 *
420 * ->writepage is called during the process of invalidating the page cache
421 * during blocked lock processing. It can't block on any cluster locks
422 * to during block mapping. It's relying on the fact that the block
423 * mapping can't have disappeared under the dirty pages that it is
424 * being asked to write back.
425 */
426static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
427{
9558156b
TM
428 trace_ocfs2_writepage(
429 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
430 page->index);
ccd979bd 431
9558156b 432 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
433}
434
ccd979bd
MF
435/* Taken from ext3. We don't necessarily need the full blown
436 * functionality yet, but IMHO it's better to cut and paste the whole
437 * thing so we can avoid introducing our own bugs (and easily pick up
438 * their fixes when they happen) --Mark */
60b11392
MF
439int walk_page_buffers( handle_t *handle,
440 struct buffer_head *head,
441 unsigned from,
442 unsigned to,
443 int *partial,
444 int (*fn)( handle_t *handle,
445 struct buffer_head *bh))
ccd979bd
MF
446{
447 struct buffer_head *bh;
448 unsigned block_start, block_end;
449 unsigned blocksize = head->b_size;
450 int err, ret = 0;
451 struct buffer_head *next;
452
453 for ( bh = head, block_start = 0;
454 ret == 0 && (bh != head || !block_start);
455 block_start = block_end, bh = next)
456 {
457 next = bh->b_this_page;
458 block_end = block_start + blocksize;
459 if (block_end <= from || block_start >= to) {
460 if (partial && !buffer_uptodate(bh))
461 *partial = 1;
462 continue;
463 }
464 err = (*fn)(handle, bh);
465 if (!ret)
466 ret = err;
467 }
468 return ret;
469}
470
ccd979bd
MF
471static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
472{
473 sector_t status;
474 u64 p_blkno = 0;
475 int err = 0;
476 struct inode *inode = mapping->host;
477
9558156b
TM
478 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
479 (unsigned long long)block);
ccd979bd 480
06a70305
DW
481 /*
482 * The swap code (ab-)uses ->bmap to get a block mapping and then
483 * bypasseѕ the file system for actual I/O. We really can't allow
484 * that on refcounted inodes, so we have to skip out here. And yes,
485 * 0 is the magic code for a bmap error..
486 */
487 if (ocfs2_is_refcount_inode(inode))
488 return 0;
489
ccd979bd
MF
490 /* We don't need to lock journal system files, since they aren't
491 * accessed concurrently from multiple nodes.
492 */
493 if (!INODE_JOURNAL(inode)) {
e63aecb6 494 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
495 if (err) {
496 if (err != -ENOENT)
497 mlog_errno(err);
498 goto bail;
499 }
500 down_read(&OCFS2_I(inode)->ip_alloc_sem);
501 }
502
6798d35a
MF
503 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
504 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
505 NULL);
ccd979bd
MF
506
507 if (!INODE_JOURNAL(inode)) {
508 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 509 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
510 }
511
512 if (err) {
513 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
514 (unsigned long long)block);
515 mlog_errno(err);
516 goto bail;
517 }
518
ccd979bd
MF
519bail:
520 status = err ? 0 : p_blkno;
521
ccd979bd
MF
522 return status;
523}
524
03f981cf
JB
525static int ocfs2_releasepage(struct page *page, gfp_t wait)
526{
03f981cf
JB
527 if (!page_has_buffers(page))
528 return 0;
41ecc345 529 return try_to_free_buffers(page);
03f981cf
JB
530}
531
9517bac6
MF
532static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
533 u32 cpos,
534 unsigned int *start,
535 unsigned int *end)
536{
09cbfeaf 537 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
9517bac6 538
09cbfeaf 539 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
9517bac6
MF
540 unsigned int cpp;
541
09cbfeaf 542 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
9517bac6
MF
543
544 cluster_start = cpos % cpp;
545 cluster_start = cluster_start << osb->s_clustersize_bits;
546
547 cluster_end = cluster_start + osb->s_clustersize;
548 }
549
550 BUG_ON(cluster_start > PAGE_SIZE);
551 BUG_ON(cluster_end > PAGE_SIZE);
552
553 if (start)
554 *start = cluster_start;
555 if (end)
556 *end = cluster_end;
557}
558
559/*
560 * 'from' and 'to' are the region in the page to avoid zeroing.
561 *
562 * If pagesize > clustersize, this function will avoid zeroing outside
563 * of the cluster boundary.
564 *
565 * from == to == 0 is code for "zero the entire cluster region"
566 */
567static void ocfs2_clear_page_regions(struct page *page,
568 struct ocfs2_super *osb, u32 cpos,
569 unsigned from, unsigned to)
570{
571 void *kaddr;
572 unsigned int cluster_start, cluster_end;
573
574 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
575
c4bc8dcb 576 kaddr = kmap_atomic(page);
9517bac6
MF
577
578 if (from || to) {
579 if (from > cluster_start)
580 memset(kaddr + cluster_start, 0, from - cluster_start);
581 if (to < cluster_end)
582 memset(kaddr + to, 0, cluster_end - to);
583 } else {
584 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
585 }
586
c4bc8dcb 587 kunmap_atomic(kaddr);
9517bac6
MF
588}
589
4e9563fd
MF
590/*
591 * Nonsparse file systems fully allocate before we get to the write
592 * code. This prevents ocfs2_write() from tagging the write as an
593 * allocating one, which means ocfs2_map_page_blocks() might try to
594 * read-in the blocks at the tail of our file. Avoid reading them by
595 * testing i_size against each block offset.
596 */
597static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
598 unsigned int block_start)
599{
600 u64 offset = page_offset(page) + block_start;
601
602 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
603 return 1;
604
605 if (i_size_read(inode) > offset)
606 return 1;
607
608 return 0;
609}
610
9517bac6 611/*
ebdec241 612 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
613 * mapping by now though, and the entire write will be allocating or
614 * it won't, so not much need to use BH_New.
615 *
616 * This will also skip zeroing, which is handled externally.
617 */
60b11392
MF
618int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
619 struct inode *inode, unsigned int from,
620 unsigned int to, int new)
9517bac6
MF
621{
622 int ret = 0;
623 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
624 unsigned int block_end, block_start;
93407472 625 unsigned int bsize = i_blocksize(inode);
9517bac6
MF
626
627 if (!page_has_buffers(page))
628 create_empty_buffers(page, bsize, 0);
629
630 head = page_buffers(page);
631 for (bh = head, block_start = 0; bh != head || !block_start;
632 bh = bh->b_this_page, block_start += bsize) {
633 block_end = block_start + bsize;
634
3a307ffc
MF
635 clear_buffer_new(bh);
636
9517bac6
MF
637 /*
638 * Ignore blocks outside of our i/o range -
639 * they may belong to unallocated clusters.
640 */
60b11392 641 if (block_start >= to || block_end <= from) {
9517bac6
MF
642 if (PageUptodate(page))
643 set_buffer_uptodate(bh);
644 continue;
645 }
646
647 /*
648 * For an allocating write with cluster size >= page
649 * size, we always write the entire page.
650 */
3a307ffc
MF
651 if (new)
652 set_buffer_new(bh);
9517bac6
MF
653
654 if (!buffer_mapped(bh)) {
655 map_bh(bh, inode->i_sb, *p_blkno);
e64855c6 656 clean_bdev_bh_alias(bh);
9517bac6
MF
657 }
658
659 if (PageUptodate(page)) {
660 if (!buffer_uptodate(bh))
661 set_buffer_uptodate(bh);
662 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 663 !buffer_new(bh) &&
4e9563fd 664 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 665 (block_start < from || block_end > to)) {
dfec8a14 666 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
9517bac6
MF
667 *wait_bh++=bh;
668 }
669
670 *p_blkno = *p_blkno + 1;
671 }
672
673 /*
674 * If we issued read requests - let them complete.
675 */
676 while(wait_bh > wait) {
677 wait_on_buffer(*--wait_bh);
678 if (!buffer_uptodate(*wait_bh))
679 ret = -EIO;
680 }
681
682 if (ret == 0 || !new)
683 return ret;
684
685 /*
686 * If we get -EIO above, zero out any newly allocated blocks
687 * to avoid exposing stale data.
688 */
689 bh = head;
690 block_start = 0;
691 do {
9517bac6
MF
692 block_end = block_start + bsize;
693 if (block_end <= from)
694 goto next_bh;
695 if (block_start >= to)
696 break;
697
eebd2aa3 698 zero_user(page, block_start, bh->b_size);
9517bac6
MF
699 set_buffer_uptodate(bh);
700 mark_buffer_dirty(bh);
701
702next_bh:
703 block_start = block_end;
704 bh = bh->b_this_page;
705 } while (bh != head);
706
707 return ret;
708}
709
ea1754a0 710#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
3a307ffc
MF
711#define OCFS2_MAX_CTXT_PAGES 1
712#else
09cbfeaf 713#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
3a307ffc
MF
714#endif
715
09cbfeaf 716#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
3a307ffc 717
4506cfb6
RD
718struct ocfs2_unwritten_extent {
719 struct list_head ue_node;
720 struct list_head ue_ip_node;
721 u32 ue_cpos;
722 u32 ue_phys;
723};
724
6af67d82 725/*
3a307ffc 726 * Describe the state of a single cluster to be written to.
6af67d82 727 */
3a307ffc
MF
728struct ocfs2_write_cluster_desc {
729 u32 c_cpos;
730 u32 c_phys;
731 /*
732 * Give this a unique field because c_phys eventually gets
733 * filled.
734 */
735 unsigned c_new;
b46637d5 736 unsigned c_clear_unwritten;
e7432675 737 unsigned c_needs_zero;
3a307ffc 738};
6af67d82 739
3a307ffc
MF
740struct ocfs2_write_ctxt {
741 /* Logical cluster position / len of write */
742 u32 w_cpos;
743 u32 w_clen;
6af67d82 744
e7432675
SM
745 /* First cluster allocated in a nonsparse extend */
746 u32 w_first_new_cpos;
747
c1ad1e3c
RD
748 /* Type of caller. Must be one of buffer, mmap, direct. */
749 ocfs2_write_type_t w_type;
750
3a307ffc 751 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 752
3a307ffc
MF
753 /*
754 * This is true if page_size > cluster_size.
755 *
756 * It triggers a set of special cases during write which might
757 * have to deal with allocating writes to partial pages.
758 */
759 unsigned int w_large_pages;
6af67d82 760
3a307ffc
MF
761 /*
762 * Pages involved in this write.
763 *
764 * w_target_page is the page being written to by the user.
765 *
766 * w_pages is an array of pages which always contains
767 * w_target_page, and in the case of an allocating write with
768 * page_size < cluster size, it will contain zero'd and mapped
769 * pages adjacent to w_target_page which need to be written
770 * out in so that future reads from that region will get
771 * zero's.
772 */
3a307ffc 773 unsigned int w_num_pages;
83fd9c7f 774 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 775 struct page *w_target_page;
eeb47d12 776
5cffff9e
WW
777 /*
778 * w_target_locked is used for page_mkwrite path indicating no unlocking
779 * against w_target_page in ocfs2_write_end_nolock.
780 */
781 unsigned int w_target_locked:1;
782
3a307ffc
MF
783 /*
784 * ocfs2_write_end() uses this to know what the real range to
785 * write in the target should be.
786 */
787 unsigned int w_target_from;
788 unsigned int w_target_to;
789
790 /*
791 * We could use journal_current_handle() but this is cleaner,
792 * IMHO -Mark
793 */
794 handle_t *w_handle;
795
796 struct buffer_head *w_di_bh;
b27b7cbc
MF
797
798 struct ocfs2_cached_dealloc_ctxt w_dealloc;
4506cfb6
RD
799
800 struct list_head w_unwritten_list;
63de8bd9 801 unsigned int w_unwritten_count;
3a307ffc
MF
802};
803
1d410a6e 804void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
805{
806 int i;
807
1d410a6e
MF
808 for(i = 0; i < num_pages; i++) {
809 if (pages[i]) {
810 unlock_page(pages[i]);
811 mark_page_accessed(pages[i]);
09cbfeaf 812 put_page(pages[i]);
1d410a6e 813 }
6af67d82 814 }
1d410a6e
MF
815}
816
136f49b9 817static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 818{
5cffff9e
WW
819 int i;
820
821 /*
822 * w_target_locked is only set to true in the page_mkwrite() case.
823 * The intent is to allow us to lock the target page from write_begin()
824 * to write_end(). The caller must hold a ref on w_target_page.
825 */
826 if (wc->w_target_locked) {
827 BUG_ON(!wc->w_target_page);
828 for (i = 0; i < wc->w_num_pages; i++) {
829 if (wc->w_target_page == wc->w_pages[i]) {
830 wc->w_pages[i] = NULL;
831 break;
832 }
833 }
834 mark_page_accessed(wc->w_target_page);
09cbfeaf 835 put_page(wc->w_target_page);
5cffff9e 836 }
1d410a6e 837 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 838}
6af67d82 839
4506cfb6
RD
840static void ocfs2_free_unwritten_list(struct inode *inode,
841 struct list_head *head)
842{
843 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 844 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
4506cfb6 845
c15471f7
RD
846 list_for_each_entry_safe(ue, tmp, head, ue_node) {
847 list_del(&ue->ue_node);
4506cfb6 848 spin_lock(&oi->ip_lock);
c15471f7 849 list_del(&ue->ue_ip_node);
4506cfb6 850 spin_unlock(&oi->ip_lock);
c15471f7 851 kfree(ue);
4506cfb6
RD
852 }
853}
854
855static void ocfs2_free_write_ctxt(struct inode *inode,
856 struct ocfs2_write_ctxt *wc)
136f49b9 857{
4506cfb6 858 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
136f49b9 859 ocfs2_unlock_pages(wc);
3a307ffc
MF
860 brelse(wc->w_di_bh);
861 kfree(wc);
862}
863
864static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
865 struct ocfs2_super *osb, loff_t pos,
c1ad1e3c
RD
866 unsigned len, ocfs2_write_type_t type,
867 struct buffer_head *di_bh)
3a307ffc 868{
30b8548f 869 u32 cend;
3a307ffc
MF
870 struct ocfs2_write_ctxt *wc;
871
872 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
873 if (!wc)
874 return -ENOMEM;
6af67d82 875
3a307ffc 876 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 877 wc->w_first_new_cpos = UINT_MAX;
30b8548f 878 cend = (pos + len - 1) >> osb->s_clustersize_bits;
879 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
880 get_bh(di_bh);
881 wc->w_di_bh = di_bh;
c1ad1e3c 882 wc->w_type = type;
6af67d82 883
09cbfeaf 884 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
3a307ffc
MF
885 wc->w_large_pages = 1;
886 else
887 wc->w_large_pages = 0;
888
b27b7cbc 889 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
4506cfb6 890 INIT_LIST_HEAD(&wc->w_unwritten_list);
b27b7cbc 891
3a307ffc 892 *wcp = wc;
6af67d82 893
3a307ffc 894 return 0;
6af67d82
MF
895}
896
9517bac6 897/*
3a307ffc
MF
898 * If a page has any new buffers, zero them out here, and mark them uptodate
899 * and dirty so they'll be written out (in order to prevent uninitialised
900 * block data from leaking). And clear the new bit.
9517bac6 901 */
3a307ffc 902static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 903{
3a307ffc
MF
904 unsigned int block_start, block_end;
905 struct buffer_head *head, *bh;
9517bac6 906
3a307ffc
MF
907 BUG_ON(!PageLocked(page));
908 if (!page_has_buffers(page))
909 return;
9517bac6 910
3a307ffc
MF
911 bh = head = page_buffers(page);
912 block_start = 0;
913 do {
914 block_end = block_start + bh->b_size;
915
916 if (buffer_new(bh)) {
917 if (block_end > from && block_start < to) {
918 if (!PageUptodate(page)) {
919 unsigned start, end;
3a307ffc
MF
920
921 start = max(from, block_start);
922 end = min(to, block_end);
923
eebd2aa3 924 zero_user_segment(page, start, end);
3a307ffc
MF
925 set_buffer_uptodate(bh);
926 }
927
928 clear_buffer_new(bh);
929 mark_buffer_dirty(bh);
930 }
931 }
9517bac6 932
3a307ffc
MF
933 block_start = block_end;
934 bh = bh->b_this_page;
935 } while (bh != head);
936}
937
938/*
939 * Only called when we have a failure during allocating write to write
940 * zero's to the newly allocated region.
941 */
942static void ocfs2_write_failure(struct inode *inode,
943 struct ocfs2_write_ctxt *wc,
944 loff_t user_pos, unsigned user_len)
945{
946 int i;
09cbfeaf 947 unsigned from = user_pos & (PAGE_SIZE - 1),
5c26a7b7 948 to = user_pos + user_len;
3a307ffc
MF
949 struct page *tmppage;
950
65c4db8c
RD
951 if (wc->w_target_page)
952 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 953
3a307ffc
MF
954 for(i = 0; i < wc->w_num_pages; i++) {
955 tmppage = wc->w_pages[i];
9517bac6 956
65c4db8c 957 if (tmppage && page_has_buffers(tmppage)) {
53ef99ca 958 if (ocfs2_should_order_data(inode))
2b4e30fb 959 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
960
961 block_commit_write(tmppage, from, to);
962 }
9517bac6 963 }
9517bac6
MF
964}
965
3a307ffc
MF
966static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
967 struct ocfs2_write_ctxt *wc,
968 struct page *page, u32 cpos,
969 loff_t user_pos, unsigned user_len,
970 int new)
9517bac6 971{
3a307ffc
MF
972 int ret;
973 unsigned int map_from = 0, map_to = 0;
9517bac6 974 unsigned int cluster_start, cluster_end;
3a307ffc 975 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 976
3a307ffc 977 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
978 &cluster_start, &cluster_end);
979
272b62c1
GR
980 /* treat the write as new if the a hole/lseek spanned across
981 * the page boundary.
982 */
983 new = new | ((i_size_read(inode) <= page_offset(page)) &&
984 (page_offset(page) <= user_pos));
985
3a307ffc 986 if (page == wc->w_target_page) {
09cbfeaf 987 map_from = user_pos & (PAGE_SIZE - 1);
3a307ffc
MF
988 map_to = map_from + user_len;
989
990 if (new)
991 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
992 cluster_start, cluster_end,
993 new);
994 else
995 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
996 map_from, map_to, new);
997 if (ret) {
9517bac6
MF
998 mlog_errno(ret);
999 goto out;
1000 }
1001
3a307ffc
MF
1002 user_data_from = map_from;
1003 user_data_to = map_to;
9517bac6 1004 if (new) {
3a307ffc
MF
1005 map_from = cluster_start;
1006 map_to = cluster_end;
9517bac6
MF
1007 }
1008 } else {
1009 /*
1010 * If we haven't allocated the new page yet, we
1011 * shouldn't be writing it out without copying user
1012 * data. This is likely a math error from the caller.
1013 */
1014 BUG_ON(!new);
1015
3a307ffc
MF
1016 map_from = cluster_start;
1017 map_to = cluster_end;
9517bac6
MF
1018
1019 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1020 cluster_start, cluster_end, new);
9517bac6
MF
1021 if (ret) {
1022 mlog_errno(ret);
1023 goto out;
1024 }
1025 }
1026
1027 /*
1028 * Parts of newly allocated pages need to be zero'd.
1029 *
1030 * Above, we have also rewritten 'to' and 'from' - as far as
1031 * the rest of the function is concerned, the entire cluster
1032 * range inside of a page needs to be written.
1033 *
1034 * We can skip this if the page is up to date - it's already
1035 * been zero'd from being read in as a hole.
1036 */
1037 if (new && !PageUptodate(page))
1038 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1039 cpos, user_data_from, user_data_to);
9517bac6
MF
1040
1041 flush_dcache_page(page);
1042
9517bac6 1043out:
3a307ffc 1044 return ret;
9517bac6
MF
1045}
1046
1047/*
3a307ffc 1048 * This function will only grab one clusters worth of pages.
9517bac6 1049 */
3a307ffc
MF
1050static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1051 struct ocfs2_write_ctxt *wc,
693c241a
JB
1052 u32 cpos, loff_t user_pos,
1053 unsigned user_len, int new,
7307de80 1054 struct page *mmap_page)
9517bac6 1055{
3a307ffc 1056 int ret = 0, i;
693c241a 1057 unsigned long start, target_index, end_index, index;
9517bac6 1058 struct inode *inode = mapping->host;
693c241a 1059 loff_t last_byte;
9517bac6 1060
09cbfeaf 1061 target_index = user_pos >> PAGE_SHIFT;
9517bac6
MF
1062
1063 /*
1064 * Figure out how many pages we'll be manipulating here. For
60b11392 1065 * non allocating write, we just change the one
693c241a
JB
1066 * page. Otherwise, we'll need a whole clusters worth. If we're
1067 * writing past i_size, we only need enough pages to cover the
1068 * last page of the write.
9517bac6 1069 */
9517bac6 1070 if (new) {
3a307ffc
MF
1071 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1072 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1073 /*
1074 * We need the index *past* the last page we could possibly
1075 * touch. This is the page past the end of the write or
1076 * i_size, whichever is greater.
1077 */
1078 last_byte = max(user_pos + user_len, i_size_read(inode));
1079 BUG_ON(last_byte < 1);
09cbfeaf 1080 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
693c241a
JB
1081 if ((start + wc->w_num_pages) > end_index)
1082 wc->w_num_pages = end_index - start;
9517bac6 1083 } else {
3a307ffc
MF
1084 wc->w_num_pages = 1;
1085 start = target_index;
9517bac6 1086 }
09cbfeaf 1087 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
9517bac6 1088
3a307ffc 1089 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1090 index = start + i;
1091
65c4db8c
RD
1092 if (index >= target_index && index <= end_index &&
1093 wc->w_type == OCFS2_WRITE_MMAP) {
7307de80
MF
1094 /*
1095 * ocfs2_pagemkwrite() is a little different
1096 * and wants us to directly use the page
1097 * passed in.
1098 */
1099 lock_page(mmap_page);
1100
5cffff9e 1101 /* Exit and let the caller retry */
7307de80 1102 if (mmap_page->mapping != mapping) {
5cffff9e 1103 WARN_ON(mmap_page->mapping);
7307de80 1104 unlock_page(mmap_page);
5cffff9e 1105 ret = -EAGAIN;
7307de80
MF
1106 goto out;
1107 }
1108
09cbfeaf 1109 get_page(mmap_page);
7307de80 1110 wc->w_pages[i] = mmap_page;
5cffff9e 1111 wc->w_target_locked = true;
65c4db8c
RD
1112 } else if (index >= target_index && index <= end_index &&
1113 wc->w_type == OCFS2_WRITE_DIRECT) {
1114 /* Direct write has no mapping page. */
1115 wc->w_pages[i] = NULL;
1116 continue;
7307de80
MF
1117 } else {
1118 wc->w_pages[i] = find_or_create_page(mapping, index,
1119 GFP_NOFS);
1120 if (!wc->w_pages[i]) {
1121 ret = -ENOMEM;
1122 mlog_errno(ret);
1123 goto out;
1124 }
9517bac6 1125 }
1269529b 1126 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1127
1128 if (index == target_index)
1129 wc->w_target_page = wc->w_pages[i];
9517bac6 1130 }
3a307ffc 1131out:
5cffff9e
WW
1132 if (ret)
1133 wc->w_target_locked = false;
3a307ffc
MF
1134 return ret;
1135}
1136
1137/*
1138 * Prepare a single cluster for write one cluster into the file.
1139 */
1140static int ocfs2_write_cluster(struct address_space *mapping,
2de6a3c7 1141 u32 *phys, unsigned int new,
b46637d5 1142 unsigned int clear_unwritten,
e7432675 1143 unsigned int should_zero,
b27b7cbc 1144 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1145 struct ocfs2_alloc_context *meta_ac,
1146 struct ocfs2_write_ctxt *wc, u32 cpos,
1147 loff_t user_pos, unsigned user_len)
1148{
b46637d5 1149 int ret, i;
2de6a3c7 1150 u64 p_blkno;
3a307ffc 1151 struct inode *inode = mapping->host;
f99b9b7c 1152 struct ocfs2_extent_tree et;
2de6a3c7 1153 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
3a307ffc 1154
9517bac6 1155 if (new) {
3a307ffc
MF
1156 u32 tmp_pos;
1157
9517bac6
MF
1158 /*
1159 * This is safe to call with the page locks - it won't take
1160 * any additional semaphores or cluster locks.
1161 */
3a307ffc 1162 tmp_pos = cpos;
0eb8d47e 1163 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
b46637d5
RD
1164 &tmp_pos, 1, !clear_unwritten,
1165 wc->w_di_bh, wc->w_handle,
1166 data_ac, meta_ac, NULL);
9517bac6
MF
1167 /*
1168 * This shouldn't happen because we must have already
1169 * calculated the correct meta data allocation required. The
1170 * internal tree allocation code should know how to increase
1171 * transaction credits itself.
1172 *
1173 * If need be, we could handle -EAGAIN for a
1174 * RESTART_TRANS here.
1175 */
1176 mlog_bug_on_msg(ret == -EAGAIN,
1177 "Inode %llu: EAGAIN return during allocation.\n",
1178 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1179 if (ret < 0) {
1180 mlog_errno(ret);
1181 goto out;
1182 }
b46637d5 1183 } else if (clear_unwritten) {
5e404e9e
JB
1184 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1185 wc->w_di_bh);
f99b9b7c 1186 ret = ocfs2_mark_extent_written(inode, &et,
2de6a3c7 1187 wc->w_handle, cpos, 1, *phys,
f99b9b7c 1188 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1189 if (ret < 0) {
1190 mlog_errno(ret);
1191 goto out;
1192 }
1193 }
3a307ffc 1194
3a307ffc
MF
1195 /*
1196 * The only reason this should fail is due to an inability to
1197 * find the extent added.
1198 */
2de6a3c7 1199 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
9517bac6 1200 if (ret < 0) {
61fb9ea4 1201 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
2de6a3c7
RD
1202 "at logical cluster %u",
1203 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
9517bac6
MF
1204 goto out;
1205 }
1206
2de6a3c7
RD
1207 BUG_ON(*phys == 0);
1208
1209 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1210 if (!should_zero)
1211 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
9517bac6 1212
3a307ffc
MF
1213 for(i = 0; i < wc->w_num_pages; i++) {
1214 int tmpret;
9517bac6 1215
65c4db8c
RD
1216 /* This is the direct io target page. */
1217 if (wc->w_pages[i] == NULL) {
1218 p_blkno++;
1219 continue;
1220 }
1221
3a307ffc
MF
1222 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1223 wc->w_pages[i], cpos,
b27b7cbc
MF
1224 user_pos, user_len,
1225 should_zero);
3a307ffc
MF
1226 if (tmpret) {
1227 mlog_errno(tmpret);
1228 if (ret == 0)
cbfa9639 1229 ret = tmpret;
3a307ffc 1230 }
9517bac6
MF
1231 }
1232
3a307ffc
MF
1233 /*
1234 * We only have cleanup to do in case of allocating write.
1235 */
1236 if (ret && new)
1237 ocfs2_write_failure(inode, wc, user_pos, user_len);
1238
9517bac6 1239out:
9517bac6 1240
3a307ffc 1241 return ret;
9517bac6
MF
1242}
1243
0d172baa
MF
1244static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1245 struct ocfs2_alloc_context *data_ac,
1246 struct ocfs2_alloc_context *meta_ac,
1247 struct ocfs2_write_ctxt *wc,
1248 loff_t pos, unsigned len)
1249{
1250 int ret, i;
db56246c
MF
1251 loff_t cluster_off;
1252 unsigned int local_len = len;
0d172baa 1253 struct ocfs2_write_cluster_desc *desc;
db56246c 1254 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1255
1256 for (i = 0; i < wc->w_clen; i++) {
1257 desc = &wc->w_desc[i];
1258
db56246c
MF
1259 /*
1260 * We have to make sure that the total write passed in
1261 * doesn't extend past a single cluster.
1262 */
1263 local_len = len;
1264 cluster_off = pos & (osb->s_clustersize - 1);
1265 if ((cluster_off + local_len) > osb->s_clustersize)
1266 local_len = osb->s_clustersize - cluster_off;
1267
2de6a3c7 1268 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
b46637d5
RD
1269 desc->c_new,
1270 desc->c_clear_unwritten,
e7432675
SM
1271 desc->c_needs_zero,
1272 data_ac, meta_ac,
db56246c 1273 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1274 if (ret) {
1275 mlog_errno(ret);
1276 goto out;
1277 }
db56246c
MF
1278
1279 len -= local_len;
1280 pos += local_len;
0d172baa
MF
1281 }
1282
1283 ret = 0;
1284out:
1285 return ret;
1286}
1287
3a307ffc
MF
1288/*
1289 * ocfs2_write_end() wants to know which parts of the target page it
1290 * should complete the write on. It's easiest to compute them ahead of
1291 * time when a more complete view of the write is available.
1292 */
1293static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1294 struct ocfs2_write_ctxt *wc,
1295 loff_t pos, unsigned len, int alloc)
9517bac6 1296{
3a307ffc 1297 struct ocfs2_write_cluster_desc *desc;
9517bac6 1298
09cbfeaf 1299 wc->w_target_from = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1300 wc->w_target_to = wc->w_target_from + len;
1301
1302 if (alloc == 0)
1303 return;
1304
1305 /*
1306 * Allocating write - we may have different boundaries based
1307 * on page size and cluster size.
1308 *
1309 * NOTE: We can no longer compute one value from the other as
1310 * the actual write length and user provided length may be
1311 * different.
1312 */
9517bac6 1313
3a307ffc
MF
1314 if (wc->w_large_pages) {
1315 /*
1316 * We only care about the 1st and last cluster within
b27b7cbc 1317 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1318 * value may be extended out to the start/end of a
1319 * newly allocated cluster.
1320 */
1321 desc = &wc->w_desc[0];
e7432675 1322 if (desc->c_needs_zero)
3a307ffc
MF
1323 ocfs2_figure_cluster_boundaries(osb,
1324 desc->c_cpos,
1325 &wc->w_target_from,
1326 NULL);
1327
1328 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1329 if (desc->c_needs_zero)
3a307ffc
MF
1330 ocfs2_figure_cluster_boundaries(osb,
1331 desc->c_cpos,
1332 NULL,
1333 &wc->w_target_to);
1334 } else {
1335 wc->w_target_from = 0;
09cbfeaf 1336 wc->w_target_to = PAGE_SIZE;
3a307ffc 1337 }
9517bac6
MF
1338}
1339
4506cfb6
RD
1340/*
1341 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1342 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1343 * by the direct io procedure.
1344 * If this is a new extent that allocated by direct io, we should mark it in
1345 * the ip_unwritten_list.
1346 */
1347static int ocfs2_unwritten_check(struct inode *inode,
1348 struct ocfs2_write_ctxt *wc,
1349 struct ocfs2_write_cluster_desc *desc)
1350{
1351 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 1352 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
4506cfb6
RD
1353 int ret = 0;
1354
1355 if (!desc->c_needs_zero)
1356 return 0;
1357
1358retry:
1359 spin_lock(&oi->ip_lock);
1360 /* Needs not to zero no metter buffer or direct. The one who is zero
1361 * the cluster is doing zero. And he will clear unwritten after all
1362 * cluster io finished. */
c15471f7
RD
1363 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1364 if (desc->c_cpos == ue->ue_cpos) {
4506cfb6
RD
1365 BUG_ON(desc->c_new);
1366 desc->c_needs_zero = 0;
1367 desc->c_clear_unwritten = 0;
1368 goto unlock;
1369 }
1370 }
1371
1372 if (wc->w_type != OCFS2_WRITE_DIRECT)
1373 goto unlock;
1374
1375 if (new == NULL) {
1376 spin_unlock(&oi->ip_lock);
1377 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1378 GFP_NOFS);
1379 if (new == NULL) {
1380 ret = -ENOMEM;
1381 goto out;
1382 }
1383 goto retry;
1384 }
1385 /* This direct write will doing zero. */
1386 new->ue_cpos = desc->c_cpos;
1387 new->ue_phys = desc->c_phys;
1388 desc->c_clear_unwritten = 0;
1389 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1390 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
63de8bd9 1391 wc->w_unwritten_count++;
4506cfb6
RD
1392 new = NULL;
1393unlock:
1394 spin_unlock(&oi->ip_lock);
1395out:
0ae1c2db 1396 kfree(new);
4506cfb6
RD
1397 return ret;
1398}
1399
0d172baa
MF
1400/*
1401 * Populate each single-cluster write descriptor in the write context
1402 * with information about the i/o to be done.
b27b7cbc
MF
1403 *
1404 * Returns the number of clusters that will have to be allocated, as
1405 * well as a worst case estimate of the number of extent records that
1406 * would have to be created during a write to an unwritten region.
0d172baa
MF
1407 */
1408static int ocfs2_populate_write_desc(struct inode *inode,
1409 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1410 unsigned int *clusters_to_alloc,
1411 unsigned int *extents_to_split)
9517bac6 1412{
0d172baa 1413 int ret;
3a307ffc 1414 struct ocfs2_write_cluster_desc *desc;
0d172baa 1415 unsigned int num_clusters = 0;
b27b7cbc 1416 unsigned int ext_flags = 0;
0d172baa
MF
1417 u32 phys = 0;
1418 int i;
9517bac6 1419
b27b7cbc
MF
1420 *clusters_to_alloc = 0;
1421 *extents_to_split = 0;
1422
3a307ffc
MF
1423 for (i = 0; i < wc->w_clen; i++) {
1424 desc = &wc->w_desc[i];
1425 desc->c_cpos = wc->w_cpos + i;
1426
1427 if (num_clusters == 0) {
b27b7cbc
MF
1428 /*
1429 * Need to look up the next extent record.
1430 */
3a307ffc 1431 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1432 &num_clusters, &ext_flags);
3a307ffc
MF
1433 if (ret) {
1434 mlog_errno(ret);
607d44aa 1435 goto out;
3a307ffc 1436 }
b27b7cbc 1437
293b2f70
TM
1438 /* We should already CoW the refcountd extent. */
1439 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1440
b27b7cbc
MF
1441 /*
1442 * Assume worst case - that we're writing in
1443 * the middle of the extent.
1444 *
1445 * We can assume that the write proceeds from
1446 * left to right, in which case the extent
1447 * insert code is smart enough to coalesce the
1448 * next splits into the previous records created.
1449 */
1450 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1451 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1452 } else if (phys) {
1453 /*
1454 * Only increment phys if it doesn't describe
1455 * a hole.
1456 */
1457 phys++;
1458 }
1459
e7432675
SM
1460 /*
1461 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1462 * file that got extended. w_first_new_cpos tells us
1463 * where the newly allocated clusters are so we can
1464 * zero them.
1465 */
1466 if (desc->c_cpos >= wc->w_first_new_cpos) {
1467 BUG_ON(phys == 0);
1468 desc->c_needs_zero = 1;
1469 }
1470
3a307ffc
MF
1471 desc->c_phys = phys;
1472 if (phys == 0) {
1473 desc->c_new = 1;
e7432675 1474 desc->c_needs_zero = 1;
b46637d5 1475 desc->c_clear_unwritten = 1;
0d172baa 1476 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1477 }
e7432675
SM
1478
1479 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b46637d5 1480 desc->c_clear_unwritten = 1;
e7432675
SM
1481 desc->c_needs_zero = 1;
1482 }
3a307ffc 1483
4506cfb6
RD
1484 ret = ocfs2_unwritten_check(inode, wc, desc);
1485 if (ret) {
1486 mlog_errno(ret);
1487 goto out;
1488 }
1489
3a307ffc 1490 num_clusters--;
9517bac6
MF
1491 }
1492
0d172baa
MF
1493 ret = 0;
1494out:
1495 return ret;
1496}
1497
1afc32b9
MF
1498static int ocfs2_write_begin_inline(struct address_space *mapping,
1499 struct inode *inode,
1500 struct ocfs2_write_ctxt *wc)
1501{
1502 int ret;
1503 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504 struct page *page;
1505 handle_t *handle;
1506 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
f775da2f
JB
1508 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509 if (IS_ERR(handle)) {
1510 ret = PTR_ERR(handle);
1511 mlog_errno(ret);
1512 goto out;
1513 }
1514
1afc32b9
MF
1515 page = find_or_create_page(mapping, 0, GFP_NOFS);
1516 if (!page) {
f775da2f 1517 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1518 ret = -ENOMEM;
1519 mlog_errno(ret);
1520 goto out;
1521 }
1522 /*
1523 * If we don't set w_num_pages then this page won't get unlocked
1524 * and freed on cleanup of the write context.
1525 */
1526 wc->w_pages[0] = wc->w_target_page = page;
1527 wc->w_num_pages = 1;
1528
0cf2f763 1529 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1530 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1531 if (ret) {
1532 ocfs2_commit_trans(osb, handle);
1533
1534 mlog_errno(ret);
1535 goto out;
1536 }
1537
1538 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1539 ocfs2_set_inode_data_inline(inode, di);
1540
1541 if (!PageUptodate(page)) {
1542 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1543 if (ret) {
1544 ocfs2_commit_trans(osb, handle);
1545
1546 goto out;
1547 }
1548 }
1549
1550 wc->w_handle = handle;
1551out:
1552 return ret;
1553}
1554
1555int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1556{
1557 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1558
0d8a4e0c 1559 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1560 return 1;
1561 return 0;
1562}
1563
1564static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1565 struct inode *inode, loff_t pos,
1566 unsigned len, struct page *mmap_page,
1567 struct ocfs2_write_ctxt *wc)
1568{
1569 int ret, written = 0;
1570 loff_t end = pos + len;
1571 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1572 struct ocfs2_dinode *di = NULL;
1afc32b9 1573
9558156b
TM
1574 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1575 len, (unsigned long long)pos,
1576 oi->ip_dyn_features);
1afc32b9
MF
1577
1578 /*
1579 * Handle inodes which already have inline data 1st.
1580 */
1581 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1582 if (mmap_page == NULL &&
1583 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1584 goto do_inline_write;
1585
1586 /*
1587 * The write won't fit - we have to give this inode an
1588 * inline extent list now.
1589 */
1590 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1591 if (ret)
1592 mlog_errno(ret);
1593 goto out;
1594 }
1595
1596 /*
1597 * Check whether the inode can accept inline data.
1598 */
1599 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1600 return 0;
1601
1602 /*
1603 * Check whether the write can fit.
1604 */
d9ae49d6
TY
1605 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1606 if (mmap_page ||
1607 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1608 return 0;
1609
1610do_inline_write:
1611 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612 if (ret) {
1613 mlog_errno(ret);
1614 goto out;
1615 }
1616
1617 /*
1618 * This signals to the caller that the data can be written
1619 * inline.
1620 */
1621 written = 1;
1622out:
1623 return written ? written : ret;
1624}
1625
65ed39d6
MF
1626/*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
5693486b
JB
1635static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1636 struct buffer_head *di_bh,
1637 loff_t pos, unsigned len,
65ed39d6
MF
1638 struct ocfs2_write_ctxt *wc)
1639{
1640 int ret;
65ed39d6
MF
1641 loff_t newsize = pos + len;
1642
5693486b 1643 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1644
1645 if (newsize <= i_size_read(inode))
1646 return 0;
1647
5693486b 1648 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1649 if (ret)
1650 mlog_errno(ret);
1651
46e62556
RD
1652 /* There is no wc if this is call from direct. */
1653 if (wc)
1654 wc->w_first_new_cpos =
1655 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
e7432675 1656
65ed39d6
MF
1657 return ret;
1658}
1659
5693486b
JB
1660static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1661 loff_t pos)
1662{
1663 int ret = 0;
1664
1665 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1666 if (pos > i_size_read(inode))
1667 ret = ocfs2_zero_extend(inode, di_bh, pos);
1668
1669 return ret;
1670}
1671
c1ad1e3c
RD
1672int ocfs2_write_begin_nolock(struct address_space *mapping,
1673 loff_t pos, unsigned len, ocfs2_write_type_t type,
0d172baa
MF
1674 struct page **pagep, void **fsdata,
1675 struct buffer_head *di_bh, struct page *mmap_page)
1676{
e7432675 1677 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1678 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1679 struct ocfs2_write_ctxt *wc;
1680 struct inode *inode = mapping->host;
1681 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682 struct ocfs2_dinode *di;
1683 struct ocfs2_alloc_context *data_ac = NULL;
1684 struct ocfs2_alloc_context *meta_ac = NULL;
1685 handle_t *handle;
f99b9b7c 1686 struct ocfs2_extent_tree et;
50308d81 1687 int try_free = 1, ret1;
0d172baa 1688
50308d81 1689try_again:
c1ad1e3c 1690 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
0d172baa
MF
1691 if (ret) {
1692 mlog_errno(ret);
1693 return ret;
1694 }
1695
1afc32b9
MF
1696 if (ocfs2_supports_inline_data(osb)) {
1697 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1698 mmap_page, wc);
1699 if (ret == 1) {
1700 ret = 0;
1701 goto success;
1702 }
1703 if (ret < 0) {
1704 mlog_errno(ret);
1705 goto out;
1706 }
1707 }
1708
46e62556
RD
1709 /* Direct io change i_size late, should not zero tail here. */
1710 if (type != OCFS2_WRITE_DIRECT) {
1711 if (ocfs2_sparse_alloc(osb))
1712 ret = ocfs2_zero_tail(inode, di_bh, pos);
1713 else
1714 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1715 len, wc);
1716 if (ret) {
1717 mlog_errno(ret);
1718 goto out;
1719 }
65ed39d6
MF
1720 }
1721
293b2f70
TM
1722 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1723 if (ret < 0) {
1724 mlog_errno(ret);
1725 goto out;
1726 } else if (ret == 1) {
50308d81 1727 clusters_need = wc->w_clen;
c7dd3392 1728 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1729 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1730 if (ret) {
1731 mlog_errno(ret);
1732 goto out;
1733 }
1734 }
1735
b27b7cbc
MF
1736 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1737 &extents_to_split);
0d172baa
MF
1738 if (ret) {
1739 mlog_errno(ret);
1740 goto out;
1741 }
50308d81 1742 clusters_need += clusters_to_alloc;
0d172baa
MF
1743
1744 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1745
9558156b
TM
1746 trace_ocfs2_write_begin_nolock(
1747 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1748 (long long)i_size_read(inode),
1749 le32_to_cpu(di->i_clusters),
c1ad1e3c 1750 pos, len, type, mmap_page,
9558156b
TM
1751 clusters_to_alloc, extents_to_split);
1752
3a307ffc
MF
1753 /*
1754 * We set w_target_from, w_target_to here so that
1755 * ocfs2_write_end() knows which range in the target page to
1756 * write out. An allocation requires that we write the entire
1757 * cluster range.
1758 */
b27b7cbc 1759 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1760 /*
1761 * XXX: We are stretching the limits of
b27b7cbc 1762 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1763 * the work to be done.
1764 */
5e404e9e
JB
1765 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1766 wc->w_di_bh);
f99b9b7c 1767 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1768 clusters_to_alloc, extents_to_split,
f99b9b7c 1769 &data_ac, &meta_ac);
9517bac6
MF
1770 if (ret) {
1771 mlog_errno(ret);
607d44aa 1772 goto out;
9517bac6
MF
1773 }
1774
4fe370af
MF
1775 if (data_ac)
1776 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1777
811f933d 1778 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1779 &di->id2.i_list);
46e62556
RD
1780 } else if (type == OCFS2_WRITE_DIRECT)
1781 /* direct write needs not to start trans if no extents alloc. */
1782 goto success;
9517bac6 1783
e7432675
SM
1784 /*
1785 * We have to zero sparse allocated clusters, unwritten extent clusters,
1786 * and non-sparse clusters we just extended. For non-sparse writes,
1787 * we know zeros will only be needed in the first and/or last cluster.
1788 */
4506cfb6
RD
1789 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1790 wc->w_desc[wc->w_clen - 1].c_needs_zero))
e7432675
SM
1791 cluster_of_pages = 1;
1792 else
1793 cluster_of_pages = 0;
1794
1795 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1796
9517bac6
MF
1797 handle = ocfs2_start_trans(osb, credits);
1798 if (IS_ERR(handle)) {
1799 ret = PTR_ERR(handle);
1800 mlog_errno(ret);
607d44aa 1801 goto out;
9517bac6
MF
1802 }
1803
3a307ffc
MF
1804 wc->w_handle = handle;
1805
5dd4056d
CH
1806 if (clusters_to_alloc) {
1807 ret = dquot_alloc_space_nodirty(inode,
1808 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1809 if (ret)
1810 goto out_commit;
a90714c1 1811 }
7f27ec97 1812
0cf2f763 1813 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1814 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1815 if (ret) {
9517bac6 1816 mlog_errno(ret);
a90714c1 1817 goto out_quota;
9517bac6
MF
1818 }
1819
3a307ffc
MF
1820 /*
1821 * Fill our page array first. That way we've grabbed enough so
1822 * that we can zero and flush if we error after adding the
1823 * extent.
1824 */
693c241a 1825 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1826 cluster_of_pages, mmap_page);
5cffff9e 1827 if (ret && ret != -EAGAIN) {
9517bac6 1828 mlog_errno(ret);
a90714c1 1829 goto out_quota;
9517bac6
MF
1830 }
1831
5cffff9e
WW
1832 /*
1833 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1834 * the target page. In this case, we exit with no error and no target
1835 * page. This will trigger the caller, page_mkwrite(), to re-try
1836 * the operation.
1837 */
1838 if (ret == -EAGAIN) {
1839 BUG_ON(wc->w_target_page);
1840 ret = 0;
1841 goto out_quota;
1842 }
1843
0d172baa
MF
1844 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1845 len);
1846 if (ret) {
1847 mlog_errno(ret);
a90714c1 1848 goto out_quota;
9517bac6 1849 }
9517bac6 1850
3a307ffc
MF
1851 if (data_ac)
1852 ocfs2_free_alloc_context(data_ac);
1853 if (meta_ac)
1854 ocfs2_free_alloc_context(meta_ac);
9517bac6 1855
1afc32b9 1856success:
65c4db8c
RD
1857 if (pagep)
1858 *pagep = wc->w_target_page;
3a307ffc
MF
1859 *fsdata = wc;
1860 return 0;
a90714c1
JK
1861out_quota:
1862 if (clusters_to_alloc)
5dd4056d 1863 dquot_free_space(inode,
a90714c1 1864 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1865out_commit:
1866 ocfs2_commit_trans(osb, handle);
1867
9517bac6 1868out:
c33f0785
ER
1869 /*
1870 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1871 * even in case of error here like ENOSPC and ENOMEM. So, we need
1872 * to unlock the target page manually to prevent deadlocks when
1873 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1874 * to VM code.
1875 */
1876 if (wc->w_target_locked)
1877 unlock_page(mmap_page);
1878
4506cfb6 1879 ocfs2_free_write_ctxt(inode, wc);
3a307ffc 1880
b1214e47 1881 if (data_ac) {
9517bac6 1882 ocfs2_free_alloc_context(data_ac);
b1214e47
X
1883 data_ac = NULL;
1884 }
1885 if (meta_ac) {
9517bac6 1886 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
1887 meta_ac = NULL;
1888 }
50308d81
TM
1889
1890 if (ret == -ENOSPC && try_free) {
1891 /*
1892 * Try to free some truncate log so that we can have enough
1893 * clusters to allocate.
1894 */
1895 try_free = 0;
1896
1897 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898 if (ret1 == 1)
1899 goto try_again;
1900
1901 if (ret1 < 0)
1902 mlog_errno(ret1);
1903 }
1904
3a307ffc
MF
1905 return ret;
1906}
1907
b6af1bcd
NP
1908static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909 loff_t pos, unsigned len, unsigned flags,
1910 struct page **pagep, void **fsdata)
607d44aa
MF
1911{
1912 int ret;
1913 struct buffer_head *di_bh = NULL;
1914 struct inode *inode = mapping->host;
1915
e63aecb6 1916 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1917 if (ret) {
1918 mlog_errno(ret);
1919 return ret;
1920 }
1921
1922 /*
1923 * Take alloc sem here to prevent concurrent lookups. That way
1924 * the mapping, zeroing and tree manipulation within
1925 * ocfs2_write() will be safe against ->readpage(). This
1926 * should also serve to lock out allocation from a shared
1927 * writeable region.
1928 */
1929 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
c1ad1e3c
RD
1931 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1932 pagep, fsdata, di_bh, NULL);
607d44aa
MF
1933 if (ret) {
1934 mlog_errno(ret);
c934a92d 1935 goto out_fail;
607d44aa
MF
1936 }
1937
1938 brelse(di_bh);
1939
1940 return 0;
1941
607d44aa
MF
1942out_fail:
1943 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945 brelse(di_bh);
e63aecb6 1946 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1947
1948 return ret;
1949}
1950
1afc32b9
MF
1951static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952 unsigned len, unsigned *copied,
1953 struct ocfs2_dinode *di,
1954 struct ocfs2_write_ctxt *wc)
1955{
1956 void *kaddr;
1957
1958 if (unlikely(*copied < len)) {
1959 if (!PageUptodate(wc->w_target_page)) {
1960 *copied = 0;
1961 return;
1962 }
1963 }
1964
c4bc8dcb 1965 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1966 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1967 kunmap_atomic(kaddr);
1afc32b9 1968
9558156b
TM
1969 trace_ocfs2_write_end_inline(
1970 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1971 (unsigned long long)pos, *copied,
1972 le16_to_cpu(di->id2.i_data.id_count),
1973 le16_to_cpu(di->i_dyn_features));
1974}
1975
7307de80 1976int ocfs2_write_end_nolock(struct address_space *mapping,
07f38d97 1977 loff_t pos, unsigned len, unsigned copied, void *fsdata)
3a307ffc 1978{
7f27ec97 1979 int i, ret;
09cbfeaf 1980 unsigned from, to, start = pos & (PAGE_SIZE - 1);
3a307ffc
MF
1981 struct inode *inode = mapping->host;
1982 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1983 struct ocfs2_write_ctxt *wc = fsdata;
1984 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1985 handle_t *handle = wc->w_handle;
1986 struct page *tmppage;
1987
4506cfb6
RD
1988 BUG_ON(!list_empty(&wc->w_unwritten_list));
1989
46e62556
RD
1990 if (handle) {
1991 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1992 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1993 if (ret) {
1994 copied = ret;
1995 mlog_errno(ret);
1996 goto out;
1997 }
7f27ec97 1998 }
1999
1afc32b9
MF
2000 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2001 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2002 goto out_write_size;
2003 }
2004
65c4db8c 2005 if (unlikely(copied < len) && wc->w_target_page) {
3a307ffc
MF
2006 if (!PageUptodate(wc->w_target_page))
2007 copied = 0;
2008
2009 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2010 start+len);
2011 }
65c4db8c
RD
2012 if (wc->w_target_page)
2013 flush_dcache_page(wc->w_target_page);
3a307ffc
MF
2014
2015 for(i = 0; i < wc->w_num_pages; i++) {
2016 tmppage = wc->w_pages[i];
2017
65c4db8c
RD
2018 /* This is the direct io target page. */
2019 if (tmppage == NULL)
2020 continue;
2021
3a307ffc
MF
2022 if (tmppage == wc->w_target_page) {
2023 from = wc->w_target_from;
2024 to = wc->w_target_to;
2025
09cbfeaf
KS
2026 BUG_ON(from > PAGE_SIZE ||
2027 to > PAGE_SIZE ||
3a307ffc
MF
2028 to < from);
2029 } else {
2030 /*
2031 * Pages adjacent to the target (if any) imply
2032 * a hole-filling write in which case we want
2033 * to flush their entire range.
2034 */
2035 from = 0;
09cbfeaf 2036 to = PAGE_SIZE;
3a307ffc
MF
2037 }
2038
961cecbe 2039 if (page_has_buffers(tmppage)) {
46e62556
RD
2040 if (handle && ocfs2_should_order_data(inode))
2041 ocfs2_jbd2_file_inode(handle, inode);
961cecbe
SM
2042 block_commit_write(tmppage, from, to);
2043 }
3a307ffc
MF
2044 }
2045
1afc32b9 2046out_write_size:
46e62556
RD
2047 /* Direct io do not update i_size here. */
2048 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2049 pos += copied;
2050 if (pos > i_size_read(inode)) {
2051 i_size_write(inode, pos);
2052 mark_inode_dirty(inode);
2053 }
2054 inode->i_blocks = ocfs2_inode_sector_count(inode);
2055 di->i_size = cpu_to_le64((u64)i_size_read(inode));
078cd827 2056 inode->i_mtime = inode->i_ctime = current_time(inode);
46e62556
RD
2057 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2058 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2059 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2060 }
2061 if (handle)
2062 ocfs2_journal_dirty(handle, wc->w_di_bh);
3a307ffc 2063
7f27ec97 2064out:
136f49b9
JB
2065 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2066 * lock, or it will cause a deadlock since journal commit threads holds
2067 * this lock and will ask for the page lock when flushing the data.
2068 * put it here to preserve the unlock order.
2069 */
2070 ocfs2_unlock_pages(wc);
2071
46e62556
RD
2072 if (handle)
2073 ocfs2_commit_trans(osb, handle);
59a5e416 2074
b27b7cbc
MF
2075 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2076
136f49b9
JB
2077 brelse(wc->w_di_bh);
2078 kfree(wc);
607d44aa
MF
2079
2080 return copied;
2081}
2082
b6af1bcd
NP
2083static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2084 loff_t pos, unsigned len, unsigned copied,
2085 struct page *page, void *fsdata)
607d44aa
MF
2086{
2087 int ret;
2088 struct inode *inode = mapping->host;
2089
07f38d97 2090 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
607d44aa 2091
3a307ffc 2092 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2093 ocfs2_inode_unlock(inode, 1);
9517bac6 2094
607d44aa 2095 return ret;
9517bac6
MF
2096}
2097
c15471f7
RD
2098struct ocfs2_dio_write_ctxt {
2099 struct list_head dw_zero_list;
2100 unsigned dw_zero_count;
2101 int dw_orphaned;
2102 pid_t dw_writer_pid;
2103};
2104
2105static struct ocfs2_dio_write_ctxt *
2106ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2107{
2108 struct ocfs2_dio_write_ctxt *dwc = NULL;
2109
2110 if (bh->b_private)
2111 return bh->b_private;
2112
2113 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2114 if (dwc == NULL)
2115 return NULL;
2116 INIT_LIST_HEAD(&dwc->dw_zero_list);
2117 dwc->dw_zero_count = 0;
2118 dwc->dw_orphaned = 0;
2119 dwc->dw_writer_pid = task_pid_nr(current);
2120 bh->b_private = dwc;
2121 *alloc = 1;
2122
2123 return dwc;
2124}
2125
2126static void ocfs2_dio_free_write_ctx(struct inode *inode,
2127 struct ocfs2_dio_write_ctxt *dwc)
2128{
2129 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2130 kfree(dwc);
2131}
2132
2133/*
2134 * TODO: Make this into a generic get_blocks function.
2135 *
2136 * From do_direct_io in direct-io.c:
2137 * "So what we do is to permit the ->get_blocks function to populate
2138 * bh.b_size with the size of IO which is permitted at this offset and
2139 * this i_blkbits."
2140 *
2141 * This function is called directly from get_more_blocks in direct-io.c.
2142 *
2143 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2144 * fs_count, map_bh, dio->rw == WRITE);
2145 */
3e4c56d4 2146static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
c15471f7
RD
2147 struct buffer_head *bh_result, int create)
2148{
2149 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2150 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2151 struct ocfs2_write_ctxt *wc;
2152 struct ocfs2_write_cluster_desc *desc = NULL;
2153 struct ocfs2_dio_write_ctxt *dwc = NULL;
2154 struct buffer_head *di_bh = NULL;
2155 u64 p_blkno;
2156 loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2157 unsigned len, total_len = bh_result->b_size;
2158 int ret = 0, first_get_block = 0;
2159
2160 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2161 len = min(total_len, len);
2162
2163 mlog(0, "get block of %lu at %llu:%u req %u\n",
2164 inode->i_ino, pos, len, total_len);
2165
ce170828
RD
2166 /*
2167 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168 * we may need to add it to orphan dir. So can not fall to fast path
2169 * while file size will be changed.
2170 */
2171 if (pos + total_len <= i_size_read(inode)) {
a86a72a4 2172
3e4c56d4 2173 /* This is the fast path for re-write. */
2174 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
ce170828
RD
2175 if (buffer_mapped(bh_result) &&
2176 !buffer_new(bh_result) &&
2177 ret == 0)
2178 goto out;
c15471f7 2179
ce170828
RD
2180 /* Clear state set by ocfs2_get_block. */
2181 bh_result->b_state = 0;
2182 }
c15471f7
RD
2183
2184 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185 if (unlikely(dwc == NULL)) {
2186 ret = -ENOMEM;
2187 mlog_errno(ret);
2188 goto out;
2189 }
2190
2191 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193 !dwc->dw_orphaned) {
2194 /*
2195 * when we are going to alloc extents beyond file size, add the
2196 * inode to orphan dir, so we can recall those spaces when
2197 * system crashed during write.
2198 */
2199 ret = ocfs2_add_inode_to_orphan(osb, inode);
2200 if (ret < 0) {
2201 mlog_errno(ret);
2202 goto out;
2203 }
2204 dwc->dw_orphaned = 1;
2205 }
2206
2207 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208 if (ret) {
2209 mlog_errno(ret);
2210 goto out;
2211 }
2212
a86a72a4
RD
2213 down_write(&oi->ip_alloc_sem);
2214
c15471f7 2215 if (first_get_block) {
1119d3c0 2216 if (ocfs2_sparse_alloc(osb))
c15471f7
RD
2217 ret = ocfs2_zero_tail(inode, di_bh, pos);
2218 else
2219 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220 total_len, NULL);
2221 if (ret < 0) {
2222 mlog_errno(ret);
2223 goto unlock;
2224 }
2225 }
2226
2227 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228 OCFS2_WRITE_DIRECT, NULL,
2229 (void **)&wc, di_bh, NULL);
2230 if (ret) {
2231 mlog_errno(ret);
2232 goto unlock;
2233 }
2234
2235 desc = &wc->w_desc[0];
2236
2237 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238 BUG_ON(p_blkno == 0);
2239 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241 map_bh(bh_result, inode->i_sb, p_blkno);
2242 bh_result->b_size = len;
2243 if (desc->c_needs_zero)
2244 set_buffer_new(bh_result);
2245
2246 /* May sleep in end_io. It should not happen in a irq context. So defer
2247 * it to dio work queue. */
2248 set_buffer_defer_completion(bh_result);
2249
2250 if (!list_empty(&wc->w_unwritten_list)) {
2251 struct ocfs2_unwritten_extent *ue = NULL;
2252
2253 ue = list_first_entry(&wc->w_unwritten_list,
2254 struct ocfs2_unwritten_extent,
2255 ue_node);
2256 BUG_ON(ue->ue_cpos != desc->c_cpos);
2257 /* The physical address may be 0, fill it. */
2258 ue->ue_phys = desc->c_phys;
2259
2260 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
63de8bd9 2261 dwc->dw_zero_count += wc->w_unwritten_count;
c15471f7
RD
2262 }
2263
07f38d97 2264 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
c15471f7
RD
2265 BUG_ON(ret != len);
2266 ret = 0;
2267unlock:
a86a72a4 2268 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2269 ocfs2_inode_unlock(inode, 1);
2270 brelse(di_bh);
2271out:
2272 if (ret < 0)
2273 ret = -EIO;
2274 return ret;
2275}
2276
08554955
DW
2277static int ocfs2_dio_end_io_write(struct inode *inode,
2278 struct ocfs2_dio_write_ctxt *dwc,
2279 loff_t offset,
2280 ssize_t bytes)
c15471f7
RD
2281{
2282 struct ocfs2_cached_dealloc_ctxt dealloc;
2283 struct ocfs2_extent_tree et;
2284 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2285 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2286 struct ocfs2_unwritten_extent *ue = NULL;
2287 struct buffer_head *di_bh = NULL;
2288 struct ocfs2_dinode *di;
2289 struct ocfs2_alloc_context *data_ac = NULL;
2290 struct ocfs2_alloc_context *meta_ac = NULL;
2291 handle_t *handle = NULL;
2292 loff_t end = offset + bytes;
2293 int ret = 0, credits = 0, locked = 0;
2294
2295 ocfs2_init_dealloc_ctxt(&dealloc);
2296
2297 /* We do clear unwritten, delete orphan, change i_size here. If neither
2298 * of these happen, we can skip all this. */
2299 if (list_empty(&dwc->dw_zero_list) &&
2300 end <= i_size_read(inode) &&
2301 !dwc->dw_orphaned)
2302 goto out;
2303
c15471f7
RD
2304 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2305 * are in that context. */
2306 if (dwc->dw_writer_pid != task_pid_nr(current)) {
7b9743eb 2307 inode_lock(inode);
c15471f7
RD
2308 locked = 1;
2309 }
2310
a86a72a4
RD
2311 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312 if (ret < 0) {
2313 mlog_errno(ret);
2314 goto out;
2315 }
2316
2317 down_write(&oi->ip_alloc_sem);
2318
c15471f7
RD
2319 /* Delete orphan before acquire i_mutex. */
2320 if (dwc->dw_orphaned) {
2321 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2322
2323 end = end > i_size_read(inode) ? end : 0;
2324
2325 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2326 !!end, end);
2327 if (ret < 0)
2328 mlog_errno(ret);
2329 }
2330
aef73a61 2331 di = (struct ocfs2_dinode *)di_bh->b_data;
c15471f7
RD
2332
2333 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2334
71a36944
CG
2335 /* Attach dealloc with extent tree in case that we may reuse extents
2336 * which are already unlinked from current extent tree due to extent
2337 * rotation and merging.
2338 */
2339 et.et_dealloc = &dealloc;
2340
c15471f7
RD
2341 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2342 &data_ac, &meta_ac);
28888681
RD
2343 if (ret) {
2344 mlog_errno(ret);
2345 goto unlock;
2346 }
c15471f7
RD
2347
2348 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2349
2350 handle = ocfs2_start_trans(osb, credits);
2351 if (IS_ERR(handle)) {
2352 ret = PTR_ERR(handle);
2353 mlog_errno(ret);
2354 goto unlock;
2355 }
2356 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2357 OCFS2_JOURNAL_ACCESS_WRITE);
2358 if (ret) {
2359 mlog_errno(ret);
2360 goto commit;
2361 }
2362
2363 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2364 ret = ocfs2_mark_extent_written(inode, &et, handle,
2365 ue->ue_cpos, 1,
2366 ue->ue_phys,
2367 meta_ac, &dealloc);
2368 if (ret < 0) {
2369 mlog_errno(ret);
2370 break;
2371 }
2372 }
2373
2374 if (end > i_size_read(inode)) {
2375 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2376 if (ret < 0)
2377 mlog_errno(ret);
2378 }
2379commit:
2380 ocfs2_commit_trans(osb, handle);
2381unlock:
a86a72a4 2382 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2383 ocfs2_inode_unlock(inode, 1);
2384 brelse(di_bh);
2385out:
c15471f7
RD
2386 if (data_ac)
2387 ocfs2_free_alloc_context(data_ac);
2388 if (meta_ac)
2389 ocfs2_free_alloc_context(meta_ac);
28888681
RD
2390 ocfs2_run_deallocs(osb, &dealloc);
2391 if (locked)
7b9743eb 2392 inode_unlock(inode);
28888681 2393 ocfs2_dio_free_write_ctx(inode, dwc);
08554955
DW
2394
2395 return ret;
c15471f7
RD
2396}
2397
2398/*
2399 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2400 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2401 * to protect io on one node from truncation on another.
2402 */
2403static int ocfs2_dio_end_io(struct kiocb *iocb,
2404 loff_t offset,
2405 ssize_t bytes,
2406 void *private)
2407{
2408 struct inode *inode = file_inode(iocb->ki_filp);
2409 int level;
08554955 2410 int ret = 0;
c15471f7
RD
2411
2412 /* this io's submitter should not have unlocked this before we could */
2413 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2414
5040f8df
WW
2415 if (bytes <= 0)
2416 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2417 (long long)bytes);
2418 if (private) {
2419 if (bytes > 0)
2420 ret = ocfs2_dio_end_io_write(inode, private, offset,
2421 bytes);
2422 else
2423 ocfs2_dio_free_write_ctx(inode, private);
2424 }
c15471f7
RD
2425
2426 ocfs2_iocb_clear_rw_locked(iocb);
2427
2428 level = ocfs2_iocb_rw_locked_level(iocb);
2429 ocfs2_rw_unlock(inode, level);
08554955 2430 return ret;
c15471f7
RD
2431}
2432
c8b8e32d 2433static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
c15471f7
RD
2434{
2435 struct file *file = iocb->ki_filp;
93c76a3d 2436 struct inode *inode = file->f_mapping->host;
c15471f7 2437 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
c15471f7
RD
2438 get_block_t *get_block;
2439
2440 /*
2441 * Fallback to buffered I/O if we see an inode without
2442 * extents.
2443 */
2444 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2445 return 0;
2446
2447 /* Fallback to buffered I/O if we do not support append dio. */
c8b8e32d
CH
2448 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2449 !ocfs2_supports_append_dio(osb))
c15471f7
RD
2450 return 0;
2451
2452 if (iov_iter_rw(iter) == READ)
3e4c56d4 2453 get_block = ocfs2_lock_get_block;
c15471f7 2454 else
3e4c56d4 2455 get_block = ocfs2_dio_wr_get_block;
c15471f7
RD
2456
2457 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
c8b8e32d 2458 iter, get_block,
c15471f7
RD
2459 ocfs2_dio_end_io, NULL, 0);
2460}
2461
f5e54d6e 2462const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2463 .readpage = ocfs2_readpage,
2464 .readpages = ocfs2_readpages,
2465 .writepage = ocfs2_writepage,
2466 .write_begin = ocfs2_write_begin,
2467 .write_end = ocfs2_write_end,
2468 .bmap = ocfs2_bmap,
1fca3a05 2469 .direct_IO = ocfs2_direct_IO,
41ecc345 2470 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2471 .releasepage = ocfs2_releasepage,
2472 .migratepage = buffer_migrate_page,
2473 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2474 .error_remove_page = generic_error_remove_page,
ccd979bd 2475};