nilfs2: extend nilfs_sustat ioctl struct
[linux-block.git] / fs / nilfs2 / super.c
CommitLineData
783f6184
RK
1/*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22/*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40#include <linux/module.h>
41#include <linux/string.h>
42#include <linux/slab.h>
43#include <linux/init.h>
44#include <linux/blkdev.h>
45#include <linux/parser.h>
46#include <linux/random.h>
47#include <linux/crc32.h>
48#include <linux/smp_lock.h>
49#include <linux/vfs.h>
50#include <linux/writeback.h>
51#include <linux/kobject.h>
52#include <linux/exportfs.h>
53#include "nilfs.h"
54#include "mdt.h"
55#include "alloc.h"
56#include "page.h"
57#include "cpfile.h"
58#include "ifile.h"
59#include "dat.h"
60#include "segment.h"
61#include "segbuf.h"
62
63MODULE_AUTHOR("NTT Corp.");
64MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 "(NILFS)");
66MODULE_VERSION(NILFS_VERSION);
67MODULE_LICENSE("GPL");
68
69static int nilfs_remount(struct super_block *sb, int *flags, char *data);
70static int test_exclusive_mount(struct file_system_type *fs_type,
71 struct block_device *bdev, int flags);
72
73/**
74 * nilfs_error() - report failure condition on a filesystem
75 *
76 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
77 * reporting an error message. It should be called when NILFS detects
78 * incoherences or defects of meta data on disk. As for sustainable
79 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
80 * function should be used instead.
81 *
82 * The segment constructor must not call this function because it can
83 * kill itself.
84 */
85void nilfs_error(struct super_block *sb, const char *function,
86 const char *fmt, ...)
87{
88 struct nilfs_sb_info *sbi = NILFS_SB(sb);
89 va_list args;
90
91 va_start(args, fmt);
92 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
93 vprintk(fmt, args);
94 printk("\n");
95 va_end(args);
96
97 if (!(sb->s_flags & MS_RDONLY)) {
98 struct the_nilfs *nilfs = sbi->s_nilfs;
99
100 if (!nilfs_test_opt(sbi, ERRORS_CONT))
101 nilfs_detach_segment_constructor(sbi);
102
103 down_write(&nilfs->ns_sem);
104 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
105 nilfs->ns_mount_state |= NILFS_ERROR_FS;
106 nilfs->ns_sbp->s_state |= cpu_to_le16(NILFS_ERROR_FS);
107 nilfs_commit_super(sbi);
108 }
109 up_write(&nilfs->ns_sem);
110
111 if (nilfs_test_opt(sbi, ERRORS_RO)) {
112 printk(KERN_CRIT "Remounting filesystem read-only\n");
113 sb->s_flags |= MS_RDONLY;
114 }
115 }
116
117 if (nilfs_test_opt(sbi, ERRORS_PANIC))
118 panic("NILFS (device %s): panic forced after error\n",
119 sb->s_id);
120}
121
122void nilfs_warning(struct super_block *sb, const char *function,
123 const char *fmt, ...)
124{
125 va_list args;
126
127 va_start(args, fmt);
128 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
129 sb->s_id, function);
130 vprintk(fmt, args);
131 printk("\n");
132 va_end(args);
133}
134
135static struct kmem_cache *nilfs_inode_cachep;
136
137struct inode *nilfs_alloc_inode(struct super_block *sb)
138{
139 struct nilfs_inode_info *ii;
140
141 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
142 if (!ii)
143 return NULL;
144 ii->i_bh = NULL;
145 ii->i_state = 0;
146 ii->vfs_inode.i_version = 1;
147 nilfs_btnode_cache_init(&ii->i_btnode_cache);
148 return &ii->vfs_inode;
149}
150
151void nilfs_destroy_inode(struct inode *inode)
152{
153 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
154}
155
156static void init_once(void *obj)
157{
158 struct nilfs_inode_info *ii = obj;
159
160 INIT_LIST_HEAD(&ii->i_dirty);
161#ifdef CONFIG_NILFS_XATTR
162 init_rwsem(&ii->xattr_sem);
163#endif
164 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
165 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
166 inode_init_once(&ii->vfs_inode);
167}
168
169static int nilfs_init_inode_cache(void)
170{
171 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
172 sizeof(struct nilfs_inode_info),
173 0, SLAB_RECLAIM_ACCOUNT,
174 init_once);
175
176 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
177}
178
179static inline void nilfs_destroy_inode_cache(void)
180{
181 kmem_cache_destroy(nilfs_inode_cachep);
182}
183
184static void nilfs_clear_inode(struct inode *inode)
185{
186 struct nilfs_inode_info *ii = NILFS_I(inode);
783f6184
RK
187
188#ifdef CONFIG_NILFS_POSIX_ACL
189 if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) {
190 posix_acl_release(ii->i_acl);
191 ii->i_acl = NILFS_ACL_NOT_CACHED;
192 }
193 if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) {
194 posix_acl_release(ii->i_default_acl);
195 ii->i_default_acl = NILFS_ACL_NOT_CACHED;
196 }
197#endif
198 /*
199 * Free resources allocated in nilfs_read_inode(), here.
200 */
a2e7d2df 201 BUG_ON(!list_empty(&ii->i_dirty));
783f6184
RK
202 brelse(ii->i_bh);
203 ii->i_bh = NULL;
783f6184
RK
204
205 if (test_bit(NILFS_I_BMAP, &ii->i_state))
206 nilfs_bmap_clear(ii->i_bmap);
207
208 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
783f6184
RK
209}
210
211/**
212 * nilfs_update_last_segment - change pointer to the latest segment
213 * @sbi: nilfs_sb_info
214 * @update_cno: flag whether to update checkpoint number.
215 *
216 * nilfs_update_last_segment() changes information in the super block
217 * after a partial segment is written out successfully. The super
218 * block is marked dirty. It will be written out at the next VFS sync
219 * operations such as sync_supers() and generic_shutdown_super().
220 */
221void nilfs_update_last_segment(struct nilfs_sb_info *sbi, int update_cno)
222{
223 struct the_nilfs *nilfs = sbi->s_nilfs;
224 struct nilfs_super_block *sbp = nilfs->ns_sbp;
225
226 /* nilfs->sem must be locked by the caller. */
227 spin_lock(&nilfs->ns_last_segment_lock);
228 if (update_cno)
229 nilfs->ns_last_cno = nilfs->ns_cno++;
230 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
231 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
232 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
233 spin_unlock(&nilfs->ns_last_segment_lock);
234
235 sbi->s_super->s_dirt = 1; /* must be set if delaying the call of
236 nilfs_commit_super() */
237}
238
239static int nilfs_sync_super(struct nilfs_sb_info *sbi)
240{
241 struct the_nilfs *nilfs = sbi->s_nilfs;
242 int err;
243 int barrier_done = 0;
244
245 if (nilfs_test_opt(sbi, BARRIER)) {
246 set_buffer_ordered(nilfs->ns_sbh);
247 barrier_done = 1;
248 }
249 retry:
250 set_buffer_dirty(nilfs->ns_sbh);
251 err = sync_dirty_buffer(nilfs->ns_sbh);
252 if (err == -EOPNOTSUPP && barrier_done) {
253 nilfs_warning(sbi->s_super, __func__,
254 "barrier-based sync failed. "
255 "disabling barriers\n");
256 nilfs_clear_opt(sbi, BARRIER);
257 barrier_done = 0;
258 clear_buffer_ordered(nilfs->ns_sbh);
259 goto retry;
260 }
261 if (unlikely(err))
262 printk(KERN_ERR
263 "NILFS: unable to write superblock (err=%d)\n", err);
264 else {
783f6184 265 clear_nilfs_discontinued(nilfs);
2c2e52fc
RK
266 spin_lock(&nilfs->ns_last_segment_lock);
267 nilfs->ns_prot_seq = le64_to_cpu(nilfs->ns_sbp->s_last_seq);
268 spin_unlock(&nilfs->ns_last_segment_lock);
783f6184
RK
269 }
270
271 return err;
272}
273
274int nilfs_commit_super(struct nilfs_sb_info *sbi)
275{
276 struct the_nilfs *nilfs = sbi->s_nilfs;
277 struct nilfs_super_block *sbp = nilfs->ns_sbp;
278 sector_t nfreeblocks;
279 int err;
280
281 /* nilfs->sem must be locked by the caller. */
282 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
283 if (unlikely(err)) {
284 printk(KERN_ERR "NILFS: failed to count free blocks\n");
285 return err;
286 }
287 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
288 sbp->s_wtime = cpu_to_le64(get_seconds());
289 sbp->s_sum = 0;
290 sbp->s_sum = crc32_le(nilfs->ns_crc_seed, (unsigned char *)sbp,
291 le16_to_cpu(sbp->s_bytes));
292
293 sbi->s_super->s_dirt = 0;
294 return nilfs_sync_super(sbi);
295}
296
297static void nilfs_put_super(struct super_block *sb)
298{
299 struct nilfs_sb_info *sbi = NILFS_SB(sb);
300 struct the_nilfs *nilfs = sbi->s_nilfs;
301
302 nilfs_detach_segment_constructor(sbi);
303
304 if (!(sb->s_flags & MS_RDONLY)) {
305 down_write(&nilfs->ns_sem);
306 nilfs->ns_sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
307 nilfs_commit_super(sbi);
308 up_write(&nilfs->ns_sem);
309 }
310
311 nilfs_detach_checkpoint(sbi);
312 put_nilfs(sbi->s_nilfs);
313 sbi->s_super = NULL;
314 sb->s_fs_info = NULL;
315 kfree(sbi);
316}
317
318/**
319 * nilfs_write_super - write super block(s) of NILFS
320 * @sb: super_block
321 *
322 * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
323 * clears s_dirt. This function is called in the section protected by
324 * lock_super().
325 *
326 * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
327 * of the struct the_nilfs. Lock order must be as follows:
328 *
329 * 1. lock_super()
330 * 2. down_write(&nilfs->ns_sem)
331 *
332 * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
333 * of the super block (nilfs->ns_sbp).
334 *
335 * In most cases, VFS functions call lock_super() before calling these
336 * methods. So we must be careful not to bring on deadlocks when using
337 * lock_super(); see generic_shutdown_super(), write_super(), and so on.
338 *
339 * Note that order of lock_kernel() and lock_super() depends on contexts
340 * of VFS. We should also note that lock_kernel() can be used in its
341 * protective section and only the outermost one has an effect.
342 */
343static void nilfs_write_super(struct super_block *sb)
344{
345 struct nilfs_sb_info *sbi = NILFS_SB(sb);
346 struct the_nilfs *nilfs = sbi->s_nilfs;
347
348 down_write(&nilfs->ns_sem);
349 if (!(sb->s_flags & MS_RDONLY))
350 nilfs_commit_super(sbi);
351 sb->s_dirt = 0;
352 up_write(&nilfs->ns_sem);
353}
354
355static int nilfs_sync_fs(struct super_block *sb, int wait)
356{
357 int err = 0;
358
359 /* This function is called when super block should be written back */
360 if (wait)
361 err = nilfs_construct_segment(sb);
362 return err;
363}
364
365int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
366{
367 struct the_nilfs *nilfs = sbi->s_nilfs;
368 struct nilfs_checkpoint *raw_cp;
369 struct buffer_head *bh_cp;
370 int err;
371
372 down_write(&nilfs->ns_sem);
373 list_add(&sbi->s_list, &nilfs->ns_supers);
374 up_write(&nilfs->ns_sem);
375
376 sbi->s_ifile = nilfs_mdt_new(
377 nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
378 if (!sbi->s_ifile)
379 return -ENOMEM;
380
381 err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
382 if (unlikely(err))
383 goto failed;
384
385 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
386 &bh_cp);
387 if (unlikely(err)) {
388 if (err == -ENOENT || err == -EINVAL) {
389 printk(KERN_ERR
390 "NILFS: Invalid checkpoint "
391 "(checkpoint number=%llu)\n",
392 (unsigned long long)cno);
393 err = -EINVAL;
394 }
395 goto failed;
396 }
397 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
398 if (unlikely(err))
399 goto failed_bh;
400 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
401 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
402
403 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
404 return 0;
405
406 failed_bh:
407 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
408 failed:
409 nilfs_mdt_destroy(sbi->s_ifile);
410 sbi->s_ifile = NULL;
411
412 down_write(&nilfs->ns_sem);
413 list_del_init(&sbi->s_list);
414 up_write(&nilfs->ns_sem);
415
416 return err;
417}
418
419void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
420{
421 struct the_nilfs *nilfs = sbi->s_nilfs;
422
423 nilfs_mdt_clear(sbi->s_ifile);
424 nilfs_mdt_destroy(sbi->s_ifile);
425 sbi->s_ifile = NULL;
426 down_write(&nilfs->ns_sem);
427 list_del_init(&sbi->s_list);
428 up_write(&nilfs->ns_sem);
429}
430
431static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
432{
433 struct the_nilfs *nilfs = sbi->s_nilfs;
434 int err = 0;
435
436 down_write(&nilfs->ns_sem);
437 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
438 nilfs->ns_mount_state |= NILFS_VALID_FS;
439 err = nilfs_commit_super(sbi);
440 if (likely(!err))
441 printk(KERN_INFO "NILFS: recovery complete.\n");
442 }
443 up_write(&nilfs->ns_sem);
444 return err;
445}
446
447static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
448{
449 struct super_block *sb = dentry->d_sb;
450 struct nilfs_sb_info *sbi = NILFS_SB(sb);
451 unsigned long long blocks;
452 unsigned long overhead;
453 unsigned long nrsvblocks;
454 sector_t nfreeblocks;
455 struct the_nilfs *nilfs = sbi->s_nilfs;
456 int err;
457
458 /*
459 * Compute all of the segment blocks
460 *
461 * The blocks before first segment and after last segment
462 * are excluded.
463 */
464 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
465 - nilfs->ns_first_data_block;
466 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
467
468 /*
469 * Compute the overhead
470 *
471 * When distributing meta data blocks outside semgent structure,
472 * We must count them as the overhead.
473 */
474 overhead = 0;
475
476 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
477 if (unlikely(err))
478 return err;
479
480 buf->f_type = NILFS_SUPER_MAGIC;
481 buf->f_bsize = sb->s_blocksize;
482 buf->f_blocks = blocks - overhead;
483 buf->f_bfree = nfreeblocks;
484 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
485 (buf->f_bfree - nrsvblocks) : 0;
486 buf->f_files = atomic_read(&sbi->s_inodes_count);
487 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
488 buf->f_namelen = NILFS_NAME_LEN;
489 return 0;
490}
491
492static struct super_operations nilfs_sops = {
493 .alloc_inode = nilfs_alloc_inode,
494 .destroy_inode = nilfs_destroy_inode,
495 .dirty_inode = nilfs_dirty_inode,
496 /* .write_inode = nilfs_write_inode, */
497 /* .put_inode = nilfs_put_inode, */
498 /* .drop_inode = nilfs_drop_inode, */
499 .delete_inode = nilfs_delete_inode,
500 .put_super = nilfs_put_super,
501 .write_super = nilfs_write_super,
502 .sync_fs = nilfs_sync_fs,
503 /* .write_super_lockfs */
504 /* .unlockfs */
505 .statfs = nilfs_statfs,
506 .remount_fs = nilfs_remount,
507 .clear_inode = nilfs_clear_inode,
508 /* .umount_begin */
509 /* .show_options */
510};
511
512static struct inode *
513nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
514{
515 struct inode *inode;
516
517 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
518 ino != NILFS_SKETCH_INO)
519 return ERR_PTR(-ESTALE);
520
521 inode = nilfs_iget(sb, ino);
522 if (IS_ERR(inode))
523 return ERR_CAST(inode);
524 if (generation && inode->i_generation != generation) {
525 iput(inode);
526 return ERR_PTR(-ESTALE);
527 }
528
529 return inode;
530}
531
532static struct dentry *
533nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
534 int fh_type)
535{
536 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
537 nilfs_nfs_get_inode);
538}
539
540static struct dentry *
541nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
542 int fh_type)
543{
544 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
545 nilfs_nfs_get_inode);
546}
547
548static struct export_operations nilfs_export_ops = {
549 .fh_to_dentry = nilfs_fh_to_dentry,
550 .fh_to_parent = nilfs_fh_to_parent,
551 .get_parent = nilfs_get_parent,
552};
553
554enum {
555 Opt_err_cont, Opt_err_panic, Opt_err_ro,
556 Opt_barrier, Opt_snapshot, Opt_order,
557 Opt_err,
558};
559
560static match_table_t tokens = {
561 {Opt_err_cont, "errors=continue"},
562 {Opt_err_panic, "errors=panic"},
563 {Opt_err_ro, "errors=remount-ro"},
564 {Opt_barrier, "barrier=%s"},
565 {Opt_snapshot, "cp=%u"},
566 {Opt_order, "order=%s"},
567 {Opt_err, NULL}
568};
569
570static int match_bool(substring_t *s, int *result)
571{
572 int len = s->to - s->from;
573
574 if (strncmp(s->from, "on", len) == 0)
575 *result = 1;
576 else if (strncmp(s->from, "off", len) == 0)
577 *result = 0;
578 else
579 return 1;
580 return 0;
581}
582
583static int parse_options(char *options, struct super_block *sb)
584{
585 struct nilfs_sb_info *sbi = NILFS_SB(sb);
586 char *p;
587 substring_t args[MAX_OPT_ARGS];
588 int option;
589
590 if (!options)
591 return 1;
592
593 while ((p = strsep(&options, ",")) != NULL) {
594 int token;
595 if (!*p)
596 continue;
597
598 token = match_token(p, tokens, args);
599 switch (token) {
600 case Opt_barrier:
601 if (match_bool(&args[0], &option))
602 return 0;
603 if (option)
604 nilfs_set_opt(sbi, BARRIER);
605 else
606 nilfs_clear_opt(sbi, BARRIER);
607 break;
608 case Opt_order:
609 if (strcmp(args[0].from, "relaxed") == 0)
610 /* Ordered data semantics */
611 nilfs_clear_opt(sbi, STRICT_ORDER);
612 else if (strcmp(args[0].from, "strict") == 0)
613 /* Strict in-order semantics */
614 nilfs_set_opt(sbi, STRICT_ORDER);
615 else
616 return 0;
617 break;
618 case Opt_err_panic:
619 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
620 break;
621 case Opt_err_ro:
622 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
623 break;
624 case Opt_err_cont:
625 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
626 break;
627 case Opt_snapshot:
628 if (match_int(&args[0], &option) || option <= 0)
629 return 0;
630 if (!(sb->s_flags & MS_RDONLY))
631 return 0;
632 sbi->s_snapshot_cno = option;
633 nilfs_set_opt(sbi, SNAPSHOT);
634 break;
635 default:
636 printk(KERN_ERR
637 "NILFS: Unrecognized mount option \"%s\"\n", p);
638 return 0;
639 }
640 }
641 return 1;
642}
643
644static inline void
645nilfs_set_default_options(struct nilfs_sb_info *sbi,
646 struct nilfs_super_block *sbp)
647{
648 sbi->s_mount_opt =
649 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
650}
651
652static int nilfs_setup_super(struct nilfs_sb_info *sbi)
653{
654 struct the_nilfs *nilfs = sbi->s_nilfs;
655 struct nilfs_super_block *sbp = nilfs->ns_sbp;
656 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
657 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
658
659 /* nilfs->sem must be locked by the caller. */
660 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
661 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
662 } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
663 printk(KERN_WARNING
664 "NILFS warning: mounting fs with errors\n");
665#if 0
666 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
667 printk(KERN_WARNING
668 "NILFS warning: maximal mount count reached\n");
669#endif
670 }
671 if (!max_mnt_count)
672 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
673
674 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
675 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
676 sbp->s_mtime = cpu_to_le64(get_seconds());
677 return nilfs_commit_super(sbi);
678}
679
680struct nilfs_super_block *
681nilfs_load_super_block(struct super_block *sb, struct buffer_head **pbh)
682{
683 int blocksize;
684 unsigned long offset, sb_index;
685
686 /*
687 * Adjusting block size
688 * Blocksize will be enlarged when it is smaller than hardware
689 * sector size.
690 * Disk format of superblock does not change.
691 */
692 blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
693 if (!blocksize) {
694 printk(KERN_ERR
695 "NILFS: unable to set blocksize of superblock\n");
696 return NULL;
697 }
698 sb_index = NILFS_SB_OFFSET_BYTES / blocksize;
699 offset = NILFS_SB_OFFSET_BYTES % blocksize;
700
701 *pbh = sb_bread(sb, sb_index);
702 if (!*pbh) {
703 printk(KERN_ERR "NILFS: unable to read superblock\n");
704 return NULL;
705 }
706 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
707}
708
709struct nilfs_super_block *
710nilfs_reload_super_block(struct super_block *sb, struct buffer_head **pbh,
711 int blocksize)
712{
713 struct nilfs_super_block *sbp;
714 unsigned long offset, sb_index;
715 int hw_blocksize = bdev_hardsect_size(sb->s_bdev);
716
717 if (blocksize < hw_blocksize) {
718 printk(KERN_ERR
719 "NILFS: blocksize %d too small for device "
720 "(sector-size = %d).\n",
721 blocksize, hw_blocksize);
722 goto failed_sbh;
723 }
724 brelse(*pbh);
725 sb_set_blocksize(sb, blocksize);
726
727 sb_index = NILFS_SB_OFFSET_BYTES / blocksize;
728 offset = NILFS_SB_OFFSET_BYTES % blocksize;
729
730 *pbh = sb_bread(sb, sb_index);
731 if (!*pbh) {
732 printk(KERN_ERR
733 "NILFS: cannot read superblock on 2nd try.\n");
734 goto failed;
735 }
736
737 sbp = (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
738 if (sbp->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
739 printk(KERN_ERR
740 "NILFS: !? Magic mismatch on 2nd try.\n");
741 goto failed_sbh;
742 }
743 return sbp;
744
745 failed_sbh:
746 brelse(*pbh);
747
748 failed:
749 return NULL;
750}
751
752int nilfs_store_magic_and_option(struct super_block *sb,
753 struct nilfs_super_block *sbp,
754 char *data)
755{
756 struct nilfs_sb_info *sbi = NILFS_SB(sb);
757
758 /* trying to fill super (1st stage) */
759 sb->s_magic = le16_to_cpu(sbp->s_magic);
760
761 /* FS independent flags */
762#ifdef NILFS_ATIME_DISABLE
763 sb->s_flags |= MS_NOATIME;
764#endif
765
766 if (sb->s_magic != NILFS_SUPER_MAGIC) {
767 printk("NILFS: Can't find nilfs on dev %s.\n", sb->s_id);
768 return -EINVAL;
769 }
770
771 nilfs_set_default_options(sbi, sbp);
772
773 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
774 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
775 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
776 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
777
778 if (!parse_options(data, sb))
779 return -EINVAL;
780
781 return 0;
782}
783
784/**
785 * nilfs_fill_super() - initialize a super block instance
786 * @sb: super_block
787 * @data: mount options
788 * @silent: silent mode flag
789 * @nilfs: the_nilfs struct
790 *
791 * This function is called exclusively by bd_mount_mutex.
792 * So, the recovery process is protected from other simultaneous mounts.
793 */
794static int
795nilfs_fill_super(struct super_block *sb, void *data, int silent,
796 struct the_nilfs *nilfs)
797{
798 struct nilfs_sb_info *sbi;
799 struct inode *root;
800 __u64 cno;
801 int err;
802
803 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
804 if (!sbi)
805 return -ENOMEM;
806
807 sb->s_fs_info = sbi;
808
809 get_nilfs(nilfs);
810 sbi->s_nilfs = nilfs;
811 sbi->s_super = sb;
812
813 err = init_nilfs(nilfs, sbi, (char *)data);
814 if (err)
815 goto failed_sbi;
816
817 spin_lock_init(&sbi->s_inode_lock);
818 INIT_LIST_HEAD(&sbi->s_dirty_files);
819 INIT_LIST_HEAD(&sbi->s_list);
820
821 /*
822 * Following initialization is overlapped because
823 * nilfs_sb_info structure has been cleared at the beginning.
824 * But we reserve them to keep our interest and make ready
825 * for the future change.
826 */
827 get_random_bytes(&sbi->s_next_generation,
828 sizeof(sbi->s_next_generation));
829 spin_lock_init(&sbi->s_next_gen_lock);
830
831 sb->s_op = &nilfs_sops;
832 sb->s_export_op = &nilfs_export_ops;
833 sb->s_root = NULL;
834
835 if (!nilfs_loaded(nilfs)) {
836 err = load_nilfs(nilfs, sbi);
837 if (err)
838 goto failed_sbi;
839 }
840 cno = nilfs_last_cno(nilfs);
841
842 if (sb->s_flags & MS_RDONLY) {
843 if (nilfs_test_opt(sbi, SNAPSHOT)) {
844 if (!nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
845 sbi->s_snapshot_cno)) {
846 printk(KERN_ERR
847 "NILFS: The specified checkpoint is "
848 "not a snapshot "
849 "(checkpoint number=%llu).\n",
850 (unsigned long long)sbi->s_snapshot_cno);
851 err = -EINVAL;
852 goto failed_sbi;
853 }
854 cno = sbi->s_snapshot_cno;
855 } else
856 /* Read-only mount */
857 sbi->s_snapshot_cno = cno;
858 }
859
860 err = nilfs_attach_checkpoint(sbi, cno);
861 if (err) {
862 printk(KERN_ERR "NILFS: error loading a checkpoint"
863 " (checkpoint number=%llu).\n", (unsigned long long)cno);
864 goto failed_sbi;
865 }
866
867 if (!(sb->s_flags & MS_RDONLY)) {
868 err = nilfs_attach_segment_constructor(sbi, NULL);
869 if (err)
870 goto failed_checkpoint;
871 }
872
873 root = nilfs_iget(sb, NILFS_ROOT_INO);
874 if (IS_ERR(root)) {
875 printk(KERN_ERR "NILFS: get root inode failed\n");
876 err = PTR_ERR(root);
877 goto failed_segctor;
878 }
879 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
880 iput(root);
881 printk(KERN_ERR "NILFS: corrupt root inode.\n");
882 err = -EINVAL;
883 goto failed_segctor;
884 }
885 sb->s_root = d_alloc_root(root);
886 if (!sb->s_root) {
887 iput(root);
888 printk(KERN_ERR "NILFS: get root dentry failed\n");
889 err = -ENOMEM;
890 goto failed_segctor;
891 }
892
893 if (!(sb->s_flags & MS_RDONLY)) {
894 down_write(&nilfs->ns_sem);
895 nilfs_setup_super(sbi);
896 up_write(&nilfs->ns_sem);
897 }
898
899 err = nilfs_mark_recovery_complete(sbi);
900 if (unlikely(err)) {
901 printk(KERN_ERR "NILFS: recovery failed.\n");
902 goto failed_root;
903 }
904
905 return 0;
906
907 failed_root:
908 dput(sb->s_root);
909 sb->s_root = NULL;
910
911 failed_segctor:
912 nilfs_detach_segment_constructor(sbi);
913
914 failed_checkpoint:
915 nilfs_detach_checkpoint(sbi);
916
917 failed_sbi:
918 put_nilfs(nilfs);
919 sb->s_fs_info = NULL;
920 kfree(sbi);
921 return err;
922}
923
924static int nilfs_remount(struct super_block *sb, int *flags, char *data)
925{
926 struct nilfs_sb_info *sbi = NILFS_SB(sb);
927 struct nilfs_super_block *sbp;
928 struct the_nilfs *nilfs = sbi->s_nilfs;
929 unsigned long old_sb_flags;
930 struct nilfs_mount_options old_opts;
931 int err;
932
933 old_sb_flags = sb->s_flags;
934 old_opts.mount_opt = sbi->s_mount_opt;
935 old_opts.snapshot_cno = sbi->s_snapshot_cno;
936
937 if (!parse_options(data, sb)) {
938 err = -EINVAL;
939 goto restore_opts;
940 }
941 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
942
943 if ((*flags & MS_RDONLY) &&
944 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
945 printk(KERN_WARNING "NILFS (device %s): couldn't "
946 "remount to a different snapshot. \n",
947 sb->s_id);
948 err = -EINVAL;
949 goto restore_opts;
950 }
951
952 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
953 goto out;
954 if (*flags & MS_RDONLY) {
955 /* Shutting down the segment constructor */
956 nilfs_detach_segment_constructor(sbi);
957 sb->s_flags |= MS_RDONLY;
958
959 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
960 /* nilfs_set_opt(sbi, SNAPSHOT); */
961
962 /*
963 * Remounting a valid RW partition RDONLY, so set
964 * the RDONLY flag and then mark the partition as valid again.
965 */
966 down_write(&nilfs->ns_sem);
967 sbp = nilfs->ns_sbp;
968 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
969 (nilfs->ns_mount_state & NILFS_VALID_FS))
970 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
971 sbp->s_mtime = cpu_to_le64(get_seconds());
972 nilfs_commit_super(sbi);
973 up_write(&nilfs->ns_sem);
974 } else {
975 /*
976 * Mounting a RDONLY partition read-write, so reread and
977 * store the current valid flag. (It may have been changed
978 * by fsck since we originally mounted the partition.)
979 */
980 down(&sb->s_bdev->bd_mount_sem);
981 /* Check existing RW-mount */
982 if (test_exclusive_mount(sb->s_type, sb->s_bdev, 0)) {
983 printk(KERN_WARNING "NILFS (device %s): couldn't "
984 "remount because a RW-mount exists.\n",
985 sb->s_id);
986 err = -EBUSY;
987 goto rw_remount_failed;
988 }
989 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
990 printk(KERN_WARNING "NILFS (device %s): couldn't "
991 "remount because the current RO-mount is not "
992 "the latest one.\n",
993 sb->s_id);
994 err = -EINVAL;
995 goto rw_remount_failed;
996 }
997 sb->s_flags &= ~MS_RDONLY;
998 nilfs_clear_opt(sbi, SNAPSHOT);
999 sbi->s_snapshot_cno = 0;
1000
1001 err = nilfs_attach_segment_constructor(sbi, NULL);
1002 if (err)
1003 goto rw_remount_failed;
1004
1005 down_write(&nilfs->ns_sem);
1006 nilfs_setup_super(sbi);
1007 up_write(&nilfs->ns_sem);
1008
1009 up(&sb->s_bdev->bd_mount_sem);
1010 }
1011 out:
1012 return 0;
1013
1014 rw_remount_failed:
1015 up(&sb->s_bdev->bd_mount_sem);
1016 restore_opts:
1017 sb->s_flags = old_sb_flags;
1018 sbi->s_mount_opt = old_opts.mount_opt;
1019 sbi->s_snapshot_cno = old_opts.snapshot_cno;
1020 return err;
1021}
1022
1023struct nilfs_super_data {
1024 struct block_device *bdev;
1025 __u64 cno;
1026 int flags;
1027};
1028
1029/**
1030 * nilfs_identify - pre-read mount options needed to identify mount instance
1031 * @data: mount options
1032 * @sd: nilfs_super_data
1033 */
1034static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1035{
1036 char *p, *options = data;
1037 substring_t args[MAX_OPT_ARGS];
1038 int option, token;
1039 int ret = 0;
1040
1041 do {
1042 p = strsep(&options, ",");
1043 if (p != NULL && *p) {
1044 token = match_token(p, tokens, args);
1045 if (token == Opt_snapshot) {
1046 if (!(sd->flags & MS_RDONLY))
1047 ret++;
1048 else {
1049 ret = match_int(&args[0], &option);
1050 if (!ret) {
1051 if (option > 0)
1052 sd->cno = option;
1053 else
1054 ret++;
1055 }
1056 }
1057 }
1058 if (ret)
1059 printk(KERN_ERR
1060 "NILFS: invalid mount option: %s\n", p);
1061 }
1062 if (!options)
1063 break;
1064 BUG_ON(options == data);
1065 *(options - 1) = ',';
1066 } while (!ret);
1067 return ret;
1068}
1069
1070static int nilfs_set_bdev_super(struct super_block *s, void *data)
1071{
1072 struct nilfs_super_data *sd = data;
1073
1074 s->s_bdev = sd->bdev;
1075 s->s_dev = s->s_bdev->bd_dev;
1076 return 0;
1077}
1078
1079static int nilfs_test_bdev_super(struct super_block *s, void *data)
1080{
1081 struct nilfs_super_data *sd = data;
1082
1083 return s->s_bdev == sd->bdev;
1084}
1085
1086static int nilfs_test_bdev_super2(struct super_block *s, void *data)
1087{
1088 struct nilfs_super_data *sd = data;
1089 int ret;
1090
1091 if (s->s_bdev != sd->bdev)
1092 return 0;
1093
1094 if (!((s->s_flags | sd->flags) & MS_RDONLY))
1095 return 1; /* Reuse an old R/W-mode super_block */
1096
1097 if (s->s_flags & sd->flags & MS_RDONLY) {
1098 if (down_read_trylock(&s->s_umount)) {
1099 ret = s->s_root &&
1100 (sd->cno == NILFS_SB(s)->s_snapshot_cno);
1101 up_read(&s->s_umount);
1102 /*
1103 * This path is locked with sb_lock by sget().
1104 * So, drop_super() causes deadlock.
1105 */
1106 return ret;
1107 }
1108 }
1109 return 0;
1110}
1111
1112static int
1113nilfs_get_sb(struct file_system_type *fs_type, int flags,
1114 const char *dev_name, void *data, struct vfsmount *mnt)
1115{
1116 struct nilfs_super_data sd;
1117 struct super_block *s, *s2;
1118 struct the_nilfs *nilfs = NULL;
1119 int err, need_to_close = 1;
1120
1121 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1122 if (IS_ERR(sd.bdev))
1123 return PTR_ERR(sd.bdev);
1124
1125 /*
1126 * To get mount instance using sget() vfs-routine, NILFS needs
1127 * much more information than normal filesystems to identify mount
1128 * instance. For snapshot mounts, not only a mount type (ro-mount
1129 * or rw-mount) but also a checkpoint number is required.
1130 * The results are passed in sget() using nilfs_super_data.
1131 */
1132 sd.cno = 0;
1133 sd.flags = flags;
1134 if (nilfs_identify((char *)data, &sd)) {
1135 err = -EINVAL;
1136 goto failed;
1137 }
1138
1139 /*
1140 * once the super is inserted into the list by sget, s_umount
1141 * will protect the lockfs code from trying to start a snapshot
1142 * while we are mounting
1143 */
1144 down(&sd.bdev->bd_mount_sem);
1145 if (!sd.cno &&
1146 (err = test_exclusive_mount(fs_type, sd.bdev, flags ^ MS_RDONLY))) {
1147 err = (err < 0) ? : -EBUSY;
1148 goto failed_unlock;
1149 }
1150
1151 /*
1152 * Phase-1: search any existent instance and get the_nilfs
1153 */
1154 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1155 if (IS_ERR(s))
1156 goto error_s;
1157
1158 if (!s->s_root) {
1159 err = -ENOMEM;
1160 nilfs = alloc_nilfs(sd.bdev);
1161 if (!nilfs)
1162 goto cancel_new;
1163 } else {
1164 struct nilfs_sb_info *sbi = NILFS_SB(s);
1165
1166 BUG_ON(!sbi || !sbi->s_nilfs);
1167 /*
1168 * s_umount protects super_block from unmount process;
1169 * It covers pointers of nilfs_sb_info and the_nilfs.
1170 */
1171 nilfs = sbi->s_nilfs;
1172 get_nilfs(nilfs);
1173 up_write(&s->s_umount);
1174
1175 /*
1176 * Phase-2: search specified snapshot or R/W mode super_block
1177 */
1178 if (!sd.cno)
1179 /* trying to get the latest checkpoint. */
1180 sd.cno = nilfs_last_cno(nilfs);
1181
1182 s2 = sget(fs_type, nilfs_test_bdev_super2,
1183 nilfs_set_bdev_super, &sd);
1184 deactivate_super(s);
1185 /*
1186 * Although deactivate_super() invokes close_bdev_exclusive() at
1187 * kill_block_super(). Here, s is an existent mount; we need
1188 * one more close_bdev_exclusive() call.
1189 */
1190 s = s2;
1191 if (IS_ERR(s))
1192 goto error_s;
1193 }
1194
1195 if (!s->s_root) {
1196 char b[BDEVNAME_SIZE];
1197
1198 s->s_flags = flags;
1199 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1200 sb_set_blocksize(s, block_size(sd.bdev));
1201
1202 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1203 if (err)
1204 goto cancel_new;
1205
1206 s->s_flags |= MS_ACTIVE;
1207 need_to_close = 0;
1208 } else if (!(s->s_flags & MS_RDONLY)) {
1209 err = -EBUSY;
1210 }
1211
1212 up(&sd.bdev->bd_mount_sem);
1213 put_nilfs(nilfs);
1214 if (need_to_close)
1215 close_bdev_exclusive(sd.bdev, flags);
1216 simple_set_mnt(mnt, s);
1217 return 0;
1218
1219 error_s:
1220 up(&sd.bdev->bd_mount_sem);
1221 if (nilfs)
1222 put_nilfs(nilfs);
1223 close_bdev_exclusive(sd.bdev, flags);
1224 return PTR_ERR(s);
1225
1226 failed_unlock:
1227 up(&sd.bdev->bd_mount_sem);
1228 failed:
1229 close_bdev_exclusive(sd.bdev, flags);
1230
1231 return err;
1232
1233 cancel_new:
1234 /* Abandoning the newly allocated superblock */
1235 up(&sd.bdev->bd_mount_sem);
1236 if (nilfs)
1237 put_nilfs(nilfs);
1238 up_write(&s->s_umount);
1239 deactivate_super(s);
1240 /*
1241 * deactivate_super() invokes close_bdev_exclusive().
1242 * We must finish all post-cleaning before this call;
1243 * put_nilfs() and unlocking bd_mount_sem need the block device.
1244 */
1245 return err;
1246}
1247
1248static int nilfs_test_bdev_super3(struct super_block *s, void *data)
1249{
1250 struct nilfs_super_data *sd = data;
1251 int ret;
1252
1253 if (s->s_bdev != sd->bdev)
1254 return 0;
1255 if (down_read_trylock(&s->s_umount)) {
1256 ret = (s->s_flags & MS_RDONLY) && s->s_root &&
1257 nilfs_test_opt(NILFS_SB(s), SNAPSHOT);
1258 up_read(&s->s_umount);
1259 if (ret)
1260 return 0; /* ignore snapshot mounts */
1261 }
1262 return !((sd->flags ^ s->s_flags) & MS_RDONLY);
1263}
1264
1265static int __false_bdev_super(struct super_block *s, void *data)
1266{
1267#if 0 /* XXX: workaround for lock debug. This is not good idea */
1268 up_write(&s->s_umount);
1269#endif
1270 return -EFAULT;
1271}
1272
1273/**
1274 * test_exclusive_mount - check whether an exclusive RW/RO mount exists or not.
1275 * fs_type: filesystem type
1276 * bdev: block device
1277 * flag: 0 (check rw-mount) or MS_RDONLY (check ro-mount)
1278 * res: pointer to an integer to store result
1279 *
1280 * This function must be called within a section protected by bd_mount_mutex.
1281 */
1282static int test_exclusive_mount(struct file_system_type *fs_type,
1283 struct block_device *bdev, int flags)
1284{
1285 struct super_block *s;
1286 struct nilfs_super_data sd = { .flags = flags, .bdev = bdev };
1287
1288 s = sget(fs_type, nilfs_test_bdev_super3, __false_bdev_super, &sd);
1289 if (IS_ERR(s)) {
1290 if (PTR_ERR(s) != -EFAULT)
1291 return PTR_ERR(s);
1292 return 0; /* Not found */
1293 }
1294 up_write(&s->s_umount);
1295 deactivate_super(s);
1296 return 1; /* Found */
1297}
1298
1299struct file_system_type nilfs_fs_type = {
1300 .owner = THIS_MODULE,
1301 .name = "nilfs2",
1302 .get_sb = nilfs_get_sb,
1303 .kill_sb = kill_block_super,
1304 .fs_flags = FS_REQUIRES_DEV,
1305};
1306
1307static int __init init_nilfs_fs(void)
1308{
1309 int err;
1310
1311 err = nilfs_init_inode_cache();
1312 if (err)
1313 goto failed;
1314
1315 err = nilfs_init_transaction_cache();
1316 if (err)
1317 goto failed_inode_cache;
1318
1319 err = nilfs_init_segbuf_cache();
1320 if (err)
1321 goto failed_transaction_cache;
1322
1323 err = nilfs_btree_path_cache_init();
1324 if (err)
1325 goto failed_segbuf_cache;
1326
1327 err = register_filesystem(&nilfs_fs_type);
1328 if (err)
1329 goto failed_btree_path_cache;
1330
1331 return 0;
1332
1333 failed_btree_path_cache:
1334 nilfs_btree_path_cache_destroy();
1335
1336 failed_segbuf_cache:
1337 nilfs_destroy_segbuf_cache();
1338
1339 failed_transaction_cache:
1340 nilfs_destroy_transaction_cache();
1341
1342 failed_inode_cache:
1343 nilfs_destroy_inode_cache();
1344
1345 failed:
1346 return err;
1347}
1348
1349static void __exit exit_nilfs_fs(void)
1350{
1351 nilfs_destroy_segbuf_cache();
1352 nilfs_destroy_transaction_cache();
1353 nilfs_destroy_inode_cache();
1354 nilfs_btree_path_cache_destroy();
1355 unregister_filesystem(&nilfs_fs_type);
1356}
1357
1358module_init(init_nilfs_fs)
1359module_exit(exit_nilfs_fs)