Merge tag 'gfs2-v6.3-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[linux-block.git] / fs / ntfs3 / index.c
CommitLineData
82cae269
KK
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/buffer_head.h>
10#include <linux/fs.h>
ef929700 11#include <linux/kernel.h>
82cae269
KK
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20} s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24};
25
26/*
e8b8e97f
KA
27 * cmp_fnames - Compare two names in index.
28 *
82cae269 29 * if l1 != 0
e8b8e97f 30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
82cae269
KK
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
34static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36{
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
a3a956c7 50 both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
82cae269
KK
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
e8b8e97f 56 * try to compare it case sensitive.
82cae269
KK
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64}
65
e8b8e97f
KA
66/*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
82cae269
KK
69static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71{
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83}
84
e8b8e97f
KA
85/*
86 * cmp_sdh - $SDH of $Secure
87 */
82cae269
KK
88static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90{
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
e8b8e97f 101 /* First value is a hash value itself. */
82cae269
KK
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
e8b8e97f 107 /* Second value is security Id. */
82cae269
KK
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118}
119
e8b8e97f
KA
120/*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
82cae269
KK
123static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125{
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
e8b8e97f
KA
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
82cae269
KK
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
e8b8e97f
KA
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
82cae269
KK
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166}
167
168static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169{
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
abfeb2ee 186 break;
82cae269
KK
187 default:
188 break;
189 }
190
191 return NULL;
192}
193
194struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202};
203
204static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206{
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
e8b8e97f 240 /* Looks like filesystem error. */
82cae269
KK
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284}
285
286static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287{
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308out:
309 unlock_buffer(bh);
310 put_bh(bh);
311}
312
313/*
e8b8e97f 314 * indx_mark_used - Mark the bit @bit as used.
82cae269
KK
315 */
316static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318{
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
095d8ce6 326 __set_bit_le(bit - bbuf.bit, bbuf.buf);
82cae269
KK
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331}
332
333/*
e8b8e97f 334 * indx_mark_free - Mark the bit @bit as free.
82cae269
KK
335 */
336static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338{
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
095d8ce6 346 __clear_bit_le(bit - bbuf.bit, bbuf.buf);
82cae269
KK
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351}
352
353/*
e8b8e97f
KA
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
82cae269
KK
359 */
360static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365{
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
96de65a9
KK
434 ok = nbits > from ?
435 (*fn)((ulong *)bh->b_data, from, nbits, ret) :
436 false;
82cae269
KK
437 put_bh(bh);
438
439 if (ok) {
440 *ret += 8 * vbo;
441 return 0;
442 }
443
444 if (++vblock >= eblock) {
445 *ret = MINUS_ONE_T;
446 return 0;
447 }
448 }
449 blk = 0;
450 vcn_next = vcn + clen;
451 down_read(lock);
452 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
453 if (!ok)
454 vcn = vcn_next;
455 up_read(lock);
456 goto next_run;
457}
458
459static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460{
095d8ce6 461 size_t pos = find_next_zero_bit_le(buf, bits, bit);
82cae269
KK
462
463 if (pos >= bits)
464 return false;
465 *ret = pos;
466 return true;
467}
468
469/*
e8b8e97f 470 * indx_find_free - Look for free bit.
82cae269 471 *
e8b8e97f 472 * Return: -1 if no free bits.
82cae269
KK
473 */
474static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475 size_t *bit, struct ATTRIB **bitmap)
476{
477 struct ATTRIB *b;
478 struct ATTR_LIST_ENTRY *le = NULL;
479 const struct INDEX_NAMES *in = &s_index_names[indx->type];
480 int err;
481
482 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
483 NULL, NULL);
484
485 if (!b)
486 return -ENOENT;
487
488 *bitmap = b;
489 *bit = MINUS_ONE_T;
490
491 if (!b->non_res) {
492 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
095d8ce6 493 size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
82cae269
KK
494
495 if (pos < nbits)
496 *bit = pos;
497 } else {
498 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
499
500 if (err)
501 return err;
502 }
503
504 return 0;
505}
506
507static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508{
095d8ce6 509 size_t pos = find_next_bit_le(buf, bits, bit);
82cae269
KK
510
511 if (pos >= bits)
512 return false;
513 *ret = pos;
514 return true;
515}
516
517/*
e8b8e97f 518 * indx_used_bit - Look for used bit.
82cae269 519 *
e8b8e97f 520 * Return: MINUS_ONE_T if no used bits.
82cae269
KK
521 */
522int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
523{
524 struct ATTRIB *b;
525 struct ATTR_LIST_ENTRY *le = NULL;
526 size_t from = *bit;
527 const struct INDEX_NAMES *in = &s_index_names[indx->type];
528 int err;
529
530 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
531 NULL, NULL);
532
533 if (!b)
534 return -ENOENT;
535
536 *bit = MINUS_ONE_T;
537
538 if (!b->non_res) {
539 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
095d8ce6 540 size_t pos = find_next_bit_le(resident_data(b), nbits, from);
82cae269
KK
541
542 if (pos < nbits)
543 *bit = pos;
544 } else {
545 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
546 if (err)
547 return err;
548 }
549
550 return 0;
551}
552
553/*
554 * hdr_find_split
555 *
e8b8e97f
KA
556 * Find a point at which the index allocation buffer would like to be split.
557 * NOTE: This function should never return 'END' entry NULL returns on error.
82cae269
KK
558 */
559static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
560{
561 size_t o;
562 const struct NTFS_DE *e = hdr_first_de(hdr);
563 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
8c83a485 564 u16 esize;
82cae269
KK
565
566 if (!e || de_is_last(e))
567 return NULL;
568
8c83a485 569 esize = le16_to_cpu(e->size);
82cae269
KK
570 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571 const struct NTFS_DE *p = e;
572
573 e = Add2Ptr(hdr, o);
574
e8b8e97f 575 /* We must not return END entry. */
82cae269
KK
576 if (de_is_last(e))
577 return p;
578
579 esize = le16_to_cpu(e->size);
580 }
581
582 return e;
583}
584
585/*
e8b8e97f 586 * hdr_insert_head - Insert some entries at the beginning of the buffer.
82cae269 587 *
82cae269
KK
588 * It is used to insert entries into a newly-created buffer.
589 */
590static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591 const void *ins, u32 ins_bytes)
592{
593 u32 to_move;
594 struct NTFS_DE *e = hdr_first_de(hdr);
595 u32 used = le32_to_cpu(hdr->used);
596
597 if (!e)
598 return NULL;
599
600 /* Now we just make room for the inserted entries and jam it in. */
601 to_move = used - le32_to_cpu(hdr->de_off);
602 memmove(Add2Ptr(e, ins_bytes), e, to_move);
603 memcpy(e, ins, ins_bytes);
604 hdr->used = cpu_to_le32(used + ins_bytes);
605
606 return e;
607}
608
0e8235d2
KK
609/*
610 * index_hdr_check
611 *
612 * return true if INDEX_HDR is valid
613 */
614static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
615{
616 u32 end = le32_to_cpu(hdr->used);
617 u32 tot = le32_to_cpu(hdr->total);
618 u32 off = le32_to_cpu(hdr->de_off);
619
620 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621 off + sizeof(struct NTFS_DE) > end) {
622 /* incorrect index buffer. */
623 return false;
624 }
625
626 return true;
627}
628
629/*
630 * index_buf_check
631 *
632 * return true if INDEX_BUFFER seems is valid
633 */
634static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
635 const CLST *vbn)
636{
637 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638 u16 fo = le16_to_cpu(rhdr->fix_off);
639 u16 fn = le16_to_cpu(rhdr->fix_num);
640
641 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642 rhdr->sign != NTFS_INDX_SIGNATURE ||
643 fo < sizeof(struct INDEX_BUFFER)
644 /* Check index buffer vbn. */
645 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646 fo + fn * sizeof(short) >= bytes ||
647 fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648 /* incorrect index buffer. */
649 return false;
650 }
651
652 return index_hdr_check(&ib->ihdr,
653 bytes - offsetof(struct INDEX_BUFFER, ihdr));
654}
655
82cae269
KK
656void fnd_clear(struct ntfs_fnd *fnd)
657{
658 int i;
659
0e8235d2 660 for (i = fnd->level - 1; i >= 0; i--) {
82cae269
KK
661 struct indx_node *n = fnd->nodes[i];
662
663 if (!n)
664 continue;
665
666 put_indx_node(n);
667 fnd->nodes[i] = NULL;
668 }
669 fnd->level = 0;
670 fnd->root_de = NULL;
671}
672
673static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
674 struct NTFS_DE *e)
675{
07f4aa9d 676 int i = fnd->level;
82cae269 677
82cae269
KK
678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 return -EINVAL;
680 fnd->nodes[i] = n;
681 fnd->de[i] = e;
682 fnd->level += 1;
683 return 0;
684}
685
686static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687{
688 struct indx_node *n;
689 int i = fnd->level;
690
691 i -= 1;
692 n = fnd->nodes[i];
693 fnd->nodes[i] = NULL;
694 fnd->level = i;
695
696 return n;
697}
698
699static bool fnd_is_empty(struct ntfs_fnd *fnd)
700{
701 if (!fnd->level)
702 return !fnd->root_de;
703
704 return !fnd->de[fnd->level - 1];
705}
706
707/*
e8b8e97f 708 * hdr_find_e - Locate an entry the index buffer.
82cae269 709 *
82cae269
KK
710 * If no matching entry is found, it returns the first entry which is greater
711 * than the desired entry If the search key is greater than all the entries the
712 * buffer, it returns the 'end' entry. This function does a binary search of the
e8b8e97f
KA
713 * current index buffer, for the first entry that is <= to the search value.
714 *
715 * Return: NULL if error.
82cae269
KK
716 */
717static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 const struct INDEX_HDR *hdr, const void *key,
719 size_t key_len, const void *ctx, int *diff)
720{
8e692122 721 struct NTFS_DE *e, *found = NULL;
82cae269 722 NTFS_CMP_FUNC cmp = indx->cmp;
8e692122
KA
723 int min_idx = 0, mid_idx, max_idx = 0;
724 int diff2;
725 int table_size = 8;
82cae269
KK
726 u32 e_size, e_key_len;
727 u32 end = le32_to_cpu(hdr->used);
728 u32 off = le32_to_cpu(hdr->de_off);
b8c44949 729 u32 total = le32_to_cpu(hdr->total);
ef929700 730 u16 offs[128];
82cae269 731
162333ef 732fill_table:
b8c44949
Z
733 if (end > total)
734 return NULL;
735
162333ef
KA
736 if (off + sizeof(struct NTFS_DE) > end)
737 return NULL;
82cae269 738
82cae269
KK
739 e = Add2Ptr(hdr, off);
740 e_size = le16_to_cpu(e->size);
741
162333ef
KA
742 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
743 return NULL;
82cae269
KK
744
745 if (!de_is_last(e)) {
162333ef 746 offs[max_idx] = off;
82cae269 747 off += e_size;
82cae269 748
162333ef 749 max_idx++;
ef929700 750 if (max_idx < table_size)
162333ef 751 goto fill_table;
82cae269 752
162333ef
KA
753 max_idx--;
754 }
82cae269 755
162333ef
KA
756binary_search:
757 e_key_len = le16_to_cpu(e->key_size);
82cae269 758
162333ef
KA
759 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
760 if (diff2 > 0) {
761 if (found) {
762 min_idx = mid_idx + 1;
763 } else {
764 if (de_is_last(e))
765 return NULL;
82cae269 766
162333ef 767 max_idx = 0;
96de65a9 768 table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
162333ef 769 goto fill_table;
82cae269 770 }
162333ef
KA
771 } else if (diff2 < 0) {
772 if (found)
82cae269 773 max_idx = mid_idx - 1;
162333ef
KA
774 else
775 max_idx--;
82cae269 776
162333ef
KA
777 found = e;
778 } else {
779 *diff = 0;
780 return e;
82cae269
KK
781 }
782
162333ef
KA
783 if (min_idx > max_idx) {
784 *diff = -1;
785 return found;
786 }
82cae269 787
162333ef
KA
788 mid_idx = (min_idx + max_idx) >> 1;
789 e = Add2Ptr(hdr, offs[mid_idx]);
82cae269 790
162333ef 791 goto binary_search;
82cae269
KK
792}
793
794/*
e8b8e97f 795 * hdr_insert_de - Insert an index entry into the buffer.
82cae269 796 *
e8b8e97f 797 * 'before' should be a pointer previously returned from hdr_find_e.
82cae269
KK
798 */
799static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
800 struct INDEX_HDR *hdr,
801 const struct NTFS_DE *de,
802 struct NTFS_DE *before, const void *ctx)
803{
804 int diff;
805 size_t off = PtrOffset(hdr, before);
806 u32 used = le32_to_cpu(hdr->used);
807 u32 total = le32_to_cpu(hdr->total);
808 u16 de_size = le16_to_cpu(de->size);
809
e8b8e97f 810 /* First, check to see if there's enough room. */
82cae269
KK
811 if (used + de_size > total)
812 return NULL;
813
814 /* We know there's enough space, so we know we'll succeed. */
815 if (before) {
e8b8e97f 816 /* Check that before is inside Index. */
82cae269
KK
817 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
818 off + le16_to_cpu(before->size) > total) {
819 return NULL;
820 }
821 goto ok;
822 }
e8b8e97f 823 /* No insert point is applied. Get it manually. */
82cae269
KK
824 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
825 &diff);
826 if (!before)
827 return NULL;
828 off = PtrOffset(hdr, before);
829
830ok:
831 /* Now we just make room for the entry and jam it in. */
832 memmove(Add2Ptr(before, de_size), before, used - off);
833
834 hdr->used = cpu_to_le32(used + de_size);
835 memcpy(before, de, de_size);
836
837 return before;
838}
839
840/*
e8b8e97f 841 * hdr_delete_de - Remove an entry from the index buffer.
82cae269
KK
842 */
843static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
844 struct NTFS_DE *re)
845{
846 u32 used = le32_to_cpu(hdr->used);
847 u16 esize = le16_to_cpu(re->size);
848 u32 off = PtrOffset(hdr, re);
849 int bytes = used - (off + esize);
850
ab84eee4
ZH
851 /* check INDEX_HDR valid before using INDEX_HDR */
852 if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
853 return NULL;
854
82cae269
KK
855 if (off >= used || esize < sizeof(struct NTFS_DE) ||
856 bytes < sizeof(struct NTFS_DE))
857 return NULL;
858
859 hdr->used = cpu_to_le32(used - esize);
860 memmove(re, Add2Ptr(re, esize), bytes);
861
862 return re;
863}
864
865void indx_clear(struct ntfs_index *indx)
866{
867 run_close(&indx->alloc_run);
868 run_close(&indx->bitmap_run);
869}
870
871int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
872 const struct ATTRIB *attr, enum index_mutex_classed type)
873{
874 u32 t32;
875 const struct INDEX_ROOT *root = resident_data(attr);
876
0e8235d2
KK
877 t32 = le32_to_cpu(attr->res.data_size);
878 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
879 !index_hdr_check(&root->ihdr,
880 t32 - offsetof(struct INDEX_ROOT, ihdr))) {
881 goto out;
882 }
883
e8b8e97f 884 /* Check root fields. */
82cae269 885 if (!root->index_block_clst)
0e8235d2 886 goto out;
82cae269
KK
887
888 indx->type = type;
889 indx->idx2vbn_bits = __ffs(root->index_block_clst);
890
891 t32 = le32_to_cpu(root->index_block_size);
892 indx->index_bits = blksize_bits(t32);
893
e8b8e97f 894 /* Check index record size. */
82cae269 895 if (t32 < sbi->cluster_size) {
e8b8e97f 896 /* Index record is smaller than a cluster, use 512 blocks. */
82cae269 897 if (t32 != root->index_block_clst * SECTOR_SIZE)
0e8235d2 898 goto out;
82cae269 899
e8b8e97f 900 /* Check alignment to a cluster. */
82cae269
KK
901 if ((sbi->cluster_size >> SECTOR_SHIFT) &
902 (root->index_block_clst - 1)) {
0e8235d2 903 goto out;
82cae269
KK
904 }
905
906 indx->vbn2vbo_bits = SECTOR_SHIFT;
907 } else {
e8b8e97f 908 /* Index record must be a multiple of cluster size. */
82cae269 909 if (t32 != root->index_block_clst << sbi->cluster_bits)
0e8235d2 910 goto out;
82cae269
KK
911
912 indx->vbn2vbo_bits = sbi->cluster_bits;
913 }
914
915 init_rwsem(&indx->run_lock);
916
917 indx->cmp = get_cmp_func(root);
0e8235d2
KK
918 if (!indx->cmp)
919 goto out;
920
921 return 0;
922
923out:
924 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
925 return -EINVAL;
82cae269
KK
926}
927
928static struct indx_node *indx_new(struct ntfs_index *indx,
929 struct ntfs_inode *ni, CLST vbn,
930 const __le64 *sub_vbn)
931{
932 int err;
933 struct NTFS_DE *e;
934 struct indx_node *r;
935 struct INDEX_HDR *hdr;
936 struct INDEX_BUFFER *index;
937 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
938 u32 bytes = 1u << indx->index_bits;
939 u16 fn;
940 u32 eo;
941
195c52bd 942 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
943 if (!r)
944 return ERR_PTR(-ENOMEM);
945
195c52bd 946 index = kzalloc(bytes, GFP_NOFS);
82cae269 947 if (!index) {
195c52bd 948 kfree(r);
82cae269
KK
949 return ERR_PTR(-ENOMEM);
950 }
951
952 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
953
954 if (err) {
195c52bd
KA
955 kfree(index);
956 kfree(r);
82cae269
KK
957 return ERR_PTR(err);
958 }
959
e8b8e97f 960 /* Create header. */
82cae269
KK
961 index->rhdr.sign = NTFS_INDX_SIGNATURE;
962 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
963 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
964 index->rhdr.fix_num = cpu_to_le16(fn);
965 index->vbn = cpu_to_le64(vbn);
966 hdr = &index->ihdr;
fa3cacf5 967 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
82cae269
KK
968 hdr->de_off = cpu_to_le32(eo);
969
970 e = Add2Ptr(hdr, eo);
971
972 if (sub_vbn) {
973 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
974 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
975 hdr->used =
976 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
977 de_set_vbn_le(e, *sub_vbn);
978 hdr->flags = 1;
979 } else {
980 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
981 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
982 e->flags = NTFS_IE_LAST;
983 }
984
985 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
986
987 r->index = index;
988 return r;
989}
990
991struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
992 struct ATTRIB **attr, struct mft_inode **mi)
993{
994 struct ATTR_LIST_ENTRY *le = NULL;
995 struct ATTRIB *a;
996 const struct INDEX_NAMES *in = &s_index_names[indx->type];
30200ef8 997 struct INDEX_ROOT *root;
82cae269
KK
998
999 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1000 mi);
1001 if (!a)
1002 return NULL;
1003
1004 if (attr)
1005 *attr = a;
1006
08e8cf5f
EL
1007 root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1008
1009 /* length check */
30200ef8
KK
1010 if (root &&
1011 offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1012 le32_to_cpu(a->res.data_size)) {
08e8cf5f
EL
1013 return NULL;
1014 }
1015
1016 return root;
82cae269
KK
1017}
1018
1019static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1020 struct indx_node *node, int sync)
1021{
1022 struct INDEX_BUFFER *ib = node->index;
1023
1024 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1025}
1026
1027/*
e8b8e97f
KA
1028 * indx_read
1029 *
1030 * If ntfs_readdir calls this function
1031 * inode is shared locked and no ni_lock.
1032 * Use rw_semaphore for read/write access to alloc_run.
82cae269
KK
1033 */
1034int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1035 struct indx_node **node)
1036{
1037 int err;
1038 struct INDEX_BUFFER *ib;
1039 struct runs_tree *run = &indx->alloc_run;
1040 struct rw_semaphore *lock = &indx->run_lock;
1041 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1042 u32 bytes = 1u << indx->index_bits;
1043 struct indx_node *in = *node;
1044 const struct INDEX_NAMES *name;
1045
1046 if (!in) {
195c52bd 1047 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
1048 if (!in)
1049 return -ENOMEM;
1050 } else {
1051 nb_put(&in->nb);
1052 }
1053
1054 ib = in->index;
1055 if (!ib) {
195c52bd 1056 ib = kmalloc(bytes, GFP_NOFS);
82cae269
KK
1057 if (!ib) {
1058 err = -ENOMEM;
1059 goto out;
1060 }
1061 }
1062
1063 down_read(lock);
1064 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1065 up_read(lock);
1066 if (!err)
1067 goto ok;
1068
1069 if (err == -E_NTFS_FIXUP)
1070 goto ok;
1071
1072 if (err != -ENOENT)
1073 goto out;
1074
1075 name = &s_index_names[indx->type];
1076 down_write(lock);
1077 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1078 run, vbo, vbo + bytes);
1079 up_write(lock);
1080 if (err)
1081 goto out;
1082
1083 down_read(lock);
1084 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1085 up_read(lock);
1086 if (err == -E_NTFS_FIXUP)
1087 goto ok;
1088
1089 if (err)
1090 goto out;
1091
1092ok:
0e8235d2
KK
1093 if (!index_buf_check(ib, bytes, &vbn)) {
1094 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1095 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1096 err = -EINVAL;
1097 goto out;
1098 }
1099
82cae269
KK
1100 if (err == -E_NTFS_FIXUP) {
1101 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1102 err = 0;
1103 }
1104
4d42ecda 1105 /* check for index header length */
fc499245
KK
1106 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1107 bytes) {
4d42ecda
EL
1108 err = -EINVAL;
1109 goto out;
1110 }
1111
82cae269
KK
1112 in->index = ib;
1113 *node = in;
1114
1115out:
1116 if (ib != in->index)
195c52bd 1117 kfree(ib);
82cae269
KK
1118
1119 if (*node != in) {
1120 nb_put(&in->nb);
195c52bd 1121 kfree(in);
82cae269
KK
1122 }
1123
1124 return err;
1125}
1126
1127/*
e8b8e97f 1128 * indx_find - Scan NTFS directory for given entry.
82cae269
KK
1129 */
1130int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1131 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1132 const void *ctx, int *diff, struct NTFS_DE **entry,
1133 struct ntfs_fnd *fnd)
1134{
1135 int err;
1136 struct NTFS_DE *e;
82cae269
KK
1137 struct indx_node *node;
1138
1139 if (!root)
1140 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1141
1142 if (!root) {
b7b6160d
KK
1143 /* Should not happen. */
1144 return -EINVAL;
82cae269
KK
1145 }
1146
e8b8e97f 1147 /* Check cache. */
82cae269
KK
1148 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1149 if (e && !de_is_last(e) &&
1150 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1151 *entry = e;
1152 *diff = 0;
1153 return 0;
1154 }
1155
e8b8e97f 1156 /* Soft finder reset. */
82cae269
KK
1157 fnd_clear(fnd);
1158
e8b8e97f 1159 /* Lookup entry that is <= to the search value. */
b7b6160d 1160 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
82cae269
KK
1161 if (!e)
1162 return -EINVAL;
1163
d2846bf3 1164 fnd->root_de = e;
82cae269
KK
1165
1166 for (;;) {
1167 node = NULL;
b7b6160d
KK
1168 if (*diff >= 0 || !de_has_vcn_ex(e))
1169 break;
82cae269
KK
1170
1171 /* Read next level. */
1172 err = indx_read(indx, ni, de_get_vbn(e), &node);
96de65a9
KK
1173 if (err) {
1174 /* io error? */
b7b6160d 1175 return err;
96de65a9 1176 }
82cae269 1177
e8b8e97f 1178 /* Lookup entry that is <= to the search value. */
82cae269
KK
1179 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1180 diff);
1181 if (!e) {
82cae269 1182 put_indx_node(node);
b7b6160d 1183 return -EINVAL;
82cae269
KK
1184 }
1185
1186 fnd_push(fnd, node, e);
1187 }
1188
b7b6160d
KK
1189 *entry = e;
1190 return 0;
82cae269
KK
1191}
1192
1193int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1194 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1195 struct ntfs_fnd *fnd)
1196{
1197 int err;
1198 struct indx_node *n = NULL;
1199 struct NTFS_DE *e;
1200 size_t iter = 0;
1201 int level = fnd->level;
1202
1203 if (!*entry) {
e8b8e97f 1204 /* Start find. */
82cae269
KK
1205 e = hdr_first_de(&root->ihdr);
1206 if (!e)
1207 return 0;
1208 fnd_clear(fnd);
1209 fnd->root_de = e;
1210 } else if (!level) {
1211 if (de_is_last(fnd->root_de)) {
1212 *entry = NULL;
1213 return 0;
1214 }
1215
1216 e = hdr_next_de(&root->ihdr, fnd->root_de);
1217 if (!e)
1218 return -EINVAL;
1219 fnd->root_de = e;
1220 } else {
1221 n = fnd->nodes[level - 1];
1222 e = fnd->de[level - 1];
1223
1224 if (de_is_last(e))
1225 goto pop_level;
1226
1227 e = hdr_next_de(&n->index->ihdr, e);
1228 if (!e)
1229 return -EINVAL;
1230
1231 fnd->de[level - 1] = e;
1232 }
1233
e8b8e97f 1234 /* Just to avoid tree cycle. */
82cae269
KK
1235next_iter:
1236 if (iter++ >= 1000)
1237 return -EINVAL;
1238
1239 while (de_has_vcn_ex(e)) {
1240 if (le16_to_cpu(e->size) <
1241 sizeof(struct NTFS_DE) + sizeof(u64)) {
1242 if (n) {
1243 fnd_pop(fnd);
195c52bd 1244 kfree(n);
82cae269
KK
1245 }
1246 return -EINVAL;
1247 }
1248
e8b8e97f 1249 /* Read next level. */
82cae269
KK
1250 err = indx_read(indx, ni, de_get_vbn(e), &n);
1251 if (err)
1252 return err;
1253
e8b8e97f 1254 /* Try next level. */
82cae269
KK
1255 e = hdr_first_de(&n->index->ihdr);
1256 if (!e) {
195c52bd 1257 kfree(n);
82cae269
KK
1258 return -EINVAL;
1259 }
1260
1261 fnd_push(fnd, n, e);
1262 }
1263
1264 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1265 *entry = e;
1266 return 0;
1267 }
1268
1269pop_level:
1270 for (;;) {
1271 if (!de_is_last(e))
1272 goto next_iter;
1273
e8b8e97f 1274 /* Pop one level. */
82cae269
KK
1275 if (n) {
1276 fnd_pop(fnd);
195c52bd 1277 kfree(n);
82cae269
KK
1278 }
1279
1280 level = fnd->level;
1281
1282 if (level) {
1283 n = fnd->nodes[level - 1];
1284 e = fnd->de[level - 1];
1285 } else if (fnd->root_de) {
1286 n = NULL;
1287 e = fnd->root_de;
1288 fnd->root_de = NULL;
1289 } else {
1290 *entry = NULL;
1291 return 0;
1292 }
1293
1294 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1295 *entry = e;
1296 if (!fnd->root_de)
1297 fnd->root_de = e;
1298 return 0;
1299 }
1300 }
1301}
1302
1303int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1304 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1305 size_t *off, struct ntfs_fnd *fnd)
1306{
1307 int err;
1308 struct indx_node *n = NULL;
1309 struct NTFS_DE *e = NULL;
1310 struct NTFS_DE *e2;
1311 size_t bit;
1312 CLST next_used_vbn;
1313 CLST next_vbn;
1314 u32 record_size = ni->mi.sbi->record_size;
1315
e8b8e97f 1316 /* Use non sorted algorithm. */
82cae269 1317 if (!*entry) {
e8b8e97f 1318 /* This is the first call. */
82cae269
KK
1319 e = hdr_first_de(&root->ihdr);
1320 if (!e)
1321 return 0;
1322 fnd_clear(fnd);
1323 fnd->root_de = e;
1324
e8b8e97f 1325 /* The first call with setup of initial element. */
82cae269
KK
1326 if (*off >= record_size) {
1327 next_vbn = (((*off - record_size) >> indx->index_bits))
1328 << indx->idx2vbn_bits;
e8b8e97f 1329 /* Jump inside cycle 'for'. */
82cae269
KK
1330 goto next;
1331 }
1332
e8b8e97f 1333 /* Start enumeration from root. */
82cae269
KK
1334 *off = 0;
1335 } else if (!fnd->root_de)
1336 return -EINVAL;
1337
1338 for (;;) {
e8b8e97f 1339 /* Check if current entry can be used. */
82cae269
KK
1340 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1341 goto ok;
1342
1343 if (!fnd->level) {
e8b8e97f 1344 /* Continue to enumerate root. */
82cae269
KK
1345 if (!de_is_last(fnd->root_de)) {
1346 e = hdr_next_de(&root->ihdr, fnd->root_de);
1347 if (!e)
1348 return -EINVAL;
1349 fnd->root_de = e;
1350 continue;
1351 }
1352
e8b8e97f 1353 /* Start to enumerate indexes from 0. */
82cae269
KK
1354 next_vbn = 0;
1355 } else {
e8b8e97f 1356 /* Continue to enumerate indexes. */
82cae269
KK
1357 e2 = fnd->de[fnd->level - 1];
1358
1359 n = fnd->nodes[fnd->level - 1];
1360
1361 if (!de_is_last(e2)) {
1362 e = hdr_next_de(&n->index->ihdr, e2);
1363 if (!e)
1364 return -EINVAL;
1365 fnd->de[fnd->level - 1] = e;
1366 continue;
1367 }
1368
e8b8e97f 1369 /* Continue with next index. */
82cae269
KK
1370 next_vbn = le64_to_cpu(n->index->vbn) +
1371 root->index_block_clst;
1372 }
1373
1374next:
e8b8e97f 1375 /* Release current index. */
82cae269
KK
1376 if (n) {
1377 fnd_pop(fnd);
1378 put_indx_node(n);
1379 n = NULL;
1380 }
1381
e8b8e97f 1382 /* Skip all free indexes. */
82cae269
KK
1383 bit = next_vbn >> indx->idx2vbn_bits;
1384 err = indx_used_bit(indx, ni, &bit);
1385 if (err == -ENOENT || bit == MINUS_ONE_T) {
e8b8e97f 1386 /* No used indexes. */
82cae269
KK
1387 *entry = NULL;
1388 return 0;
1389 }
1390
1391 next_used_vbn = bit << indx->idx2vbn_bits;
1392
e8b8e97f 1393 /* Read buffer into memory. */
82cae269
KK
1394 err = indx_read(indx, ni, next_used_vbn, &n);
1395 if (err)
1396 return err;
1397
1398 e = hdr_first_de(&n->index->ihdr);
1399 fnd_push(fnd, n, e);
1400 if (!e)
1401 return -EINVAL;
1402 }
1403
1404ok:
e8b8e97f 1405 /* Return offset to restore enumerator if necessary. */
82cae269 1406 if (!n) {
e8b8e97f 1407 /* 'e' points in root, */
82cae269
KK
1408 *off = PtrOffset(&root->ihdr, e);
1409 } else {
e8b8e97f 1410 /* 'e' points in index, */
82cae269
KK
1411 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1412 record_size + PtrOffset(&n->index->ihdr, e);
1413 }
1414
1415 *entry = e;
1416 return 0;
1417}
1418
1419/*
e8b8e97f 1420 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
82cae269
KK
1421 */
1422static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1423 CLST *vbn)
1424{
0327c6d0 1425 int err;
82cae269
KK
1426 struct ntfs_sb_info *sbi = ni->mi.sbi;
1427 struct ATTRIB *bitmap;
1428 struct ATTRIB *alloc;
1429 u32 data_size = 1u << indx->index_bits;
1430 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1431 CLST len = alloc_size >> sbi->cluster_bits;
1432 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1433 CLST alen;
1434 struct runs_tree run;
1435
1436 run_init(&run);
1437
c380b52f
KK
1438 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1439 &alen, 0, NULL, NULL);
82cae269
KK
1440 if (err)
1441 goto out;
1442
1443 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
c1e0ab37 1444 &run, 0, len, 0, &alloc, NULL, NULL);
82cae269
KK
1445 if (err)
1446 goto out1;
1447
1448 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1449
1450 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
78ab59fe 1451 in->name_len, &bitmap, NULL, NULL);
82cae269
KK
1452 if (err)
1453 goto out2;
1454
1455 if (in->name == I30_NAME) {
1456 ni->vfs_inode.i_size = data_size;
1457 inode_set_bytes(&ni->vfs_inode, alloc_size);
1458 }
1459
1460 memcpy(&indx->alloc_run, &run, sizeof(run));
1461
1462 *vbn = 0;
1463
1464 return 0;
1465
1466out2:
78ab59fe 1467 mi_remove_attr(NULL, &ni->mi, alloc);
82cae269
KK
1468
1469out1:
1470 run_deallocate(sbi, &run, false);
1471
1472out:
1473 return err;
1474}
1475
1476/*
e8b8e97f 1477 * indx_add_allocate - Add clusters to index.
82cae269
KK
1478 */
1479static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1480 CLST *vbn)
1481{
1482 int err;
1483 size_t bit;
1484 u64 data_size;
1485 u64 bmp_size, bmp_size_v;
1486 struct ATTRIB *bmp, *alloc;
1487 struct mft_inode *mi;
1488 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1489
1490 err = indx_find_free(indx, ni, &bit, &bmp);
1491 if (err)
1492 goto out1;
1493
1494 if (bit != MINUS_ONE_T) {
1495 bmp = NULL;
1496 } else {
1497 if (bmp->non_res) {
1498 bmp_size = le64_to_cpu(bmp->nres.data_size);
1499 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1500 } else {
1501 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1502 }
1503
1504 bit = bmp_size << 3;
1505 }
1506
1507 data_size = (u64)(bit + 1) << indx->index_bits;
1508
1509 if (bmp) {
e8b8e97f 1510 /* Increase bitmap. */
82cae269
KK
1511 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1512 &indx->bitmap_run, bitmap_size(bit + 1),
1513 NULL, true, NULL);
1514 if (err)
1515 goto out1;
1516 }
1517
1518 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1519 NULL, &mi);
1520 if (!alloc) {
04810f00 1521 err = -EINVAL;
82cae269
KK
1522 if (bmp)
1523 goto out2;
1524 goto out1;
1525 }
1526
e8b8e97f 1527 /* Increase allocation. */
82cae269
KK
1528 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1529 &indx->alloc_run, data_size, &data_size, true,
1530 NULL);
1531 if (err) {
1532 if (bmp)
1533 goto out2;
1534 goto out1;
1535 }
1536
ad26a9c8
KK
1537 if (in->name == I30_NAME)
1538 ni->vfs_inode.i_size = data_size;
1539
82cae269
KK
1540 *vbn = bit << indx->idx2vbn_bits;
1541
1542 return 0;
1543
1544out2:
e8b8e97f 1545 /* Ops. No space? */
82cae269
KK
1546 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1547 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1548
1549out1:
1550 return err;
1551}
1552
1553/*
e8b8e97f 1554 * indx_insert_into_root - Attempt to insert an entry into the index root.
82cae269 1555 *
78ab59fe 1556 * @undo - True if we undoing previous remove.
82cae269
KK
1557 * If necessary, it will twiddle the index b-tree.
1558 */
1559static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1560 const struct NTFS_DE *new_de,
1561 struct NTFS_DE *root_de, const void *ctx,
78ab59fe 1562 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1563{
1564 int err = 0;
1565 struct NTFS_DE *e, *e0, *re;
1566 struct mft_inode *mi;
1567 struct ATTRIB *attr;
82cae269
KK
1568 struct INDEX_HDR *hdr;
1569 struct indx_node *n;
1570 CLST new_vbn;
1571 __le64 *sub_vbn, t_vbn;
1572 u16 new_de_size;
78ab59fe 1573 u32 hdr_used, hdr_total, asize, to_move;
82cae269
KK
1574 u32 root_size, new_root_size;
1575 struct ntfs_sb_info *sbi;
1576 int ds_root;
b8155e95 1577 struct INDEX_ROOT *root, *a_root;
82cae269 1578
e8b8e97f 1579 /* Get the record this root placed in. */
82cae269
KK
1580 root = indx_get_root(indx, ni, &attr, &mi);
1581 if (!root)
b8155e95 1582 return -EINVAL;
82cae269
KK
1583
1584 /*
1585 * Try easy case:
78ab59fe
KK
1586 * hdr_insert_de will succeed if there's
1587 * room the root for the new entry.
82cae269
KK
1588 */
1589 hdr = &root->ihdr;
1590 sbi = ni->mi.sbi;
82cae269
KK
1591 new_de_size = le16_to_cpu(new_de->size);
1592 hdr_used = le32_to_cpu(hdr->used);
1593 hdr_total = le32_to_cpu(hdr->total);
1594 asize = le32_to_cpu(attr->size);
1595 root_size = le32_to_cpu(attr->res.data_size);
1596
1597 ds_root = new_de_size + hdr_used - hdr_total;
1598
78ab59fe
KK
1599 /* If 'undo' is set then reduce requirements. */
1600 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1601 mi_resize_attr(mi, attr, ds_root)) {
82cae269
KK
1602 hdr->total = cpu_to_le32(hdr_total + ds_root);
1603 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1604 WARN_ON(!e);
1605 fnd_clear(fnd);
1606 fnd->root_de = e;
1607
1608 return 0;
1609 }
1610
e8b8e97f 1611 /* Make a copy of root attribute to restore if error. */
195c52bd 1612 a_root = kmemdup(attr, asize, GFP_NOFS);
b8155e95
DC
1613 if (!a_root)
1614 return -ENOMEM;
82cae269 1615
e8b8e97f
KA
1616 /*
1617 * Copy all the non-end entries from
1618 * the index root to the new buffer.
1619 */
82cae269
KK
1620 to_move = 0;
1621 e0 = hdr_first_de(hdr);
1622
e8b8e97f 1623 /* Calculate the size to copy. */
82cae269
KK
1624 for (e = e0;; e = hdr_next_de(hdr, e)) {
1625 if (!e) {
1626 err = -EINVAL;
b8155e95 1627 goto out_free_root;
82cae269
KK
1628 }
1629
1630 if (de_is_last(e))
1631 break;
1632 to_move += le16_to_cpu(e->size);
1633 }
1634
82cae269
KK
1635 if (!to_move) {
1636 re = NULL;
1637 } else {
195c52bd 1638 re = kmemdup(e0, to_move, GFP_NOFS);
82cae269
KK
1639 if (!re) {
1640 err = -ENOMEM;
b8155e95 1641 goto out_free_root;
82cae269
KK
1642 }
1643 }
1644
1645 sub_vbn = NULL;
1646 if (de_has_vcn(e)) {
1647 t_vbn = de_get_vbn_le(e);
1648 sub_vbn = &t_vbn;
1649 }
1650
1651 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1652 sizeof(u64);
1653 ds_root = new_root_size - root_size;
1654
78ab59fe 1655 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
e8b8e97f 1656 /* Make root external. */
82cae269 1657 err = -EOPNOTSUPP;
b8155e95 1658 goto out_free_re;
82cae269
KK
1659 }
1660
1661 if (ds_root)
1662 mi_resize_attr(mi, attr, ds_root);
1663
e8b8e97f 1664 /* Fill first entry (vcn will be set later). */
82cae269
KK
1665 e = (struct NTFS_DE *)(root + 1);
1666 memset(e, 0, sizeof(struct NTFS_DE));
1667 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1668 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1669
1670 hdr->flags = 1;
1671 hdr->used = hdr->total =
1672 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1673
1674 fnd->root_de = hdr_first_de(hdr);
1675 mi->dirty = true;
1676
e8b8e97f 1677 /* Create alloc and bitmap attributes (if not). */
96de65a9
KK
1678 err = run_is_empty(&indx->alloc_run) ?
1679 indx_create_allocate(indx, ni, &new_vbn) :
1680 indx_add_allocate(indx, ni, &new_vbn);
82cae269 1681
e8b8e97f 1682 /* Layout of record may be changed, so rescan root. */
82cae269
KK
1683 root = indx_get_root(indx, ni, &attr, &mi);
1684 if (!root) {
e8b8e97f 1685 /* Bug? */
82cae269
KK
1686 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1687 err = -EINVAL;
b8155e95 1688 goto out_free_re;
82cae269
KK
1689 }
1690
1691 if (err) {
e8b8e97f 1692 /* Restore root. */
0e8235d2 1693 if (mi_resize_attr(mi, attr, -ds_root)) {
82cae269 1694 memcpy(attr, a_root, asize);
0e8235d2 1695 } else {
e8b8e97f 1696 /* Bug? */
82cae269
KK
1697 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1698 }
b8155e95 1699 goto out_free_re;
82cae269
KK
1700 }
1701
1702 e = (struct NTFS_DE *)(root + 1);
1703 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1704 mi->dirty = true;
1705
e8b8e97f 1706 /* Now we can create/format the new buffer and copy the entries into. */
82cae269
KK
1707 n = indx_new(indx, ni, new_vbn, sub_vbn);
1708 if (IS_ERR(n)) {
1709 err = PTR_ERR(n);
b8155e95 1710 goto out_free_re;
82cae269
KK
1711 }
1712
1713 hdr = &n->index->ihdr;
1714 hdr_used = le32_to_cpu(hdr->used);
1715 hdr_total = le32_to_cpu(hdr->total);
1716
e8b8e97f 1717 /* Copy root entries into new buffer. */
82cae269
KK
1718 hdr_insert_head(hdr, re, to_move);
1719
e8b8e97f 1720 /* Update bitmap attribute. */
82cae269
KK
1721 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1722
e8b8e97f 1723 /* Check if we can insert new entry new index buffer. */
82cae269
KK
1724 if (hdr_used + new_de_size > hdr_total) {
1725 /*
e8b8e97f 1726 * This occurs if MFT record is the same or bigger than index
82cae269 1727 * buffer. Move all root new index and have no space to add
e8b8e97f
KA
1728 * new entry classic case when MFT record is 1K and index
1729 * buffer 4K the problem should not occurs.
82cae269 1730 */
195c52bd 1731 kfree(re);
82cae269
KK
1732 indx_write(indx, ni, n, 0);
1733
1734 put_indx_node(n);
1735 fnd_clear(fnd);
78ab59fe 1736 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
b8155e95 1737 goto out_free_root;
82cae269
KK
1738 }
1739
1740 /*
e8b8e97f
KA
1741 * Now root is a parent for new index buffer.
1742 * Insert NewEntry a new buffer.
82cae269
KK
1743 */
1744 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1745 if (!e) {
1746 err = -EINVAL;
b8155e95 1747 goto out_put_n;
82cae269
KK
1748 }
1749 fnd_push(fnd, n, e);
1750
e8b8e97f 1751 /* Just write updates index into disk. */
82cae269
KK
1752 indx_write(indx, ni, n, 0);
1753
1754 n = NULL;
1755
b8155e95
DC
1756out_put_n:
1757 put_indx_node(n);
1758out_free_re:
195c52bd 1759 kfree(re);
b8155e95 1760out_free_root:
195c52bd 1761 kfree(a_root);
82cae269
KK
1762 return err;
1763}
1764
1765/*
1766 * indx_insert_into_buffer
1767 *
e8b8e97f 1768 * Attempt to insert an entry into an Index Allocation Buffer.
82cae269
KK
1769 * If necessary, it will split the buffer.
1770 */
1771static int
1772indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1773 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1774 const void *ctx, int level, struct ntfs_fnd *fnd)
1775{
1776 int err;
1777 const struct NTFS_DE *sp;
604a9d27
L
1778 struct NTFS_DE *e, *de_t, *up_e;
1779 struct indx_node *n2;
82cae269
KK
1780 struct indx_node *n1 = fnd->nodes[level];
1781 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1782 struct INDEX_HDR *hdr2;
63e92a0c 1783 u32 to_copy, used, used1;
82cae269
KK
1784 CLST new_vbn;
1785 __le64 t_vbn, *sub_vbn;
1786 u16 sp_size;
63e92a0c 1787 void *hdr1_saved = NULL;
82cae269 1788
e8b8e97f 1789 /* Try the most easy case. */
82cae269
KK
1790 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1791 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1792 fnd->de[level] = e;
1793 if (e) {
e8b8e97f 1794 /* Just write updated index into disk. */
82cae269
KK
1795 indx_write(indx, ni, n1, 0);
1796 return 0;
1797 }
1798
1799 /*
1800 * No space to insert into buffer. Split it.
1801 * To split we:
1802 * - Save split point ('cause index buffers will be changed)
1803 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1804 * - Remove all entries (sp including) from TargetBuffer
1805 * - Insert NewEntry into left or right buffer (depending on sp <=>
1806 * NewEntry)
1807 * - Insert sp into parent buffer (or root)
1808 * - Make sp a parent for new buffer
1809 */
1810 sp = hdr_find_split(hdr1);
1811 if (!sp)
1812 return -EINVAL;
1813
1814 sp_size = le16_to_cpu(sp->size);
195c52bd 1815 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
82cae269
KK
1816 if (!up_e)
1817 return -ENOMEM;
1818 memcpy(up_e, sp, sp_size);
1819
63e92a0c
KK
1820 used1 = le32_to_cpu(hdr1->used);
1821 hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS);
1822 if (!hdr1_saved) {
1823 err = -ENOMEM;
1824 goto out;
1825 }
1826
82cae269
KK
1827 if (!hdr1->flags) {
1828 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1829 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1830 sub_vbn = NULL;
1831 } else {
1832 t_vbn = de_get_vbn_le(up_e);
1833 sub_vbn = &t_vbn;
1834 }
1835
1836 /* Allocate on disk a new index allocation buffer. */
1837 err = indx_add_allocate(indx, ni, &new_vbn);
1838 if (err)
1839 goto out;
1840
e8b8e97f 1841 /* Allocate and format memory a new index buffer. */
82cae269
KK
1842 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1843 if (IS_ERR(n2)) {
1844 err = PTR_ERR(n2);
1845 goto out;
1846 }
1847
1848 hdr2 = &n2->index->ihdr;
1849
e8b8e97f 1850 /* Make sp a parent for new buffer. */
82cae269
KK
1851 de_set_vbn(up_e, new_vbn);
1852
e8b8e97f 1853 /* Copy all the entries <= sp into the new buffer. */
82cae269
KK
1854 de_t = hdr_first_de(hdr1);
1855 to_copy = PtrOffset(de_t, sp);
1856 hdr_insert_head(hdr2, de_t, to_copy);
1857
e8b8e97f 1858 /* Remove all entries (sp including) from hdr1. */
63e92a0c 1859 used = used1 - to_copy - sp_size;
82cae269
KK
1860 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1861 hdr1->used = cpu_to_le32(used);
1862
e8b8e97f
KA
1863 /*
1864 * Insert new entry into left or right buffer
1865 * (depending on sp <=> new_de).
1866 */
82cae269
KK
1867 hdr_insert_de(indx,
1868 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1869 up_e + 1, le16_to_cpu(up_e->key_size),
96de65a9
KK
1870 ctx) < 0 ?
1871 hdr2 :
1872 hdr1,
82cae269
KK
1873 new_de, NULL, ctx);
1874
1875 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1876
1877 indx_write(indx, ni, n1, 0);
1878 indx_write(indx, ni, n2, 0);
1879
1880 put_indx_node(n2);
1881
1882 /*
e8b8e97f 1883 * We've finished splitting everybody, so we are ready to
82cae269
KK
1884 * insert the promoted entry into the parent.
1885 */
1886 if (!level) {
e8b8e97f 1887 /* Insert in root. */
78ab59fe 1888 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
82cae269
KK
1889 } else {
1890 /*
e8b8e97f
KA
1891 * The target buffer's parent is another index buffer.
1892 * TODO: Remove recursion.
82cae269
KK
1893 */
1894 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1895 level - 1, fnd);
63e92a0c
KK
1896 }
1897
1898 if (err) {
1899 /*
1900 * Undo critical operations.
1901 */
1902 indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits);
1903 memcpy(hdr1, hdr1_saved, used1);
1904 indx_write(indx, ni, n1, 0);
82cae269
KK
1905 }
1906
1907out:
195c52bd 1908 kfree(up_e);
63e92a0c 1909 kfree(hdr1_saved);
82cae269
KK
1910
1911 return err;
1912}
1913
1914/*
e8b8e97f 1915 * indx_insert_entry - Insert new entry into index.
78ab59fe
KK
1916 *
1917 * @undo - True if we undoing previous remove.
82cae269
KK
1918 */
1919int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1920 const struct NTFS_DE *new_de, const void *ctx,
78ab59fe 1921 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1922{
1923 int err;
1924 int diff;
1925 struct NTFS_DE *e;
1926 struct ntfs_fnd *fnd_a = NULL;
1927 struct INDEX_ROOT *root;
1928
1929 if (!fnd) {
1930 fnd_a = fnd_get();
1931 if (!fnd_a) {
1932 err = -ENOMEM;
1933 goto out1;
1934 }
1935 fnd = fnd_a;
1936 }
1937
1938 root = indx_get_root(indx, ni, NULL, NULL);
1939 if (!root) {
1940 err = -EINVAL;
1941 goto out;
1942 }
1943
1944 if (fnd_is_empty(fnd)) {
e8b8e97f
KA
1945 /*
1946 * Find the spot the tree where we want to
1947 * insert the new entry.
1948 */
82cae269
KK
1949 err = indx_find(indx, ni, root, new_de + 1,
1950 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1951 fnd);
1952 if (err)
1953 goto out;
1954
1955 if (!diff) {
1956 err = -EEXIST;
1957 goto out;
1958 }
1959 }
1960
1961 if (!fnd->level) {
e8b8e97f
KA
1962 /*
1963 * The root is also a leaf, so we'll insert the
1964 * new entry into it.
1965 */
82cae269 1966 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
78ab59fe 1967 fnd, undo);
82cae269 1968 } else {
e8b8e97f
KA
1969 /*
1970 * Found a leaf buffer, so we'll insert the new entry into it.
1971 */
82cae269
KK
1972 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1973 fnd->level - 1, fnd);
82cae269
KK
1974 }
1975
1976out:
1977 fnd_put(fnd_a);
1978out1:
1979 return err;
1980}
1981
1982/*
e8b8e97f 1983 * indx_find_buffer - Locate a buffer from the tree.
82cae269
KK
1984 */
1985static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1986 struct ntfs_inode *ni,
1987 const struct INDEX_ROOT *root,
1988 __le64 vbn, struct indx_node *n)
1989{
1990 int err;
1991 const struct NTFS_DE *e;
1992 struct indx_node *r;
1993 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1994
e8b8e97f 1995 /* Step 1: Scan one level. */
82cae269
KK
1996 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1997 if (!e)
1998 return ERR_PTR(-EINVAL);
1999
2000 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2001 return n;
2002
2003 if (de_is_last(e))
2004 break;
2005 }
2006
e8b8e97f 2007 /* Step2: Do recursion. */
82cae269
KK
2008 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2009 for (;;) {
2010 if (de_has_vcn_ex(e)) {
2011 err = indx_read(indx, ni, de_get_vbn(e), &n);
2012 if (err)
2013 return ERR_PTR(err);
2014
2015 r = indx_find_buffer(indx, ni, root, vbn, n);
2016 if (r)
2017 return r;
2018 }
2019
2020 if (de_is_last(e))
2021 break;
2022
2023 e = Add2Ptr(e, le16_to_cpu(e->size));
2024 }
2025
2026 return NULL;
2027}
2028
2029/*
e8b8e97f 2030 * indx_shrink - Deallocate unused tail indexes.
82cae269
KK
2031 */
2032static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2033 size_t bit)
2034{
2035 int err = 0;
2036 u64 bpb, new_data;
2037 size_t nbits;
2038 struct ATTRIB *b;
2039 struct ATTR_LIST_ENTRY *le = NULL;
2040 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2041
2042 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2043 NULL, NULL);
2044
2045 if (!b)
2046 return -ENOENT;
2047
2048 if (!b->non_res) {
2049 unsigned long pos;
2050 const unsigned long *bm = resident_data(b);
2051
71eeb6ac 2052 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
82cae269
KK
2053
2054 if (bit >= nbits)
2055 return 0;
2056
095d8ce6 2057 pos = find_next_bit_le(bm, nbits, bit);
82cae269
KK
2058 if (pos < nbits)
2059 return 0;
2060 } else {
2061 size_t used = MINUS_ONE_T;
2062
2063 nbits = le64_to_cpu(b->nres.data_size) * 8;
2064
2065 if (bit >= nbits)
2066 return 0;
2067
2068 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2069 if (err)
2070 return err;
2071
2072 if (used != MINUS_ONE_T)
2073 return 0;
2074 }
2075
2076 new_data = (u64)bit << indx->index_bits;
2077
2078 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2079 &indx->alloc_run, new_data, &new_data, false, NULL);
2080 if (err)
2081 return err;
2082
ad26a9c8
KK
2083 if (in->name == I30_NAME)
2084 ni->vfs_inode.i_size = new_data;
2085
82cae269
KK
2086 bpb = bitmap_size(bit);
2087 if (bpb * 8 == nbits)
2088 return 0;
2089
2090 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2091 &indx->bitmap_run, bpb, &bpb, false, NULL);
2092
2093 return err;
2094}
2095
2096static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2097 const struct NTFS_DE *e, bool trim)
2098{
2099 int err;
ae5a4e46 2100 struct indx_node *n = NULL;
82cae269
KK
2101 struct INDEX_HDR *hdr;
2102 CLST vbn = de_get_vbn(e);
2103 size_t i;
2104
2105 err = indx_read(indx, ni, vbn, &n);
2106 if (err)
2107 return err;
2108
2109 hdr = &n->index->ihdr;
e8b8e97f 2110 /* First, recurse into the children, if any. */
82cae269
KK
2111 if (hdr_has_subnode(hdr)) {
2112 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2113 indx_free_children(indx, ni, e, false);
2114 if (de_is_last(e))
2115 break;
2116 }
2117 }
2118
2119 put_indx_node(n);
2120
2121 i = vbn >> indx->idx2vbn_bits;
e8b8e97f
KA
2122 /*
2123 * We've gotten rid of the children; add this buffer to the free list.
2124 */
82cae269
KK
2125 indx_mark_free(indx, ni, i);
2126
2127 if (!trim)
2128 return 0;
2129
2130 /*
2131 * If there are no used indexes after current free index
e8b8e97f
KA
2132 * then we can truncate allocation and bitmap.
2133 * Use bitmap to estimate the case.
82cae269
KK
2134 */
2135 indx_shrink(indx, ni, i + 1);
2136 return 0;
2137}
2138
2139/*
2140 * indx_get_entry_to_replace
2141 *
e8b8e97f
KA
2142 * Find a replacement entry for a deleted entry.
2143 * Always returns a node entry:
2144 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
82cae269
KK
2145 */
2146static int indx_get_entry_to_replace(struct ntfs_index *indx,
2147 struct ntfs_inode *ni,
2148 const struct NTFS_DE *de_next,
2149 struct NTFS_DE **de_to_replace,
2150 struct ntfs_fnd *fnd)
2151{
2152 int err;
2153 int level = -1;
2154 CLST vbn;
2155 struct NTFS_DE *e, *te, *re;
2156 struct indx_node *n;
2157 struct INDEX_BUFFER *ib;
2158
2159 *de_to_replace = NULL;
2160
e8b8e97f 2161 /* Find first leaf entry down from de_next. */
82cae269
KK
2162 vbn = de_get_vbn(de_next);
2163 for (;;) {
2164 n = NULL;
2165 err = indx_read(indx, ni, vbn, &n);
2166 if (err)
2167 goto out;
2168
2169 e = hdr_first_de(&n->index->ihdr);
2170 fnd_push(fnd, n, e);
2171
2172 if (!de_is_last(e)) {
2173 /*
e8b8e97f
KA
2174 * This buffer is non-empty, so its first entry
2175 * could be used as the replacement entry.
82cae269
KK
2176 */
2177 level = fnd->level - 1;
2178 }
2179
2180 if (!de_has_vcn(e))
2181 break;
2182
e8b8e97f 2183 /* This buffer is a node. Continue to go down. */
82cae269
KK
2184 vbn = de_get_vbn(e);
2185 }
2186
2187 if (level == -1)
2188 goto out;
2189
2190 n = fnd->nodes[level];
2191 te = hdr_first_de(&n->index->ihdr);
2192 /* Copy the candidate entry into the replacement entry buffer. */
195c52bd 2193 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
82cae269
KK
2194 if (!re) {
2195 err = -ENOMEM;
2196 goto out;
2197 }
2198
2199 *de_to_replace = re;
2200 memcpy(re, te, le16_to_cpu(te->size));
2201
2202 if (!de_has_vcn(re)) {
2203 /*
e8b8e97f
KA
2204 * The replacement entry we found doesn't have a sub_vcn.
2205 * increase its size to hold one.
82cae269
KK
2206 */
2207 le16_add_cpu(&re->size, sizeof(u64));
2208 re->flags |= NTFS_IE_HAS_SUBNODES;
2209 } else {
2210 /*
e8b8e97f
KA
2211 * The replacement entry we found was a node entry, which
2212 * means that all its child buffers are empty. Return them
2213 * to the free pool.
82cae269
KK
2214 */
2215 indx_free_children(indx, ni, te, true);
2216 }
2217
2218 /*
2219 * Expunge the replacement entry from its former location,
2220 * and then write that buffer.
2221 */
2222 ib = n->index;
2223 e = hdr_delete_de(&ib->ihdr, te);
2224
2225 fnd->de[level] = e;
2226 indx_write(indx, ni, n, 0);
2227
07f4aa9d
KK
2228 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2229 /* An empty leaf. */
82cae269 2230 return 0;
07f4aa9d 2231 }
82cae269
KK
2232
2233out:
2234 fnd_clear(fnd);
2235 return err;
2236}
2237
2238/*
e8b8e97f 2239 * indx_delete_entry - Delete an entry from the index.
82cae269
KK
2240 */
2241int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2242 const void *key, u32 key_len, const void *ctx)
2243{
2244 int err, diff;
2245 struct INDEX_ROOT *root;
2246 struct INDEX_HDR *hdr;
2247 struct ntfs_fnd *fnd, *fnd2;
2248 struct INDEX_BUFFER *ib;
2249 struct NTFS_DE *e, *re, *next, *prev, *me;
2250 struct indx_node *n, *n2d = NULL;
2251 __le64 sub_vbn;
2252 int level, level2;
2253 struct ATTRIB *attr;
2254 struct mft_inode *mi;
2255 u32 e_size, root_size, new_root_size;
2256 size_t trim_bit;
2257 const struct INDEX_NAMES *in;
2258
2259 fnd = fnd_get();
2260 if (!fnd) {
2261 err = -ENOMEM;
2262 goto out2;
2263 }
2264
2265 fnd2 = fnd_get();
2266 if (!fnd2) {
2267 err = -ENOMEM;
2268 goto out1;
2269 }
2270
2271 root = indx_get_root(indx, ni, &attr, &mi);
2272 if (!root) {
2273 err = -EINVAL;
2274 goto out;
2275 }
2276
2277 /* Locate the entry to remove. */
2278 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2279 if (err)
2280 goto out;
2281
2282 if (!e || diff) {
2283 err = -ENOENT;
2284 goto out;
2285 }
2286
2287 level = fnd->level;
2288
2289 if (level) {
2290 n = fnd->nodes[level - 1];
2291 e = fnd->de[level - 1];
2292 ib = n->index;
2293 hdr = &ib->ihdr;
2294 } else {
2295 hdr = &root->ihdr;
2296 e = fnd->root_de;
2297 n = NULL;
2298 }
2299
2300 e_size = le16_to_cpu(e->size);
2301
2302 if (!de_has_vcn_ex(e)) {
e8b8e97f 2303 /* The entry to delete is a leaf, so we can just rip it out. */
82cae269
KK
2304 hdr_delete_de(hdr, e);
2305
2306 if (!level) {
2307 hdr->total = hdr->used;
2308
e8b8e97f 2309 /* Shrink resident root attribute. */
82cae269
KK
2310 mi_resize_attr(mi, attr, 0 - e_size);
2311 goto out;
2312 }
2313
2314 indx_write(indx, ni, n, 0);
2315
2316 /*
2317 * Check to see if removing that entry made
2318 * the leaf empty.
2319 */
2320 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2321 fnd_pop(fnd);
2322 fnd_push(fnd2, n, e);
2323 }
2324 } else {
2325 /*
2326 * The entry we wish to delete is a node buffer, so we
2327 * have to find a replacement for it.
2328 */
2329 next = de_get_next(e);
2330
2331 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2332 if (err)
2333 goto out;
2334
2335 if (re) {
2336 de_set_vbn_le(re, de_get_vbn_le(e));
2337 hdr_delete_de(hdr, e);
2338
2339 err = level ? indx_insert_into_buffer(indx, ni, root,
2340 re, ctx,
2341 fnd->level - 1,
96de65a9
KK
2342 fnd) :
2343 indx_insert_into_root(indx, ni, re, e,
78ab59fe 2344 ctx, fnd, 0);
195c52bd 2345 kfree(re);
82cae269
KK
2346
2347 if (err)
2348 goto out;
2349 } else {
2350 /*
2351 * There is no replacement for the current entry.
e8b8e97f
KA
2352 * This means that the subtree rooted at its node
2353 * is empty, and can be deleted, which turn means
2354 * that the node can just inherit the deleted
2355 * entry sub_vcn.
82cae269
KK
2356 */
2357 indx_free_children(indx, ni, next, true);
2358
2359 de_set_vbn_le(next, de_get_vbn_le(e));
2360 hdr_delete_de(hdr, e);
2361 if (level) {
2362 indx_write(indx, ni, n, 0);
2363 } else {
2364 hdr->total = hdr->used;
2365
e8b8e97f 2366 /* Shrink resident root attribute. */
82cae269
KK
2367 mi_resize_attr(mi, attr, 0 - e_size);
2368 }
2369 }
2370 }
2371
e8b8e97f 2372 /* Delete a branch of tree. */
82cae269
KK
2373 if (!fnd2 || !fnd2->level)
2374 goto out;
2375
e8b8e97f 2376 /* Reinit root 'cause it can be changed. */
82cae269
KK
2377 root = indx_get_root(indx, ni, &attr, &mi);
2378 if (!root) {
2379 err = -EINVAL;
2380 goto out;
2381 }
2382
2383 n2d = NULL;
2384 sub_vbn = fnd2->nodes[0]->index->vbn;
2385 level2 = 0;
2386 level = fnd->level;
2387
2388 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2389
e8b8e97f 2390 /* Scan current level. */
82cae269
KK
2391 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2392 if (!e) {
2393 err = -EINVAL;
2394 goto out;
2395 }
2396
2397 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2398 break;
2399
2400 if (de_is_last(e)) {
2401 e = NULL;
2402 break;
2403 }
2404 }
2405
2406 if (!e) {
e8b8e97f 2407 /* Do slow search from root. */
82cae269
KK
2408 struct indx_node *in;
2409
2410 fnd_clear(fnd);
2411
2412 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2413 if (IS_ERR(in)) {
2414 err = PTR_ERR(in);
2415 goto out;
2416 }
2417
2418 if (in)
2419 fnd_push(fnd, in, NULL);
2420 }
2421
e8b8e97f 2422 /* Merge fnd2 -> fnd. */
82cae269
KK
2423 for (level = 0; level < fnd2->level; level++) {
2424 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2425 fnd2->nodes[level] = NULL;
2426 }
2427 fnd2->level = 0;
2428
2429 hdr = NULL;
2430 for (level = fnd->level; level; level--) {
2431 struct indx_node *in = fnd->nodes[level - 1];
2432
2433 ib = in->index;
2434 if (ib_is_empty(ib)) {
2435 sub_vbn = ib->vbn;
2436 } else {
2437 hdr = &ib->ihdr;
2438 n2d = in;
2439 level2 = level;
2440 break;
2441 }
2442 }
2443
2444 if (!hdr)
2445 hdr = &root->ihdr;
2446
2447 e = hdr_first_de(hdr);
2448 if (!e) {
2449 err = -EINVAL;
2450 goto out;
2451 }
2452
2453 if (hdr != &root->ihdr || !de_is_last(e)) {
2454 prev = NULL;
2455 while (!de_is_last(e)) {
2456 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2457 break;
2458 prev = e;
2459 e = hdr_next_de(hdr, e);
2460 if (!e) {
2461 err = -EINVAL;
2462 goto out;
2463 }
2464 }
2465
2466 if (sub_vbn != de_get_vbn_le(e)) {
2467 /*
e8b8e97f
KA
2468 * Didn't find the parent entry, although this buffer
2469 * is the parent trail. Something is corrupt.
82cae269
KK
2470 */
2471 err = -EINVAL;
2472 goto out;
2473 }
2474
2475 if (de_is_last(e)) {
2476 /*
e8b8e97f
KA
2477 * Since we can't remove the end entry, we'll remove
2478 * its predecessor instead. This means we have to
2479 * transfer the predecessor's sub_vcn to the end entry.
2480 * Note: This index block is not empty, so the
2481 * predecessor must exist.
82cae269
KK
2482 */
2483 if (!prev) {
2484 err = -EINVAL;
2485 goto out;
2486 }
2487
2488 if (de_has_vcn(prev)) {
2489 de_set_vbn_le(e, de_get_vbn_le(prev));
2490 } else if (de_has_vcn(e)) {
2491 le16_sub_cpu(&e->size, sizeof(u64));
2492 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2493 le32_sub_cpu(&hdr->used, sizeof(u64));
2494 }
2495 e = prev;
2496 }
2497
2498 /*
e8b8e97f
KA
2499 * Copy the current entry into a temporary buffer (stripping
2500 * off its down-pointer, if any) and delete it from the current
2501 * buffer or root, as appropriate.
82cae269
KK
2502 */
2503 e_size = le16_to_cpu(e->size);
195c52bd 2504 me = kmemdup(e, e_size, GFP_NOFS);
82cae269
KK
2505 if (!me) {
2506 err = -ENOMEM;
2507 goto out;
2508 }
2509
2510 if (de_has_vcn(me)) {
2511 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2512 le16_sub_cpu(&me->size, sizeof(u64));
2513 }
2514
2515 hdr_delete_de(hdr, e);
2516
2517 if (hdr == &root->ihdr) {
2518 level = 0;
2519 hdr->total = hdr->used;
2520
e8b8e97f 2521 /* Shrink resident root attribute. */
82cae269
KK
2522 mi_resize_attr(mi, attr, 0 - e_size);
2523 } else {
2524 indx_write(indx, ni, n2d, 0);
2525 level = level2;
2526 }
2527
e8b8e97f 2528 /* Mark unused buffers as free. */
82cae269
KK
2529 trim_bit = -1;
2530 for (; level < fnd->level; level++) {
2531 ib = fnd->nodes[level]->index;
2532 if (ib_is_empty(ib)) {
2533 size_t k = le64_to_cpu(ib->vbn) >>
2534 indx->idx2vbn_bits;
2535
2536 indx_mark_free(indx, ni, k);
2537 if (k < trim_bit)
2538 trim_bit = k;
2539 }
2540 }
2541
2542 fnd_clear(fnd);
2543 /*fnd->root_de = NULL;*/
2544
2545 /*
2546 * Re-insert the entry into the tree.
2547 * Find the spot the tree where we want to insert the new entry.
2548 */
78ab59fe 2549 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
195c52bd 2550 kfree(me);
82cae269
KK
2551 if (err)
2552 goto out;
2553
2554 if (trim_bit != -1)
2555 indx_shrink(indx, ni, trim_bit);
2556 } else {
2557 /*
2558 * This tree needs to be collapsed down to an empty root.
e8b8e97f
KA
2559 * Recreate the index root as an empty leaf and free all
2560 * the bits the index allocation bitmap.
82cae269
KK
2561 */
2562 fnd_clear(fnd);
2563 fnd_clear(fnd2);
2564
2565 in = &s_index_names[indx->type];
2566
2567 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2568 &indx->alloc_run, 0, NULL, false, NULL);
ad26a9c8
KK
2569 if (in->name == I30_NAME)
2570 ni->vfs_inode.i_size = 0;
2571
82cae269
KK
2572 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2573 false, NULL);
2574 run_close(&indx->alloc_run);
2575
2576 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2577 &indx->bitmap_run, 0, NULL, false, NULL);
2578 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2579 false, NULL);
2580 run_close(&indx->bitmap_run);
2581
2582 root = indx_get_root(indx, ni, &attr, &mi);
2583 if (!root) {
2584 err = -EINVAL;
2585 goto out;
2586 }
2587
2588 root_size = le32_to_cpu(attr->res.data_size);
2589 new_root_size =
2590 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2591
2592 if (new_root_size != root_size &&
2593 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2594 err = -EINVAL;
2595 goto out;
2596 }
2597
e8b8e97f 2598 /* Fill first entry. */
82cae269
KK
2599 e = (struct NTFS_DE *)(root + 1);
2600 e->ref.low = 0;
2601 e->ref.high = 0;
2602 e->ref.seq = 0;
2603 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2604 e->flags = NTFS_IE_LAST; // 0x02
2605 e->key_size = 0;
2606 e->res = 0;
2607
2608 hdr = &root->ihdr;
2609 hdr->flags = 0;
2610 hdr->used = hdr->total = cpu_to_le32(
2611 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2612 mi->dirty = true;
2613 }
2614
2615out:
2616 fnd_put(fnd2);
2617out1:
2618 fnd_put(fnd);
2619out2:
2620 return err;
2621}
2622
2623/*
2624 * Update duplicated information in directory entry
2625 * 'dup' - info from MFT record
2626 */
2627int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2628 const struct ATTR_FILE_NAME *fname,
2629 const struct NTFS_DUP_INFO *dup, int sync)
2630{
2631 int err, diff;
2632 struct NTFS_DE *e = NULL;
2633 struct ATTR_FILE_NAME *e_fname;
2634 struct ntfs_fnd *fnd;
2635 struct INDEX_ROOT *root;
2636 struct mft_inode *mi;
2637 struct ntfs_index *indx = &ni->dir;
2638
2639 fnd = fnd_get();
78ab59fe
KK
2640 if (!fnd)
2641 return -ENOMEM;
82cae269
KK
2642
2643 root = indx_get_root(indx, ni, NULL, &mi);
2644 if (!root) {
2645 err = -EINVAL;
2646 goto out;
2647 }
2648
e8b8e97f 2649 /* Find entry in directory. */
82cae269
KK
2650 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2651 &diff, &e, fnd);
2652 if (err)
2653 goto out;
2654
2655 if (!e) {
2656 err = -EINVAL;
2657 goto out;
2658 }
2659
2660 if (diff) {
2661 err = -EINVAL;
2662 goto out;
2663 }
2664
2665 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2666
2667 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
d3624466
KK
2668 /*
2669 * Nothing to update in index! Try to avoid this call.
2670 */
82cae269
KK
2671 goto out;
2672 }
2673
2674 memcpy(&e_fname->dup, dup, sizeof(*dup));
2675
2676 if (fnd->level) {
d3624466 2677 /* Directory entry in index. */
82cae269
KK
2678 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2679 } else {
d3624466 2680 /* Directory entry in directory MFT record. */
82cae269
KK
2681 mi->dirty = true;
2682 if (sync)
2683 err = mi_write(mi, 1);
2684 else
2685 mark_inode_dirty(&ni->vfs_inode);
2686 }
2687
2688out:
2689 fnd_put(fnd);
82cae269
KK
2690 return err;
2691}