fs/ntfs3: Add ifndef + define to all header files
[linux-2.6-block.git] / fs / ntfs3 / index.c
CommitLineData
82cae269
KK
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/buffer_head.h>
10#include <linux/fs.h>
11#include <linux/nls.h>
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20} s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24};
25
26/*
27 * compare two names in index
28 * if l1 != 0
29 * both names are little endian on-disk ATTR_FILE_NAME structs
30 * else
31 * key1 - cpu_str, key2 - ATTR_FILE_NAME
32 */
33static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
34 const void *data)
35{
36 const struct ATTR_FILE_NAME *f2 = key2;
37 const struct ntfs_sb_info *sbi = data;
38 const struct ATTR_FILE_NAME *f1;
39 u16 fsize2;
40 bool both_case;
41
42 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
43 return -1;
44
45 fsize2 = fname_full_size(f2);
46 if (l2 < fsize2)
47 return -1;
48
49 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
50 if (!l1) {
51 const struct le_str *s2 = (struct le_str *)&f2->name_len;
52
53 /*
54 * If names are equal (case insensitive)
55 * try to compare it case sensitive
56 */
57 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
58 }
59
60 f1 = key1;
61 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
62 sbi->upcase, both_case);
63}
64
65/* $SII of $Secure and $Q of Quota */
66static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
67 const void *data)
68{
69 const u32 *k1 = key1;
70 const u32 *k2 = key2;
71
72 if (l2 < sizeof(u32))
73 return -1;
74
75 if (*k1 < *k2)
76 return -1;
77 if (*k1 > *k2)
78 return 1;
79 return 0;
80}
81
82/* $SDH of $Secure */
83static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
84 const void *data)
85{
86 const struct SECURITY_KEY *k1 = key1;
87 const struct SECURITY_KEY *k2 = key2;
88 u32 t1, t2;
89
90 if (l2 < sizeof(struct SECURITY_KEY))
91 return -1;
92
93 t1 = le32_to_cpu(k1->hash);
94 t2 = le32_to_cpu(k2->hash);
95
96 /* First value is a hash value itself */
97 if (t1 < t2)
98 return -1;
99 if (t1 > t2)
100 return 1;
101
102 /* Second value is security Id */
103 if (data) {
104 t1 = le32_to_cpu(k1->sec_id);
105 t2 = le32_to_cpu(k2->sec_id);
106 if (t1 < t2)
107 return -1;
108 if (t1 > t2)
109 return 1;
110 }
111
112 return 0;
113}
114
115/* $O of ObjId and "$R" for Reparse */
116static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
117 const void *data)
118{
119 const __le32 *k1 = key1;
120 const __le32 *k2 = key2;
121 size_t count;
122
123 if ((size_t)data == 1) {
124 /*
125 * ni_delete_all -> ntfs_remove_reparse -> delete all with this reference
126 * k1, k2 - pointers to REPARSE_KEY
127 */
128
129 k1 += 1; // skip REPARSE_KEY.ReparseTag
130 k2 += 1; // skip REPARSE_KEY.ReparseTag
131 if (l2 <= sizeof(int))
132 return -1;
133 l2 -= sizeof(int);
134 if (l1 <= sizeof(int))
135 return 1;
136 l1 -= sizeof(int);
137 }
138
139 if (l2 < sizeof(int))
140 return -1;
141
142 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
143 u32 t1 = le32_to_cpu(*k1);
144 u32 t2 = le32_to_cpu(*k2);
145
146 if (t1 > t2)
147 return 1;
148 if (t1 < t2)
149 return -1;
150 }
151
152 if (l1 > l2)
153 return 1;
154 if (l1 < l2)
155 return -1;
156
157 return 0;
158}
159
160static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
161{
162 switch (root->type) {
163 case ATTR_NAME:
164 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
165 return &cmp_fnames;
166 break;
167 case ATTR_ZERO:
168 switch (root->rule) {
169 case NTFS_COLLATION_TYPE_UINT:
170 return &cmp_uint;
171 case NTFS_COLLATION_TYPE_SECURITY_HASH:
172 return &cmp_sdh;
173 case NTFS_COLLATION_TYPE_UINTS:
174 return &cmp_uints;
175 default:
176 break;
177 }
178 default:
179 break;
180 }
181
182 return NULL;
183}
184
185struct bmp_buf {
186 struct ATTRIB *b;
187 struct mft_inode *mi;
188 struct buffer_head *bh;
189 ulong *buf;
190 size_t bit;
191 u32 nbits;
192 u64 new_valid;
193};
194
195static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
196 size_t bit, struct bmp_buf *bbuf)
197{
198 struct ATTRIB *b;
199 size_t data_size, valid_size, vbo, off = bit >> 3;
200 struct ntfs_sb_info *sbi = ni->mi.sbi;
201 CLST vcn = off >> sbi->cluster_bits;
202 struct ATTR_LIST_ENTRY *le = NULL;
203 struct buffer_head *bh;
204 struct super_block *sb;
205 u32 blocksize;
206 const struct INDEX_NAMES *in = &s_index_names[indx->type];
207
208 bbuf->bh = NULL;
209
210 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
211 &vcn, &bbuf->mi);
212 bbuf->b = b;
213 if (!b)
214 return -EINVAL;
215
216 if (!b->non_res) {
217 data_size = le32_to_cpu(b->res.data_size);
218
219 if (off >= data_size)
220 return -EINVAL;
221
222 bbuf->buf = (ulong *)resident_data(b);
223 bbuf->bit = 0;
224 bbuf->nbits = data_size * 8;
225
226 return 0;
227 }
228
229 data_size = le64_to_cpu(b->nres.data_size);
230 if (WARN_ON(off >= data_size)) {
231 /* looks like filesystem error */
232 return -EINVAL;
233 }
234
235 valid_size = le64_to_cpu(b->nres.valid_size);
236
237 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
238 if (!bh)
239 return -EIO;
240
241 if (IS_ERR(bh))
242 return PTR_ERR(bh);
243
244 bbuf->bh = bh;
245
246 if (buffer_locked(bh))
247 __wait_on_buffer(bh);
248
249 lock_buffer(bh);
250
251 sb = sbi->sb;
252 blocksize = sb->s_blocksize;
253
254 vbo = off & ~(size_t)sbi->block_mask;
255
256 bbuf->new_valid = vbo + blocksize;
257 if (bbuf->new_valid <= valid_size)
258 bbuf->new_valid = 0;
259 else if (bbuf->new_valid > data_size)
260 bbuf->new_valid = data_size;
261
262 if (vbo >= valid_size) {
263 memset(bh->b_data, 0, blocksize);
264 } else if (vbo + blocksize > valid_size) {
265 u32 voff = valid_size & sbi->block_mask;
266
267 memset(bh->b_data + voff, 0, blocksize - voff);
268 }
269
270 bbuf->buf = (ulong *)bh->b_data;
271 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
272 bbuf->nbits = 8 * blocksize;
273
274 return 0;
275}
276
277static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
278{
279 struct buffer_head *bh = bbuf->bh;
280 struct ATTRIB *b = bbuf->b;
281
282 if (!bh) {
283 if (b && !b->non_res && dirty)
284 bbuf->mi->dirty = true;
285 return;
286 }
287
288 if (!dirty)
289 goto out;
290
291 if (bbuf->new_valid) {
292 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
293 bbuf->mi->dirty = true;
294 }
295
296 set_buffer_uptodate(bh);
297 mark_buffer_dirty(bh);
298
299out:
300 unlock_buffer(bh);
301 put_bh(bh);
302}
303
304/*
305 * indx_mark_used
306 *
307 * marks the bit 'bit' as used
308 */
309static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
310 size_t bit)
311{
312 int err;
313 struct bmp_buf bbuf;
314
315 err = bmp_buf_get(indx, ni, bit, &bbuf);
316 if (err)
317 return err;
318
319 __set_bit(bit - bbuf.bit, bbuf.buf);
320
321 bmp_buf_put(&bbuf, true);
322
323 return 0;
324}
325
326/*
327 * indx_mark_free
328 *
329 * the bit 'bit' as free
330 */
331static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
332 size_t bit)
333{
334 int err;
335 struct bmp_buf bbuf;
336
337 err = bmp_buf_get(indx, ni, bit, &bbuf);
338 if (err)
339 return err;
340
341 __clear_bit(bit - bbuf.bit, bbuf.buf);
342
343 bmp_buf_put(&bbuf, true);
344
345 return 0;
346}
347
348/*
349 * if ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
350 * inode is shared locked and no ni_lock
351 * use rw_semaphore for read/write access to bitmap_run
352 */
353static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
354 struct ntfs_index *indx, size_t from,
355 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
356 size_t *ret),
357 size_t *ret)
358{
359 struct ntfs_sb_info *sbi = ni->mi.sbi;
360 struct super_block *sb = sbi->sb;
361 struct runs_tree *run = &indx->bitmap_run;
362 struct rw_semaphore *lock = &indx->run_lock;
363 u32 nbits = sb->s_blocksize * 8;
364 u32 blocksize = sb->s_blocksize;
365 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
366 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
367 sector_t eblock = bytes_to_block(sb, data_size);
368 size_t vbo = from >> 3;
369 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
370 sector_t vblock = vbo >> sb->s_blocksize_bits;
371 sector_t blen, block;
372 CLST lcn, clen, vcn, vcn_next;
373 size_t idx;
374 struct buffer_head *bh;
375 bool ok;
376
377 *ret = MINUS_ONE_T;
378
379 if (vblock >= eblock)
380 return 0;
381
382 from &= nbits - 1;
383 vcn = vbo >> sbi->cluster_bits;
384
385 down_read(lock);
386 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
387 up_read(lock);
388
389next_run:
390 if (!ok) {
391 int err;
392 const struct INDEX_NAMES *name = &s_index_names[indx->type];
393
394 down_write(lock);
395 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
396 name->name_len, run, vcn);
397 up_write(lock);
398 if (err)
399 return err;
400 down_read(lock);
401 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
402 up_read(lock);
403 if (!ok)
404 return -EINVAL;
405 }
406
407 blen = (sector_t)clen * sbi->blocks_per_cluster;
408 block = (sector_t)lcn * sbi->blocks_per_cluster;
409
410 for (; blk < blen; blk++, from = 0) {
411 bh = ntfs_bread(sb, block + blk);
412 if (!bh)
413 return -EIO;
414
415 vbo = (u64)vblock << sb->s_blocksize_bits;
416 if (vbo >= valid_size) {
417 memset(bh->b_data, 0, blocksize);
418 } else if (vbo + blocksize > valid_size) {
419 u32 voff = valid_size & sbi->block_mask;
420
421 memset(bh->b_data + voff, 0, blocksize - voff);
422 }
423
424 if (vbo + blocksize > data_size)
425 nbits = 8 * (data_size - vbo);
426
427 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
428 : false;
429 put_bh(bh);
430
431 if (ok) {
432 *ret += 8 * vbo;
433 return 0;
434 }
435
436 if (++vblock >= eblock) {
437 *ret = MINUS_ONE_T;
438 return 0;
439 }
440 }
441 blk = 0;
442 vcn_next = vcn + clen;
443 down_read(lock);
444 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
445 if (!ok)
446 vcn = vcn_next;
447 up_read(lock);
448 goto next_run;
449}
450
451static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
452{
453 size_t pos = find_next_zero_bit(buf, bits, bit);
454
455 if (pos >= bits)
456 return false;
457 *ret = pos;
458 return true;
459}
460
461/*
462 * indx_find_free
463 *
464 * looks for free bit
465 * returns -1 if no free bits
466 */
467static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
468 size_t *bit, struct ATTRIB **bitmap)
469{
470 struct ATTRIB *b;
471 struct ATTR_LIST_ENTRY *le = NULL;
472 const struct INDEX_NAMES *in = &s_index_names[indx->type];
473 int err;
474
475 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
476 NULL, NULL);
477
478 if (!b)
479 return -ENOENT;
480
481 *bitmap = b;
482 *bit = MINUS_ONE_T;
483
484 if (!b->non_res) {
485 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
486 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
487
488 if (pos < nbits)
489 *bit = pos;
490 } else {
491 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
492
493 if (err)
494 return err;
495 }
496
497 return 0;
498}
499
500static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
501{
502 size_t pos = find_next_bit(buf, bits, bit);
503
504 if (pos >= bits)
505 return false;
506 *ret = pos;
507 return true;
508}
509
510/*
511 * indx_used_bit
512 *
513 * looks for used bit
514 * returns MINUS_ONE_T if no used bits
515 */
516int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
517{
518 struct ATTRIB *b;
519 struct ATTR_LIST_ENTRY *le = NULL;
520 size_t from = *bit;
521 const struct INDEX_NAMES *in = &s_index_names[indx->type];
522 int err;
523
524 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
525 NULL, NULL);
526
527 if (!b)
528 return -ENOENT;
529
530 *bit = MINUS_ONE_T;
531
532 if (!b->non_res) {
533 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
534 size_t pos = find_next_bit(resident_data(b), nbits, from);
535
536 if (pos < nbits)
537 *bit = pos;
538 } else {
539 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
540 if (err)
541 return err;
542 }
543
544 return 0;
545}
546
547/*
548 * hdr_find_split
549 *
550 * finds a point at which the index allocation buffer would like to
551 * be split.
552 * NOTE: This function should never return 'END' entry NULL returns on error
553 */
554static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
555{
556 size_t o;
557 const struct NTFS_DE *e = hdr_first_de(hdr);
558 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
559 u16 esize = le16_to_cpu(e->size);
560
561 if (!e || de_is_last(e))
562 return NULL;
563
564 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
565 const struct NTFS_DE *p = e;
566
567 e = Add2Ptr(hdr, o);
568
569 /* We must not return END entry */
570 if (de_is_last(e))
571 return p;
572
573 esize = le16_to_cpu(e->size);
574 }
575
576 return e;
577}
578
579/*
580 * hdr_insert_head
581 *
582 * inserts some entries at the beginning of the buffer.
583 * It is used to insert entries into a newly-created buffer.
584 */
585static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
586 const void *ins, u32 ins_bytes)
587{
588 u32 to_move;
589 struct NTFS_DE *e = hdr_first_de(hdr);
590 u32 used = le32_to_cpu(hdr->used);
591
592 if (!e)
593 return NULL;
594
595 /* Now we just make room for the inserted entries and jam it in. */
596 to_move = used - le32_to_cpu(hdr->de_off);
597 memmove(Add2Ptr(e, ins_bytes), e, to_move);
598 memcpy(e, ins, ins_bytes);
599 hdr->used = cpu_to_le32(used + ins_bytes);
600
601 return e;
602}
603
604void fnd_clear(struct ntfs_fnd *fnd)
605{
606 int i;
607
608 for (i = 0; i < fnd->level; i++) {
609 struct indx_node *n = fnd->nodes[i];
610
611 if (!n)
612 continue;
613
614 put_indx_node(n);
615 fnd->nodes[i] = NULL;
616 }
617 fnd->level = 0;
618 fnd->root_de = NULL;
619}
620
621static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
622 struct NTFS_DE *e)
623{
624 int i;
625
626 i = fnd->level;
627 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
628 return -EINVAL;
629 fnd->nodes[i] = n;
630 fnd->de[i] = e;
631 fnd->level += 1;
632 return 0;
633}
634
635static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
636{
637 struct indx_node *n;
638 int i = fnd->level;
639
640 i -= 1;
641 n = fnd->nodes[i];
642 fnd->nodes[i] = NULL;
643 fnd->level = i;
644
645 return n;
646}
647
648static bool fnd_is_empty(struct ntfs_fnd *fnd)
649{
650 if (!fnd->level)
651 return !fnd->root_de;
652
653 return !fnd->de[fnd->level - 1];
654}
655
656/*
657 * hdr_find_e
658 *
659 * locates an entry the index buffer.
660 * If no matching entry is found, it returns the first entry which is greater
661 * than the desired entry If the search key is greater than all the entries the
662 * buffer, it returns the 'end' entry. This function does a binary search of the
663 * current index buffer, for the first entry that is <= to the search value
664 * Returns NULL if error
665 */
666static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
667 const struct INDEX_HDR *hdr, const void *key,
668 size_t key_len, const void *ctx, int *diff)
669{
670 struct NTFS_DE *e;
671 NTFS_CMP_FUNC cmp = indx->cmp;
672 u32 e_size, e_key_len;
673 u32 end = le32_to_cpu(hdr->used);
674 u32 off = le32_to_cpu(hdr->de_off);
675
676#ifdef NTFS3_INDEX_BINARY_SEARCH
677 int max_idx = 0, fnd, min_idx;
678 int nslots = 64;
679 u16 *offs;
680
681 if (end > 0x10000)
682 goto next;
683
684 offs = ntfs_malloc(sizeof(u16) * nslots);
685 if (!offs)
686 goto next;
687
688 /* use binary search algorithm */
689next1:
690 if (off + sizeof(struct NTFS_DE) > end) {
691 e = NULL;
692 goto out1;
693 }
694 e = Add2Ptr(hdr, off);
695 e_size = le16_to_cpu(e->size);
696
697 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) {
698 e = NULL;
699 goto out1;
700 }
701
702 if (max_idx >= nslots) {
703 u16 *ptr;
704 int new_slots = QuadAlign(2 * nslots);
705
706 ptr = ntfs_malloc(sizeof(u16) * new_slots);
707 if (ptr)
708 memcpy(ptr, offs, sizeof(u16) * max_idx);
709 ntfs_free(offs);
710 offs = ptr;
711 nslots = new_slots;
712 if (!ptr)
713 goto next;
714 }
715
716 /* Store entry table */
717 offs[max_idx] = off;
718
719 if (!de_is_last(e)) {
720 off += e_size;
721 max_idx += 1;
722 goto next1;
723 }
724
725 /*
726 * Table of pointers is created
727 * Use binary search to find entry that is <= to the search value
728 */
729 fnd = -1;
730 min_idx = 0;
731
732 while (min_idx <= max_idx) {
733 int mid_idx = min_idx + ((max_idx - min_idx) >> 1);
734 int diff2;
735
736 e = Add2Ptr(hdr, offs[mid_idx]);
737
738 e_key_len = le16_to_cpu(e->key_size);
739
740 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
741
742 if (!diff2) {
743 *diff = 0;
744 goto out1;
745 }
746
747 if (diff2 < 0) {
748 max_idx = mid_idx - 1;
749 fnd = mid_idx;
750 if (!fnd)
751 break;
752 } else {
753 min_idx = mid_idx + 1;
754 }
755 }
756
757 if (fnd == -1) {
758 e = NULL;
759 goto out1;
760 }
761
762 *diff = -1;
763 e = Add2Ptr(hdr, offs[fnd]);
764
765out1:
766 ntfs_free(offs);
767
768 return e;
769#endif
770
771next:
772 /*
773 * Entries index are sorted
774 * Enumerate all entries until we find entry that is <= to the search value
775 */
776 if (off + sizeof(struct NTFS_DE) > end)
777 return NULL;
778
779 e = Add2Ptr(hdr, off);
780 e_size = le16_to_cpu(e->size);
781
782 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
783 return NULL;
784
785 off += e_size;
786
787 e_key_len = le16_to_cpu(e->key_size);
788
789 *diff = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
790 if (!*diff)
791 return e;
792
793 if (*diff <= 0)
794 return e;
795
796 if (de_is_last(e)) {
797 *diff = 1;
798 return e;
799 }
800 goto next;
801}
802
803/*
804 * hdr_insert_de
805 *
806 * inserts an index entry into the buffer.
807 * 'before' should be a pointer previously returned from hdr_find_e
808 */
809static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
810 struct INDEX_HDR *hdr,
811 const struct NTFS_DE *de,
812 struct NTFS_DE *before, const void *ctx)
813{
814 int diff;
815 size_t off = PtrOffset(hdr, before);
816 u32 used = le32_to_cpu(hdr->used);
817 u32 total = le32_to_cpu(hdr->total);
818 u16 de_size = le16_to_cpu(de->size);
819
820 /* First, check to see if there's enough room */
821 if (used + de_size > total)
822 return NULL;
823
824 /* We know there's enough space, so we know we'll succeed. */
825 if (before) {
826 /* Check that before is inside Index */
827 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
828 off + le16_to_cpu(before->size) > total) {
829 return NULL;
830 }
831 goto ok;
832 }
833 /* No insert point is applied. Get it manually */
834 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
835 &diff);
836 if (!before)
837 return NULL;
838 off = PtrOffset(hdr, before);
839
840ok:
841 /* Now we just make room for the entry and jam it in. */
842 memmove(Add2Ptr(before, de_size), before, used - off);
843
844 hdr->used = cpu_to_le32(used + de_size);
845 memcpy(before, de, de_size);
846
847 return before;
848}
849
850/*
851 * hdr_delete_de
852 *
853 * removes an entry from the index buffer
854 */
855static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
856 struct NTFS_DE *re)
857{
858 u32 used = le32_to_cpu(hdr->used);
859 u16 esize = le16_to_cpu(re->size);
860 u32 off = PtrOffset(hdr, re);
861 int bytes = used - (off + esize);
862
863 if (off >= used || esize < sizeof(struct NTFS_DE) ||
864 bytes < sizeof(struct NTFS_DE))
865 return NULL;
866
867 hdr->used = cpu_to_le32(used - esize);
868 memmove(re, Add2Ptr(re, esize), bytes);
869
870 return re;
871}
872
873void indx_clear(struct ntfs_index *indx)
874{
875 run_close(&indx->alloc_run);
876 run_close(&indx->bitmap_run);
877}
878
879int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
880 const struct ATTRIB *attr, enum index_mutex_classed type)
881{
882 u32 t32;
883 const struct INDEX_ROOT *root = resident_data(attr);
884
885 /* Check root fields */
886 if (!root->index_block_clst)
887 return -EINVAL;
888
889 indx->type = type;
890 indx->idx2vbn_bits = __ffs(root->index_block_clst);
891
892 t32 = le32_to_cpu(root->index_block_size);
893 indx->index_bits = blksize_bits(t32);
894
895 /* Check index record size */
896 if (t32 < sbi->cluster_size) {
897 /* index record is smaller than a cluster, use 512 blocks */
898 if (t32 != root->index_block_clst * SECTOR_SIZE)
899 return -EINVAL;
900
901 /* Check alignment to a cluster */
902 if ((sbi->cluster_size >> SECTOR_SHIFT) &
903 (root->index_block_clst - 1)) {
904 return -EINVAL;
905 }
906
907 indx->vbn2vbo_bits = SECTOR_SHIFT;
908 } else {
909 /* index record must be a multiple of cluster size */
910 if (t32 != root->index_block_clst << sbi->cluster_bits)
911 return -EINVAL;
912
913 indx->vbn2vbo_bits = sbi->cluster_bits;
914 }
915
916 init_rwsem(&indx->run_lock);
917
918 indx->cmp = get_cmp_func(root);
919 return indx->cmp ? 0 : -EINVAL;
920}
921
922static struct indx_node *indx_new(struct ntfs_index *indx,
923 struct ntfs_inode *ni, CLST vbn,
924 const __le64 *sub_vbn)
925{
926 int err;
927 struct NTFS_DE *e;
928 struct indx_node *r;
929 struct INDEX_HDR *hdr;
930 struct INDEX_BUFFER *index;
931 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
932 u32 bytes = 1u << indx->index_bits;
933 u16 fn;
934 u32 eo;
935
936 r = ntfs_zalloc(sizeof(struct indx_node));
937 if (!r)
938 return ERR_PTR(-ENOMEM);
939
940 index = ntfs_zalloc(bytes);
941 if (!index) {
942 ntfs_free(r);
943 return ERR_PTR(-ENOMEM);
944 }
945
946 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
947
948 if (err) {
949 ntfs_free(index);
950 ntfs_free(r);
951 return ERR_PTR(err);
952 }
953
954 /* Create header */
955 index->rhdr.sign = NTFS_INDX_SIGNATURE;
956 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
957 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
958 index->rhdr.fix_num = cpu_to_le16(fn);
959 index->vbn = cpu_to_le64(vbn);
960 hdr = &index->ihdr;
961 eo = QuadAlign(sizeof(struct INDEX_BUFFER) + fn * sizeof(short));
962 hdr->de_off = cpu_to_le32(eo);
963
964 e = Add2Ptr(hdr, eo);
965
966 if (sub_vbn) {
967 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
968 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
969 hdr->used =
970 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
971 de_set_vbn_le(e, *sub_vbn);
972 hdr->flags = 1;
973 } else {
974 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
975 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
976 e->flags = NTFS_IE_LAST;
977 }
978
979 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
980
981 r->index = index;
982 return r;
983}
984
985struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
986 struct ATTRIB **attr, struct mft_inode **mi)
987{
988 struct ATTR_LIST_ENTRY *le = NULL;
989 struct ATTRIB *a;
990 const struct INDEX_NAMES *in = &s_index_names[indx->type];
991
992 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
993 mi);
994 if (!a)
995 return NULL;
996
997 if (attr)
998 *attr = a;
999
1000 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
1001}
1002
1003static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1004 struct indx_node *node, int sync)
1005{
1006 struct INDEX_BUFFER *ib = node->index;
1007
1008 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1009}
1010
1011/*
1012 * if ntfs_readdir calls this function
1013 * inode is shared locked and no ni_lock
1014 * use rw_semaphore for read/write access to alloc_run
1015 */
1016int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1017 struct indx_node **node)
1018{
1019 int err;
1020 struct INDEX_BUFFER *ib;
1021 struct runs_tree *run = &indx->alloc_run;
1022 struct rw_semaphore *lock = &indx->run_lock;
1023 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1024 u32 bytes = 1u << indx->index_bits;
1025 struct indx_node *in = *node;
1026 const struct INDEX_NAMES *name;
1027
1028 if (!in) {
1029 in = ntfs_zalloc(sizeof(struct indx_node));
1030 if (!in)
1031 return -ENOMEM;
1032 } else {
1033 nb_put(&in->nb);
1034 }
1035
1036 ib = in->index;
1037 if (!ib) {
1038 ib = ntfs_malloc(bytes);
1039 if (!ib) {
1040 err = -ENOMEM;
1041 goto out;
1042 }
1043 }
1044
1045 down_read(lock);
1046 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1047 up_read(lock);
1048 if (!err)
1049 goto ok;
1050
1051 if (err == -E_NTFS_FIXUP)
1052 goto ok;
1053
1054 if (err != -ENOENT)
1055 goto out;
1056
1057 name = &s_index_names[indx->type];
1058 down_write(lock);
1059 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1060 run, vbo, vbo + bytes);
1061 up_write(lock);
1062 if (err)
1063 goto out;
1064
1065 down_read(lock);
1066 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1067 up_read(lock);
1068 if (err == -E_NTFS_FIXUP)
1069 goto ok;
1070
1071 if (err)
1072 goto out;
1073
1074ok:
1075 if (err == -E_NTFS_FIXUP) {
1076 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1077 err = 0;
1078 }
1079
1080 in->index = ib;
1081 *node = in;
1082
1083out:
1084 if (ib != in->index)
1085 ntfs_free(ib);
1086
1087 if (*node != in) {
1088 nb_put(&in->nb);
1089 ntfs_free(in);
1090 }
1091
1092 return err;
1093}
1094
1095/*
1096 * indx_find
1097 *
1098 * scans NTFS directory for given entry
1099 */
1100int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1101 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1102 const void *ctx, int *diff, struct NTFS_DE **entry,
1103 struct ntfs_fnd *fnd)
1104{
1105 int err;
1106 struct NTFS_DE *e;
1107 const struct INDEX_HDR *hdr;
1108 struct indx_node *node;
1109
1110 if (!root)
1111 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1112
1113 if (!root) {
1114 err = -EINVAL;
1115 goto out;
1116 }
1117
1118 hdr = &root->ihdr;
1119
1120 /* Check cache */
1121 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1122 if (e && !de_is_last(e) &&
1123 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1124 *entry = e;
1125 *diff = 0;
1126 return 0;
1127 }
1128
1129 /* Soft finder reset */
1130 fnd_clear(fnd);
1131
1132 /* Lookup entry that is <= to the search value */
1133 e = hdr_find_e(indx, hdr, key, key_len, ctx, diff);
1134 if (!e)
1135 return -EINVAL;
1136
1137 if (fnd)
1138 fnd->root_de = e;
1139
1140 err = 0;
1141
1142 for (;;) {
1143 node = NULL;
1144 if (*diff >= 0 || !de_has_vcn_ex(e)) {
1145 *entry = e;
1146 goto out;
1147 }
1148
1149 /* Read next level. */
1150 err = indx_read(indx, ni, de_get_vbn(e), &node);
1151 if (err)
1152 goto out;
1153
1154 /* Lookup entry that is <= to the search value */
1155 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1156 diff);
1157 if (!e) {
1158 err = -EINVAL;
1159 put_indx_node(node);
1160 goto out;
1161 }
1162
1163 fnd_push(fnd, node, e);
1164 }
1165
1166out:
1167 return err;
1168}
1169
1170int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1171 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1172 struct ntfs_fnd *fnd)
1173{
1174 int err;
1175 struct indx_node *n = NULL;
1176 struct NTFS_DE *e;
1177 size_t iter = 0;
1178 int level = fnd->level;
1179
1180 if (!*entry) {
1181 /* Start find */
1182 e = hdr_first_de(&root->ihdr);
1183 if (!e)
1184 return 0;
1185 fnd_clear(fnd);
1186 fnd->root_de = e;
1187 } else if (!level) {
1188 if (de_is_last(fnd->root_de)) {
1189 *entry = NULL;
1190 return 0;
1191 }
1192
1193 e = hdr_next_de(&root->ihdr, fnd->root_de);
1194 if (!e)
1195 return -EINVAL;
1196 fnd->root_de = e;
1197 } else {
1198 n = fnd->nodes[level - 1];
1199 e = fnd->de[level - 1];
1200
1201 if (de_is_last(e))
1202 goto pop_level;
1203
1204 e = hdr_next_de(&n->index->ihdr, e);
1205 if (!e)
1206 return -EINVAL;
1207
1208 fnd->de[level - 1] = e;
1209 }
1210
1211 /* Just to avoid tree cycle */
1212next_iter:
1213 if (iter++ >= 1000)
1214 return -EINVAL;
1215
1216 while (de_has_vcn_ex(e)) {
1217 if (le16_to_cpu(e->size) <
1218 sizeof(struct NTFS_DE) + sizeof(u64)) {
1219 if (n) {
1220 fnd_pop(fnd);
1221 ntfs_free(n);
1222 }
1223 return -EINVAL;
1224 }
1225
1226 /* Read next level */
1227 err = indx_read(indx, ni, de_get_vbn(e), &n);
1228 if (err)
1229 return err;
1230
1231 /* Try next level */
1232 e = hdr_first_de(&n->index->ihdr);
1233 if (!e) {
1234 ntfs_free(n);
1235 return -EINVAL;
1236 }
1237
1238 fnd_push(fnd, n, e);
1239 }
1240
1241 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1242 *entry = e;
1243 return 0;
1244 }
1245
1246pop_level:
1247 for (;;) {
1248 if (!de_is_last(e))
1249 goto next_iter;
1250
1251 /* Pop one level */
1252 if (n) {
1253 fnd_pop(fnd);
1254 ntfs_free(n);
1255 }
1256
1257 level = fnd->level;
1258
1259 if (level) {
1260 n = fnd->nodes[level - 1];
1261 e = fnd->de[level - 1];
1262 } else if (fnd->root_de) {
1263 n = NULL;
1264 e = fnd->root_de;
1265 fnd->root_de = NULL;
1266 } else {
1267 *entry = NULL;
1268 return 0;
1269 }
1270
1271 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1272 *entry = e;
1273 if (!fnd->root_de)
1274 fnd->root_de = e;
1275 return 0;
1276 }
1277 }
1278}
1279
1280int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1281 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1282 size_t *off, struct ntfs_fnd *fnd)
1283{
1284 int err;
1285 struct indx_node *n = NULL;
1286 struct NTFS_DE *e = NULL;
1287 struct NTFS_DE *e2;
1288 size_t bit;
1289 CLST next_used_vbn;
1290 CLST next_vbn;
1291 u32 record_size = ni->mi.sbi->record_size;
1292
1293 /* Use non sorted algorithm */
1294 if (!*entry) {
1295 /* This is the first call */
1296 e = hdr_first_de(&root->ihdr);
1297 if (!e)
1298 return 0;
1299 fnd_clear(fnd);
1300 fnd->root_de = e;
1301
1302 /* The first call with setup of initial element */
1303 if (*off >= record_size) {
1304 next_vbn = (((*off - record_size) >> indx->index_bits))
1305 << indx->idx2vbn_bits;
1306 /* jump inside cycle 'for'*/
1307 goto next;
1308 }
1309
1310 /* Start enumeration from root */
1311 *off = 0;
1312 } else if (!fnd->root_de)
1313 return -EINVAL;
1314
1315 for (;;) {
1316 /* Check if current entry can be used */
1317 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1318 goto ok;
1319
1320 if (!fnd->level) {
1321 /* Continue to enumerate root */
1322 if (!de_is_last(fnd->root_de)) {
1323 e = hdr_next_de(&root->ihdr, fnd->root_de);
1324 if (!e)
1325 return -EINVAL;
1326 fnd->root_de = e;
1327 continue;
1328 }
1329
1330 /* Start to enumerate indexes from 0 */
1331 next_vbn = 0;
1332 } else {
1333 /* Continue to enumerate indexes */
1334 e2 = fnd->de[fnd->level - 1];
1335
1336 n = fnd->nodes[fnd->level - 1];
1337
1338 if (!de_is_last(e2)) {
1339 e = hdr_next_de(&n->index->ihdr, e2);
1340 if (!e)
1341 return -EINVAL;
1342 fnd->de[fnd->level - 1] = e;
1343 continue;
1344 }
1345
1346 /* Continue with next index */
1347 next_vbn = le64_to_cpu(n->index->vbn) +
1348 root->index_block_clst;
1349 }
1350
1351next:
1352 /* Release current index */
1353 if (n) {
1354 fnd_pop(fnd);
1355 put_indx_node(n);
1356 n = NULL;
1357 }
1358
1359 /* Skip all free indexes */
1360 bit = next_vbn >> indx->idx2vbn_bits;
1361 err = indx_used_bit(indx, ni, &bit);
1362 if (err == -ENOENT || bit == MINUS_ONE_T) {
1363 /* No used indexes */
1364 *entry = NULL;
1365 return 0;
1366 }
1367
1368 next_used_vbn = bit << indx->idx2vbn_bits;
1369
1370 /* Read buffer into memory */
1371 err = indx_read(indx, ni, next_used_vbn, &n);
1372 if (err)
1373 return err;
1374
1375 e = hdr_first_de(&n->index->ihdr);
1376 fnd_push(fnd, n, e);
1377 if (!e)
1378 return -EINVAL;
1379 }
1380
1381ok:
1382 /* return offset to restore enumerator if necessary */
1383 if (!n) {
1384 /* 'e' points in root */
1385 *off = PtrOffset(&root->ihdr, e);
1386 } else {
1387 /* 'e' points in index */
1388 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1389 record_size + PtrOffset(&n->index->ihdr, e);
1390 }
1391
1392 *entry = e;
1393 return 0;
1394}
1395
1396/*
1397 * indx_create_allocate
1398 *
1399 * create "Allocation + Bitmap" attributes
1400 */
1401static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1402 CLST *vbn)
1403{
1404 int err = -ENOMEM;
1405 struct ntfs_sb_info *sbi = ni->mi.sbi;
1406 struct ATTRIB *bitmap;
1407 struct ATTRIB *alloc;
1408 u32 data_size = 1u << indx->index_bits;
1409 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1410 CLST len = alloc_size >> sbi->cluster_bits;
1411 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1412 CLST alen;
1413 struct runs_tree run;
1414
1415 run_init(&run);
1416
1417 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1418 NULL);
1419 if (err)
1420 goto out;
1421
1422 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1423 &run, 0, len, 0, &alloc, NULL);
1424 if (err)
1425 goto out1;
1426
1427 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1428
1429 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1430 in->name_len, &bitmap, NULL);
1431 if (err)
1432 goto out2;
1433
1434 if (in->name == I30_NAME) {
1435 ni->vfs_inode.i_size = data_size;
1436 inode_set_bytes(&ni->vfs_inode, alloc_size);
1437 }
1438
1439 memcpy(&indx->alloc_run, &run, sizeof(run));
1440
1441 *vbn = 0;
1442
1443 return 0;
1444
1445out2:
1446 mi_remove_attr(&ni->mi, alloc);
1447
1448out1:
1449 run_deallocate(sbi, &run, false);
1450
1451out:
1452 return err;
1453}
1454
1455/*
1456 * indx_add_allocate
1457 *
1458 * add clusters to index
1459 */
1460static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1461 CLST *vbn)
1462{
1463 int err;
1464 size_t bit;
1465 u64 data_size;
1466 u64 bmp_size, bmp_size_v;
1467 struct ATTRIB *bmp, *alloc;
1468 struct mft_inode *mi;
1469 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1470
1471 err = indx_find_free(indx, ni, &bit, &bmp);
1472 if (err)
1473 goto out1;
1474
1475 if (bit != MINUS_ONE_T) {
1476 bmp = NULL;
1477 } else {
1478 if (bmp->non_res) {
1479 bmp_size = le64_to_cpu(bmp->nres.data_size);
1480 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1481 } else {
1482 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1483 }
1484
1485 bit = bmp_size << 3;
1486 }
1487
1488 data_size = (u64)(bit + 1) << indx->index_bits;
1489
1490 if (bmp) {
1491 /* Increase bitmap */
1492 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1493 &indx->bitmap_run, bitmap_size(bit + 1),
1494 NULL, true, NULL);
1495 if (err)
1496 goto out1;
1497 }
1498
1499 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1500 NULL, &mi);
1501 if (!alloc) {
1502 if (bmp)
1503 goto out2;
1504 goto out1;
1505 }
1506
1507 /* Increase allocation */
1508 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1509 &indx->alloc_run, data_size, &data_size, true,
1510 NULL);
1511 if (err) {
1512 if (bmp)
1513 goto out2;
1514 goto out1;
1515 }
1516
1517 *vbn = bit << indx->idx2vbn_bits;
1518
1519 return 0;
1520
1521out2:
1522 /* Ops (no space?) */
1523 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1524 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1525
1526out1:
1527 return err;
1528}
1529
1530/*
1531 * indx_insert_into_root
1532 *
1533 * attempts to insert an entry into the index root
1534 * If necessary, it will twiddle the index b-tree.
1535 */
1536static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1537 const struct NTFS_DE *new_de,
1538 struct NTFS_DE *root_de, const void *ctx,
1539 struct ntfs_fnd *fnd)
1540{
1541 int err = 0;
1542 struct NTFS_DE *e, *e0, *re;
1543 struct mft_inode *mi;
1544 struct ATTRIB *attr;
1545 struct MFT_REC *rec;
1546 struct INDEX_HDR *hdr;
1547 struct indx_node *n;
1548 CLST new_vbn;
1549 __le64 *sub_vbn, t_vbn;
1550 u16 new_de_size;
1551 u32 hdr_used, hdr_total, asize, used, to_move;
1552 u32 root_size, new_root_size;
1553 struct ntfs_sb_info *sbi;
1554 int ds_root;
1555 struct INDEX_ROOT *root, *a_root = NULL;
1556
1557 /* Get the record this root placed in */
1558 root = indx_get_root(indx, ni, &attr, &mi);
1559 if (!root)
1560 goto out;
1561
1562 /*
1563 * Try easy case:
1564 * hdr_insert_de will succeed if there's room the root for the new entry.
1565 */
1566 hdr = &root->ihdr;
1567 sbi = ni->mi.sbi;
1568 rec = mi->mrec;
1569 used = le32_to_cpu(rec->used);
1570 new_de_size = le16_to_cpu(new_de->size);
1571 hdr_used = le32_to_cpu(hdr->used);
1572 hdr_total = le32_to_cpu(hdr->total);
1573 asize = le32_to_cpu(attr->size);
1574 root_size = le32_to_cpu(attr->res.data_size);
1575
1576 ds_root = new_de_size + hdr_used - hdr_total;
1577
1578 if (used + ds_root < sbi->max_bytes_per_attr) {
1579 /* make a room for new elements */
1580 mi_resize_attr(mi, attr, ds_root);
1581 hdr->total = cpu_to_le32(hdr_total + ds_root);
1582 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1583 WARN_ON(!e);
1584 fnd_clear(fnd);
1585 fnd->root_de = e;
1586
1587 return 0;
1588 }
1589
1590 /* Make a copy of root attribute to restore if error */
1591 a_root = ntfs_memdup(attr, asize);
1592 if (!a_root) {
1593 err = -ENOMEM;
1594 goto out;
1595 }
1596
1597 /* copy all the non-end entries from the index root to the new buffer.*/
1598 to_move = 0;
1599 e0 = hdr_first_de(hdr);
1600
1601 /* Calculate the size to copy */
1602 for (e = e0;; e = hdr_next_de(hdr, e)) {
1603 if (!e) {
1604 err = -EINVAL;
1605 goto out;
1606 }
1607
1608 if (de_is_last(e))
1609 break;
1610 to_move += le16_to_cpu(e->size);
1611 }
1612
1613 n = NULL;
1614 if (!to_move) {
1615 re = NULL;
1616 } else {
1617 re = ntfs_memdup(e0, to_move);
1618 if (!re) {
1619 err = -ENOMEM;
1620 goto out;
1621 }
1622 }
1623
1624 sub_vbn = NULL;
1625 if (de_has_vcn(e)) {
1626 t_vbn = de_get_vbn_le(e);
1627 sub_vbn = &t_vbn;
1628 }
1629
1630 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1631 sizeof(u64);
1632 ds_root = new_root_size - root_size;
1633
1634 if (ds_root > 0 && used + ds_root > sbi->max_bytes_per_attr) {
1635 /* make root external */
1636 err = -EOPNOTSUPP;
1637 goto out;
1638 }
1639
1640 if (ds_root)
1641 mi_resize_attr(mi, attr, ds_root);
1642
1643 /* Fill first entry (vcn will be set later) */
1644 e = (struct NTFS_DE *)(root + 1);
1645 memset(e, 0, sizeof(struct NTFS_DE));
1646 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1647 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1648
1649 hdr->flags = 1;
1650 hdr->used = hdr->total =
1651 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1652
1653 fnd->root_de = hdr_first_de(hdr);
1654 mi->dirty = true;
1655
1656 /* Create alloc and bitmap attributes (if not) */
1657 err = run_is_empty(&indx->alloc_run)
1658 ? indx_create_allocate(indx, ni, &new_vbn)
1659 : indx_add_allocate(indx, ni, &new_vbn);
1660
1661 /* layout of record may be changed, so rescan root */
1662 root = indx_get_root(indx, ni, &attr, &mi);
1663 if (!root) {
1664 /* bug? */
1665 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1666 err = -EINVAL;
1667 goto out1;
1668 }
1669
1670 if (err) {
1671 /* restore root */
1672 if (mi_resize_attr(mi, attr, -ds_root))
1673 memcpy(attr, a_root, asize);
1674 else {
1675 /* bug? */
1676 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1677 }
1678 goto out1;
1679 }
1680
1681 e = (struct NTFS_DE *)(root + 1);
1682 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1683 mi->dirty = true;
1684
1685 /* now we can create/format the new buffer and copy the entries into */
1686 n = indx_new(indx, ni, new_vbn, sub_vbn);
1687 if (IS_ERR(n)) {
1688 err = PTR_ERR(n);
1689 goto out1;
1690 }
1691
1692 hdr = &n->index->ihdr;
1693 hdr_used = le32_to_cpu(hdr->used);
1694 hdr_total = le32_to_cpu(hdr->total);
1695
1696 /* Copy root entries into new buffer */
1697 hdr_insert_head(hdr, re, to_move);
1698
1699 /* Update bitmap attribute */
1700 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1701
1702 /* Check if we can insert new entry new index buffer */
1703 if (hdr_used + new_de_size > hdr_total) {
1704 /*
1705 * This occurs if mft record is the same or bigger than index
1706 * buffer. Move all root new index and have no space to add
1707 * new entry classic case when mft record is 1K and index
1708 * buffer 4K the problem should not occurs
1709 */
1710 ntfs_free(re);
1711 indx_write(indx, ni, n, 0);
1712
1713 put_indx_node(n);
1714 fnd_clear(fnd);
1715 err = indx_insert_entry(indx, ni, new_de, ctx, fnd);
1716 goto out;
1717 }
1718
1719 /*
1720 * Now root is a parent for new index buffer
1721 * Insert NewEntry a new buffer
1722 */
1723 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1724 if (!e) {
1725 err = -EINVAL;
1726 goto out1;
1727 }
1728 fnd_push(fnd, n, e);
1729
1730 /* Just write updates index into disk */
1731 indx_write(indx, ni, n, 0);
1732
1733 n = NULL;
1734
1735out1:
1736 ntfs_free(re);
1737 if (n)
1738 put_indx_node(n);
1739
1740out:
1741 ntfs_free(a_root);
1742 return err;
1743}
1744
1745/*
1746 * indx_insert_into_buffer
1747 *
1748 * attempts to insert an entry into an Index Allocation Buffer.
1749 * If necessary, it will split the buffer.
1750 */
1751static int
1752indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1753 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1754 const void *ctx, int level, struct ntfs_fnd *fnd)
1755{
1756 int err;
1757 const struct NTFS_DE *sp;
1758 struct NTFS_DE *e, *de_t, *up_e = NULL;
1759 struct indx_node *n2 = NULL;
1760 struct indx_node *n1 = fnd->nodes[level];
1761 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1762 struct INDEX_HDR *hdr2;
1763 u32 to_copy, used;
1764 CLST new_vbn;
1765 __le64 t_vbn, *sub_vbn;
1766 u16 sp_size;
1767
1768 /* Try the most easy case */
1769 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1770 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1771 fnd->de[level] = e;
1772 if (e) {
1773 /* Just write updated index into disk */
1774 indx_write(indx, ni, n1, 0);
1775 return 0;
1776 }
1777
1778 /*
1779 * No space to insert into buffer. Split it.
1780 * To split we:
1781 * - Save split point ('cause index buffers will be changed)
1782 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1783 * - Remove all entries (sp including) from TargetBuffer
1784 * - Insert NewEntry into left or right buffer (depending on sp <=>
1785 * NewEntry)
1786 * - Insert sp into parent buffer (or root)
1787 * - Make sp a parent for new buffer
1788 */
1789 sp = hdr_find_split(hdr1);
1790 if (!sp)
1791 return -EINVAL;
1792
1793 sp_size = le16_to_cpu(sp->size);
1794 up_e = ntfs_malloc(sp_size + sizeof(u64));
1795 if (!up_e)
1796 return -ENOMEM;
1797 memcpy(up_e, sp, sp_size);
1798
1799 if (!hdr1->flags) {
1800 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1801 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1802 sub_vbn = NULL;
1803 } else {
1804 t_vbn = de_get_vbn_le(up_e);
1805 sub_vbn = &t_vbn;
1806 }
1807
1808 /* Allocate on disk a new index allocation buffer. */
1809 err = indx_add_allocate(indx, ni, &new_vbn);
1810 if (err)
1811 goto out;
1812
1813 /* Allocate and format memory a new index buffer */
1814 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1815 if (IS_ERR(n2)) {
1816 err = PTR_ERR(n2);
1817 goto out;
1818 }
1819
1820 hdr2 = &n2->index->ihdr;
1821
1822 /* Make sp a parent for new buffer */
1823 de_set_vbn(up_e, new_vbn);
1824
1825 /* copy all the entries <= sp into the new buffer. */
1826 de_t = hdr_first_de(hdr1);
1827 to_copy = PtrOffset(de_t, sp);
1828 hdr_insert_head(hdr2, de_t, to_copy);
1829
1830 /* remove all entries (sp including) from hdr1 */
1831 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1832 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1833 hdr1->used = cpu_to_le32(used);
1834
1835 /* Insert new entry into left or right buffer (depending on sp <=> new_de) */
1836 hdr_insert_de(indx,
1837 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1838 up_e + 1, le16_to_cpu(up_e->key_size),
1839 ctx) < 0
1840 ? hdr2
1841 : hdr1,
1842 new_de, NULL, ctx);
1843
1844 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1845
1846 indx_write(indx, ni, n1, 0);
1847 indx_write(indx, ni, n2, 0);
1848
1849 put_indx_node(n2);
1850
1851 /*
1852 * we've finished splitting everybody, so we are ready to
1853 * insert the promoted entry into the parent.
1854 */
1855 if (!level) {
1856 /* Insert in root */
1857 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd);
1858 if (err)
1859 goto out;
1860 } else {
1861 /*
1862 * The target buffer's parent is another index buffer
1863 * TODO: Remove recursion
1864 */
1865 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1866 level - 1, fnd);
1867 if (err)
1868 goto out;
1869 }
1870
1871out:
1872 ntfs_free(up_e);
1873
1874 return err;
1875}
1876
1877/*
1878 * indx_insert_entry
1879 *
1880 * inserts new entry into index
1881 */
1882int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1883 const struct NTFS_DE *new_de, const void *ctx,
1884 struct ntfs_fnd *fnd)
1885{
1886 int err;
1887 int diff;
1888 struct NTFS_DE *e;
1889 struct ntfs_fnd *fnd_a = NULL;
1890 struct INDEX_ROOT *root;
1891
1892 if (!fnd) {
1893 fnd_a = fnd_get();
1894 if (!fnd_a) {
1895 err = -ENOMEM;
1896 goto out1;
1897 }
1898 fnd = fnd_a;
1899 }
1900
1901 root = indx_get_root(indx, ni, NULL, NULL);
1902 if (!root) {
1903 err = -EINVAL;
1904 goto out;
1905 }
1906
1907 if (fnd_is_empty(fnd)) {
1908 /* Find the spot the tree where we want to insert the new entry. */
1909 err = indx_find(indx, ni, root, new_de + 1,
1910 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1911 fnd);
1912 if (err)
1913 goto out;
1914
1915 if (!diff) {
1916 err = -EEXIST;
1917 goto out;
1918 }
1919 }
1920
1921 if (!fnd->level) {
1922 /* The root is also a leaf, so we'll insert the new entry into it. */
1923 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1924 fnd);
1925 if (err)
1926 goto out;
1927 } else {
1928 /* found a leaf buffer, so we'll insert the new entry into it.*/
1929 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1930 fnd->level - 1, fnd);
1931 if (err)
1932 goto out;
1933 }
1934
1935out:
1936 fnd_put(fnd_a);
1937out1:
1938 return err;
1939}
1940
1941/*
1942 * indx_find_buffer
1943 *
1944 * locates a buffer the tree.
1945 */
1946static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1947 struct ntfs_inode *ni,
1948 const struct INDEX_ROOT *root,
1949 __le64 vbn, struct indx_node *n)
1950{
1951 int err;
1952 const struct NTFS_DE *e;
1953 struct indx_node *r;
1954 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1955
1956 /* Step 1: Scan one level */
1957 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1958 if (!e)
1959 return ERR_PTR(-EINVAL);
1960
1961 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1962 return n;
1963
1964 if (de_is_last(e))
1965 break;
1966 }
1967
1968 /* Step2: Do recursion */
1969 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1970 for (;;) {
1971 if (de_has_vcn_ex(e)) {
1972 err = indx_read(indx, ni, de_get_vbn(e), &n);
1973 if (err)
1974 return ERR_PTR(err);
1975
1976 r = indx_find_buffer(indx, ni, root, vbn, n);
1977 if (r)
1978 return r;
1979 }
1980
1981 if (de_is_last(e))
1982 break;
1983
1984 e = Add2Ptr(e, le16_to_cpu(e->size));
1985 }
1986
1987 return NULL;
1988}
1989
1990/*
1991 * indx_shrink
1992 *
1993 * deallocates unused tail indexes
1994 */
1995static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1996 size_t bit)
1997{
1998 int err = 0;
1999 u64 bpb, new_data;
2000 size_t nbits;
2001 struct ATTRIB *b;
2002 struct ATTR_LIST_ENTRY *le = NULL;
2003 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2004
2005 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2006 NULL, NULL);
2007
2008 if (!b)
2009 return -ENOENT;
2010
2011 if (!b->non_res) {
2012 unsigned long pos;
2013 const unsigned long *bm = resident_data(b);
2014
2015 nbits = le32_to_cpu(b->res.data_size) * 8;
2016
2017 if (bit >= nbits)
2018 return 0;
2019
2020 pos = find_next_bit(bm, nbits, bit);
2021 if (pos < nbits)
2022 return 0;
2023 } else {
2024 size_t used = MINUS_ONE_T;
2025
2026 nbits = le64_to_cpu(b->nres.data_size) * 8;
2027
2028 if (bit >= nbits)
2029 return 0;
2030
2031 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2032 if (err)
2033 return err;
2034
2035 if (used != MINUS_ONE_T)
2036 return 0;
2037 }
2038
2039 new_data = (u64)bit << indx->index_bits;
2040
2041 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2042 &indx->alloc_run, new_data, &new_data, false, NULL);
2043 if (err)
2044 return err;
2045
2046 bpb = bitmap_size(bit);
2047 if (bpb * 8 == nbits)
2048 return 0;
2049
2050 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2051 &indx->bitmap_run, bpb, &bpb, false, NULL);
2052
2053 return err;
2054}
2055
2056static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2057 const struct NTFS_DE *e, bool trim)
2058{
2059 int err;
2060 struct indx_node *n;
2061 struct INDEX_HDR *hdr;
2062 CLST vbn = de_get_vbn(e);
2063 size_t i;
2064
2065 err = indx_read(indx, ni, vbn, &n);
2066 if (err)
2067 return err;
2068
2069 hdr = &n->index->ihdr;
2070 /* First, recurse into the children, if any.*/
2071 if (hdr_has_subnode(hdr)) {
2072 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2073 indx_free_children(indx, ni, e, false);
2074 if (de_is_last(e))
2075 break;
2076 }
2077 }
2078
2079 put_indx_node(n);
2080
2081 i = vbn >> indx->idx2vbn_bits;
2082 /* We've gotten rid of the children; add this buffer to the free list. */
2083 indx_mark_free(indx, ni, i);
2084
2085 if (!trim)
2086 return 0;
2087
2088 /*
2089 * If there are no used indexes after current free index
2090 * then we can truncate allocation and bitmap
2091 * Use bitmap to estimate the case
2092 */
2093 indx_shrink(indx, ni, i + 1);
2094 return 0;
2095}
2096
2097/*
2098 * indx_get_entry_to_replace
2099 *
2100 * finds a replacement entry for a deleted entry
2101 * always returns a node entry:
2102 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn
2103 */
2104static int indx_get_entry_to_replace(struct ntfs_index *indx,
2105 struct ntfs_inode *ni,
2106 const struct NTFS_DE *de_next,
2107 struct NTFS_DE **de_to_replace,
2108 struct ntfs_fnd *fnd)
2109{
2110 int err;
2111 int level = -1;
2112 CLST vbn;
2113 struct NTFS_DE *e, *te, *re;
2114 struct indx_node *n;
2115 struct INDEX_BUFFER *ib;
2116
2117 *de_to_replace = NULL;
2118
2119 /* Find first leaf entry down from de_next */
2120 vbn = de_get_vbn(de_next);
2121 for (;;) {
2122 n = NULL;
2123 err = indx_read(indx, ni, vbn, &n);
2124 if (err)
2125 goto out;
2126
2127 e = hdr_first_de(&n->index->ihdr);
2128 fnd_push(fnd, n, e);
2129
2130 if (!de_is_last(e)) {
2131 /*
2132 * This buffer is non-empty, so its first entry could be used as the
2133 * replacement entry.
2134 */
2135 level = fnd->level - 1;
2136 }
2137
2138 if (!de_has_vcn(e))
2139 break;
2140
2141 /* This buffer is a node. Continue to go down */
2142 vbn = de_get_vbn(e);
2143 }
2144
2145 if (level == -1)
2146 goto out;
2147
2148 n = fnd->nodes[level];
2149 te = hdr_first_de(&n->index->ihdr);
2150 /* Copy the candidate entry into the replacement entry buffer. */
2151 re = ntfs_malloc(le16_to_cpu(te->size) + sizeof(u64));
2152 if (!re) {
2153 err = -ENOMEM;
2154 goto out;
2155 }
2156
2157 *de_to_replace = re;
2158 memcpy(re, te, le16_to_cpu(te->size));
2159
2160 if (!de_has_vcn(re)) {
2161 /*
2162 * The replacement entry we found doesn't have a sub_vcn. increase its size
2163 * to hold one.
2164 */
2165 le16_add_cpu(&re->size, sizeof(u64));
2166 re->flags |= NTFS_IE_HAS_SUBNODES;
2167 } else {
2168 /*
2169 * The replacement entry we found was a node entry, which means that all
2170 * its child buffers are empty. Return them to the free pool.
2171 */
2172 indx_free_children(indx, ni, te, true);
2173 }
2174
2175 /*
2176 * Expunge the replacement entry from its former location,
2177 * and then write that buffer.
2178 */
2179 ib = n->index;
2180 e = hdr_delete_de(&ib->ihdr, te);
2181
2182 fnd->de[level] = e;
2183 indx_write(indx, ni, n, 0);
2184
2185 /* Check to see if this action created an empty leaf. */
2186 if (ib_is_leaf(ib) && ib_is_empty(ib))
2187 return 0;
2188
2189out:
2190 fnd_clear(fnd);
2191 return err;
2192}
2193
2194/*
2195 * indx_delete_entry
2196 *
2197 * deletes an entry from the index.
2198 */
2199int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2200 const void *key, u32 key_len, const void *ctx)
2201{
2202 int err, diff;
2203 struct INDEX_ROOT *root;
2204 struct INDEX_HDR *hdr;
2205 struct ntfs_fnd *fnd, *fnd2;
2206 struct INDEX_BUFFER *ib;
2207 struct NTFS_DE *e, *re, *next, *prev, *me;
2208 struct indx_node *n, *n2d = NULL;
2209 __le64 sub_vbn;
2210 int level, level2;
2211 struct ATTRIB *attr;
2212 struct mft_inode *mi;
2213 u32 e_size, root_size, new_root_size;
2214 size_t trim_bit;
2215 const struct INDEX_NAMES *in;
2216
2217 fnd = fnd_get();
2218 if (!fnd) {
2219 err = -ENOMEM;
2220 goto out2;
2221 }
2222
2223 fnd2 = fnd_get();
2224 if (!fnd2) {
2225 err = -ENOMEM;
2226 goto out1;
2227 }
2228
2229 root = indx_get_root(indx, ni, &attr, &mi);
2230 if (!root) {
2231 err = -EINVAL;
2232 goto out;
2233 }
2234
2235 /* Locate the entry to remove. */
2236 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2237 if (err)
2238 goto out;
2239
2240 if (!e || diff) {
2241 err = -ENOENT;
2242 goto out;
2243 }
2244
2245 level = fnd->level;
2246
2247 if (level) {
2248 n = fnd->nodes[level - 1];
2249 e = fnd->de[level - 1];
2250 ib = n->index;
2251 hdr = &ib->ihdr;
2252 } else {
2253 hdr = &root->ihdr;
2254 e = fnd->root_de;
2255 n = NULL;
2256 }
2257
2258 e_size = le16_to_cpu(e->size);
2259
2260 if (!de_has_vcn_ex(e)) {
2261 /* The entry to delete is a leaf, so we can just rip it out */
2262 hdr_delete_de(hdr, e);
2263
2264 if (!level) {
2265 hdr->total = hdr->used;
2266
2267 /* Shrink resident root attribute */
2268 mi_resize_attr(mi, attr, 0 - e_size);
2269 goto out;
2270 }
2271
2272 indx_write(indx, ni, n, 0);
2273
2274 /*
2275 * Check to see if removing that entry made
2276 * the leaf empty.
2277 */
2278 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2279 fnd_pop(fnd);
2280 fnd_push(fnd2, n, e);
2281 }
2282 } else {
2283 /*
2284 * The entry we wish to delete is a node buffer, so we
2285 * have to find a replacement for it.
2286 */
2287 next = de_get_next(e);
2288
2289 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2290 if (err)
2291 goto out;
2292
2293 if (re) {
2294 de_set_vbn_le(re, de_get_vbn_le(e));
2295 hdr_delete_de(hdr, e);
2296
2297 err = level ? indx_insert_into_buffer(indx, ni, root,
2298 re, ctx,
2299 fnd->level - 1,
2300 fnd)
2301 : indx_insert_into_root(indx, ni, re, e,
2302 ctx, fnd);
2303 ntfs_free(re);
2304
2305 if (err)
2306 goto out;
2307 } else {
2308 /*
2309 * There is no replacement for the current entry.
2310 * This means that the subtree rooted at its node is empty,
2311 * and can be deleted, which turn means that the node can
2312 * just inherit the deleted entry sub_vcn
2313 */
2314 indx_free_children(indx, ni, next, true);
2315
2316 de_set_vbn_le(next, de_get_vbn_le(e));
2317 hdr_delete_de(hdr, e);
2318 if (level) {
2319 indx_write(indx, ni, n, 0);
2320 } else {
2321 hdr->total = hdr->used;
2322
2323 /* Shrink resident root attribute */
2324 mi_resize_attr(mi, attr, 0 - e_size);
2325 }
2326 }
2327 }
2328
2329 /* Delete a branch of tree */
2330 if (!fnd2 || !fnd2->level)
2331 goto out;
2332
2333 /* Reinit root 'cause it can be changed */
2334 root = indx_get_root(indx, ni, &attr, &mi);
2335 if (!root) {
2336 err = -EINVAL;
2337 goto out;
2338 }
2339
2340 n2d = NULL;
2341 sub_vbn = fnd2->nodes[0]->index->vbn;
2342 level2 = 0;
2343 level = fnd->level;
2344
2345 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2346
2347 /* Scan current level */
2348 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2349 if (!e) {
2350 err = -EINVAL;
2351 goto out;
2352 }
2353
2354 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2355 break;
2356
2357 if (de_is_last(e)) {
2358 e = NULL;
2359 break;
2360 }
2361 }
2362
2363 if (!e) {
2364 /* Do slow search from root */
2365 struct indx_node *in;
2366
2367 fnd_clear(fnd);
2368
2369 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2370 if (IS_ERR(in)) {
2371 err = PTR_ERR(in);
2372 goto out;
2373 }
2374
2375 if (in)
2376 fnd_push(fnd, in, NULL);
2377 }
2378
2379 /* Merge fnd2 -> fnd */
2380 for (level = 0; level < fnd2->level; level++) {
2381 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2382 fnd2->nodes[level] = NULL;
2383 }
2384 fnd2->level = 0;
2385
2386 hdr = NULL;
2387 for (level = fnd->level; level; level--) {
2388 struct indx_node *in = fnd->nodes[level - 1];
2389
2390 ib = in->index;
2391 if (ib_is_empty(ib)) {
2392 sub_vbn = ib->vbn;
2393 } else {
2394 hdr = &ib->ihdr;
2395 n2d = in;
2396 level2 = level;
2397 break;
2398 }
2399 }
2400
2401 if (!hdr)
2402 hdr = &root->ihdr;
2403
2404 e = hdr_first_de(hdr);
2405 if (!e) {
2406 err = -EINVAL;
2407 goto out;
2408 }
2409
2410 if (hdr != &root->ihdr || !de_is_last(e)) {
2411 prev = NULL;
2412 while (!de_is_last(e)) {
2413 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2414 break;
2415 prev = e;
2416 e = hdr_next_de(hdr, e);
2417 if (!e) {
2418 err = -EINVAL;
2419 goto out;
2420 }
2421 }
2422
2423 if (sub_vbn != de_get_vbn_le(e)) {
2424 /*
2425 * Didn't find the parent entry, although this buffer is the parent trail.
2426 * Something is corrupt.
2427 */
2428 err = -EINVAL;
2429 goto out;
2430 }
2431
2432 if (de_is_last(e)) {
2433 /*
2434 * Since we can't remove the end entry, we'll remove its
2435 * predecessor instead. This means we have to transfer the
2436 * predecessor's sub_vcn to the end entry.
2437 * Note: that this index block is not empty, so the
2438 * predecessor must exist
2439 */
2440 if (!prev) {
2441 err = -EINVAL;
2442 goto out;
2443 }
2444
2445 if (de_has_vcn(prev)) {
2446 de_set_vbn_le(e, de_get_vbn_le(prev));
2447 } else if (de_has_vcn(e)) {
2448 le16_sub_cpu(&e->size, sizeof(u64));
2449 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2450 le32_sub_cpu(&hdr->used, sizeof(u64));
2451 }
2452 e = prev;
2453 }
2454
2455 /*
2456 * Copy the current entry into a temporary buffer (stripping off its
2457 * down-pointer, if any) and delete it from the current buffer or root,
2458 * as appropriate.
2459 */
2460 e_size = le16_to_cpu(e->size);
2461 me = ntfs_memdup(e, e_size);
2462 if (!me) {
2463 err = -ENOMEM;
2464 goto out;
2465 }
2466
2467 if (de_has_vcn(me)) {
2468 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2469 le16_sub_cpu(&me->size, sizeof(u64));
2470 }
2471
2472 hdr_delete_de(hdr, e);
2473
2474 if (hdr == &root->ihdr) {
2475 level = 0;
2476 hdr->total = hdr->used;
2477
2478 /* Shrink resident root attribute */
2479 mi_resize_attr(mi, attr, 0 - e_size);
2480 } else {
2481 indx_write(indx, ni, n2d, 0);
2482 level = level2;
2483 }
2484
2485 /* Mark unused buffers as free */
2486 trim_bit = -1;
2487 for (; level < fnd->level; level++) {
2488 ib = fnd->nodes[level]->index;
2489 if (ib_is_empty(ib)) {
2490 size_t k = le64_to_cpu(ib->vbn) >>
2491 indx->idx2vbn_bits;
2492
2493 indx_mark_free(indx, ni, k);
2494 if (k < trim_bit)
2495 trim_bit = k;
2496 }
2497 }
2498
2499 fnd_clear(fnd);
2500 /*fnd->root_de = NULL;*/
2501
2502 /*
2503 * Re-insert the entry into the tree.
2504 * Find the spot the tree where we want to insert the new entry.
2505 */
2506 err = indx_insert_entry(indx, ni, me, ctx, fnd);
2507 ntfs_free(me);
2508 if (err)
2509 goto out;
2510
2511 if (trim_bit != -1)
2512 indx_shrink(indx, ni, trim_bit);
2513 } else {
2514 /*
2515 * This tree needs to be collapsed down to an empty root.
2516 * Recreate the index root as an empty leaf and free all the bits the
2517 * index allocation bitmap.
2518 */
2519 fnd_clear(fnd);
2520 fnd_clear(fnd2);
2521
2522 in = &s_index_names[indx->type];
2523
2524 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2525 &indx->alloc_run, 0, NULL, false, NULL);
2526 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2527 false, NULL);
2528 run_close(&indx->alloc_run);
2529
2530 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2531 &indx->bitmap_run, 0, NULL, false, NULL);
2532 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2533 false, NULL);
2534 run_close(&indx->bitmap_run);
2535
2536 root = indx_get_root(indx, ni, &attr, &mi);
2537 if (!root) {
2538 err = -EINVAL;
2539 goto out;
2540 }
2541
2542 root_size = le32_to_cpu(attr->res.data_size);
2543 new_root_size =
2544 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2545
2546 if (new_root_size != root_size &&
2547 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2548 err = -EINVAL;
2549 goto out;
2550 }
2551
2552 /* Fill first entry */
2553 e = (struct NTFS_DE *)(root + 1);
2554 e->ref.low = 0;
2555 e->ref.high = 0;
2556 e->ref.seq = 0;
2557 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2558 e->flags = NTFS_IE_LAST; // 0x02
2559 e->key_size = 0;
2560 e->res = 0;
2561
2562 hdr = &root->ihdr;
2563 hdr->flags = 0;
2564 hdr->used = hdr->total = cpu_to_le32(
2565 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2566 mi->dirty = true;
2567 }
2568
2569out:
2570 fnd_put(fnd2);
2571out1:
2572 fnd_put(fnd);
2573out2:
2574 return err;
2575}
2576
2577/*
2578 * Update duplicated information in directory entry
2579 * 'dup' - info from MFT record
2580 */
2581int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2582 const struct ATTR_FILE_NAME *fname,
2583 const struct NTFS_DUP_INFO *dup, int sync)
2584{
2585 int err, diff;
2586 struct NTFS_DE *e = NULL;
2587 struct ATTR_FILE_NAME *e_fname;
2588 struct ntfs_fnd *fnd;
2589 struct INDEX_ROOT *root;
2590 struct mft_inode *mi;
2591 struct ntfs_index *indx = &ni->dir;
2592
2593 fnd = fnd_get();
2594 if (!fnd) {
2595 err = -ENOMEM;
2596 goto out1;
2597 }
2598
2599 root = indx_get_root(indx, ni, NULL, &mi);
2600 if (!root) {
2601 err = -EINVAL;
2602 goto out;
2603 }
2604
2605 /* Find entry in directory */
2606 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2607 &diff, &e, fnd);
2608 if (err)
2609 goto out;
2610
2611 if (!e) {
2612 err = -EINVAL;
2613 goto out;
2614 }
2615
2616 if (diff) {
2617 err = -EINVAL;
2618 goto out;
2619 }
2620
2621 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2622
2623 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2624 /* nothing to update in index! Try to avoid this call */
2625 goto out;
2626 }
2627
2628 memcpy(&e_fname->dup, dup, sizeof(*dup));
2629
2630 if (fnd->level) {
2631 /* directory entry in index */
2632 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2633 } else {
2634 /* directory entry in directory MFT record */
2635 mi->dirty = true;
2636 if (sync)
2637 err = mi_write(mi, 1);
2638 else
2639 mark_inode_dirty(&ni->vfs_inode);
2640 }
2641
2642out:
2643 fnd_put(fnd);
2644
2645out1:
2646 return err;
2647}