Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / ntfs3 / fslog.c
CommitLineData
b46acd6a
KK
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
b46acd6a 9#include <linux/fs.h>
b46acd6a 10#include <linux/random.h>
b46acd6a
KK
11#include <linux/slab.h>
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17/*
18 * LOG FILE structs
19 */
20
21// clang-format off
22
23#define MaxLogFileSize 0x100000000ull
24#define DefaultLogPageSize 4096
25#define MinLogRecordPages 0x30
26
27struct RESTART_HDR {
28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
e8b8e97f
KA
29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 __le32 page_size; // 0x14: Log page size used for this log file.
b46acd6a
KK
31 __le16 ra_off; // 0x18:
32 __le16 minor_ver; // 0x1A:
33 __le16 major_ver; // 0x1C:
34 __le16 fixups[];
35};
36
37#define LFS_NO_CLIENT 0xffff
38#define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40struct CLIENT_REC {
41 __le64 oldest_lsn;
42 __le64 restart_lsn; // 0x08:
43 __le16 prev_client; // 0x10:
44 __le16 next_client; // 0x12:
45 __le16 seq_num; // 0x14:
e8b8e97f
KA
46 u8 align[6]; // 0x16:
47 __le32 name_bytes; // 0x1C: In bytes.
48 __le16 name[32]; // 0x20: Name of client.
b46acd6a
KK
49};
50
51static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53/* Two copies of these will exist at the beginning of the log file */
54struct RESTART_AREA {
e8b8e97f
KA
55 __le64 current_lsn; // 0x00: Current logical end of log file.
56 __le16 log_clients; // 0x08: Maximum number of clients.
57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays.
58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number.
b46acd6a
KK
60 __le16 ra_len; // 0x14:
61 __le16 client_off; // 0x16:
62 __le64 l_size; // 0x18: Usable log file size.
63 __le32 last_lsn_data_len; // 0x20:
e8b8e97f
KA
64 __le16 rec_hdr_len; // 0x24: Log page data offset.
65 __le16 data_off; // 0x26: Log page data length.
b46acd6a
KK
66 __le32 open_log_count; // 0x28:
67 __le32 align[5]; // 0x2C:
68 struct CLIENT_REC clients[]; // 0x40:
69};
70
71struct LOG_REC_HDR {
72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION
73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION
e8b8e97f
KA
74 __le16 redo_off; // 0x04: Offset to Redo record.
75 __le16 redo_len; // 0x06: Redo length.
76 __le16 undo_off; // 0x08: Offset to Undo record.
77 __le16 undo_len; // 0x0A: Undo length.
b46acd6a
KK
78 __le16 target_attr; // 0x0C:
79 __le16 lcns_follow; // 0x0E:
80 __le16 record_off; // 0x10:
81 __le16 attr_off; // 0x12:
82 __le16 cluster_off; // 0x14:
83 __le16 reserved; // 0x16:
84 __le64 target_vcn; // 0x18:
85 __le64 page_lcns[]; // 0x20:
86};
87
88static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90#define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF
91#define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93struct RESTART_TABLE {
e8b8e97f
KA
94 __le16 size; // 0x00: In bytes
95 __le16 used; // 0x02: Entries
96 __le16 total; // 0x04: Entries
b46acd6a
KK
97 __le16 res[3]; // 0x06:
98 __le32 free_goal; // 0x0C:
e8b8e97f
KA
99 __le32 first_free; // 0x10:
100 __le32 last_free; // 0x14:
b46acd6a
KK
101
102};
103
104static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106struct ATTR_NAME_ENTRY {
e8b8e97f 107 __le16 off; // Offset in the Open attribute Table.
b46acd6a
KK
108 __le16 name_bytes;
109 __le16 name[];
110};
111
112struct OPEN_ATTR_ENRTY {
113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 __le32 bytes_per_index; // 0x04:
115 enum ATTR_TYPE type; // 0x08:
116 u8 is_dirty_pages; // 0x0C:
117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr'
118 u8 name_len; // 0x0C: Faked field to manage 'ptr'
119 u8 res;
e8b8e97f 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute
b46acd6a
KK
121 __le64 open_record_lsn; // 0x18:
122 void *ptr; // 0x20:
123};
124
125/* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126struct OPEN_ATTR_ENRTY_32 {
127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 __le32 ptr; // 0x04:
129 struct MFT_REF ref; // 0x08:
130 __le64 open_record_lsn; // 0x10:
131 u8 is_dirty_pages; // 0x18:
e8b8e97f 132 u8 is_attr_name; // 0x19:
b46acd6a
KK
133 u8 res1[2];
134 enum ATTR_TYPE type; // 0x1C:
e8b8e97f 135 u8 name_len; // 0x20: In wchar
b46acd6a
KK
136 u8 res2[3];
137 __le32 AttributeName; // 0x24:
138 __le32 bytes_per_index; // 0x28:
139};
140
141#define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142// static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145/*
e8b8e97f
KA
146 * One entry exists in the Dirty Pages Table for each page which is dirty at
147 * the time the Restart Area is written.
b46acd6a
KK
148 */
149struct DIR_PAGE_ENTRY {
e8b8e97f
KA
150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 __le32 target_attr; // 0x04: Index into the Open attribute Table
b46acd6a
KK
152 __le32 transfer_len; // 0x08:
153 __le32 lcns_follow; // 0x0C:
e8b8e97f 154 __le64 vcn; // 0x10: Vcn of dirty page
b46acd6a
KK
155 __le64 oldest_lsn; // 0x18:
156 __le64 page_lcns[]; // 0x20:
157};
158
159static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161/* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162struct DIR_PAGE_ENTRY_32 {
e8b8e97f
KA
163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 __le32 target_attr; // 0x04: Index into the Open attribute Table
165 __le32 transfer_len; // 0x08:
166 __le32 lcns_follow; // 0x0C:
167 __le32 reserved; // 0x10:
168 __le32 vcn_low; // 0x14: Vcn of dirty page
169 __le32 vcn_hi; // 0x18: Vcn of dirty page
170 __le32 oldest_lsn_low; // 0x1C:
171 __le32 oldest_lsn_hi; // 0x1C:
172 __le32 page_lcns_low; // 0x24:
173 __le32 page_lcns_hi; // 0x24:
b46acd6a
KK
174};
175
176static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179enum transact_state {
180 TransactionUninitialized = 0,
181 TransactionActive,
182 TransactionPrepared,
183 TransactionCommitted
184};
185
186struct TRANSACTION_ENTRY {
187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 u8 transact_state; // 0x04:
189 u8 reserved[3]; // 0x05:
190 __le64 first_lsn; // 0x08:
191 __le64 prev_lsn; // 0x10:
192 __le64 undo_next_lsn; // 0x18:
193 __le32 undo_records; // 0x20: Number of undo log records pending abort
194 __le32 undo_len; // 0x24: Total undo size
195};
196
197static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199struct NTFS_RESTART {
200 __le32 major_ver; // 0x00:
201 __le32 minor_ver; // 0x04:
202 __le64 check_point_start; // 0x08:
203 __le64 open_attr_table_lsn; // 0x10:
204 __le64 attr_names_lsn; // 0x18:
205 __le64 dirty_pages_table_lsn; // 0x20:
206 __le64 transact_table_lsn; // 0x28:
207 __le32 open_attr_len; // 0x30: In bytes
208 __le32 attr_names_len; // 0x34: In bytes
209 __le32 dirty_pages_len; // 0x38: In bytes
210 __le32 transact_table_len; // 0x3C: In bytes
211};
212
213static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215struct NEW_ATTRIBUTE_SIZES {
216 __le64 alloc_size;
217 __le64 valid_size;
218 __le64 data_size;
219 __le64 total_size;
220};
221
222struct BITMAP_RANGE {
223 __le32 bitmap_off;
224 __le32 bits;
225};
226
227struct LCN_RANGE {
228 __le64 lcn;
229 __le64 len;
230};
231
e8b8e97f 232/* The following type defines the different log record types. */
b46acd6a
KK
233#define LfsClientRecord cpu_to_le32(1)
234#define LfsClientRestart cpu_to_le32(2)
235
e8b8e97f 236/* This is used to uniquely identify a client for a particular log file. */
b46acd6a
KK
237struct CLIENT_ID {
238 __le16 seq_num;
239 __le16 client_idx;
240};
241
e8b8e97f 242/* This is the header that begins every Log Record in the log file. */
b46acd6a 243struct LFS_RECORD_HDR {
e8b8e97f
KA
244 __le64 this_lsn; // 0x00:
245 __le64 client_prev_lsn; // 0x08:
246 __le64 client_undo_next_lsn; // 0x10:
247 __le32 client_data_len; // 0x18:
248 struct CLIENT_ID client; // 0x1C: Owner of this log record.
249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart.
250 __le32 transact_id; // 0x24:
251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE
252 u8 align[6]; // 0x2A:
b46acd6a
KK
253};
254
255#define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259struct LFS_RECORD {
e8b8e97f
KA
260 __le16 next_record_off; // 0x00: Offset of the free space in the page,
261 u8 align[6]; // 0x02:
262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page,
b46acd6a
KK
263};
264
265static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267struct RECORD_PAGE_HDR {
e8b8e97f
KA
268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END
270 __le16 page_count; // 0x14:
271 __le16 page_pos; // 0x16:
272 struct LFS_RECORD record_hdr; // 0x18:
273 __le16 fixups[10]; // 0x28:
274 __le32 file_off; // 0x3c: Used when major version >= 2
b46acd6a
KK
275};
276
277// clang-format on
278
e8b8e97f 279// Page contains the end of a log record.
b46acd6a
KK
280#define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
282static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283{
284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285}
286
287static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289/*
290 * END of NTFS LOG structures
291 */
292
e8b8e97f 293/* Define some tuning parameters to keep the restart tables a reasonable size. */
b46acd6a
KK
294#define INITIAL_NUMBER_TRANSACTIONS 5
295
296enum NTFS_LOG_OPERATION {
297
298 Noop = 0x00,
299 CompensationLogRecord = 0x01,
300 InitializeFileRecordSegment = 0x02,
301 DeallocateFileRecordSegment = 0x03,
302 WriteEndOfFileRecordSegment = 0x04,
303 CreateAttribute = 0x05,
304 DeleteAttribute = 0x06,
305 UpdateResidentValue = 0x07,
306 UpdateNonresidentValue = 0x08,
307 UpdateMappingPairs = 0x09,
308 DeleteDirtyClusters = 0x0A,
309 SetNewAttributeSizes = 0x0B,
310 AddIndexEntryRoot = 0x0C,
311 DeleteIndexEntryRoot = 0x0D,
312 AddIndexEntryAllocation = 0x0E,
313 DeleteIndexEntryAllocation = 0x0F,
314 WriteEndOfIndexBuffer = 0x10,
315 SetIndexEntryVcnRoot = 0x11,
316 SetIndexEntryVcnAllocation = 0x12,
317 UpdateFileNameRoot = 0x13,
318 UpdateFileNameAllocation = 0x14,
319 SetBitsInNonresidentBitMap = 0x15,
320 ClearBitsInNonresidentBitMap = 0x16,
321 HotFix = 0x17,
322 EndTopLevelAction = 0x18,
323 PrepareTransaction = 0x19,
324 CommitTransaction = 0x1A,
325 ForgetTransaction = 0x1B,
326 OpenNonresidentAttribute = 0x1C,
327 OpenAttributeTableDump = 0x1D,
328 AttributeNamesDump = 0x1E,
329 DirtyPageTableDump = 0x1F,
330 TransactionTableDump = 0x20,
331 UpdateRecordDataRoot = 0x21,
332 UpdateRecordDataAllocation = 0x22,
333
334 UpdateRelativeDataInIndex =
335 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 UpdateRelativeDataInIndex2 = 0x24,
337 ZeroEndOfFileRecord = 0x25,
338};
339
340/*
e8b8e97f
KA
341 * Array for log records which require a target attribute.
342 * A true indicates that the corresponding restart operation
343 * requires a target attribute.
b46acd6a
KK
344 */
345static const u8 AttributeRequired[] = {
346 0xFC, 0xFB, 0xFF, 0x10, 0x06,
347};
348
349static inline bool is_target_required(u16 op)
350{
351 bool ret = op <= UpdateRecordDataAllocation &&
352 (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 return ret;
354}
355
356static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357{
358 switch (op) {
359 case Noop:
360 case DeleteDirtyClusters:
361 case HotFix:
362 case EndTopLevelAction:
363 case PrepareTransaction:
364 case CommitTransaction:
365 case ForgetTransaction:
366 case CompensationLogRecord:
367 case OpenNonresidentAttribute:
368 case OpenAttributeTableDump:
369 case AttributeNamesDump:
370 case DirtyPageTableDump:
371 case TransactionTableDump:
372 return true;
373 default:
374 return false;
375 }
376}
377
378enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
e8b8e97f 380/* Bytes per restart table. */
b46acd6a
KK
381static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382{
383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 sizeof(struct RESTART_TABLE);
385}
386
e8b8e97f 387/* Log record length. */
b46acd6a
KK
388static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389{
390 u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392 return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393}
394
395struct lcb {
e8b8e97f 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
b46acd6a
KK
397 struct LOG_REC_HDR *log_rec;
398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 struct CLIENT_ID client;
e8b8e97f 400 bool alloc; // If true the we should deallocate 'log_rec'.
b46acd6a
KK
401};
402
403static void lcb_put(struct lcb *lcb)
404{
405 if (lcb->alloc)
195c52bd
KA
406 kfree(lcb->log_rec);
407 kfree(lcb->lrh);
408 kfree(lcb);
b46acd6a
KK
409}
410
e8b8e97f 411/* Find the oldest lsn from active clients. */
b46acd6a
KK
412static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 __le16 next_client, u64 *oldest_lsn)
414{
415 while (next_client != LFS_NO_CLIENT_LE) {
416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
e8b8e97f 419 /* Ignore this block if it's oldest lsn is 0. */
b46acd6a
KK
420 if (lsn && lsn < *oldest_lsn)
421 *oldest_lsn = lsn;
422
423 next_client = cr->next_client;
424 }
425}
426
427static inline bool is_rst_page_hdr_valid(u32 file_off,
428 const struct RESTART_HDR *rhdr)
429{
430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 u32 page_size = le32_to_cpu(rhdr->page_size);
432 u32 end_usa;
433 u16 ro;
434
435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 return false;
438 }
439
e8b8e97f 440 /* Check that if the file offset isn't 0, it is the system page size. */
b46acd6a
KK
441 if (file_off && file_off != sys_page)
442 return false;
443
e8b8e97f 444 /* Check support version 1.1+. */
b46acd6a
KK
445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 return false;
447
448 if (le16_to_cpu(rhdr->major_ver) > 2)
449 return false;
450
451 ro = le16_to_cpu(rhdr->ra_off);
fa3cacf5 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page)
b46acd6a
KK
453 return false;
454
455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458 if (ro < end_usa)
459 return false;
460
461 return true;
462}
463
464static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465{
466 const struct RESTART_AREA *ra;
467 u16 cl, fl, ul;
468 u32 off, l_size, file_dat_bits, file_size_round;
469 u16 ro = le16_to_cpu(rhdr->ra_off);
470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472 if (ro + offsetof(struct RESTART_AREA, l_size) >
473 SECTOR_SIZE - sizeof(short))
474 return false;
475
476 ra = Add2Ptr(rhdr, ro);
477 cl = le16_to_cpu(ra->log_clients);
478
479 if (cl > 1)
480 return false;
481
482 off = le16_to_cpu(ra->client_off);
483
fa3cacf5 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
b46acd6a
KK
485 return false;
486
487 off += cl * sizeof(struct CLIENT_REC);
488
489 if (off > sys_page)
490 return false;
491
492 /*
493 * Check the restart length field and whether the entire
e8b8e97f 494 * restart area is contained that length.
b46acd6a
KK
495 */
496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 off > le16_to_cpu(ra->ra_len)) {
498 return false;
499 }
500
501 /*
502 * As a final check make sure that the use list and the free list
e8b8e97f 503 * are either empty or point to a valid client.
b46acd6a
KK
504 */
505 fl = le16_to_cpu(ra->client_idx[0]);
506 ul = le16_to_cpu(ra->client_idx[1]);
507 if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 (ul != LFS_NO_CLIENT && ul >= cl))
509 return false;
510
e8b8e97f 511 /* Make sure the sequence number bits match the log file size. */
b46acd6a
KK
512 l_size = le64_to_cpu(ra->l_size);
513
514 file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515 file_size_round = 1u << (file_dat_bits + 3);
516 if (file_size_round != l_size &&
517 (file_size_round < l_size || (file_size_round / 2) > l_size)) {
518 return false;
519 }
520
e8b8e97f 521 /* The log page data offset and record header length must be quad-aligned. */
fa3cacf5
KA
522 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
b46acd6a
KK
524 return false;
525
526 return true;
527}
528
529static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
530 bool usa_error)
531{
532 u16 ro = le16_to_cpu(rhdr->ra_off);
533 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534 u16 ra_len = le16_to_cpu(ra->ra_len);
535 const struct CLIENT_REC *ca;
536 u32 i;
537
538 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
539 return false;
540
e8b8e97f 541 /* Find the start of the client array. */
b46acd6a
KK
542 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
543
544 /*
e8b8e97f
KA
545 * Start with the free list.
546 * Check that all the clients are valid and that there isn't a cycle.
547 * Do the in-use list on the second pass.
b46acd6a
KK
548 */
549 for (i = 0; i < 2; i++) {
550 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551 bool first_client = true;
552 u16 clients = le16_to_cpu(ra->log_clients);
553
554 while (client_idx != LFS_NO_CLIENT) {
555 const struct CLIENT_REC *cr;
556
557 if (!clients ||
558 client_idx >= le16_to_cpu(ra->log_clients))
559 return false;
560
561 clients -= 1;
562 cr = ca + client_idx;
563
564 client_idx = le16_to_cpu(cr->next_client);
565
566 if (first_client) {
567 first_client = false;
568 if (cr->prev_client != LFS_NO_CLIENT_LE)
569 return false;
570 }
571 }
572 }
573
574 return true;
575}
576
577/*
578 * remove_client
579 *
e8b8e97f 580 * Remove a client record from a client record list an restart area.
b46acd6a
KK
581 */
582static inline void remove_client(struct CLIENT_REC *ca,
583 const struct CLIENT_REC *cr, __le16 *head)
584{
585 if (cr->prev_client == LFS_NO_CLIENT_LE)
586 *head = cr->next_client;
587 else
588 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
589
590 if (cr->next_client != LFS_NO_CLIENT_LE)
591 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
592}
593
594/*
e8b8e97f 595 * add_client - Add a client record to the start of a list.
b46acd6a
KK
596 */
597static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
598{
599 struct CLIENT_REC *cr = ca + index;
600
601 cr->prev_client = LFS_NO_CLIENT_LE;
602 cr->next_client = *head;
603
604 if (*head != LFS_NO_CLIENT_LE)
605 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
606
607 *head = cpu_to_le16(index);
608}
609
b46acd6a
KK
610static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
611{
612 __le32 *e;
613 u32 bprt;
614 u16 rsize = t ? le16_to_cpu(t->size) : 0;
615
616 if (!c) {
617 if (!t || !t->total)
618 return NULL;
619 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
620 } else {
621 e = Add2Ptr(c, rsize);
622 }
623
e8b8e97f 624 /* Loop until we hit the first one allocated, or the end of the list. */
b46acd6a
KK
625 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626 e = Add2Ptr(e, rsize)) {
627 if (*e == RESTART_ENTRY_ALLOCATED_LE)
628 return e;
629 }
630 return NULL;
631}
632
633/*
e8b8e97f 634 * find_dp - Search for a @vcn in Dirty Page Table.
b46acd6a
KK
635 */
636static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637 u32 target_attr, u64 vcn)
638{
639 __le32 ta = cpu_to_le32(target_attr);
640 struct DIR_PAGE_ENTRY *dp = NULL;
641
642 while ((dp = enum_rstbl(dptbl, dp))) {
643 u64 dp_vcn = le64_to_cpu(dp->vcn);
644
645 if (dp->target_attr == ta && vcn >= dp_vcn &&
646 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
647 return dp;
648 }
649 }
650 return NULL;
651}
652
653static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
654{
655 if (use_default)
656 page_size = DefaultLogPageSize;
657
e8b8e97f 658 /* Round the file size down to a system page boundary. */
b46acd6a
KK
659 *l_size &= ~(page_size - 1);
660
e8b8e97f 661 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
b46acd6a
KK
662 if (*l_size < (MinLogRecordPages + 2) * page_size)
663 return 0;
664
665 return page_size;
666}
667
668static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669 u32 bytes_per_attr_entry)
670{
671 u16 t16;
672
673 if (bytes < sizeof(struct LOG_REC_HDR))
674 return false;
675 if (!tr)
676 return false;
677
678 if ((tr - sizeof(struct RESTART_TABLE)) %
679 sizeof(struct TRANSACTION_ENTRY))
680 return false;
681
682 if (le16_to_cpu(lr->redo_off) & 7)
683 return false;
684
685 if (le16_to_cpu(lr->undo_off) & 7)
686 return false;
687
688 if (lr->target_attr)
689 goto check_lcns;
690
691 if (is_target_required(le16_to_cpu(lr->redo_op)))
692 return false;
693
694 if (is_target_required(le16_to_cpu(lr->undo_op)))
695 return false;
696
697check_lcns:
698 if (!lr->lcns_follow)
699 goto check_length;
700
701 t16 = le16_to_cpu(lr->target_attr);
702 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
703 return false;
704
705check_length:
706 if (bytes < lrh_length(lr))
707 return false;
708
709 return true;
710}
711
712static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
713{
714 u32 ts;
715 u32 i, off;
716 u16 rsize = le16_to_cpu(rt->size);
717 u16 ne = le16_to_cpu(rt->used);
718 u32 ff = le32_to_cpu(rt->first_free);
719 u32 lf = le32_to_cpu(rt->last_free);
720
721 ts = rsize * ne + sizeof(struct RESTART_TABLE);
722
723 if (!rsize || rsize > bytes ||
724 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726 (ff && ff < sizeof(struct RESTART_TABLE)) ||
727 (lf && lf < sizeof(struct RESTART_TABLE))) {
728 return false;
729 }
730
e8b8e97f
KA
731 /*
732 * Verify each entry is either allocated or points
733 * to a valid offset the table.
b46acd6a
KK
734 */
735 for (i = 0; i < ne; i++) {
736 off = le32_to_cpu(*(__le32 *)Add2Ptr(
737 rt, i * rsize + sizeof(struct RESTART_TABLE)));
738
739 if (off != RESTART_ENTRY_ALLOCATED && off &&
740 (off < sizeof(struct RESTART_TABLE) ||
741 ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
742 return false;
743 }
744 }
745
e8b8e97f
KA
746 /*
747 * Walk through the list headed by the first entry to make
748 * sure none of the entries are currently being used.
b46acd6a
KK
749 */
750 for (off = ff; off;) {
751 if (off == RESTART_ENTRY_ALLOCATED)
752 return false;
753
754 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
755 }
756
757 return true;
758}
759
760/*
e8b8e97f 761 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
b46acd6a
KK
762 */
763static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
764{
765 __le32 *e;
766 u32 lf = le32_to_cpu(rt->last_free);
767 __le32 off_le = cpu_to_le32(off);
768
769 e = Add2Ptr(rt, off);
770
771 if (off < le32_to_cpu(rt->free_goal)) {
772 *e = rt->first_free;
773 rt->first_free = off_le;
774 if (!lf)
775 rt->last_free = off_le;
776 } else {
777 if (lf)
778 *(__le32 *)Add2Ptr(rt, lf) = off_le;
779 else
780 rt->first_free = off_le;
781
782 rt->last_free = off_le;
783 *e = 0;
784 }
785
786 le16_sub_cpu(&rt->total, 1);
787}
788
789static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
790{
791 __le32 *e, *last_free;
792 u32 off;
793 u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
195c52bd 795 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
b46acd6a 796
a1b04d38
DC
797 if (!t)
798 return NULL;
799
b46acd6a
KK
800 t->size = cpu_to_le16(esize);
801 t->used = cpu_to_le16(used);
802 t->free_goal = cpu_to_le32(~0u);
803 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804 t->last_free = cpu_to_le32(lf);
805
806 e = (__le32 *)(t + 1);
807 last_free = Add2Ptr(t, lf);
808
809 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810 e = Add2Ptr(e, esize), off += esize) {
811 *e = cpu_to_le32(off);
812 }
813 return t;
814}
815
816static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817 u32 add, u32 free_goal)
818{
819 u16 esize = le16_to_cpu(tbl->size);
820 __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821 u32 used = le16_to_cpu(tbl->used);
a1b04d38
DC
822 struct RESTART_TABLE *rt;
823
824 rt = init_rsttbl(esize, used + add);
825 if (!rt)
826 return NULL;
b46acd6a
KK
827
828 memcpy(rt + 1, tbl + 1, esize * used);
829
830 rt->free_goal = free_goal == ~0u
831 ? cpu_to_le32(~0u)
832 : cpu_to_le32(sizeof(struct RESTART_TABLE) +
833 free_goal * esize);
834
835 if (tbl->first_free) {
836 rt->first_free = tbl->first_free;
837 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
838 } else {
839 rt->first_free = osize;
840 }
841
842 rt->total = tbl->total;
843
195c52bd 844 kfree(tbl);
b46acd6a
KK
845 return rt;
846}
847
848/*
849 * alloc_rsttbl_idx
850 *
e8b8e97f 851 * Allocate an index from within a previously initialized Restart Table.
b46acd6a
KK
852 */
853static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
854{
855 u32 off;
856 __le32 *e;
857 struct RESTART_TABLE *t = *tbl;
858
a1b04d38 859 if (!t->first_free) {
b46acd6a 860 *tbl = t = extend_rsttbl(t, 16, ~0u);
a1b04d38
DC
861 if (!t)
862 return NULL;
863 }
b46acd6a
KK
864
865 off = le32_to_cpu(t->first_free);
866
867 /* Dequeue this entry and zero it. */
868 e = Add2Ptr(t, off);
869
870 t->first_free = *e;
871
872 memset(e, 0, le16_to_cpu(t->size));
873
874 *e = RESTART_ENTRY_ALLOCATED_LE;
875
876 /* If list is going empty, then we fix the last_free as well. */
877 if (!t->first_free)
878 t->last_free = 0;
879
880 le16_add_cpu(&t->total, 1);
881
882 return Add2Ptr(t, off);
883}
884
885/*
886 * alloc_rsttbl_from_idx
887 *
e8b8e97f 888 * Allocate a specific index from within a previously initialized Restart Table.
b46acd6a
KK
889 */
890static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
891{
892 u32 off;
893 __le32 *e;
894 struct RESTART_TABLE *rt = *tbl;
895 u32 bytes = bytes_per_rt(rt);
896 u16 esize = le16_to_cpu(rt->size);
897
e8b8e97f 898 /* If the entry is not the table, we will have to extend the table. */
b46acd6a
KK
899 if (vbo >= bytes) {
900 /*
e8b8e97f
KA
901 * Extend the size by computing the number of entries between
902 * the existing size and the desired index and adding 1 to that.
b46acd6a
KK
903 */
904 u32 bytes2idx = vbo - bytes;
905
e8b8e97f
KA
906 /*
907 * There should always be an integral number of entries
908 * being added. Now extend the table.
909 */
b46acd6a
KK
910 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
911 if (!rt)
912 return NULL;
913 }
914
e8b8e97f 915 /* See if the entry is already allocated, and just return if it is. */
b46acd6a
KK
916 e = Add2Ptr(rt, vbo);
917
918 if (*e == RESTART_ENTRY_ALLOCATED_LE)
919 return e;
920
921 /*
922 * Walk through the table, looking for the entry we're
e8b8e97f 923 * interested and the previous entry.
b46acd6a
KK
924 */
925 off = le32_to_cpu(rt->first_free);
926 e = Add2Ptr(rt, off);
927
928 if (off == vbo) {
929 /* this is a match */
930 rt->first_free = *e;
931 goto skip_looking;
932 }
933
934 /*
e8b8e97f
KA
935 * Need to walk through the list looking for the predecessor
936 * of our entry.
b46acd6a
KK
937 */
938 for (;;) {
939 /* Remember the entry just found */
940 u32 last_off = off;
941 __le32 *last_e = e;
942
e8b8e97f 943 /* Should never run of entries. */
b46acd6a 944
e8b8e97f 945 /* Lookup up the next entry the list. */
b46acd6a
KK
946 off = le32_to_cpu(*last_e);
947 e = Add2Ptr(rt, off);
948
e8b8e97f 949 /* If this is our match we are done. */
b46acd6a
KK
950 if (off == vbo) {
951 *last_e = *e;
952
e8b8e97f
KA
953 /*
954 * If this was the last entry, we update that
955 * table as well.
956 */
b46acd6a
KK
957 if (le32_to_cpu(rt->last_free) == off)
958 rt->last_free = cpu_to_le32(last_off);
959 break;
960 }
961 }
962
963skip_looking:
e8b8e97f 964 /* If the list is now empty, we fix the last_free as well. */
b46acd6a
KK
965 if (!rt->first_free)
966 rt->last_free = 0;
967
e8b8e97f 968 /* Zero this entry. */
b46acd6a
KK
969 memset(e, 0, esize);
970 *e = RESTART_ENTRY_ALLOCATED_LE;
971
972 le16_add_cpu(&rt->total, 1);
973
974 return e;
975}
976
977#define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
978
979#define NTFSLOG_WRAPPED 0x00000001
980#define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
981#define NTFSLOG_NO_LAST_LSN 0x00000004
982#define NTFSLOG_REUSE_TAIL 0x00000010
983#define NTFSLOG_NO_OLDEST_LSN 0x00000020
984
e8b8e97f 985/* Helper struct to work with NTFS $LogFile. */
b46acd6a
KK
986struct ntfs_log {
987 struct ntfs_inode *ni;
988
989 u32 l_size;
990 u32 sys_page_size;
991 u32 sys_page_mask;
992 u32 page_size;
993 u32 page_mask; // page_size - 1
994 u8 page_bits;
995 struct RECORD_PAGE_HDR *one_page_buf;
996
997 struct RESTART_TABLE *open_attr_tbl;
998 u32 transaction_id;
999 u32 clst_per_page;
1000
1001 u32 first_page;
1002 u32 next_page;
1003 u32 ra_off;
1004 u32 data_off;
1005 u32 restart_size;
1006 u32 data_size;
1007 u16 record_header_len;
1008 u64 seq_num;
1009 u32 seq_num_bits;
1010 u32 file_data_bits;
1011 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1012
e8b8e97f
KA
1013 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014 u32 ra_size; /* The usable size of the restart area. */
b46acd6a
KK
1015
1016 /*
1017 * If true, then the in-memory restart area is to be written
e8b8e97f 1018 * to the first position on the disk.
b46acd6a
KK
1019 */
1020 bool init_ra;
e8b8e97f 1021 bool set_dirty; /* True if we need to set dirty flag. */
b46acd6a
KK
1022
1023 u64 oldest_lsn;
1024
1025 u32 oldest_lsn_off;
1026 u64 last_lsn;
1027
1028 u32 total_avail;
1029 u32 total_avail_pages;
1030 u32 total_undo_commit;
1031 u32 max_current_avail;
1032 u32 current_avail;
1033 u32 reserved;
1034
1035 short major_ver;
1036 short minor_ver;
1037
1038 u32 l_flags; /* See NTFSLOG_XXX */
e8b8e97f 1039 u32 current_openlog_count; /* On-disk value for open_log_count. */
b46acd6a
KK
1040
1041 struct CLIENT_ID client_id;
1042 u32 client_undo_commit;
1043};
1044
1045static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1046{
1047 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1048
1049 return vbo;
1050}
1051
e8b8e97f 1052/* Compute the offset in the log file of the next log page. */
b46acd6a
KK
1053static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1054{
1055 off = (off & ~log->sys_page_mask) + log->page_size;
1056 return off >= log->l_size ? log->first_page : off;
1057}
1058
1059static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1060{
1061 return (((u32)lsn) << 3) & log->page_mask;
1062}
1063
1064static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1065{
1066 return (off >> 3) + (Seq << log->file_data_bits);
1067}
1068
1069static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1070{
1071 return lsn >= log->oldest_lsn &&
1072 lsn <= le64_to_cpu(log->ra->current_lsn);
1073}
1074
1075static inline u32 hdr_file_off(struct ntfs_log *log,
1076 struct RECORD_PAGE_HDR *hdr)
1077{
1078 if (log->major_ver < 2)
1079 return le64_to_cpu(hdr->rhdr.lsn);
1080
1081 return le32_to_cpu(hdr->file_off);
1082}
1083
1084static inline u64 base_lsn(struct ntfs_log *log,
1085 const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1086{
1087 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088 u64 ret = (((h_lsn >> log->file_data_bits) +
1089 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090 << log->file_data_bits) +
1091 ((((is_log_record_end(hdr) &&
1092 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1093 ? le16_to_cpu(hdr->record_hdr.next_record_off)
1094 : log->page_size) +
1095 lsn) >>
1096 3);
1097
1098 return ret;
1099}
1100
1101static inline bool verify_client_lsn(struct ntfs_log *log,
1102 const struct CLIENT_REC *client, u64 lsn)
1103{
1104 return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1106}
1107
1108struct restart_info {
1109 u64 last_lsn;
1110 struct RESTART_HDR *r_page;
1111 u32 vbo;
1112 bool chkdsk_was_run;
1113 bool valid_page;
1114 bool initialized;
1115 bool restart;
1116};
1117
1118static int read_log_page(struct ntfs_log *log, u32 vbo,
1119 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1120{
1121 int err = 0;
1122 u32 page_idx = vbo >> log->page_bits;
1123 u32 page_off = vbo & log->page_mask;
1124 u32 bytes = log->page_size - page_off;
1125 void *to_free = NULL;
1126 u32 page_vbo = page_idx << log->page_bits;
1127 struct RECORD_PAGE_HDR *page_buf;
1128 struct ntfs_inode *ni = log->ni;
1129 bool bBAAD;
1130
1131 if (vbo >= log->l_size)
1132 return -EINVAL;
1133
1134 if (!*buffer) {
ecfbd57c 1135 to_free = kmalloc(log->page_size, GFP_NOFS);
b46acd6a
KK
1136 if (!to_free)
1137 return -ENOMEM;
1138 *buffer = to_free;
1139 }
1140
1141 page_buf = page_off ? log->one_page_buf : *buffer;
1142
1143 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144 log->page_size, NULL);
1145 if (err)
1146 goto out;
1147
1148 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1150
1151 if (page_buf != *buffer)
1152 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1153
1154 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1155
1156 if (usa_error)
1157 *usa_error = bBAAD;
1158 /* Check that the update sequence array for this page is valid */
1159 /* If we don't allow errors, raise an error status */
1160 else if (bBAAD)
1161 err = -EINVAL;
1162
1163out:
1164 if (err && to_free) {
195c52bd 1165 kfree(to_free);
b46acd6a
KK
1166 *buffer = NULL;
1167 }
1168
1169 return err;
1170}
1171
1172/*
1173 * log_read_rst
1174 *
e8b8e97f
KA
1175 * It walks through 512 blocks of the file looking for a valid
1176 * restart page header. It will stop the first time we find a
1177 * valid page header.
b46acd6a
KK
1178 */
1179static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180 struct restart_info *info)
1181{
1182 u32 skip, vbo;
ecfbd57c 1183 struct RESTART_HDR *r_page = NULL;
b46acd6a 1184
e8b8e97f 1185 /* Determine which restart area we are looking for. */
b46acd6a
KK
1186 if (first) {
1187 vbo = 0;
1188 skip = 512;
1189 } else {
1190 vbo = 512;
1191 skip = 0;
1192 }
1193
e8b8e97f 1194 /* Loop continuously until we succeed. */
b46acd6a
KK
1195 for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1196 bool usa_error;
b46acd6a
KK
1197 bool brst, bchk;
1198 struct RESTART_AREA *ra;
1199
e8b8e97f 1200 /* Read a page header at the current offset. */
b46acd6a
KK
1201 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1202 &usa_error)) {
e8b8e97f 1203 /* Ignore any errors. */
b46acd6a
KK
1204 continue;
1205 }
1206
e8b8e97f 1207 /* Exit if the signature is a log record page. */
b46acd6a
KK
1208 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1209 info->initialized = true;
1210 break;
1211 }
1212
1213 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1214 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1215
1216 if (!bchk && !brst) {
1217 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1218 /*
1219 * Remember if the signature does not
e8b8e97f 1220 * indicate uninitialized file.
b46acd6a
KK
1221 */
1222 info->initialized = true;
1223 }
1224 continue;
1225 }
1226
1227 ra = NULL;
1228 info->valid_page = false;
1229 info->initialized = true;
1230 info->vbo = vbo;
1231
e8b8e97f 1232 /* Let's check the restart area if this is a valid page. */
b46acd6a
KK
1233 if (!is_rst_page_hdr_valid(vbo, r_page))
1234 goto check_result;
1235 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1236
1237 if (!is_rst_area_valid(r_page))
1238 goto check_result;
1239
1240 /*
1241 * We have a valid restart page header and restart area.
1242 * If chkdsk was run or we have no clients then we have
e8b8e97f 1243 * no more checking to do.
b46acd6a
KK
1244 */
1245 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1246 info->valid_page = true;
1247 goto check_result;
1248 }
1249
b46acd6a
KK
1250 if (is_client_area_valid(r_page, usa_error)) {
1251 info->valid_page = true;
1252 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1253 }
1254
1255check_result:
e8b8e97f
KA
1256 /*
1257 * If chkdsk was run then update the caller's
1258 * values and return.
1259 */
b46acd6a
KK
1260 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1261 info->chkdsk_was_run = true;
1262 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1263 info->restart = true;
1264 info->r_page = r_page;
1265 return 0;
1266 }
1267
e8b8e97f
KA
1268 /*
1269 * If we have a valid page then copy the values
1270 * we need from it.
1271 */
b46acd6a
KK
1272 if (info->valid_page) {
1273 info->last_lsn = le64_to_cpu(ra->current_lsn);
1274 info->restart = true;
1275 info->r_page = r_page;
1276 return 0;
1277 }
1278 }
1279
195c52bd 1280 kfree(r_page);
b46acd6a
KK
1281
1282 return 0;
1283}
1284
1285/*
e8b8e97f 1286 * Ilog_init_pg_hdr - Init @log from restart page header.
b46acd6a
KK
1287 */
1288static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1289 u32 page_size, u16 major_ver, u16 minor_ver)
1290{
1291 log->sys_page_size = sys_page_size;
1292 log->sys_page_mask = sys_page_size - 1;
1293 log->page_size = page_size;
1294 log->page_mask = page_size - 1;
1295 log->page_bits = blksize_bits(page_size);
1296
1297 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1298 if (!log->clst_per_page)
1299 log->clst_per_page = 1;
1300
1301 log->first_page = major_ver >= 2
1302 ? 0x22 * page_size
1303 : ((sys_page_size << 1) + (page_size << 1));
1304 log->major_ver = major_ver;
1305 log->minor_ver = minor_ver;
1306}
1307
1308/*
e8b8e97f 1309 * log_create - Init @log in cases when we don't have a restart area to use.
b46acd6a
KK
1310 */
1311static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1312 u32 open_log_count, bool wrapped, bool use_multi_page)
1313{
1314 log->l_size = l_size;
e8b8e97f 1315 /* All file offsets must be quadword aligned. */
b46acd6a
KK
1316 log->file_data_bits = blksize_bits(l_size) - 3;
1317 log->seq_num_mask = (8 << log->file_data_bits) - 1;
1318 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1319 log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1320 log->next_page = log->first_page;
1321 log->oldest_lsn = log->seq_num << log->file_data_bits;
1322 log->oldest_lsn_off = 0;
1323 log->last_lsn = log->oldest_lsn;
1324
1325 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1326
e8b8e97f 1327 /* Set the correct flags for the I/O and indicate if we have wrapped. */
b46acd6a
KK
1328 if (wrapped)
1329 log->l_flags |= NTFSLOG_WRAPPED;
1330
1331 if (use_multi_page)
1332 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1333
e8b8e97f 1334 /* Compute the log page values. */
fa3cacf5 1335 log->data_off = ALIGN(
b46acd6a 1336 offsetof(struct RECORD_PAGE_HDR, fixups) +
d3624466
KK
1337 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1338 8);
b46acd6a
KK
1339 log->data_size = log->page_size - log->data_off;
1340 log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1341
e8b8e97f 1342 /* Remember the different page sizes for reservation. */
b46acd6a
KK
1343 log->reserved = log->data_size - log->record_header_len;
1344
1345 /* Compute the restart page values. */
fa3cacf5 1346 log->ra_off = ALIGN(
b46acd6a 1347 offsetof(struct RESTART_HDR, fixups) +
d3624466
KK
1348 sizeof(short) *
1349 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1350 8);
b46acd6a
KK
1351 log->restart_size = log->sys_page_size - log->ra_off;
1352 log->ra_size = struct_size(log->ra, clients, 1);
1353 log->current_openlog_count = open_log_count;
1354
1355 /*
1356 * The total available log file space is the number of
e8b8e97f 1357 * log file pages times the space available on each page.
b46acd6a
KK
1358 */
1359 log->total_avail_pages = log->l_size - log->first_page;
1360 log->total_avail = log->total_avail_pages >> log->page_bits;
1361
1362 /*
1363 * We assume that we can't use the end of the page less than
e8b8e97f
KA
1364 * the file record size.
1365 * Then we won't need to reserve more than the caller asks for.
b46acd6a
KK
1366 */
1367 log->max_current_avail = log->total_avail * log->reserved;
1368 log->total_avail = log->total_avail * log->data_size;
1369 log->current_avail = log->max_current_avail;
1370}
1371
1372/*
e8b8e97f 1373 * log_create_ra - Fill a restart area from the values stored in @log.
b46acd6a
KK
1374 */
1375static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1376{
1377 struct CLIENT_REC *cr;
195c52bd 1378 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
b46acd6a
KK
1379
1380 if (!ra)
1381 return NULL;
1382
1383 ra->current_lsn = cpu_to_le64(log->last_lsn);
1384 ra->log_clients = cpu_to_le16(1);
1385 ra->client_idx[1] = LFS_NO_CLIENT_LE;
1386 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1387 ra->flags = RESTART_SINGLE_PAGE_IO;
1388 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1389 ra->ra_len = cpu_to_le16(log->ra_size);
1390 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1391 ra->l_size = cpu_to_le64(log->l_size);
1392 ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1393 ra->data_off = cpu_to_le16(log->data_off);
1394 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1395
1396 cr = ra->clients;
1397
1398 cr->prev_client = LFS_NO_CLIENT_LE;
1399 cr->next_client = LFS_NO_CLIENT_LE;
1400
1401 return ra;
1402}
1403
1404static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1405{
1406 u32 base_vbo = lsn << 3;
1407 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1408 u32 page_off = base_vbo & log->page_mask;
1409 u32 tail = log->page_size - page_off;
1410
1411 page_off -= 1;
1412
e8b8e97f 1413 /* Add the length of the header. */
b46acd6a
KK
1414 data_len += log->record_header_len;
1415
1416 /*
e8b8e97f
KA
1417 * If this lsn is contained this log page we are done.
1418 * Otherwise we need to walk through several log pages.
b46acd6a
KK
1419 */
1420 if (data_len > tail) {
1421 data_len -= tail;
1422 tail = log->data_size;
1423 page_off = log->data_off - 1;
1424
1425 for (;;) {
1426 final_log_off = next_page_off(log, final_log_off);
1427
e8b8e97f
KA
1428 /*
1429 * We are done if the remaining bytes
1430 * fit on this page.
1431 */
b46acd6a
KK
1432 if (data_len <= tail)
1433 break;
1434 data_len -= tail;
1435 }
1436 }
1437
1438 /*
1439 * We add the remaining bytes to our starting position on this page
e8b8e97f 1440 * and then add that value to the file offset of this log page.
b46acd6a
KK
1441 */
1442 return final_log_off + data_len + page_off;
1443}
1444
1445static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1446 u64 *lsn)
1447{
1448 int err;
1449 u64 this_lsn = le64_to_cpu(rh->this_lsn);
1450 u32 vbo = lsn_to_vbo(log, this_lsn);
1451 u32 end =
1452 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1453 u32 hdr_off = end & ~log->sys_page_mask;
1454 u64 seq = this_lsn >> log->file_data_bits;
1455 struct RECORD_PAGE_HDR *page = NULL;
1456
e8b8e97f 1457 /* Remember if we wrapped. */
b46acd6a
KK
1458 if (end <= vbo)
1459 seq += 1;
1460
e8b8e97f 1461 /* Log page header for this page. */
b46acd6a
KK
1462 err = read_log_page(log, hdr_off, &page, NULL);
1463 if (err)
1464 return err;
1465
1466 /*
1467 * If the lsn we were given was not the last lsn on this page,
1468 * then the starting offset for the next lsn is on a quad word
e8b8e97f
KA
1469 * boundary following the last file offset for the current lsn.
1470 * Otherwise the file offset is the start of the data on the next page.
b46acd6a
KK
1471 */
1472 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
e8b8e97f 1473 /* If we wrapped, we need to increment the sequence number. */
b46acd6a
KK
1474 hdr_off = next_page_off(log, hdr_off);
1475 if (hdr_off == log->first_page)
1476 seq += 1;
1477
1478 vbo = hdr_off + log->data_off;
1479 } else {
fa3cacf5 1480 vbo = ALIGN(end, 8);
b46acd6a
KK
1481 }
1482
e8b8e97f 1483 /* Compute the lsn based on the file offset and the sequence count. */
b46acd6a
KK
1484 *lsn = vbo_to_lsn(log, vbo, seq);
1485
1486 /*
e8b8e97f
KA
1487 * If this lsn is within the legal range for the file, we return true.
1488 * Otherwise false indicates that there are no more lsn's.
b46acd6a
KK
1489 */
1490 if (!is_lsn_in_file(log, *lsn))
1491 *lsn = 0;
1492
195c52bd 1493 kfree(page);
b46acd6a
KK
1494
1495 return 0;
1496}
1497
1498/*
e8b8e97f 1499 * current_log_avail - Calculate the number of bytes available for log records.
b46acd6a
KK
1500 */
1501static u32 current_log_avail(struct ntfs_log *log)
1502{
1503 u32 oldest_off, next_free_off, free_bytes;
1504
1505 if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
e8b8e97f 1506 /* The entire file is available. */
b46acd6a
KK
1507 return log->max_current_avail;
1508 }
1509
1510 /*
1511 * If there is a last lsn the restart area then we know that we will
e8b8e97f
KA
1512 * have to compute the free range.
1513 * If there is no oldest lsn then start at the first page of the file.
b46acd6a
KK
1514 */
1515 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1516 ? log->first_page
1517 : (log->oldest_lsn_off & ~log->sys_page_mask);
1518
1519 /*
e8b8e97f
KA
1520 * We will use the next log page offset to compute the next free page.
1521 * If we are going to reuse this page go to the next page.
1522 * If we are at the first page then use the end of the file.
b46acd6a
KK
1523 */
1524 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1525 ? log->next_page + log->page_size
1526 : log->next_page == log->first_page
1527 ? log->l_size
1528 : log->next_page;
1529
e8b8e97f 1530 /* If the two offsets are the same then there is no available space. */
b46acd6a
KK
1531 if (oldest_off == next_free_off)
1532 return 0;
1533 /*
1534 * If the free offset follows the oldest offset then subtract
e8b8e97f 1535 * this range from the total available pages.
b46acd6a
KK
1536 */
1537 free_bytes =
1538 oldest_off < next_free_off
1539 ? log->total_avail_pages - (next_free_off - oldest_off)
1540 : oldest_off - next_free_off;
1541
1542 free_bytes >>= log->page_bits;
1543 return free_bytes * log->reserved;
1544}
1545
1546static bool check_subseq_log_page(struct ntfs_log *log,
1547 const struct RECORD_PAGE_HDR *rp, u32 vbo,
1548 u64 seq)
1549{
1550 u64 lsn_seq;
1551 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1552 u64 lsn = le64_to_cpu(rhdr->lsn);
1553
1554 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1555 return false;
1556
1557 /*
1558 * If the last lsn on the page occurs was written after the page
e8b8e97f 1559 * that caused the original error then we have a fatal error.
b46acd6a
KK
1560 */
1561 lsn_seq = lsn >> log->file_data_bits;
1562
1563 /*
1564 * If the sequence number for the lsn the page is equal or greater
e8b8e97f 1565 * than lsn we expect, then this is a subsequent write.
b46acd6a
KK
1566 */
1567 return lsn_seq >= seq ||
1568 (lsn_seq == seq - 1 && log->first_page == vbo &&
1569 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1570}
1571
1572/*
1573 * last_log_lsn
1574 *
e8b8e97f
KA
1575 * Walks through the log pages for a file, searching for the
1576 * last log page written to the file.
b46acd6a
KK
1577 */
1578static int last_log_lsn(struct ntfs_log *log)
1579{
1580 int err;
1581 bool usa_error = false;
1582 bool replace_page = false;
1583 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1584 bool wrapped_file, wrapped;
1585
1586 u32 page_cnt = 1, page_pos = 1;
1587 u32 page_off = 0, page_off1 = 0, saved_off = 0;
1588 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1589 u32 first_file_off = 0, second_file_off = 0;
1590 u32 part_io_count = 0;
1591 u32 tails = 0;
1592 u32 this_off, curpage_off, nextpage_off, remain_pages;
1593
1594 u64 expected_seq, seq_base = 0, lsn_base = 0;
1595 u64 best_lsn, best_lsn1, best_lsn2;
1596 u64 lsn_cur, lsn1, lsn2;
1597 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1598
1599 u16 cur_pos, best_page_pos;
1600
1601 struct RECORD_PAGE_HDR *page = NULL;
1602 struct RECORD_PAGE_HDR *tst_page = NULL;
1603 struct RECORD_PAGE_HDR *first_tail = NULL;
1604 struct RECORD_PAGE_HDR *second_tail = NULL;
1605 struct RECORD_PAGE_HDR *tail_page = NULL;
1606 struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1607 struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1608 struct RECORD_PAGE_HDR *page_bufs = NULL;
1609 struct RECORD_PAGE_HDR *best_page;
1610
1611 if (log->major_ver >= 2) {
1612 final_off = 0x02 * log->page_size;
1613 second_off = 0x12 * log->page_size;
1614
1615 // 0x10 == 0x12 - 0x2
195c52bd 1616 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
b46acd6a
KK
1617 if (!page_bufs)
1618 return -ENOMEM;
1619 } else {
1620 second_off = log->first_page - log->page_size;
1621 final_off = second_off - log->page_size;
1622 }
1623
1624next_tail:
e8b8e97f 1625 /* Read second tail page (at pos 3/0x12000). */
b46acd6a
KK
1626 if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1627 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
195c52bd 1628 kfree(second_tail);
b46acd6a
KK
1629 second_tail = NULL;
1630 second_file_off = 0;
1631 lsn2 = 0;
1632 } else {
1633 second_file_off = hdr_file_off(log, second_tail);
1634 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1635 }
1636
e8b8e97f 1637 /* Read first tail page (at pos 2/0x2000). */
b46acd6a
KK
1638 if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1639 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
195c52bd 1640 kfree(first_tail);
b46acd6a
KK
1641 first_tail = NULL;
1642 first_file_off = 0;
1643 lsn1 = 0;
1644 } else {
1645 first_file_off = hdr_file_off(log, first_tail);
1646 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1647 }
1648
1649 if (log->major_ver < 2) {
1650 int best_page;
1651
1652 first_tail_prev = first_tail;
1653 final_off_prev = first_file_off;
1654 second_tail_prev = second_tail;
1655 second_off_prev = second_file_off;
1656 tails = 1;
1657
1658 if (!first_tail && !second_tail)
1659 goto tail_read;
1660
1661 if (first_tail && second_tail)
1662 best_page = lsn1 < lsn2 ? 1 : 0;
1663 else if (first_tail)
1664 best_page = 0;
1665 else
1666 best_page = 1;
1667
1668 page_off = best_page ? second_file_off : first_file_off;
1669 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1670 goto tail_read;
1671 }
1672
1673 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1674 best_lsn2 =
1675 second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1676
1677 if (first_tail && second_tail) {
1678 if (best_lsn1 > best_lsn2) {
1679 best_lsn = best_lsn1;
1680 best_page = first_tail;
1681 this_off = first_file_off;
1682 } else {
1683 best_lsn = best_lsn2;
1684 best_page = second_tail;
1685 this_off = second_file_off;
1686 }
1687 } else if (first_tail) {
1688 best_lsn = best_lsn1;
1689 best_page = first_tail;
1690 this_off = first_file_off;
1691 } else if (second_tail) {
1692 best_lsn = best_lsn2;
1693 best_page = second_tail;
1694 this_off = second_file_off;
1695 } else {
1696 goto tail_read;
1697 }
1698
1699 best_page_pos = le16_to_cpu(best_page->page_pos);
1700
1701 if (!tails) {
1702 if (best_page_pos == page_pos) {
1703 seq_base = best_lsn >> log->file_data_bits;
1704 saved_off = page_off = le32_to_cpu(best_page->file_off);
1705 lsn_base = best_lsn;
1706
1707 memmove(page_bufs, best_page, log->page_size);
1708
1709 page_cnt = le16_to_cpu(best_page->page_count);
1710 if (page_cnt > 1)
1711 page_pos += 1;
1712
1713 tails = 1;
1714 }
1715 } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1716 saved_off + log->page_size == this_off &&
1717 lsn_base < best_lsn &&
1718 (page_pos != page_cnt || best_page_pos == page_pos ||
1719 best_page_pos == 1) &&
1720 (page_pos >= page_cnt || best_page_pos == page_pos)) {
1721 u16 bppc = le16_to_cpu(best_page->page_count);
1722
1723 saved_off += log->page_size;
1724 lsn_base = best_lsn;
1725
1726 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1727 log->page_size);
1728
1729 tails += 1;
1730
1731 if (best_page_pos != bppc) {
1732 page_cnt = bppc;
1733 page_pos = best_page_pos;
1734
1735 if (page_cnt > 1)
1736 page_pos += 1;
1737 } else {
1738 page_pos = page_cnt = 1;
1739 }
1740 } else {
195c52bd
KA
1741 kfree(first_tail);
1742 kfree(second_tail);
b46acd6a
KK
1743 goto tail_read;
1744 }
1745
195c52bd 1746 kfree(first_tail_prev);
b46acd6a
KK
1747 first_tail_prev = first_tail;
1748 final_off_prev = first_file_off;
1749 first_tail = NULL;
1750
195c52bd 1751 kfree(second_tail_prev);
b46acd6a
KK
1752 second_tail_prev = second_tail;
1753 second_off_prev = second_file_off;
1754 second_tail = NULL;
1755
1756 final_off += log->page_size;
1757 second_off += log->page_size;
1758
1759 if (tails < 0x10)
1760 goto next_tail;
1761tail_read:
1762 first_tail = first_tail_prev;
1763 final_off = final_off_prev;
1764
1765 second_tail = second_tail_prev;
1766 second_off = second_off_prev;
1767
1768 page_cnt = page_pos = 1;
1769
1770 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1771 : log->next_page;
1772
1773 wrapped_file =
1774 curpage_off == log->first_page &&
1775 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1776
1777 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1778
1779 nextpage_off = curpage_off;
1780
1781next_page:
1782 tail_page = NULL;
e8b8e97f 1783 /* Read the next log page. */
b46acd6a
KK
1784 err = read_log_page(log, curpage_off, &page, &usa_error);
1785
e8b8e97f 1786 /* Compute the next log page offset the file. */
b46acd6a
KK
1787 nextpage_off = next_page_off(log, curpage_off);
1788 wrapped = nextpage_off == log->first_page;
1789
1790 if (tails > 1) {
1791 struct RECORD_PAGE_HDR *cur_page =
1792 Add2Ptr(page_bufs, curpage_off - page_off);
1793
1794 if (curpage_off == saved_off) {
1795 tail_page = cur_page;
1796 goto use_tail_page;
1797 }
1798
1799 if (page_off > curpage_off || curpage_off >= saved_off)
1800 goto use_tail_page;
1801
1802 if (page_off1)
1803 goto use_cur_page;
1804
1805 if (!err && !usa_error &&
1806 page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1807 cur_page->rhdr.lsn == page->rhdr.lsn &&
1808 cur_page->record_hdr.next_record_off ==
1809 page->record_hdr.next_record_off &&
1810 ((page_pos == page_cnt &&
1811 le16_to_cpu(page->page_pos) == 1) ||
1812 (page_pos != page_cnt &&
1813 le16_to_cpu(page->page_pos) == page_pos + 1 &&
1814 le16_to_cpu(page->page_count) == page_cnt))) {
1815 cur_page = NULL;
1816 goto use_tail_page;
1817 }
1818
1819 page_off1 = page_off;
1820
1821use_cur_page:
1822
1823 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1824
1825 if (last_ok_lsn !=
1826 le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1827 ((lsn_cur >> log->file_data_bits) +
1828 ((curpage_off <
1829 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1830 ? 1
1831 : 0)) != expected_seq) {
1832 goto check_tail;
1833 }
1834
1835 if (!is_log_record_end(cur_page)) {
1836 tail_page = NULL;
1837 last_ok_lsn = lsn_cur;
1838 goto next_page_1;
1839 }
1840
1841 log->seq_num = expected_seq;
1842 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1843 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1844 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1845
1846 if (log->record_header_len <=
1847 log->page_size -
1848 le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1849 log->l_flags |= NTFSLOG_REUSE_TAIL;
1850 log->next_page = curpage_off;
1851 } else {
1852 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1853 log->next_page = nextpage_off;
1854 }
1855
1856 if (wrapped_file)
1857 log->l_flags |= NTFSLOG_WRAPPED;
1858
1859 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1860 goto next_page_1;
1861 }
1862
1863 /*
1864 * If we are at the expected first page of a transfer check to see
e8b8e97f 1865 * if either tail copy is at this offset.
b46acd6a 1866 * If this page is the last page of a transfer, check if we wrote
e8b8e97f 1867 * a subsequent tail copy.
b46acd6a
KK
1868 */
1869 if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1870 /*
1871 * Check if the offset matches either the first or second
e8b8e97f 1872 * tail copy. It is possible it will match both.
b46acd6a
KK
1873 */
1874 if (curpage_off == final_off)
1875 tail_page = first_tail;
1876
1877 /*
1878 * If we already matched on the first page then
1879 * check the ending lsn's.
1880 */
1881 if (curpage_off == second_off) {
1882 if (!tail_page ||
1883 (second_tail &&
1884 le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1885 le64_to_cpu(first_tail->record_hdr
1886 .last_end_lsn))) {
1887 tail_page = second_tail;
1888 }
1889 }
1890 }
1891
1892use_tail_page:
1893 if (tail_page) {
e8b8e97f 1894 /* We have a candidate for a tail copy. */
b46acd6a
KK
1895 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1896
1897 if (last_ok_lsn < lsn_cur) {
1898 /*
1899 * If the sequence number is not expected,
e8b8e97f 1900 * then don't use the tail copy.
b46acd6a
KK
1901 */
1902 if (expected_seq != (lsn_cur >> log->file_data_bits))
1903 tail_page = NULL;
1904 } else if (last_ok_lsn > lsn_cur) {
1905 /*
1906 * If the last lsn is greater than the one on
e8b8e97f 1907 * this page then forget this tail.
b46acd6a
KK
1908 */
1909 tail_page = NULL;
1910 }
1911 }
1912
e8b8e97f
KA
1913 /*
1914 *If we have an error on the current page,
1915 * we will break of this loop.
1916 */
b46acd6a
KK
1917 if (err || usa_error)
1918 goto check_tail;
1919
1920 /*
1921 * Done if the last lsn on this page doesn't match the previous known
e8b8e97f 1922 * last lsn or the sequence number is not expected.
b46acd6a
KK
1923 */
1924 lsn_cur = le64_to_cpu(page->rhdr.lsn);
1925 if (last_ok_lsn != lsn_cur &&
1926 expected_seq != (lsn_cur >> log->file_data_bits)) {
1927 goto check_tail;
1928 }
1929
1930 /*
e8b8e97f 1931 * Check that the page position and page count values are correct.
b46acd6a 1932 * If this is the first page of a transfer the position must be 1
e8b8e97f 1933 * and the count will be unknown.
b46acd6a
KK
1934 */
1935 if (page_cnt == page_pos) {
1936 if (page->page_pos != cpu_to_le16(1) &&
1937 (!reuse_page || page->page_pos != page->page_count)) {
1938 /*
1939 * If the current page is the first page we are
1940 * looking at and we are reusing this page then
1941 * it can be either the first or last page of a
1942 * transfer. Otherwise it can only be the first.
1943 */
1944 goto check_tail;
1945 }
1946 } else if (le16_to_cpu(page->page_count) != page_cnt ||
1947 le16_to_cpu(page->page_pos) != page_pos + 1) {
1948 /*
1949 * The page position better be 1 more than the last page
e8b8e97f 1950 * position and the page count better match.
b46acd6a
KK
1951 */
1952 goto check_tail;
1953 }
1954
1955 /*
1956 * We have a valid page the file and may have a valid page
e8b8e97f 1957 * the tail copy area.
b46acd6a 1958 * If the tail page was written after the page the file then
e8b8e97f 1959 * break of the loop.
b46acd6a
KK
1960 */
1961 if (tail_page &&
1962 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
e8b8e97f 1963 /* Remember if we will replace the page. */
b46acd6a
KK
1964 replace_page = true;
1965 goto check_tail;
1966 }
1967
1968 tail_page = NULL;
1969
1970 if (is_log_record_end(page)) {
1971 /*
1972 * Since we have read this page we know the sequence number
e8b8e97f 1973 * is the same as our expected value.
b46acd6a
KK
1974 */
1975 log->seq_num = expected_seq;
1976 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1977 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1978 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1979
1980 /*
1981 * If there is room on this page for another header then
e8b8e97f 1982 * remember we want to reuse the page.
b46acd6a
KK
1983 */
1984 if (log->record_header_len <=
1985 log->page_size -
1986 le16_to_cpu(page->record_hdr.next_record_off)) {
1987 log->l_flags |= NTFSLOG_REUSE_TAIL;
1988 log->next_page = curpage_off;
1989 } else {
1990 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1991 log->next_page = nextpage_off;
1992 }
1993
e8b8e97f 1994 /* Remember if we wrapped the log file. */
b46acd6a
KK
1995 if (wrapped_file)
1996 log->l_flags |= NTFSLOG_WRAPPED;
1997 }
1998
1999 /*
2000 * Remember the last page count and position.
e8b8e97f 2001 * Also remember the last known lsn.
b46acd6a
KK
2002 */
2003 page_cnt = le16_to_cpu(page->page_count);
2004 page_pos = le16_to_cpu(page->page_pos);
2005 last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2006
2007next_page_1:
2008
2009 if (wrapped) {
2010 expected_seq += 1;
2011 wrapped_file = 1;
2012 }
2013
2014 curpage_off = nextpage_off;
195c52bd 2015 kfree(page);
b46acd6a
KK
2016 page = NULL;
2017 reuse_page = 0;
2018 goto next_page;
2019
2020check_tail:
2021 if (tail_page) {
2022 log->seq_num = expected_seq;
2023 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2024 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2025 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2026
2027 if (log->page_size -
2028 le16_to_cpu(
2029 tail_page->record_hdr.next_record_off) >=
2030 log->record_header_len) {
2031 log->l_flags |= NTFSLOG_REUSE_TAIL;
2032 log->next_page = curpage_off;
2033 } else {
2034 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2035 log->next_page = nextpage_off;
2036 }
2037
2038 if (wrapped)
2039 log->l_flags |= NTFSLOG_WRAPPED;
2040 }
2041
e8b8e97f 2042 /* Remember that the partial IO will start at the next page. */
b46acd6a
KK
2043 second_off = nextpage_off;
2044
2045 /*
2046 * If the next page is the first page of the file then update
e8b8e97f 2047 * the sequence number for log records which begon the next page.
b46acd6a
KK
2048 */
2049 if (wrapped)
2050 expected_seq += 1;
2051
2052 /*
2053 * If we have a tail copy or are performing single page I/O we can
e8b8e97f 2054 * immediately look at the next page.
b46acd6a
KK
2055 */
2056 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2057 page_cnt = 2;
2058 page_pos = 1;
2059 goto check_valid;
2060 }
2061
2062 if (page_pos != page_cnt)
2063 goto check_valid;
2064 /*
2065 * If the next page causes us to wrap to the beginning of the log
2066 * file then we know which page to check next.
2067 */
2068 if (wrapped) {
2069 page_cnt = 2;
2070 page_pos = 1;
2071 goto check_valid;
2072 }
2073
2074 cur_pos = 2;
2075
2076next_test_page:
195c52bd 2077 kfree(tst_page);
b46acd6a
KK
2078 tst_page = NULL;
2079
e8b8e97f 2080 /* Walk through the file, reading log pages. */
b46acd6a
KK
2081 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2082
2083 /*
2084 * If we get a USA error then assume that we correctly found
e8b8e97f 2085 * the end of the original transfer.
b46acd6a
KK
2086 */
2087 if (usa_error)
2088 goto file_is_valid;
2089
2090 /*
2091 * If we were able to read the page, we examine it to see if it
e8b8e97f 2092 * is the same or different Io block.
b46acd6a
KK
2093 */
2094 if (err)
2095 goto next_test_page_1;
2096
2097 if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2098 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2099 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2100 page_pos = le16_to_cpu(tst_page->page_pos);
2101 goto check_valid;
2102 } else {
2103 goto file_is_valid;
2104 }
2105
2106next_test_page_1:
2107
2108 nextpage_off = next_page_off(log, curpage_off);
2109 wrapped = nextpage_off == log->first_page;
2110
2111 if (wrapped) {
2112 expected_seq += 1;
2113 page_cnt = 2;
2114 page_pos = 1;
2115 }
2116
2117 cur_pos += 1;
2118 part_io_count += 1;
2119 if (!wrapped)
2120 goto next_test_page;
2121
2122check_valid:
e8b8e97f 2123 /* Skip over the remaining pages this transfer. */
b46acd6a
KK
2124 remain_pages = page_cnt - page_pos - 1;
2125 part_io_count += remain_pages;
2126
2127 while (remain_pages--) {
2128 nextpage_off = next_page_off(log, curpage_off);
2129 wrapped = nextpage_off == log->first_page;
2130
2131 if (wrapped)
2132 expected_seq += 1;
2133 }
2134
e8b8e97f 2135 /* Call our routine to check this log page. */
195c52bd 2136 kfree(tst_page);
b46acd6a
KK
2137 tst_page = NULL;
2138
2139 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2140 if (!err && !usa_error &&
2141 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2142 err = -EINVAL;
2143 goto out;
2144 }
2145
2146file_is_valid:
2147
e8b8e97f 2148 /* We have a valid file. */
b46acd6a
KK
2149 if (page_off1 || tail_page) {
2150 struct RECORD_PAGE_HDR *tmp_page;
2151
2152 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2153 err = -EROFS;
2154 goto out;
2155 }
2156
2157 if (page_off1) {
2158 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2159 tails -= (page_off1 - page_off) / log->page_size;
2160 if (!tail_page)
2161 tails -= 1;
2162 } else {
2163 tmp_page = tail_page;
2164 tails = 1;
2165 }
2166
2167 while (tails--) {
2168 u64 off = hdr_file_off(log, tmp_page);
2169
2170 if (!page) {
195c52bd 2171 page = kmalloc(log->page_size, GFP_NOFS);
b46acd6a
KK
2172 if (!page)
2173 return -ENOMEM;
2174 }
2175
2176 /*
2177 * Correct page and copy the data from this page
e8b8e97f 2178 * into it and flush it to disk.
b46acd6a
KK
2179 */
2180 memcpy(page, tmp_page, log->page_size);
2181
e8b8e97f 2182 /* Fill last flushed lsn value flush the page. */
b46acd6a
KK
2183 if (log->major_ver < 2)
2184 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2185 else
2186 page->file_off = 0;
2187
2188 page->page_pos = page->page_count = cpu_to_le16(1);
2189
2190 ntfs_fix_pre_write(&page->rhdr, log->page_size);
2191
2192 err = ntfs_sb_write_run(log->ni->mi.sbi,
2193 &log->ni->file.run, off, page,
63544672 2194 log->page_size, 0);
b46acd6a
KK
2195
2196 if (err)
2197 goto out;
2198
2199 if (part_io_count && second_off == off) {
2200 second_off += log->page_size;
2201 part_io_count -= 1;
2202 }
2203
2204 tmp_page = Add2Ptr(tmp_page, log->page_size);
2205 }
2206 }
2207
2208 if (part_io_count) {
2209 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2210 err = -EROFS;
2211 goto out;
2212 }
2213 }
2214
2215out:
195c52bd
KA
2216 kfree(second_tail);
2217 kfree(first_tail);
2218 kfree(page);
2219 kfree(tst_page);
2220 kfree(page_bufs);
b46acd6a
KK
2221
2222 return err;
2223}
2224
2225/*
e8b8e97f 2226 * read_log_rec_buf - Copy a log record from the file to a buffer.
b46acd6a 2227 *
e8b8e97f 2228 * The log record may span several log pages and may even wrap the file.
b46acd6a
KK
2229 */
2230static int read_log_rec_buf(struct ntfs_log *log,
2231 const struct LFS_RECORD_HDR *rh, void *buffer)
2232{
2233 int err;
2234 struct RECORD_PAGE_HDR *ph = NULL;
2235 u64 lsn = le64_to_cpu(rh->this_lsn);
2236 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2237 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2238 u32 data_len = le32_to_cpu(rh->client_data_len);
2239
2240 /*
2241 * While there are more bytes to transfer,
e8b8e97f 2242 * we continue to attempt to perform the read.
b46acd6a
KK
2243 */
2244 for (;;) {
2245 bool usa_error;
2246 u32 tail = log->page_size - off;
2247
2248 if (tail >= data_len)
2249 tail = data_len;
2250
2251 data_len -= tail;
2252
2253 err = read_log_page(log, vbo, &ph, &usa_error);
2254 if (err)
2255 goto out;
2256
2257 /*
2258 * The last lsn on this page better be greater or equal
e8b8e97f 2259 * to the lsn we are copying.
b46acd6a
KK
2260 */
2261 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2262 err = -EINVAL;
2263 goto out;
2264 }
2265
2266 memcpy(buffer, Add2Ptr(ph, off), tail);
2267
e8b8e97f 2268 /* If there are no more bytes to transfer, we exit the loop. */
b46acd6a
KK
2269 if (!data_len) {
2270 if (!is_log_record_end(ph) ||
2271 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2272 err = -EINVAL;
2273 goto out;
2274 }
2275 break;
2276 }
2277
2278 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2279 lsn > le64_to_cpu(ph->rhdr.lsn)) {
2280 err = -EINVAL;
2281 goto out;
2282 }
2283
2284 vbo = next_page_off(log, vbo);
2285 off = log->data_off;
2286
2287 /*
e8b8e97f
KA
2288 * Adjust our pointer the user's buffer to transfer
2289 * the next block to.
b46acd6a
KK
2290 */
2291 buffer = Add2Ptr(buffer, tail);
2292 }
2293
2294out:
195c52bd 2295 kfree(ph);
b46acd6a
KK
2296 return err;
2297}
2298
2299static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2300 u64 *lsn)
2301{
2302 int err;
2303 struct LFS_RECORD_HDR *rh = NULL;
2304 const struct CLIENT_REC *cr =
2305 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2306 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2307 u32 len;
2308 struct NTFS_RESTART *rst;
2309
2310 *lsn = 0;
2311 *rst_ = NULL;
2312
e8b8e97f 2313 /* If the client doesn't have a restart area, go ahead and exit now. */
b46acd6a
KK
2314 if (!lsnc)
2315 return 0;
2316
2317 err = read_log_page(log, lsn_to_vbo(log, lsnc),
2318 (struct RECORD_PAGE_HDR **)&rh, NULL);
2319 if (err)
2320 return err;
2321
2322 rst = NULL;
2323 lsnr = le64_to_cpu(rh->this_lsn);
2324
2325 if (lsnc != lsnr) {
e8b8e97f 2326 /* If the lsn values don't match, then the disk is corrupt. */
b46acd6a
KK
2327 err = -EINVAL;
2328 goto out;
2329 }
2330
2331 *lsn = lsnr;
2332 len = le32_to_cpu(rh->client_data_len);
2333
2334 if (!len) {
2335 err = 0;
2336 goto out;
2337 }
2338
2339 if (len < sizeof(struct NTFS_RESTART)) {
2340 err = -EINVAL;
2341 goto out;
2342 }
2343
195c52bd 2344 rst = kmalloc(len, GFP_NOFS);
b46acd6a
KK
2345 if (!rst) {
2346 err = -ENOMEM;
2347 goto out;
2348 }
2349
e8b8e97f 2350 /* Copy the data into the 'rst' buffer. */
b46acd6a
KK
2351 err = read_log_rec_buf(log, rh, rst);
2352 if (err)
2353 goto out;
2354
2355 *rst_ = rst;
2356 rst = NULL;
2357
2358out:
195c52bd
KA
2359 kfree(rh);
2360 kfree(rst);
b46acd6a
KK
2361
2362 return err;
2363}
2364
2365static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2366{
2367 int err;
2368 struct LFS_RECORD_HDR *rh = lcb->lrh;
2369 u32 rec_len, len;
2370
e8b8e97f 2371 /* Read the record header for this lsn. */
b46acd6a
KK
2372 if (!rh) {
2373 err = read_log_page(log, lsn_to_vbo(log, lsn),
2374 (struct RECORD_PAGE_HDR **)&rh, NULL);
2375
2376 lcb->lrh = rh;
2377 if (err)
2378 return err;
2379 }
2380
2381 /*
2382 * If the lsn the log record doesn't match the desired
e8b8e97f 2383 * lsn then the disk is corrupt.
b46acd6a
KK
2384 */
2385 if (lsn != le64_to_cpu(rh->this_lsn))
2386 return -EINVAL;
2387
2388 len = le32_to_cpu(rh->client_data_len);
2389
2390 /*
e8b8e97f
KA
2391 * Check that the length field isn't greater than the total
2392 * available space the log file.
b46acd6a
KK
2393 */
2394 rec_len = len + log->record_header_len;
2395 if (rec_len >= log->total_avail)
2396 return -EINVAL;
2397
2398 /*
2399 * If the entire log record is on this log page,
e8b8e97f 2400 * put a pointer to the log record the context block.
b46acd6a
KK
2401 */
2402 if (rh->flags & LOG_RECORD_MULTI_PAGE) {
195c52bd 2403 void *lr = kmalloc(len, GFP_NOFS);
b46acd6a
KK
2404
2405 if (!lr)
2406 return -ENOMEM;
2407
2408 lcb->log_rec = lr;
2409 lcb->alloc = true;
2410
e8b8e97f 2411 /* Copy the data into the buffer returned. */
b46acd6a
KK
2412 err = read_log_rec_buf(log, rh, lr);
2413 if (err)
2414 return err;
2415 } else {
e8b8e97f 2416 /* If beyond the end of the current page -> an error. */
b46acd6a
KK
2417 u32 page_off = lsn_to_page_off(log, lsn);
2418
2419 if (page_off + len + log->record_header_len > log->page_size)
2420 return -EINVAL;
2421
2422 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2423 lcb->alloc = false;
2424 }
2425
2426 return 0;
2427}
2428
2429/*
e8b8e97f 2430 * read_log_rec_lcb - Init the query operation.
b46acd6a
KK
2431 */
2432static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2433 struct lcb **lcb_)
2434{
2435 int err;
2436 const struct CLIENT_REC *cr;
2437 struct lcb *lcb;
2438
2439 switch (ctx_mode) {
2440 case lcb_ctx_undo_next:
2441 case lcb_ctx_prev:
2442 case lcb_ctx_next:
2443 break;
2444 default:
2445 return -EINVAL;
2446 }
2447
e8b8e97f 2448 /* Check that the given lsn is the legal range for this client. */
b46acd6a
KK
2449 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2450
2451 if (!verify_client_lsn(log, cr, lsn))
2452 return -EINVAL;
2453
195c52bd 2454 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
b46acd6a
KK
2455 if (!lcb)
2456 return -ENOMEM;
2457 lcb->client = log->client_id;
2458 lcb->ctx_mode = ctx_mode;
2459
e8b8e97f 2460 /* Find the log record indicated by the given lsn. */
b46acd6a
KK
2461 err = find_log_rec(log, lsn, lcb);
2462 if (err)
2463 goto out;
2464
2465 *lcb_ = lcb;
2466 return 0;
2467
2468out:
2469 lcb_put(lcb);
2470 *lcb_ = NULL;
2471 return err;
2472}
2473
2474/*
2475 * find_client_next_lsn
2476 *
e8b8e97f 2477 * Attempt to find the next lsn to return to a client based on the context mode.
b46acd6a
KK
2478 */
2479static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2480{
2481 int err;
2482 u64 next_lsn;
2483 struct LFS_RECORD_HDR *hdr;
2484
2485 hdr = lcb->lrh;
2486 *lsn = 0;
2487
2488 if (lcb_ctx_next != lcb->ctx_mode)
2489 goto check_undo_next;
2490
e8b8e97f 2491 /* Loop as long as another lsn can be found. */
b46acd6a
KK
2492 for (;;) {
2493 u64 current_lsn;
2494
2495 err = next_log_lsn(log, hdr, &current_lsn);
2496 if (err)
2497 goto out;
2498
2499 if (!current_lsn)
2500 break;
2501
2502 if (hdr != lcb->lrh)
195c52bd 2503 kfree(hdr);
b46acd6a
KK
2504
2505 hdr = NULL;
2506 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2507 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2508 if (err)
2509 goto out;
2510
2511 if (memcmp(&hdr->client, &lcb->client,
2512 sizeof(struct CLIENT_ID))) {
2513 /*err = -EINVAL; */
2514 } else if (LfsClientRecord == hdr->record_type) {
195c52bd 2515 kfree(lcb->lrh);
b46acd6a
KK
2516 lcb->lrh = hdr;
2517 *lsn = current_lsn;
2518 return 0;
2519 }
2520 }
2521
2522out:
2523 if (hdr != lcb->lrh)
195c52bd 2524 kfree(hdr);
b46acd6a
KK
2525 return err;
2526
2527check_undo_next:
2528 if (lcb_ctx_undo_next == lcb->ctx_mode)
2529 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2530 else if (lcb_ctx_prev == lcb->ctx_mode)
2531 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2532 else
2533 return 0;
2534
2535 if (!next_lsn)
2536 return 0;
2537
2538 if (!verify_client_lsn(
2539 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2540 next_lsn))
2541 return 0;
2542
2543 hdr = NULL;
2544 err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2545 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2546 if (err)
2547 return err;
195c52bd 2548 kfree(lcb->lrh);
b46acd6a
KK
2549 lcb->lrh = hdr;
2550
2551 *lsn = next_lsn;
2552
2553 return 0;
2554}
2555
2556static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2557{
2558 int err;
2559
2560 err = find_client_next_lsn(log, lcb, lsn);
2561 if (err)
2562 return err;
2563
2564 if (!*lsn)
2565 return 0;
2566
2567 if (lcb->alloc)
195c52bd 2568 kfree(lcb->log_rec);
b46acd6a
KK
2569
2570 lcb->log_rec = NULL;
2571 lcb->alloc = false;
195c52bd 2572 kfree(lcb->lrh);
b46acd6a
KK
2573 lcb->lrh = NULL;
2574
2575 return find_log_rec(log, *lsn, lcb);
2576}
2577
2578static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2579{
2580 __le16 mask;
2581 u32 min_de, de_off, used, total;
2582 const struct NTFS_DE *e;
2583
2584 if (hdr_has_subnode(hdr)) {
2585 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2586 mask = NTFS_IE_HAS_SUBNODES;
2587 } else {
2588 min_de = sizeof(struct NTFS_DE);
2589 mask = 0;
2590 }
2591
2592 de_off = le32_to_cpu(hdr->de_off);
2593 used = le32_to_cpu(hdr->used);
2594 total = le32_to_cpu(hdr->total);
2595
2596 if (de_off > bytes - min_de || used > bytes || total > bytes ||
2597 de_off + min_de > used || used > total) {
2598 return false;
2599 }
2600
2601 e = Add2Ptr(hdr, de_off);
2602 for (;;) {
2603 u16 esize = le16_to_cpu(e->size);
2604 struct NTFS_DE *next = Add2Ptr(e, esize);
2605
2606 if (esize < min_de || PtrOffset(hdr, next) > used ||
2607 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2608 return false;
2609 }
2610
2611 if (de_is_last(e))
2612 break;
2613
2614 e = next;
2615 }
2616
2617 return true;
2618}
2619
2620static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2621{
2622 u16 fo;
2623 const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2624
2625 if (r->sign != NTFS_INDX_SIGNATURE)
2626 return false;
2627
2628 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2629
2630 if (le16_to_cpu(r->fix_off) > fo)
2631 return false;
2632
2633 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2634 return false;
2635
2636 return check_index_header(&ib->ihdr,
2637 bytes - offsetof(struct INDEX_BUFFER, ihdr));
2638}
2639
2640static inline bool check_index_root(const struct ATTRIB *attr,
2641 struct ntfs_sb_info *sbi)
2642{
2643 bool ret;
2644 const struct INDEX_ROOT *root = resident_data(attr);
2645 u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2646 ? sbi->cluster_bits
2647 : SECTOR_SHIFT;
2648 u8 block_clst = root->index_block_clst;
2649
2650 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2651 (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2652 (root->type == ATTR_NAME &&
2653 root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2654 (le32_to_cpu(root->index_block_size) !=
2655 (block_clst << index_bits)) ||
2656 (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2657 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2658 block_clst != 0x40 && block_clst != 0x80)) {
2659 return false;
2660 }
2661
2662 ret = check_index_header(&root->ihdr,
2663 le32_to_cpu(attr->res.data_size) -
2664 offsetof(struct INDEX_ROOT, ihdr));
2665 return ret;
2666}
2667
2668static inline bool check_attr(const struct MFT_REC *rec,
2669 const struct ATTRIB *attr,
2670 struct ntfs_sb_info *sbi)
2671{
2672 u32 asize = le32_to_cpu(attr->size);
2673 u32 rsize = 0;
2674 u64 dsize, svcn, evcn;
2675 u16 run_off;
2676
e8b8e97f 2677 /* Check the fixed part of the attribute record header. */
b46acd6a
KK
2678 if (asize >= sbi->record_size ||
2679 asize + PtrOffset(rec, attr) >= sbi->record_size ||
2680 (attr->name_len &&
2681 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2682 asize)) {
2683 return false;
2684 }
2685
e8b8e97f 2686 /* Check the attribute fields. */
b46acd6a
KK
2687 switch (attr->non_res) {
2688 case 0:
2689 rsize = le32_to_cpu(attr->res.data_size);
2690 if (rsize >= asize ||
2691 le16_to_cpu(attr->res.data_off) + rsize > asize) {
2692 return false;
2693 }
2694 break;
2695
2696 case 1:
2697 dsize = le64_to_cpu(attr->nres.data_size);
2698 svcn = le64_to_cpu(attr->nres.svcn);
2699 evcn = le64_to_cpu(attr->nres.evcn);
2700 run_off = le16_to_cpu(attr->nres.run_off);
2701
2702 if (svcn > evcn + 1 || run_off >= asize ||
2703 le64_to_cpu(attr->nres.valid_size) > dsize ||
2704 dsize > le64_to_cpu(attr->nres.alloc_size)) {
2705 return false;
2706 }
2707
6db62086
EL
2708 if (run_off > asize)
2709 return false;
2710
b46acd6a
KK
2711 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2712 Add2Ptr(attr, run_off), asize - run_off) < 0) {
2713 return false;
2714 }
2715
2716 return true;
2717
2718 default:
2719 return false;
2720 }
2721
2722 switch (attr->type) {
2723 case ATTR_NAME:
2724 if (fname_full_size(Add2Ptr(
2725 attr, le16_to_cpu(attr->res.data_off))) > asize) {
2726 return false;
2727 }
2728 break;
2729
2730 case ATTR_ROOT:
2731 return check_index_root(attr, sbi);
2732
2733 case ATTR_STD:
2734 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2735 rsize != sizeof(struct ATTR_STD_INFO)) {
2736 return false;
2737 }
2738 break;
2739
2740 case ATTR_LIST:
2741 case ATTR_ID:
2742 case ATTR_SECURE:
2743 case ATTR_LABEL:
2744 case ATTR_VOL_INFO:
2745 case ATTR_DATA:
2746 case ATTR_ALLOC:
2747 case ATTR_BITMAP:
2748 case ATTR_REPARSE:
2749 case ATTR_EA_INFO:
2750 case ATTR_EA:
2751 case ATTR_PROPERTYSET:
2752 case ATTR_LOGGED_UTILITY_STREAM:
2753 break;
2754
2755 default:
2756 return false;
2757 }
2758
2759 return true;
2760}
2761
2762static inline bool check_file_record(const struct MFT_REC *rec,
2763 const struct MFT_REC *rec2,
2764 struct ntfs_sb_info *sbi)
2765{
2766 const struct ATTRIB *attr;
2767 u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2768 u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2769 u16 ao = le16_to_cpu(rec->attr_off);
2770 u32 rs = sbi->record_size;
2771
e8b8e97f 2772 /* Check the file record header for consistency. */
b46acd6a
KK
2773 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2774 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2775 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2776 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2777 le32_to_cpu(rec->total) != rs) {
2778 return false;
2779 }
2780
e8b8e97f 2781 /* Loop to check all of the attributes. */
b46acd6a
KK
2782 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2783 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2784 if (check_attr(rec, attr, sbi))
2785 continue;
2786 return false;
2787 }
2788
2789 return true;
2790}
2791
2792static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2793 const u64 *rlsn)
2794{
2795 u64 lsn;
2796
2797 if (!rlsn)
2798 return true;
2799
2800 lsn = le64_to_cpu(hdr->lsn);
2801
2802 if (hdr->sign == NTFS_HOLE_SIGNATURE)
2803 return false;
2804
2805 if (*rlsn > lsn)
2806 return true;
2807
2808 return false;
2809}
2810
2811static inline bool check_if_attr(const struct MFT_REC *rec,
2812 const struct LOG_REC_HDR *lrh)
2813{
2814 u16 ro = le16_to_cpu(lrh->record_off);
2815 u16 o = le16_to_cpu(rec->attr_off);
2816 const struct ATTRIB *attr = Add2Ptr(rec, o);
2817
2818 while (o < ro) {
2819 u32 asize;
2820
2821 if (attr->type == ATTR_END)
2822 break;
2823
2824 asize = le32_to_cpu(attr->size);
2825 if (!asize)
2826 break;
2827
2828 o += asize;
2829 attr = Add2Ptr(attr, asize);
2830 }
2831
2832 return o == ro;
2833}
2834
2835static inline bool check_if_index_root(const struct MFT_REC *rec,
2836 const struct LOG_REC_HDR *lrh)
2837{
2838 u16 ro = le16_to_cpu(lrh->record_off);
2839 u16 o = le16_to_cpu(rec->attr_off);
2840 const struct ATTRIB *attr = Add2Ptr(rec, o);
2841
2842 while (o < ro) {
2843 u32 asize;
2844
2845 if (attr->type == ATTR_END)
2846 break;
2847
2848 asize = le32_to_cpu(attr->size);
2849 if (!asize)
2850 break;
2851
2852 o += asize;
2853 attr = Add2Ptr(attr, asize);
2854 }
2855
2856 return o == ro && attr->type == ATTR_ROOT;
2857}
2858
2859static inline bool check_if_root_index(const struct ATTRIB *attr,
2860 const struct INDEX_HDR *hdr,
2861 const struct LOG_REC_HDR *lrh)
2862{
2863 u16 ao = le16_to_cpu(lrh->attr_off);
2864 u32 de_off = le32_to_cpu(hdr->de_off);
2865 u32 o = PtrOffset(attr, hdr) + de_off;
2866 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2867 u32 asize = le32_to_cpu(attr->size);
2868
2869 while (o < ao) {
2870 u16 esize;
2871
2872 if (o >= asize)
2873 break;
2874
2875 esize = le16_to_cpu(e->size);
2876 if (!esize)
2877 break;
2878
2879 o += esize;
2880 e = Add2Ptr(e, esize);
2881 }
2882
2883 return o == ao;
2884}
2885
2886static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2887 u32 attr_off)
2888{
2889 u32 de_off = le32_to_cpu(hdr->de_off);
2890 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2891 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2892 u32 used = le32_to_cpu(hdr->used);
2893
2894 while (o < attr_off) {
2895 u16 esize;
2896
2897 if (de_off >= used)
2898 break;
2899
2900 esize = le16_to_cpu(e->size);
2901 if (!esize)
2902 break;
2903
2904 o += esize;
2905 de_off += esize;
2906 e = Add2Ptr(e, esize);
2907 }
2908
2909 return o == attr_off;
2910}
2911
2912static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2913 u32 nsize)
2914{
2915 u32 asize = le32_to_cpu(attr->size);
2916 int dsize = nsize - asize;
2917 u8 *next = Add2Ptr(attr, asize);
2918 u32 used = le32_to_cpu(rec->used);
2919
2920 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2921
2922 rec->used = cpu_to_le32(used + dsize);
2923 attr->size = cpu_to_le32(nsize);
2924}
2925
2926struct OpenAttr {
2927 struct ATTRIB *attr;
2928 struct runs_tree *run1;
2929 struct runs_tree run0;
2930 struct ntfs_inode *ni;
2931 // CLST rno;
2932};
2933
e8b8e97f
KA
2934/*
2935 * cmp_type_and_name
2936 *
2937 * Return: 0 if 'attr' has the same type and name.
2938 */
b46acd6a
KK
2939static inline int cmp_type_and_name(const struct ATTRIB *a1,
2940 const struct ATTRIB *a2)
2941{
2942 return a1->type != a2->type || a1->name_len != a2->name_len ||
2943 (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2944 a1->name_len * sizeof(short)));
2945}
2946
2947static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2948 const struct ATTRIB *attr, CLST rno)
2949{
2950 struct OPEN_ATTR_ENRTY *oe = NULL;
2951
2952 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2953 struct OpenAttr *op_attr;
2954
2955 if (ino_get(&oe->ref) != rno)
2956 continue;
2957
2958 op_attr = (struct OpenAttr *)oe->ptr;
2959 if (!cmp_type_and_name(op_attr->attr, attr))
2960 return op_attr;
2961 }
2962 return NULL;
2963}
2964
2965static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2966 enum ATTR_TYPE type, u64 size,
2967 const u16 *name, size_t name_len,
2968 __le16 flags)
2969{
2970 struct ATTRIB *attr;
fa3cacf5 2971 u32 name_size = ALIGN(name_len * sizeof(short), 8);
b46acd6a
KK
2972 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2973 u32 asize = name_size +
2974 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2975
195c52bd 2976 attr = kzalloc(asize, GFP_NOFS);
b46acd6a
KK
2977 if (!attr)
2978 return NULL;
2979
2980 attr->type = type;
2981 attr->size = cpu_to_le32(asize);
2982 attr->flags = flags;
2983 attr->non_res = 1;
2984 attr->name_len = name_len;
2985
2986 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2987 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2988 attr->nres.data_size = cpu_to_le64(size);
2989 attr->nres.valid_size = attr->nres.data_size;
2990 if (is_ext) {
2991 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2992 if (is_attr_compressed(attr))
2993 attr->nres.c_unit = COMPRESSION_UNIT;
2994
2995 attr->nres.run_off =
2996 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2997 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
2998 name_len * sizeof(short));
2999 } else {
3000 attr->name_off = SIZEOF_NONRESIDENT_LE;
3001 attr->nres.run_off =
3002 cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3003 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3004 name_len * sizeof(short));
3005 }
3006
3007 return attr;
3008}
3009
3010/*
e8b8e97f
KA
3011 * do_action - Common routine for the Redo and Undo Passes.
3012 * @rlsn: If it is NULL then undo.
b46acd6a
KK
3013 */
3014static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3015 const struct LOG_REC_HDR *lrh, u32 op, void *data,
3016 u32 dlen, u32 rec_len, const u64 *rlsn)
3017{
3018 int err = 0;
3019 struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3020 struct inode *inode = NULL, *inode_parent;
3021 struct mft_inode *mi = NULL, *mi2_child = NULL;
3022 CLST rno = 0, rno_base = 0;
3023 struct INDEX_BUFFER *ib = NULL;
3024 struct MFT_REC *rec = NULL;
3025 struct ATTRIB *attr = NULL, *attr2;
3026 struct INDEX_HDR *hdr;
3027 struct INDEX_ROOT *root;
3028 struct NTFS_DE *e, *e1, *e2;
3029 struct NEW_ATTRIBUTE_SIZES *new_sz;
3030 struct ATTR_FILE_NAME *fname;
3031 struct OpenAttr *oa, *oa2;
43f03acb 3032 u32 nsize, t32, asize, used, esize, off, bits;
b46acd6a
KK
3033 u16 id, id2;
3034 u32 record_size = sbi->record_size;
3035 u64 t64;
3036 u16 roff = le16_to_cpu(lrh->record_off);
3037 u16 aoff = le16_to_cpu(lrh->attr_off);
3038 u64 lco = 0;
3039 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3040 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3041 u64 vbo = cbo + tvo;
3042 void *buffer_le = NULL;
3043 u32 bytes = 0;
3044 bool a_dirty = false;
3045 u16 data_off;
3046
3047 oa = oe->ptr;
3048
e8b8e97f 3049 /* Big switch to prepare. */
b46acd6a
KK
3050 switch (op) {
3051 /* ============================================================
e8b8e97f 3052 * Process MFT records, as described by the current log record.
b46acd6a
KK
3053 * ============================================================
3054 */
3055 case InitializeFileRecordSegment:
3056 case DeallocateFileRecordSegment:
3057 case WriteEndOfFileRecordSegment:
3058 case CreateAttribute:
3059 case DeleteAttribute:
3060 case UpdateResidentValue:
3061 case UpdateMappingPairs:
3062 case SetNewAttributeSizes:
3063 case AddIndexEntryRoot:
3064 case DeleteIndexEntryRoot:
3065 case SetIndexEntryVcnRoot:
3066 case UpdateFileNameRoot:
3067 case UpdateRecordDataRoot:
3068 case ZeroEndOfFileRecord:
3069 rno = vbo >> sbi->record_bits;
3070 inode = ilookup(sbi->sb, rno);
3071 if (inode) {
3072 mi = &ntfs_i(inode)->mi;
3073 } else if (op == InitializeFileRecordSegment) {
195c52bd 3074 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
b46acd6a
KK
3075 if (!mi)
3076 return -ENOMEM;
3077 err = mi_format_new(mi, sbi, rno, 0, false);
3078 if (err)
3079 goto out;
3080 } else {
e8b8e97f 3081 /* Read from disk. */
b46acd6a
KK
3082 err = mi_get(sbi, rno, &mi);
3083 if (err)
3084 return err;
3085 }
3086 rec = mi->mrec;
3087
3088 if (op == DeallocateFileRecordSegment)
3089 goto skip_load_parent;
3090
3091 if (InitializeFileRecordSegment != op) {
3092 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3093 goto dirty_vol;
3094 if (!check_lsn(&rec->rhdr, rlsn))
3095 goto out;
3096 if (!check_file_record(rec, NULL, sbi))
3097 goto dirty_vol;
3098 attr = Add2Ptr(rec, roff);
3099 }
3100
3101 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3102 rno_base = rno;
3103 goto skip_load_parent;
3104 }
3105
3106 rno_base = ino_get(&rec->parent_ref);
3107 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3108 if (IS_ERR(inode_parent))
3109 goto skip_load_parent;
3110
3111 if (is_bad_inode(inode_parent)) {
3112 iput(inode_parent);
3113 goto skip_load_parent;
3114 }
3115
3116 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3117 iput(inode_parent);
3118 } else {
3119 if (mi2_child->mrec != mi->mrec)
3120 memcpy(mi2_child->mrec, mi->mrec,
3121 sbi->record_size);
3122
3123 if (inode)
3124 iput(inode);
3125 else if (mi)
3126 mi_put(mi);
3127
3128 inode = inode_parent;
3129 mi = mi2_child;
3130 rec = mi2_child->mrec;
3131 attr = Add2Ptr(rec, roff);
3132 }
3133
3134skip_load_parent:
3135 inode_parent = NULL;
3136 break;
3137
e8b8e97f
KA
3138 /*
3139 * Process attributes, as described by the current log record.
b46acd6a
KK
3140 */
3141 case UpdateNonresidentValue:
3142 case AddIndexEntryAllocation:
3143 case DeleteIndexEntryAllocation:
3144 case WriteEndOfIndexBuffer:
3145 case SetIndexEntryVcnAllocation:
3146 case UpdateFileNameAllocation:
3147 case SetBitsInNonresidentBitMap:
3148 case ClearBitsInNonresidentBitMap:
3149 case UpdateRecordDataAllocation:
3150 attr = oa->attr;
3151 bytes = UpdateNonresidentValue == op ? dlen : 0;
3152 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3153
3154 if (attr->type == ATTR_ALLOC) {
3155 t32 = le32_to_cpu(oe->bytes_per_index);
3156 if (bytes < t32)
3157 bytes = t32;
3158 }
3159
3160 if (!bytes)
3161 bytes = lco - cbo;
3162
3163 bytes += roff;
3164 if (attr->type == ATTR_ALLOC)
3165 bytes = (bytes + 511) & ~511; // align
3166
195c52bd 3167 buffer_le = kmalloc(bytes, GFP_NOFS);
b46acd6a
KK
3168 if (!buffer_le)
3169 return -ENOMEM;
3170
3171 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3172 NULL);
3173 if (err)
3174 goto out;
3175
3176 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3177 ntfs_fix_post_read(buffer_le, bytes, false);
3178 break;
3179
3180 default:
3181 WARN_ON(1);
3182 }
3183
e8b8e97f 3184 /* Big switch to do operation. */
b46acd6a
KK
3185 switch (op) {
3186 case InitializeFileRecordSegment:
3187 if (roff + dlen > record_size)
3188 goto dirty_vol;
3189
3190 memcpy(Add2Ptr(rec, roff), data, dlen);
3191 mi->dirty = true;
3192 break;
3193
3194 case DeallocateFileRecordSegment:
3195 clear_rec_inuse(rec);
3196 le16_add_cpu(&rec->seq, 1);
3197 mi->dirty = true;
3198 break;
3199
3200 case WriteEndOfFileRecordSegment:
3201 attr2 = (struct ATTRIB *)data;
3202 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3203 goto dirty_vol;
3204
3205 memmove(attr, attr2, dlen);
fa3cacf5 3206 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
b46acd6a
KK
3207
3208 mi->dirty = true;
3209 break;
3210
3211 case CreateAttribute:
3212 attr2 = (struct ATTRIB *)data;
3213 asize = le32_to_cpu(attr2->size);
3214 used = le32_to_cpu(rec->used);
3215
3216 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
fa3cacf5 3217 !IS_ALIGNED(asize, 8) ||
b46acd6a
KK
3218 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3219 dlen > record_size - used) {
3220 goto dirty_vol;
3221 }
3222
3223 memmove(Add2Ptr(attr, asize), attr, used - roff);
3224 memcpy(attr, attr2, asize);
3225
3226 rec->used = cpu_to_le32(used + asize);
3227 id = le16_to_cpu(rec->next_attr_id);
3228 id2 = le16_to_cpu(attr2->id);
3229 if (id <= id2)
3230 rec->next_attr_id = cpu_to_le16(id2 + 1);
3231 if (is_attr_indexed(attr))
3232 le16_add_cpu(&rec->hard_links, 1);
3233
3234 oa2 = find_loaded_attr(log, attr, rno_base);
3235 if (oa2) {
195c52bd
KA
3236 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3237 GFP_NOFS);
b46acd6a
KK
3238 if (p2) {
3239 // run_close(oa2->run1);
195c52bd 3240 kfree(oa2->attr);
b46acd6a
KK
3241 oa2->attr = p2;
3242 }
3243 }
3244
3245 mi->dirty = true;
3246 break;
3247
3248 case DeleteAttribute:
3249 asize = le32_to_cpu(attr->size);
3250 used = le32_to_cpu(rec->used);
3251
3252 if (!check_if_attr(rec, lrh))
3253 goto dirty_vol;
3254
3255 rec->used = cpu_to_le32(used - asize);
3256 if (is_attr_indexed(attr))
3257 le16_add_cpu(&rec->hard_links, -1);
3258
3259 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3260
3261 mi->dirty = true;
3262 break;
3263
3264 case UpdateResidentValue:
3265 nsize = aoff + dlen;
3266
3267 if (!check_if_attr(rec, lrh))
3268 goto dirty_vol;
3269
3270 asize = le32_to_cpu(attr->size);
3271 used = le32_to_cpu(rec->used);
3272
3273 if (lrh->redo_len == lrh->undo_len) {
3274 if (nsize > asize)
3275 goto dirty_vol;
3276 goto move_data;
3277 }
3278
3279 if (nsize > asize && nsize - asize > record_size - used)
3280 goto dirty_vol;
3281
fa3cacf5 3282 nsize = ALIGN(nsize, 8);
b46acd6a
KK
3283 data_off = le16_to_cpu(attr->res.data_off);
3284
3285 if (nsize < asize) {
3286 memmove(Add2Ptr(attr, aoff), data, dlen);
e8b8e97f 3287 data = NULL; // To skip below memmove().
b46acd6a
KK
3288 }
3289
3290 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3291 used - le16_to_cpu(lrh->record_off) - asize);
3292
3293 rec->used = cpu_to_le32(used + nsize - asize);
3294 attr->size = cpu_to_le32(nsize);
3295 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3296
3297move_data:
3298 if (data)
3299 memmove(Add2Ptr(attr, aoff), data, dlen);
3300
3301 oa2 = find_loaded_attr(log, attr, rno_base);
3302 if (oa2) {
195c52bd
KA
3303 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3304 GFP_NOFS);
b46acd6a
KK
3305 if (p2) {
3306 // run_close(&oa2->run0);
3307 oa2->run1 = &oa2->run0;
195c52bd 3308 kfree(oa2->attr);
b46acd6a
KK
3309 oa2->attr = p2;
3310 }
3311 }
3312
3313 mi->dirty = true;
3314 break;
3315
3316 case UpdateMappingPairs:
3317 nsize = aoff + dlen;
3318 asize = le32_to_cpu(attr->size);
3319 used = le32_to_cpu(rec->used);
3320
3321 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3322 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3323 (nsize > asize && nsize - asize > record_size - used)) {
3324 goto dirty_vol;
3325 }
3326
fa3cacf5 3327 nsize = ALIGN(nsize, 8);
b46acd6a
KK
3328
3329 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3330 used - le16_to_cpu(lrh->record_off) - asize);
3331 rec->used = cpu_to_le32(used + nsize - asize);
3332 attr->size = cpu_to_le32(nsize);
3333 memmove(Add2Ptr(attr, aoff), data, dlen);
3334
3335 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3336 attr_run(attr), &t64)) {
3337 goto dirty_vol;
3338 }
3339
3340 attr->nres.evcn = cpu_to_le64(t64);
3341 oa2 = find_loaded_attr(log, attr, rno_base);
3342 if (oa2 && oa2->attr->non_res)
3343 oa2->attr->nres.evcn = attr->nres.evcn;
3344
3345 mi->dirty = true;
3346 break;
3347
3348 case SetNewAttributeSizes:
3349 new_sz = data;
3350 if (!check_if_attr(rec, lrh) || !attr->non_res)
3351 goto dirty_vol;
3352
3353 attr->nres.alloc_size = new_sz->alloc_size;
3354 attr->nres.data_size = new_sz->data_size;
3355 attr->nres.valid_size = new_sz->valid_size;
3356
3357 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3358 attr->nres.total_size = new_sz->total_size;
3359
3360 oa2 = find_loaded_attr(log, attr, rno_base);
3361 if (oa2) {
195c52bd
KA
3362 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3363 GFP_NOFS);
b46acd6a 3364 if (p2) {
195c52bd 3365 kfree(oa2->attr);
b46acd6a
KK
3366 oa2->attr = p2;
3367 }
3368 }
3369 mi->dirty = true;
3370 break;
3371
3372 case AddIndexEntryRoot:
3373 e = (struct NTFS_DE *)data;
3374 esize = le16_to_cpu(e->size);
3375 root = resident_data(attr);
3376 hdr = &root->ihdr;
3377 used = le32_to_cpu(hdr->used);
3378
3379 if (!check_if_index_root(rec, lrh) ||
3380 !check_if_root_index(attr, hdr, lrh) ||
3381 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3382 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3383 goto dirty_vol;
3384 }
3385
3386 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3387
3388 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3389
3390 memmove(Add2Ptr(e1, esize), e1,
3391 PtrOffset(e1, Add2Ptr(hdr, used)));
3392 memmove(e1, e, esize);
3393
3394 le32_add_cpu(&attr->res.data_size, esize);
3395 hdr->used = cpu_to_le32(used + esize);
3396 le32_add_cpu(&hdr->total, esize);
3397
3398 mi->dirty = true;
3399 break;
3400
3401 case DeleteIndexEntryRoot:
3402 root = resident_data(attr);
3403 hdr = &root->ihdr;
3404 used = le32_to_cpu(hdr->used);
3405
3406 if (!check_if_index_root(rec, lrh) ||
3407 !check_if_root_index(attr, hdr, lrh)) {
3408 goto dirty_vol;
3409 }
3410
3411 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3412 esize = le16_to_cpu(e1->size);
3413 e2 = Add2Ptr(e1, esize);
3414
3415 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3416
3417 le32_sub_cpu(&attr->res.data_size, esize);
3418 hdr->used = cpu_to_le32(used - esize);
3419 le32_sub_cpu(&hdr->total, esize);
3420
3421 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3422
3423 mi->dirty = true;
3424 break;
3425
3426 case SetIndexEntryVcnRoot:
3427 root = resident_data(attr);
3428 hdr = &root->ihdr;
3429
3430 if (!check_if_index_root(rec, lrh) ||
3431 !check_if_root_index(attr, hdr, lrh)) {
3432 goto dirty_vol;
3433 }
3434
3435 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3436
3437 de_set_vbn_le(e, *(__le64 *)data);
3438 mi->dirty = true;
3439 break;
3440
3441 case UpdateFileNameRoot:
3442 root = resident_data(attr);
3443 hdr = &root->ihdr;
3444
3445 if (!check_if_index_root(rec, lrh) ||
3446 !check_if_root_index(attr, hdr, lrh)) {
3447 goto dirty_vol;
3448 }
3449
3450 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3451 fname = (struct ATTR_FILE_NAME *)(e + 1);
3452 memmove(&fname->dup, data, sizeof(fname->dup)); //
3453 mi->dirty = true;
3454 break;
3455
3456 case UpdateRecordDataRoot:
3457 root = resident_data(attr);
3458 hdr = &root->ihdr;
3459
3460 if (!check_if_index_root(rec, lrh) ||
3461 !check_if_root_index(attr, hdr, lrh)) {
3462 goto dirty_vol;
3463 }
3464
3465 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3466
3467 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3468
3469 mi->dirty = true;
3470 break;
3471
3472 case ZeroEndOfFileRecord:
3473 if (roff + dlen > record_size)
3474 goto dirty_vol;
3475
3476 memset(attr, 0, dlen);
3477 mi->dirty = true;
3478 break;
3479
3480 case UpdateNonresidentValue:
3481 if (lco < cbo + roff + dlen)
3482 goto dirty_vol;
3483
3484 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3485
3486 a_dirty = true;
3487 if (attr->type == ATTR_ALLOC)
3488 ntfs_fix_pre_write(buffer_le, bytes);
3489 break;
3490
3491 case AddIndexEntryAllocation:
3492 ib = Add2Ptr(buffer_le, roff);
3493 hdr = &ib->ihdr;
3494 e = data;
3495 esize = le16_to_cpu(e->size);
3496 e1 = Add2Ptr(ib, aoff);
3497
3498 if (is_baad(&ib->rhdr))
3499 goto dirty_vol;
3500 if (!check_lsn(&ib->rhdr, rlsn))
3501 goto out;
3502
3503 used = le32_to_cpu(hdr->used);
3504
3505 if (!check_index_buffer(ib, bytes) ||
3506 !check_if_alloc_index(hdr, aoff) ||
3507 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3508 used + esize > le32_to_cpu(hdr->total)) {
3509 goto dirty_vol;
3510 }
3511
3512 memmove(Add2Ptr(e1, esize), e1,
3513 PtrOffset(e1, Add2Ptr(hdr, used)));
3514 memcpy(e1, e, esize);
3515
3516 hdr->used = cpu_to_le32(used + esize);
3517
3518 a_dirty = true;
3519
3520 ntfs_fix_pre_write(&ib->rhdr, bytes);
3521 break;
3522
3523 case DeleteIndexEntryAllocation:
3524 ib = Add2Ptr(buffer_le, roff);
3525 hdr = &ib->ihdr;
3526 e = Add2Ptr(ib, aoff);
3527 esize = le16_to_cpu(e->size);
3528
3529 if (is_baad(&ib->rhdr))
3530 goto dirty_vol;
3531 if (!check_lsn(&ib->rhdr, rlsn))
3532 goto out;
3533
3534 if (!check_index_buffer(ib, bytes) ||
3535 !check_if_alloc_index(hdr, aoff)) {
3536 goto dirty_vol;
3537 }
3538
3539 e1 = Add2Ptr(e, esize);
3540 nsize = esize;
3541 used = le32_to_cpu(hdr->used);
3542
3543 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3544
3545 hdr->used = cpu_to_le32(used - nsize);
3546
3547 a_dirty = true;
3548
3549 ntfs_fix_pre_write(&ib->rhdr, bytes);
3550 break;
3551
3552 case WriteEndOfIndexBuffer:
3553 ib = Add2Ptr(buffer_le, roff);
3554 hdr = &ib->ihdr;
3555 e = Add2Ptr(ib, aoff);
3556
3557 if (is_baad(&ib->rhdr))
3558 goto dirty_vol;
3559 if (!check_lsn(&ib->rhdr, rlsn))
3560 goto out;
3561 if (!check_index_buffer(ib, bytes) ||
3562 !check_if_alloc_index(hdr, aoff) ||
3563 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3564 le32_to_cpu(hdr->total)) {
3565 goto dirty_vol;
3566 }
3567
3568 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3569 memmove(e, data, dlen);
3570
3571 a_dirty = true;
3572 ntfs_fix_pre_write(&ib->rhdr, bytes);
3573 break;
3574
3575 case SetIndexEntryVcnAllocation:
3576 ib = Add2Ptr(buffer_le, roff);
3577 hdr = &ib->ihdr;
3578 e = Add2Ptr(ib, aoff);
3579
3580 if (is_baad(&ib->rhdr))
3581 goto dirty_vol;
3582
3583 if (!check_lsn(&ib->rhdr, rlsn))
3584 goto out;
3585 if (!check_index_buffer(ib, bytes) ||
3586 !check_if_alloc_index(hdr, aoff)) {
3587 goto dirty_vol;
3588 }
3589
3590 de_set_vbn_le(e, *(__le64 *)data);
3591
3592 a_dirty = true;
3593 ntfs_fix_pre_write(&ib->rhdr, bytes);
3594 break;
3595
3596 case UpdateFileNameAllocation:
3597 ib = Add2Ptr(buffer_le, roff);
3598 hdr = &ib->ihdr;
3599 e = Add2Ptr(ib, aoff);
3600
3601 if (is_baad(&ib->rhdr))
3602 goto dirty_vol;
3603
3604 if (!check_lsn(&ib->rhdr, rlsn))
3605 goto out;
3606 if (!check_index_buffer(ib, bytes) ||
3607 !check_if_alloc_index(hdr, aoff)) {
3608 goto dirty_vol;
3609 }
3610
3611 fname = (struct ATTR_FILE_NAME *)(e + 1);
3612 memmove(&fname->dup, data, sizeof(fname->dup));
3613
3614 a_dirty = true;
3615 ntfs_fix_pre_write(&ib->rhdr, bytes);
3616 break;
3617
3618 case SetBitsInNonresidentBitMap:
43f03acb
KK
3619 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3620 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
b46acd6a 3621
43f03acb
KK
3622 if (cbo + (off + 7) / 8 > lco ||
3623 cbo + ((off + bits + 7) / 8) > lco) {
b46acd6a
KK
3624 goto dirty_vol;
3625 }
3626
88a8d0d2 3627 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
b46acd6a
KK
3628 a_dirty = true;
3629 break;
3630
3631 case ClearBitsInNonresidentBitMap:
43f03acb
KK
3632 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3633 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
b46acd6a 3634
43f03acb
KK
3635 if (cbo + (off + 7) / 8 > lco ||
3636 cbo + ((off + bits + 7) / 8) > lco) {
b46acd6a
KK
3637 goto dirty_vol;
3638 }
3639
88a8d0d2 3640 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
b46acd6a
KK
3641 a_dirty = true;
3642 break;
3643
3644 case UpdateRecordDataAllocation:
3645 ib = Add2Ptr(buffer_le, roff);
3646 hdr = &ib->ihdr;
3647 e = Add2Ptr(ib, aoff);
3648
3649 if (is_baad(&ib->rhdr))
3650 goto dirty_vol;
3651
3652 if (!check_lsn(&ib->rhdr, rlsn))
3653 goto out;
3654 if (!check_index_buffer(ib, bytes) ||
3655 !check_if_alloc_index(hdr, aoff)) {
3656 goto dirty_vol;
3657 }
3658
3659 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3660
3661 a_dirty = true;
3662 ntfs_fix_pre_write(&ib->rhdr, bytes);
3663 break;
3664
3665 default:
3666 WARN_ON(1);
3667 }
3668
3669 if (rlsn) {
3670 __le64 t64 = cpu_to_le64(*rlsn);
3671
3672 if (rec)
3673 rec->rhdr.lsn = t64;
3674 if (ib)
3675 ib->rhdr.lsn = t64;
3676 }
3677
3678 if (mi && mi->dirty) {
3679 err = mi_write(mi, 0);
3680 if (err)
3681 goto out;
3682 }
3683
3684 if (a_dirty) {
3685 attr = oa->attr;
63544672 3686 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
b46acd6a
KK
3687 if (err)
3688 goto out;
3689 }
3690
3691out:
3692
3693 if (inode)
3694 iput(inode);
3695 else if (mi != mi2_child)
3696 mi_put(mi);
3697
195c52bd 3698 kfree(buffer_le);
b46acd6a
KK
3699
3700 return err;
3701
3702dirty_vol:
3703 log->set_dirty = true;
3704 goto out;
3705}
3706
3707/*
e8b8e97f 3708 * log_replay - Replays log and empties it.
b46acd6a 3709 *
e8b8e97f
KA
3710 * This function is called during mount operation.
3711 * It replays log and empties it.
3712 * Initialized is set false if logfile contains '-1'.
b46acd6a
KK
3713 */
3714int log_replay(struct ntfs_inode *ni, bool *initialized)
3715{
3716 int err;
3717 struct ntfs_sb_info *sbi = ni->mi.sbi;
3718 struct ntfs_log *log;
3719
3720 struct restart_info rst_info, rst_info2;
3721 u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3722 struct ATTR_NAME_ENTRY *attr_names = NULL;
3723 struct ATTR_NAME_ENTRY *ane;
3724 struct RESTART_TABLE *dptbl = NULL;
3725 struct RESTART_TABLE *trtbl = NULL;
3726 const struct RESTART_TABLE *rt;
3727 struct RESTART_TABLE *oatbl = NULL;
3728 struct inode *inode;
3729 struct OpenAttr *oa;
3730 struct ntfs_inode *ni_oe;
3731 struct ATTRIB *attr = NULL;
3732 u64 size, vcn, undo_next_lsn;
3733 CLST rno, lcn, lcn0, len0, clen;
3734 void *data;
3735 struct NTFS_RESTART *rst = NULL;
3736 struct lcb *lcb = NULL;
3737 struct OPEN_ATTR_ENRTY *oe;
3738 struct TRANSACTION_ENTRY *tr;
3739 struct DIR_PAGE_ENTRY *dp;
3740 u32 i, bytes_per_attr_entry;
3741 u32 l_size = ni->vfs_inode.i_size;
3742 u32 orig_file_size = l_size;
3743 u32 page_size, vbo, tail, off, dlen;
3744 u32 saved_len, rec_len, transact_id;
3745 bool use_second_page;
3746 struct RESTART_AREA *ra2, *ra = NULL;
3747 struct CLIENT_REC *ca, *cr;
3748 __le16 client;
3749 struct RESTART_HDR *rh;
3750 const struct LFS_RECORD_HDR *frh;
3751 const struct LOG_REC_HDR *lrh;
3752 bool is_mapped;
3753 bool is_ro = sb_rdonly(sbi->sb);
3754 u64 t64;
3755 u16 t16;
3756 u32 t32;
3757
e8b8e97f 3758 /* Get the size of page. NOTE: To replay we can use default page. */
b46acd6a
KK
3759#if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3760 page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3761#else
3762 page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3763#endif
3764 if (!page_size)
3765 return -EINVAL;
3766
195c52bd 3767 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
b46acd6a
KK
3768 if (!log)
3769 return -ENOMEM;
3770
f26967b9
NJ
3771 memset(&rst_info, 0, sizeof(struct restart_info));
3772
b46acd6a
KK
3773 log->ni = ni;
3774 log->l_size = l_size;
195c52bd 3775 log->one_page_buf = kmalloc(page_size, GFP_NOFS);
b46acd6a
KK
3776 if (!log->one_page_buf) {
3777 err = -ENOMEM;
3778 goto out;
3779 }
3780
3781 log->page_size = page_size;
3782 log->page_mask = page_size - 1;
3783 log->page_bits = blksize_bits(page_size);
3784
e8b8e97f 3785 /* Look for a restart area on the disk. */
b46acd6a
KK
3786 err = log_read_rst(log, l_size, true, &rst_info);
3787 if (err)
3788 goto out;
3789
3790 /* remember 'initialized' */
3791 *initialized = rst_info.initialized;
3792
3793 if (!rst_info.restart) {
3794 if (rst_info.initialized) {
e8b8e97f 3795 /* No restart area but the file is not initialized. */
b46acd6a
KK
3796 err = -EINVAL;
3797 goto out;
3798 }
3799
3800 log_init_pg_hdr(log, page_size, page_size, 1, 1);
a251c17a 3801 log_create(log, l_size, 0, get_random_u32(), false, false);
b46acd6a
KK
3802
3803 log->ra = ra;
3804
3805 ra = log_create_ra(log);
3806 if (!ra) {
3807 err = -ENOMEM;
3808 goto out;
3809 }
3810 log->ra = ra;
3811 log->init_ra = true;
3812
3813 goto process_log;
3814 }
3815
3816 /*
3817 * If the restart offset above wasn't zero then we won't
e8b8e97f 3818 * look for a second restart.
b46acd6a
KK
3819 */
3820 if (rst_info.vbo)
3821 goto check_restart_area;
3822
f26967b9 3823 memset(&rst_info2, 0, sizeof(struct restart_info));
b46acd6a 3824 err = log_read_rst(log, l_size, false, &rst_info2);
f759942b
KK
3825 if (err)
3826 goto out;
b46acd6a 3827
e8b8e97f 3828 /* Determine which restart area to use. */
b46acd6a
KK
3829 if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3830 goto use_first_page;
3831
3832 use_second_page = true;
3833
3834 if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3835 struct RECORD_PAGE_HDR *sp = NULL;
3836 bool usa_error;
3837
3838 if (!read_log_page(log, page_size, &sp, &usa_error) &&
3839 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3840 use_second_page = false;
3841 }
195c52bd 3842 kfree(sp);
b46acd6a
KK
3843 }
3844
3845 if (use_second_page) {
195c52bd 3846 kfree(rst_info.r_page);
b46acd6a
KK
3847 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3848 rst_info2.r_page = NULL;
3849 }
3850
3851use_first_page:
195c52bd 3852 kfree(rst_info2.r_page);
b46acd6a
KK
3853
3854check_restart_area:
e8b8e97f
KA
3855 /*
3856 * If the restart area is at offset 0, we want
3857 * to write the second restart area first.
3858 */
b46acd6a
KK
3859 log->init_ra = !!rst_info.vbo;
3860
e8b8e97f 3861 /* If we have a valid page then grab a pointer to the restart area. */
b46acd6a
KK
3862 ra2 = rst_info.valid_page
3863 ? Add2Ptr(rst_info.r_page,
3864 le16_to_cpu(rst_info.r_page->ra_off))
3865 : NULL;
3866
3867 if (rst_info.chkdsk_was_run ||
3868 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3869 bool wrapped = false;
3870 bool use_multi_page = false;
3871 u32 open_log_count;
3872
e8b8e97f 3873 /* Do some checks based on whether we have a valid log page. */
b46acd6a 3874 if (!rst_info.valid_page) {
a251c17a 3875 open_log_count = get_random_u32();
b46acd6a
KK
3876 goto init_log_instance;
3877 }
3878 open_log_count = le32_to_cpu(ra2->open_log_count);
3879
3880 /*
3881 * If the restart page size isn't changing then we want to
e8b8e97f 3882 * check how much work we need to do.
b46acd6a
KK
3883 */
3884 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3885 goto init_log_instance;
3886
3887init_log_instance:
3888 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3889
3890 log_create(log, l_size, rst_info.last_lsn, open_log_count,
3891 wrapped, use_multi_page);
3892
3893 ra = log_create_ra(log);
3894 if (!ra) {
3895 err = -ENOMEM;
3896 goto out;
3897 }
3898 log->ra = ra;
3899
e8b8e97f
KA
3900 /* Put the restart areas and initialize
3901 * the log file as required.
3902 */
b46acd6a
KK
3903 goto process_log;
3904 }
3905
3906 if (!ra2) {
3907 err = -EINVAL;
3908 goto out;
3909 }
3910
3911 /*
e8b8e97f
KA
3912 * If the log page or the system page sizes have changed, we can't
3913 * use the log file. We must use the system page size instead of the
3914 * default size if there is not a clean shutdown.
b46acd6a
KK
3915 */
3916 t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3917 if (page_size != t32) {
3918 l_size = orig_file_size;
3919 page_size =
3920 norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3921 }
3922
3923 if (page_size != t32 ||
3924 page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3925 err = -EINVAL;
3926 goto out;
3927 }
3928
e8b8e97f 3929 /* If the file size has shrunk then we won't mount it. */
b46acd6a
KK
3930 if (l_size < le64_to_cpu(ra2->l_size)) {
3931 err = -EINVAL;
3932 goto out;
3933 }
3934
3935 log_init_pg_hdr(log, page_size, page_size,
3936 le16_to_cpu(rst_info.r_page->major_ver),
3937 le16_to_cpu(rst_info.r_page->minor_ver));
3938
3939 log->l_size = le64_to_cpu(ra2->l_size);
3940 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3941 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3942 log->seq_num_mask = (8 << log->file_data_bits) - 1;
3943 log->last_lsn = le64_to_cpu(ra2->current_lsn);
3944 log->seq_num = log->last_lsn >> log->file_data_bits;
3945 log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3946 log->restart_size = log->sys_page_size - log->ra_off;
3947 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3948 log->ra_size = le16_to_cpu(ra2->ra_len);
3949 log->data_off = le16_to_cpu(ra2->data_off);
3950 log->data_size = log->page_size - log->data_off;
3951 log->reserved = log->data_size - log->record_header_len;
3952
3953 vbo = lsn_to_vbo(log, log->last_lsn);
3954
3955 if (vbo < log->first_page) {
e8b8e97f 3956 /* This is a pseudo lsn. */
b46acd6a
KK
3957 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3958 log->next_page = log->first_page;
3959 goto find_oldest;
3960 }
3961
e8b8e97f 3962 /* Find the end of this log record. */
b46acd6a
KK
3963 off = final_log_off(log, log->last_lsn,
3964 le32_to_cpu(ra2->last_lsn_data_len));
3965
e8b8e97f 3966 /* If we wrapped the file then increment the sequence number. */
b46acd6a
KK
3967 if (off <= vbo) {
3968 log->seq_num += 1;
3969 log->l_flags |= NTFSLOG_WRAPPED;
3970 }
3971
e8b8e97f 3972 /* Now compute the next log page to use. */
b46acd6a
KK
3973 vbo &= ~log->sys_page_mask;
3974 tail = log->page_size - (off & log->page_mask) - 1;
3975
e8b8e97f
KA
3976 /*
3977 *If we can fit another log record on the page,
3978 * move back a page the log file.
3979 */
b46acd6a
KK
3980 if (tail >= log->record_header_len) {
3981 log->l_flags |= NTFSLOG_REUSE_TAIL;
3982 log->next_page = vbo;
3983 } else {
3984 log->next_page = next_page_off(log, vbo);
3985 }
3986
3987find_oldest:
e8b8e97f
KA
3988 /*
3989 * Find the oldest client lsn. Use the last
3990 * flushed lsn as a starting point.
3991 */
b46acd6a
KK
3992 log->oldest_lsn = log->last_lsn;
3993 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3994 ra2->client_idx[1], &log->oldest_lsn);
3995 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3996
3997 if (log->oldest_lsn_off < log->first_page)
3998 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3999
4000 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4001 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4002
4003 log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4004 log->total_avail_pages = log->l_size - log->first_page;
4005 log->total_avail = log->total_avail_pages >> log->page_bits;
4006 log->max_current_avail = log->total_avail * log->reserved;
4007 log->total_avail = log->total_avail * log->data_size;
4008
4009 log->current_avail = current_log_avail(log);
4010
195c52bd 4011 ra = kzalloc(log->restart_size, GFP_NOFS);
b46acd6a
KK
4012 if (!ra) {
4013 err = -ENOMEM;
4014 goto out;
4015 }
4016 log->ra = ra;
4017
4018 t16 = le16_to_cpu(ra2->client_off);
4019 if (t16 == offsetof(struct RESTART_AREA, clients)) {
4020 memcpy(ra, ra2, log->ra_size);
4021 } else {
4022 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4023 memcpy(ra->clients, Add2Ptr(ra2, t16),
4024 le16_to_cpu(ra2->ra_len) - t16);
4025
a251c17a 4026 log->current_openlog_count = get_random_u32();
b46acd6a
KK
4027 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4028 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4029 sizeof(struct CLIENT_REC);
4030 ra->client_off =
4031 cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4032 ra->ra_len = cpu_to_le16(log->ra_size);
4033 }
4034
4035 le32_add_cpu(&ra->open_log_count, 1);
4036
e8b8e97f 4037 /* Now we need to walk through looking for the last lsn. */
b46acd6a
KK
4038 err = last_log_lsn(log);
4039 if (err)
4040 goto out;
4041
4042 log->current_avail = current_log_avail(log);
4043
e8b8e97f 4044 /* Remember which restart area to write first. */
b46acd6a
KK
4045 log->init_ra = rst_info.vbo;
4046
4047process_log:
e8b8e97f 4048 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
b46acd6a
KK
4049 switch ((log->major_ver << 16) + log->minor_ver) {
4050 case 0x10000:
4051 case 0x10001:
4052 case 0x20000:
4053 break;
4054 default:
4055 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4056 log->major_ver, log->minor_ver);
4057 err = -EOPNOTSUPP;
4058 log->set_dirty = true;
4059 goto out;
4060 }
4061
e8b8e97f 4062 /* One client "NTFS" per logfile. */
b46acd6a
KK
4063 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4064
4065 for (client = ra->client_idx[1];; client = cr->next_client) {
4066 if (client == LFS_NO_CLIENT_LE) {
e8b8e97f 4067 /* Insert "NTFS" client LogFile. */
b46acd6a 4068 client = ra->client_idx[0];
e589f9b7
CJ
4069 if (client == LFS_NO_CLIENT_LE) {
4070 err = -EINVAL;
4071 goto out;
4072 }
b46acd6a
KK
4073
4074 t16 = le16_to_cpu(client);
4075 cr = ca + t16;
4076
4077 remove_client(ca, cr, &ra->client_idx[0]);
4078
4079 cr->restart_lsn = 0;
4080 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4081 cr->name_bytes = cpu_to_le32(8);
4082 cr->name[0] = cpu_to_le16('N');
4083 cr->name[1] = cpu_to_le16('T');
4084 cr->name[2] = cpu_to_le16('F');
4085 cr->name[3] = cpu_to_le16('S');
4086
4087 add_client(ca, t16, &ra->client_idx[1]);
4088 break;
4089 }
4090
4091 cr = ca + le16_to_cpu(client);
4092
4093 if (cpu_to_le32(8) == cr->name_bytes &&
4094 cpu_to_le16('N') == cr->name[0] &&
4095 cpu_to_le16('T') == cr->name[1] &&
4096 cpu_to_le16('F') == cr->name[2] &&
4097 cpu_to_le16('S') == cr->name[3])
4098 break;
4099 }
4100
e8b8e97f 4101 /* Update the client handle with the client block information. */
b46acd6a
KK
4102 log->client_id.seq_num = cr->seq_num;
4103 log->client_id.client_idx = client;
4104
4105 err = read_rst_area(log, &rst, &ra_lsn);
4106 if (err)
4107 goto out;
4108
4109 if (!rst)
4110 goto out;
4111
4112 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4113
4114 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4115 if (!checkpt_lsn)
4116 checkpt_lsn = ra_lsn;
4117
e8b8e97f 4118 /* Allocate and Read the Transaction Table. */
b46acd6a
KK
4119 if (!rst->transact_table_len)
4120 goto check_dirty_page_table;
4121
4122 t64 = le64_to_cpu(rst->transact_table_lsn);
4123 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4124 if (err)
4125 goto out;
4126
4127 lrh = lcb->log_rec;
4128 frh = lcb->lrh;
4129 rec_len = le32_to_cpu(frh->client_data_len);
4130
4131 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4132 bytes_per_attr_entry)) {
4133 err = -EINVAL;
4134 goto out;
4135 }
4136
4137 t16 = le16_to_cpu(lrh->redo_off);
4138
4139 rt = Add2Ptr(lrh, t16);
4140 t32 = rec_len - t16;
4141
e8b8e97f 4142 /* Now check that this is a valid restart table. */
b46acd6a
KK
4143 if (!check_rstbl(rt, t32)) {
4144 err = -EINVAL;
4145 goto out;
4146 }
4147
195c52bd 4148 trtbl = kmemdup(rt, t32, GFP_NOFS);
b46acd6a
KK
4149 if (!trtbl) {
4150 err = -ENOMEM;
4151 goto out;
4152 }
4153
4154 lcb_put(lcb);
4155 lcb = NULL;
4156
4157check_dirty_page_table:
e8b8e97f 4158 /* The next record back should be the Dirty Pages Table. */
b46acd6a
KK
4159 if (!rst->dirty_pages_len)
4160 goto check_attribute_names;
4161
4162 t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4163 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4164 if (err)
4165 goto out;
4166
4167 lrh = lcb->log_rec;
4168 frh = lcb->lrh;
4169 rec_len = le32_to_cpu(frh->client_data_len);
4170
4171 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4172 bytes_per_attr_entry)) {
4173 err = -EINVAL;
4174 goto out;
4175 }
4176
4177 t16 = le16_to_cpu(lrh->redo_off);
4178
4179 rt = Add2Ptr(lrh, t16);
4180 t32 = rec_len - t16;
4181
e8b8e97f 4182 /* Now check that this is a valid restart table. */
b46acd6a
KK
4183 if (!check_rstbl(rt, t32)) {
4184 err = -EINVAL;
4185 goto out;
4186 }
4187
195c52bd 4188 dptbl = kmemdup(rt, t32, GFP_NOFS);
b46acd6a
KK
4189 if (!dptbl) {
4190 err = -ENOMEM;
4191 goto out;
4192 }
4193
e8b8e97f 4194 /* Convert Ra version '0' into version '1'. */
b46acd6a
KK
4195 if (rst->major_ver)
4196 goto end_conv_1;
4197
4198 dp = NULL;
4199 while ((dp = enum_rstbl(dptbl, dp))) {
4200 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
e8b8e97f 4201 // NOTE: Danger. Check for of boundary.
b46acd6a
KK
4202 memmove(&dp->vcn, &dp0->vcn_low,
4203 2 * sizeof(u64) +
4204 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4205 }
4206
4207end_conv_1:
4208 lcb_put(lcb);
4209 lcb = NULL;
4210
e8b8e97f
KA
4211 /*
4212 * Go through the table and remove the duplicates,
4213 * remembering the oldest lsn values.
4214 */
b46acd6a
KK
4215 if (sbi->cluster_size <= log->page_size)
4216 goto trace_dp_table;
4217
4218 dp = NULL;
4219 while ((dp = enum_rstbl(dptbl, dp))) {
4220 struct DIR_PAGE_ENTRY *next = dp;
4221
4222 while ((next = enum_rstbl(dptbl, next))) {
4223 if (next->target_attr == dp->target_attr &&
4224 next->vcn == dp->vcn) {
4225 if (le64_to_cpu(next->oldest_lsn) <
4226 le64_to_cpu(dp->oldest_lsn)) {
4227 dp->oldest_lsn = next->oldest_lsn;
4228 }
4229
4230 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4231 }
4232 }
4233 }
4234trace_dp_table:
4235check_attribute_names:
e8b8e97f 4236 /* The next record should be the Attribute Names. */
b46acd6a
KK
4237 if (!rst->attr_names_len)
4238 goto check_attr_table;
4239
4240 t64 = le64_to_cpu(rst->attr_names_lsn);
4241 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4242 if (err)
4243 goto out;
4244
4245 lrh = lcb->log_rec;
4246 frh = lcb->lrh;
4247 rec_len = le32_to_cpu(frh->client_data_len);
4248
4249 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4250 bytes_per_attr_entry)) {
4251 err = -EINVAL;
4252 goto out;
4253 }
4254
4255 t32 = lrh_length(lrh);
4256 rec_len -= t32;
4257
195c52bd 4258 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
b46acd6a
KK
4259
4260 lcb_put(lcb);
4261 lcb = NULL;
4262
4263check_attr_table:
e8b8e97f 4264 /* The next record should be the attribute Table. */
b46acd6a
KK
4265 if (!rst->open_attr_len)
4266 goto check_attribute_names2;
4267
4268 t64 = le64_to_cpu(rst->open_attr_table_lsn);
4269 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4270 if (err)
4271 goto out;
4272
4273 lrh = lcb->log_rec;
4274 frh = lcb->lrh;
4275 rec_len = le32_to_cpu(frh->client_data_len);
4276
4277 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4278 bytes_per_attr_entry)) {
4279 err = -EINVAL;
4280 goto out;
4281 }
4282
4283 t16 = le16_to_cpu(lrh->redo_off);
4284
4285 rt = Add2Ptr(lrh, t16);
4286 t32 = rec_len - t16;
4287
4288 if (!check_rstbl(rt, t32)) {
4289 err = -EINVAL;
4290 goto out;
4291 }
4292
195c52bd 4293 oatbl = kmemdup(rt, t32, GFP_NOFS);
b46acd6a
KK
4294 if (!oatbl) {
4295 err = -ENOMEM;
4296 goto out;
4297 }
4298
4299 log->open_attr_tbl = oatbl;
4300
e8b8e97f 4301 /* Clear all of the Attr pointers. */
b46acd6a
KK
4302 oe = NULL;
4303 while ((oe = enum_rstbl(oatbl, oe))) {
4304 if (!rst->major_ver) {
4305 struct OPEN_ATTR_ENRTY_32 oe0;
4306
e8b8e97f 4307 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
b46acd6a
KK
4308 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4309
4310 oe->bytes_per_index = oe0.bytes_per_index;
4311 oe->type = oe0.type;
4312 oe->is_dirty_pages = oe0.is_dirty_pages;
4313 oe->name_len = 0;
4314 oe->ref = oe0.ref;
4315 oe->open_record_lsn = oe0.open_record_lsn;
4316 }
4317
4318 oe->is_attr_name = 0;
4319 oe->ptr = NULL;
4320 }
4321
4322 lcb_put(lcb);
4323 lcb = NULL;
4324
4325check_attribute_names2:
4326 if (!rst->attr_names_len)
4327 goto trace_attribute_table;
4328
4329 ane = attr_names;
4330 if (!oatbl)
4331 goto trace_attribute_table;
4332 while (ane->off) {
4333 /* TODO: Clear table on exit! */
4334 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4335 t16 = le16_to_cpu(ane->name_bytes);
4336 oe->name_len = t16 / sizeof(short);
4337 oe->ptr = ane->name;
4338 oe->is_attr_name = 2;
4339 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4340 }
4341
4342trace_attribute_table:
4343 /*
4344 * If the checkpt_lsn is zero, then this is a freshly
e8b8e97f 4345 * formatted disk and we have no work to do.
b46acd6a
KK
4346 */
4347 if (!checkpt_lsn) {
4348 err = 0;
4349 goto out;
4350 }
4351
4352 if (!oatbl) {
4353 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4354 if (!oatbl) {
4355 err = -ENOMEM;
4356 goto out;
4357 }
4358 }
4359
4360 log->open_attr_tbl = oatbl;
4361
4362 /* Start the analysis pass from the Checkpoint lsn. */
4363 rec_lsn = checkpt_lsn;
4364
e8b8e97f 4365 /* Read the first lsn. */
b46acd6a
KK
4366 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4367 if (err)
4368 goto out;
4369
e8b8e97f 4370 /* Loop to read all subsequent records to the end of the log file. */
b46acd6a
KK
4371next_log_record_analyze:
4372 err = read_next_log_rec(log, lcb, &rec_lsn);
4373 if (err)
4374 goto out;
4375
4376 if (!rec_lsn)
4377 goto end_log_records_enumerate;
4378
4379 frh = lcb->lrh;
4380 transact_id = le32_to_cpu(frh->transact_id);
4381 rec_len = le32_to_cpu(frh->client_data_len);
4382 lrh = lcb->log_rec;
4383
4384 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4385 err = -EINVAL;
4386 goto out;
4387 }
4388
4389 /*
4390 * The first lsn after the previous lsn remembered
e8b8e97f 4391 * the checkpoint is the first candidate for the rlsn.
b46acd6a
KK
4392 */
4393 if (!rlsn)
4394 rlsn = rec_lsn;
4395
4396 if (LfsClientRecord != frh->record_type)
4397 goto next_log_record_analyze;
4398
4399 /*
e8b8e97f
KA
4400 * Now update the Transaction Table for this transaction. If there
4401 * is no entry present or it is unallocated we allocate the entry.
b46acd6a
KK
4402 */
4403 if (!trtbl) {
4404 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4405 INITIAL_NUMBER_TRANSACTIONS);
4406 if (!trtbl) {
4407 err = -ENOMEM;
4408 goto out;
4409 }
4410 }
4411
4412 tr = Add2Ptr(trtbl, transact_id);
4413
4414 if (transact_id >= bytes_per_rt(trtbl) ||
4415 tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4416 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4417 if (!tr) {
4418 err = -ENOMEM;
4419 goto out;
4420 }
4421 tr->transact_state = TransactionActive;
4422 tr->first_lsn = cpu_to_le64(rec_lsn);
4423 }
4424
4425 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4426
4427 /*
4428 * If this is a compensation log record, then change
e8b8e97f 4429 * the undo_next_lsn to be the undo_next_lsn of this record.
b46acd6a
KK
4430 */
4431 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4432 tr->undo_next_lsn = frh->client_undo_next_lsn;
4433
e8b8e97f 4434 /* Dispatch to handle log record depending on type. */
b46acd6a
KK
4435 switch (le16_to_cpu(lrh->redo_op)) {
4436 case InitializeFileRecordSegment:
4437 case DeallocateFileRecordSegment:
4438 case WriteEndOfFileRecordSegment:
4439 case CreateAttribute:
4440 case DeleteAttribute:
4441 case UpdateResidentValue:
4442 case UpdateNonresidentValue:
4443 case UpdateMappingPairs:
4444 case SetNewAttributeSizes:
4445 case AddIndexEntryRoot:
4446 case DeleteIndexEntryRoot:
4447 case AddIndexEntryAllocation:
4448 case DeleteIndexEntryAllocation:
4449 case WriteEndOfIndexBuffer:
4450 case SetIndexEntryVcnRoot:
4451 case SetIndexEntryVcnAllocation:
4452 case UpdateFileNameRoot:
4453 case UpdateFileNameAllocation:
4454 case SetBitsInNonresidentBitMap:
4455 case ClearBitsInNonresidentBitMap:
4456 case UpdateRecordDataRoot:
4457 case UpdateRecordDataAllocation:
4458 case ZeroEndOfFileRecord:
4459 t16 = le16_to_cpu(lrh->target_attr);
4460 t64 = le64_to_cpu(lrh->target_vcn);
4461 dp = find_dp(dptbl, t16, t64);
4462
4463 if (dp)
4464 goto copy_lcns;
4465
4466 /*
4467 * Calculate the number of clusters per page the system
e8b8e97f 4468 * which wrote the checkpoint, possibly creating the table.
b46acd6a
KK
4469 */
4470 if (dptbl) {
4471 t32 = (le16_to_cpu(dptbl->size) -
4472 sizeof(struct DIR_PAGE_ENTRY)) /
4473 sizeof(u64);
4474 } else {
4475 t32 = log->clst_per_page;
195c52bd 4476 kfree(dptbl);
b46acd6a
KK
4477 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4478 32);
4479 if (!dptbl) {
4480 err = -ENOMEM;
4481 goto out;
4482 }
4483 }
4484
4485 dp = alloc_rsttbl_idx(&dptbl);
a1b04d38
DC
4486 if (!dp) {
4487 err = -ENOMEM;
4488 goto out;
4489 }
b46acd6a
KK
4490 dp->target_attr = cpu_to_le32(t16);
4491 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4492 dp->lcns_follow = cpu_to_le32(t32);
4493 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4494 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4495
4496copy_lcns:
4497 /*
e8b8e97f
KA
4498 * Copy the Lcns from the log record into the Dirty Page Entry.
4499 * TODO: For different page size support, must somehow make
4500 * whole routine a loop, case Lcns do not fit below.
b46acd6a
KK
4501 */
4502 t16 = le16_to_cpu(lrh->lcns_follow);
4503 for (i = 0; i < t16; i++) {
4504 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4505 le64_to_cpu(dp->vcn));
4506 dp->page_lcns[j + i] = lrh->page_lcns[i];
4507 }
4508
4509 goto next_log_record_analyze;
4510
4511 case DeleteDirtyClusters: {
4512 u32 range_count =
4513 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4514 const struct LCN_RANGE *r =
4515 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4516
e8b8e97f 4517 /* Loop through all of the Lcn ranges this log record. */
b46acd6a
KK
4518 for (i = 0; i < range_count; i++, r++) {
4519 u64 lcn0 = le64_to_cpu(r->lcn);
4520 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4521
4522 dp = NULL;
4523 while ((dp = enum_rstbl(dptbl, dp))) {
4524 u32 j;
4525
4526 t32 = le32_to_cpu(dp->lcns_follow);
4527 for (j = 0; j < t32; j++) {
4528 t64 = le64_to_cpu(dp->page_lcns[j]);
4529 if (t64 >= lcn0 && t64 <= lcn_e)
4530 dp->page_lcns[j] = 0;
4531 }
4532 }
4533 }
4534 goto next_log_record_analyze;
4535 ;
4536 }
4537
4538 case OpenNonresidentAttribute:
4539 t16 = le16_to_cpu(lrh->target_attr);
4540 if (t16 >= bytes_per_rt(oatbl)) {
4541 /*
4542 * Compute how big the table needs to be.
e8b8e97f 4543 * Add 10 extra entries for some cushion.
b46acd6a
KK
4544 */
4545 u32 new_e = t16 / le16_to_cpu(oatbl->size);
4546
4547 new_e += 10 - le16_to_cpu(oatbl->used);
4548
4549 oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4550 log->open_attr_tbl = oatbl;
4551 if (!oatbl) {
4552 err = -ENOMEM;
4553 goto out;
4554 }
4555 }
4556
e8b8e97f 4557 /* Point to the entry being opened. */
b46acd6a
KK
4558 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4559 log->open_attr_tbl = oatbl;
4560 if (!oe) {
4561 err = -ENOMEM;
4562 goto out;
4563 }
4564
e8b8e97f 4565 /* Initialize this entry from the log record. */
b46acd6a
KK
4566 t16 = le16_to_cpu(lrh->redo_off);
4567 if (!rst->major_ver) {
e8b8e97f 4568 /* Convert version '0' into version '1'. */
b46acd6a
KK
4569 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4570
4571 oe->bytes_per_index = oe0->bytes_per_index;
4572 oe->type = oe0->type;
4573 oe->is_dirty_pages = oe0->is_dirty_pages;
4574 oe->name_len = 0; //oe0.name_len;
4575 oe->ref = oe0->ref;
4576 oe->open_record_lsn = oe0->open_record_lsn;
4577 } else {
4578 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4579 }
4580
4581 t16 = le16_to_cpu(lrh->undo_len);
4582 if (t16) {
195c52bd 4583 oe->ptr = kmalloc(t16, GFP_NOFS);
b46acd6a
KK
4584 if (!oe->ptr) {
4585 err = -ENOMEM;
4586 goto out;
4587 }
4588 oe->name_len = t16 / sizeof(short);
4589 memcpy(oe->ptr,
4590 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4591 oe->is_attr_name = 1;
4592 } else {
4593 oe->ptr = NULL;
4594 oe->is_attr_name = 0;
4595 }
4596
4597 goto next_log_record_analyze;
4598
4599 case HotFix:
4600 t16 = le16_to_cpu(lrh->target_attr);
4601 t64 = le64_to_cpu(lrh->target_vcn);
4602 dp = find_dp(dptbl, t16, t64);
4603 if (dp) {
4604 size_t j = le64_to_cpu(lrh->target_vcn) -
4605 le64_to_cpu(dp->vcn);
4606 if (dp->page_lcns[j])
4607 dp->page_lcns[j] = lrh->page_lcns[0];
4608 }
4609 goto next_log_record_analyze;
4610
4611 case EndTopLevelAction:
4612 tr = Add2Ptr(trtbl, transact_id);
4613 tr->prev_lsn = cpu_to_le64(rec_lsn);
4614 tr->undo_next_lsn = frh->client_undo_next_lsn;
4615 goto next_log_record_analyze;
4616
4617 case PrepareTransaction:
4618 tr = Add2Ptr(trtbl, transact_id);
4619 tr->transact_state = TransactionPrepared;
4620 goto next_log_record_analyze;
4621
4622 case CommitTransaction:
4623 tr = Add2Ptr(trtbl, transact_id);
4624 tr->transact_state = TransactionCommitted;
4625 goto next_log_record_analyze;
4626
4627 case ForgetTransaction:
4628 free_rsttbl_idx(trtbl, transact_id);
4629 goto next_log_record_analyze;
4630
4631 case Noop:
4632 case OpenAttributeTableDump:
4633 case AttributeNamesDump:
4634 case DirtyPageTableDump:
4635 case TransactionTableDump:
e8b8e97f 4636 /* The following cases require no action the Analysis Pass. */
b46acd6a
KK
4637 goto next_log_record_analyze;
4638
4639 default:
4640 /*
4641 * All codes will be explicitly handled.
e8b8e97f 4642 * If we see a code we do not expect, then we are trouble.
b46acd6a
KK
4643 */
4644 goto next_log_record_analyze;
4645 }
4646
4647end_log_records_enumerate:
4648 lcb_put(lcb);
4649 lcb = NULL;
4650
4651 /*
4652 * Scan the Dirty Page Table and Transaction Table for
e8b8e97f 4653 * the lowest lsn, and return it as the Redo lsn.
b46acd6a
KK
4654 */
4655 dp = NULL;
4656 while ((dp = enum_rstbl(dptbl, dp))) {
4657 t64 = le64_to_cpu(dp->oldest_lsn);
4658 if (t64 && t64 < rlsn)
4659 rlsn = t64;
4660 }
4661
4662 tr = NULL;
4663 while ((tr = enum_rstbl(trtbl, tr))) {
4664 t64 = le64_to_cpu(tr->first_lsn);
4665 if (t64 && t64 < rlsn)
4666 rlsn = t64;
4667 }
4668
e8b8e97f
KA
4669 /*
4670 * Only proceed if the Dirty Page Table or Transaction
4671 * table are not empty.
4672 */
b46acd6a
KK
4673 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4674 goto end_reply;
4675
4676 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4677 if (is_ro)
4678 goto out;
4679
e8b8e97f 4680 /* Reopen all of the attributes with dirty pages. */
b46acd6a
KK
4681 oe = NULL;
4682next_open_attribute:
4683
4684 oe = enum_rstbl(oatbl, oe);
4685 if (!oe) {
4686 err = 0;
4687 dp = NULL;
4688 goto next_dirty_page;
4689 }
4690
195c52bd 4691 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
b46acd6a
KK
4692 if (!oa) {
4693 err = -ENOMEM;
4694 goto out;
4695 }
4696
4697 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4698 if (IS_ERR(inode))
4699 goto fake_attr;
4700
4701 if (is_bad_inode(inode)) {
4702 iput(inode);
4703fake_attr:
4704 if (oa->ni) {
4705 iput(&oa->ni->vfs_inode);
4706 oa->ni = NULL;
4707 }
4708
4709 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4710 oe->name_len, 0);
4711 if (!attr) {
195c52bd 4712 kfree(oa);
b46acd6a
KK
4713 err = -ENOMEM;
4714 goto out;
4715 }
4716 oa->attr = attr;
4717 oa->run1 = &oa->run0;
4718 goto final_oe;
4719 }
4720
4721 ni_oe = ntfs_i(inode);
4722 oa->ni = ni_oe;
4723
4724 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4725 NULL, NULL);
4726
4727 if (!attr)
4728 goto fake_attr;
4729
4730 t32 = le32_to_cpu(attr->size);
195c52bd 4731 oa->attr = kmemdup(attr, t32, GFP_NOFS);
b46acd6a
KK
4732 if (!oa->attr)
4733 goto fake_attr;
4734
4735 if (!S_ISDIR(inode->i_mode)) {
4736 if (attr->type == ATTR_DATA && !attr->name_len) {
4737 oa->run1 = &ni_oe->file.run;
4738 goto final_oe;
4739 }
4740 } else {
4741 if (attr->type == ATTR_ALLOC &&
4742 attr->name_len == ARRAY_SIZE(I30_NAME) &&
4743 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4744 oa->run1 = &ni_oe->dir.alloc_run;
4745 goto final_oe;
4746 }
4747 }
4748
4749 if (attr->non_res) {
4750 u16 roff = le16_to_cpu(attr->nres.run_off);
4751 CLST svcn = le64_to_cpu(attr->nres.svcn);
4752
6db62086
EL
4753 if (roff > t32) {
4754 kfree(oa->attr);
4755 oa->attr = NULL;
4756 goto fake_attr;
4757 }
4758
b46acd6a
KK
4759 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4760 le64_to_cpu(attr->nres.evcn), svcn,
4761 Add2Ptr(attr, roff), t32 - roff);
4762 if (err < 0) {
195c52bd 4763 kfree(oa->attr);
b46acd6a
KK
4764 oa->attr = NULL;
4765 goto fake_attr;
4766 }
4767 err = 0;
4768 }
4769 oa->run1 = &oa->run0;
4770 attr = oa->attr;
4771
4772final_oe:
4773 if (oe->is_attr_name == 1)
195c52bd 4774 kfree(oe->ptr);
b46acd6a
KK
4775 oe->is_attr_name = 0;
4776 oe->ptr = oa;
4777 oe->name_len = attr->name_len;
4778
4779 goto next_open_attribute;
4780
4781 /*
e8b8e97f
KA
4782 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4783 * Mapping that we have, and insert it into the appropriate run.
b46acd6a
KK
4784 */
4785next_dirty_page:
4786 dp = enum_rstbl(dptbl, dp);
4787 if (!dp)
4788 goto do_redo_1;
4789
4790 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4791
4792 if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4793 goto next_dirty_page;
4794
4795 oa = oe->ptr;
4796 if (!oa)
4797 goto next_dirty_page;
4798
4799 i = -1;
4800next_dirty_page_vcn:
4801 i += 1;
4802 if (i >= le32_to_cpu(dp->lcns_follow))
4803 goto next_dirty_page;
4804
4805 vcn = le64_to_cpu(dp->vcn) + i;
4806 size = (vcn + 1) << sbi->cluster_bits;
4807
4808 if (!dp->page_lcns[i])
4809 goto next_dirty_page_vcn;
4810
4811 rno = ino_get(&oe->ref);
4812 if (rno <= MFT_REC_MIRR &&
4813 size < (MFT_REC_VOL + 1) * sbi->record_size &&
4814 oe->type == ATTR_DATA) {
4815 goto next_dirty_page_vcn;
4816 }
4817
4818 lcn = le64_to_cpu(dp->page_lcns[i]);
4819
4820 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4821 lcn0 != lcn) &&
4822 !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4823 err = -ENOMEM;
4824 goto out;
4825 }
4826 attr = oa->attr;
07f4aa9d 4827 if (size > le64_to_cpu(attr->nres.alloc_size)) {
b46acd6a
KK
4828 attr->nres.valid_size = attr->nres.data_size =
4829 attr->nres.alloc_size = cpu_to_le64(size);
4830 }
4831 goto next_dirty_page_vcn;
4832
4833do_redo_1:
4834 /*
4835 * Perform the Redo Pass, to restore all of the dirty pages to the same
e8b8e97f
KA
4836 * contents that they had immediately before the crash. If the dirty
4837 * page table is empty, then we can skip the entire Redo Pass.
b46acd6a
KK
4838 */
4839 if (!dptbl || !dptbl->total)
4840 goto do_undo_action;
4841
4842 rec_lsn = rlsn;
4843
4844 /*
4845 * Read the record at the Redo lsn, before falling
e8b8e97f 4846 * into common code to handle each record.
b46acd6a
KK
4847 */
4848 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4849 if (err)
4850 goto out;
4851
4852 /*
e8b8e97f
KA
4853 * Now loop to read all of our log records forwards, until
4854 * we hit the end of the file, cleaning up at the end.
b46acd6a
KK
4855 */
4856do_action_next:
4857 frh = lcb->lrh;
4858
4859 if (LfsClientRecord != frh->record_type)
4860 goto read_next_log_do_action;
4861
4862 transact_id = le32_to_cpu(frh->transact_id);
4863 rec_len = le32_to_cpu(frh->client_data_len);
4864 lrh = lcb->log_rec;
4865
4866 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4867 err = -EINVAL;
4868 goto out;
4869 }
4870
e8b8e97f 4871 /* Ignore log records that do not update pages. */
b46acd6a
KK
4872 if (lrh->lcns_follow)
4873 goto find_dirty_page;
4874
4875 goto read_next_log_do_action;
4876
4877find_dirty_page:
4878 t16 = le16_to_cpu(lrh->target_attr);
4879 t64 = le64_to_cpu(lrh->target_vcn);
4880 dp = find_dp(dptbl, t16, t64);
4881
4882 if (!dp)
4883 goto read_next_log_do_action;
4884
4885 if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4886 goto read_next_log_do_action;
4887
4888 t16 = le16_to_cpu(lrh->target_attr);
4889 if (t16 >= bytes_per_rt(oatbl)) {
4890 err = -EINVAL;
4891 goto out;
4892 }
4893
4894 oe = Add2Ptr(oatbl, t16);
4895
4896 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4897 err = -EINVAL;
4898 goto out;
4899 }
4900
4901 oa = oe->ptr;
4902
4903 if (!oa) {
4904 err = -EINVAL;
4905 goto out;
4906 }
4907 attr = oa->attr;
4908
4909 vcn = le64_to_cpu(lrh->target_vcn);
4910
4911 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4912 lcn == SPARSE_LCN) {
4913 goto read_next_log_do_action;
4914 }
4915
e8b8e97f 4916 /* Point to the Redo data and get its length. */
b46acd6a
KK
4917 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4918 dlen = le16_to_cpu(lrh->redo_len);
4919
e8b8e97f 4920 /* Shorten length by any Lcns which were deleted. */
b46acd6a
KK
4921 saved_len = dlen;
4922
4923 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4924 size_t j;
4925 u32 alen, voff;
4926
4927 voff = le16_to_cpu(lrh->record_off) +
4928 le16_to_cpu(lrh->attr_off);
4929 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4930
e8b8e97f 4931 /* If the Vcn question is allocated, we can just get out. */
b46acd6a
KK
4932 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4933 if (dp->page_lcns[j + i - 1])
4934 break;
4935
4936 if (!saved_len)
4937 saved_len = 1;
4938
4939 /*
4940 * Calculate the allocated space left relative to the
e8b8e97f 4941 * log record Vcn, after removing this unallocated Vcn.
b46acd6a
KK
4942 */
4943 alen = (i - 1) << sbi->cluster_bits;
4944
4945 /*
4946 * If the update described this log record goes beyond
e8b8e97f 4947 * the allocated space, then we will have to reduce the length.
b46acd6a
KK
4948 */
4949 if (voff >= alen)
4950 dlen = 0;
4951 else if (voff + dlen > alen)
4952 dlen = alen - voff;
4953 }
4954
e8b8e97f
KA
4955 /*
4956 * If the resulting dlen from above is now zero,
4957 * we can skip this log record.
4958 */
b46acd6a
KK
4959 if (!dlen && saved_len)
4960 goto read_next_log_do_action;
4961
4962 t16 = le16_to_cpu(lrh->redo_op);
4963 if (can_skip_action(t16))
4964 goto read_next_log_do_action;
4965
e8b8e97f 4966 /* Apply the Redo operation a common routine. */
b46acd6a
KK
4967 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4968 if (err)
4969 goto out;
4970
e8b8e97f 4971 /* Keep reading and looping back until end of file. */
b46acd6a
KK
4972read_next_log_do_action:
4973 err = read_next_log_rec(log, lcb, &rec_lsn);
4974 if (!err && rec_lsn)
4975 goto do_action_next;
4976
4977 lcb_put(lcb);
4978 lcb = NULL;
4979
4980do_undo_action:
e8b8e97f 4981 /* Scan Transaction Table. */
b46acd6a
KK
4982 tr = NULL;
4983transaction_table_next:
4984 tr = enum_rstbl(trtbl, tr);
4985 if (!tr)
4986 goto undo_action_done;
4987
4988 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4989 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4990 goto transaction_table_next;
4991 }
4992
4993 log->transaction_id = PtrOffset(trtbl, tr);
4994 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
4995
4996 /*
4997 * We only have to do anything if the transaction has
e8b8e97f 4998 * something its undo_next_lsn field.
b46acd6a
KK
4999 */
5000 if (!undo_next_lsn)
5001 goto commit_undo;
5002
e8b8e97f 5003 /* Read the first record to be undone by this transaction. */
b46acd6a
KK
5004 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5005 if (err)
5006 goto out;
5007
5008 /*
5009 * Now loop to read all of our log records forwards,
e8b8e97f 5010 * until we hit the end of the file, cleaning up at the end.
b46acd6a
KK
5011 */
5012undo_action_next:
5013
5014 lrh = lcb->log_rec;
5015 frh = lcb->lrh;
5016 transact_id = le32_to_cpu(frh->transact_id);
5017 rec_len = le32_to_cpu(frh->client_data_len);
5018
5019 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5020 err = -EINVAL;
5021 goto out;
5022 }
5023
5024 if (lrh->undo_op == cpu_to_le16(Noop))
5025 goto read_next_log_undo_action;
5026
5027 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5028 oa = oe->ptr;
5029
5030 t16 = le16_to_cpu(lrh->lcns_follow);
5031 if (!t16)
5032 goto add_allocated_vcns;
5033
5034 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5035 &lcn, &clen, NULL);
5036
5037 /*
5038 * If the mapping isn't already the table or the mapping
5039 * corresponds to a hole the mapping, we need to make sure
e8b8e97f 5040 * there is no partial page already memory.
b46acd6a
KK
5041 */
5042 if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5043 goto add_allocated_vcns;
5044
5045 vcn = le64_to_cpu(lrh->target_vcn);
92603435 5046 vcn &= ~(u64)(log->clst_per_page - 1);
b46acd6a
KK
5047
5048add_allocated_vcns:
5049 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5050 size = (vcn + 1) << sbi->cluster_bits;
5051 i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5052 attr = oa->attr;
5053 if (!attr->non_res) {
5054 if (size > le32_to_cpu(attr->res.data_size))
5055 attr->res.data_size = cpu_to_le32(size);
5056 } else {
5057 if (size > le64_to_cpu(attr->nres.data_size))
5058 attr->nres.valid_size = attr->nres.data_size =
5059 attr->nres.alloc_size =
5060 cpu_to_le64(size);
5061 }
5062 }
5063
5064 t16 = le16_to_cpu(lrh->undo_op);
5065 if (can_skip_action(t16))
5066 goto read_next_log_undo_action;
5067
e8b8e97f 5068 /* Point to the Redo data and get its length. */
b46acd6a
KK
5069 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5070 dlen = le16_to_cpu(lrh->undo_len);
5071
e8b8e97f 5072 /* It is time to apply the undo action. */
b46acd6a
KK
5073 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5074
5075read_next_log_undo_action:
5076 /*
5077 * Keep reading and looping back until we have read the
e8b8e97f 5078 * last record for this transaction.
b46acd6a
KK
5079 */
5080 err = read_next_log_rec(log, lcb, &rec_lsn);
5081 if (err)
5082 goto out;
5083
5084 if (rec_lsn)
5085 goto undo_action_next;
5086
5087 lcb_put(lcb);
5088 lcb = NULL;
5089
5090commit_undo:
5091 free_rsttbl_idx(trtbl, log->transaction_id);
5092
5093 log->transaction_id = 0;
5094
5095 goto transaction_table_next;
5096
5097undo_action_done:
5098
5099 ntfs_update_mftmirr(sbi, 0);
5100
5101 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5102
5103end_reply:
5104
5105 err = 0;
5106 if (is_ro)
5107 goto out;
5108
195c52bd 5109 rh = kzalloc(log->page_size, GFP_NOFS);
b46acd6a
KK
5110 if (!rh) {
5111 err = -ENOMEM;
5112 goto out;
5113 }
5114
5115 rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5116 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5117 t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5118 rh->rhdr.fix_num = cpu_to_le16(t16);
5119 rh->sys_page_size = cpu_to_le32(log->page_size);
5120 rh->page_size = cpu_to_le32(log->page_size);
5121
d3624466
KK
5122 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5123 8);
b46acd6a
KK
5124 rh->ra_off = cpu_to_le16(t16);
5125 rh->minor_ver = cpu_to_le16(1); // 0x1A:
5126 rh->major_ver = cpu_to_le16(1); // 0x1C:
5127
5128 ra2 = Add2Ptr(rh, t16);
5129 memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5130
5131 ra2->client_idx[0] = 0;
5132 ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5133 ra2->flags = cpu_to_le16(2);
5134
5135 le32_add_cpu(&ra2->open_log_count, 1);
5136
5137 ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5138
63544672 5139 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
b46acd6a
KK
5140 if (!err)
5141 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
63544672 5142 rh, log->page_size, 0);
b46acd6a 5143
195c52bd 5144 kfree(rh);
b46acd6a
KK
5145 if (err)
5146 goto out;
5147
5148out:
195c52bd 5149 kfree(rst);
b46acd6a
KK
5150 if (lcb)
5151 lcb_put(lcb);
5152
e8b8e97f
KA
5153 /*
5154 * Scan the Open Attribute Table to close all of
5155 * the open attributes.
5156 */
b46acd6a
KK
5157 oe = NULL;
5158 while ((oe = enum_rstbl(oatbl, oe))) {
5159 rno = ino_get(&oe->ref);
5160
5161 if (oe->is_attr_name == 1) {
195c52bd 5162 kfree(oe->ptr);
b46acd6a
KK
5163 oe->ptr = NULL;
5164 continue;
5165 }
5166
5167 if (oe->is_attr_name)
5168 continue;
5169
5170 oa = oe->ptr;
5171 if (!oa)
5172 continue;
5173
5174 run_close(&oa->run0);
195c52bd 5175 kfree(oa->attr);
b46acd6a
KK
5176 if (oa->ni)
5177 iput(&oa->ni->vfs_inode);
195c52bd 5178 kfree(oa);
b46acd6a
KK
5179 }
5180
195c52bd
KA
5181 kfree(trtbl);
5182 kfree(oatbl);
5183 kfree(dptbl);
5184 kfree(attr_names);
5185 kfree(rst_info.r_page);
b46acd6a 5186
195c52bd
KA
5187 kfree(ra);
5188 kfree(log->one_page_buf);
b46acd6a
KK
5189
5190 if (err)
5191 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5192
5193 if (err == -EROFS)
5194 err = 0;
5195 else if (log->set_dirty)
5196 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5197
195c52bd 5198 kfree(log);
b46acd6a
KK
5199
5200 return err;
5201}