vfs: Suppress MS_* flag defs within the kernel unless explicitly enabled
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
57c8a661 26#include <linux/memblock.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a 28#include <linux/sched/task.h>
e262e32d 29#include <uapi/linux/mount.h>
9164bb4a 30
07b20889 31#include "pnode.h"
948730b0 32#include "internal.h"
1da177e4 33
d2921684
EB
34/* Maximum number of mounts in a mount namespace */
35unsigned int sysctl_mount_max __read_mostly = 100000;
36
0818bf27
AV
37static unsigned int m_hash_mask __read_mostly;
38static unsigned int m_hash_shift __read_mostly;
39static unsigned int mp_hash_mask __read_mostly;
40static unsigned int mp_hash_shift __read_mostly;
41
42static __initdata unsigned long mhash_entries;
43static int __init set_mhash_entries(char *str)
44{
45 if (!str)
46 return 0;
47 mhash_entries = simple_strtoul(str, &str, 0);
48 return 1;
49}
50__setup("mhash_entries=", set_mhash_entries);
51
52static __initdata unsigned long mphash_entries;
53static int __init set_mphash_entries(char *str)
54{
55 if (!str)
56 return 0;
57 mphash_entries = simple_strtoul(str, &str, 0);
58 return 1;
59}
60__setup("mphash_entries=", set_mphash_entries);
13f14b4d 61
c7999c36 62static u64 event;
73cd49ec 63static DEFINE_IDA(mnt_id_ida);
719f5d7f 64static DEFINE_IDA(mnt_group_ida);
1da177e4 65
38129a13 66static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 67static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 68static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 69static DECLARE_RWSEM(namespace_sem);
1da177e4 70
f87fd4c2 71/* /sys/fs */
00d26666
GKH
72struct kobject *fs_kobj;
73EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 74
99b7db7b
NP
75/*
76 * vfsmount lock may be taken for read to prevent changes to the
77 * vfsmount hash, ie. during mountpoint lookups or walking back
78 * up the tree.
79 *
80 * It should be taken for write in all cases where the vfsmount
81 * tree or hash is modified or when a vfsmount structure is modified.
82 */
48a066e7 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 84
38129a13 85static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 86{
b58fed8b
RP
87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
89 tmp = tmp + (tmp >> m_hash_shift);
90 return &mount_hashtable[tmp & m_hash_mask];
91}
92
93static inline struct hlist_head *mp_hash(struct dentry *dentry)
94{
95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 tmp = tmp + (tmp >> mp_hash_shift);
97 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
98}
99
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec 101{
169b480e
MW
102 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
103
104 if (res < 0)
105 return res;
106 mnt->mnt_id = res;
107 return 0;
73cd49ec
MS
108}
109
b105e270 110static void mnt_free_id(struct mount *mnt)
73cd49ec 111{
169b480e 112 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
113}
114
719f5d7f
MS
115/*
116 * Allocate a new peer group ID
719f5d7f 117 */
4b8b21f4 118static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 119{
169b480e 120 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 121
169b480e
MW
122 if (res < 0)
123 return res;
124 mnt->mnt_group_id = res;
125 return 0;
719f5d7f
MS
126}
127
128/*
129 * Release a peer group ID
130 */
4b8b21f4 131void mnt_release_group_id(struct mount *mnt)
719f5d7f 132{
169b480e 133 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 134 mnt->mnt_group_id = 0;
719f5d7f
MS
135}
136
b3e19d92
NP
137/*
138 * vfsmount lock must be held for read
139 */
83adc753 140static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
141{
142#ifdef CONFIG_SMP
68e8a9fe 143 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
144#else
145 preempt_disable();
68e8a9fe 146 mnt->mnt_count += n;
b3e19d92
NP
147 preempt_enable();
148#endif
149}
150
b3e19d92
NP
151/*
152 * vfsmount lock must be held for write
153 */
83adc753 154unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
155{
156#ifdef CONFIG_SMP
f03c6599 157 unsigned int count = 0;
b3e19d92
NP
158 int cpu;
159
160 for_each_possible_cpu(cpu) {
68e8a9fe 161 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
162 }
163
164 return count;
165#else
68e8a9fe 166 return mnt->mnt_count;
b3e19d92
NP
167#endif
168}
169
87b95ce0
AV
170static void drop_mountpoint(struct fs_pin *p)
171{
172 struct mount *m = container_of(p, struct mount, mnt_umount);
173 dput(m->mnt_ex_mountpoint);
174 pin_remove(p);
175 mntput(&m->mnt);
176}
177
b105e270 178static struct mount *alloc_vfsmnt(const char *name)
1da177e4 179{
c63181e6
AV
180 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
181 if (mnt) {
73cd49ec
MS
182 int err;
183
c63181e6 184 err = mnt_alloc_id(mnt);
88b38782
LZ
185 if (err)
186 goto out_free_cache;
187
188 if (name) {
fcc139ae 189 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 190 if (!mnt->mnt_devname)
88b38782 191 goto out_free_id;
73cd49ec
MS
192 }
193
b3e19d92 194#ifdef CONFIG_SMP
c63181e6
AV
195 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
196 if (!mnt->mnt_pcp)
b3e19d92
NP
197 goto out_free_devname;
198
c63181e6 199 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 200#else
c63181e6
AV
201 mnt->mnt_count = 1;
202 mnt->mnt_writers = 0;
b3e19d92
NP
203#endif
204
38129a13 205 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
206 INIT_LIST_HEAD(&mnt->mnt_child);
207 INIT_LIST_HEAD(&mnt->mnt_mounts);
208 INIT_LIST_HEAD(&mnt->mnt_list);
209 INIT_LIST_HEAD(&mnt->mnt_expire);
210 INIT_LIST_HEAD(&mnt->mnt_share);
211 INIT_LIST_HEAD(&mnt->mnt_slave_list);
212 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 213 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 214 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 215 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 216 }
c63181e6 217 return mnt;
88b38782 218
d3ef3d73 219#ifdef CONFIG_SMP
220out_free_devname:
fcc139ae 221 kfree_const(mnt->mnt_devname);
d3ef3d73 222#endif
88b38782 223out_free_id:
c63181e6 224 mnt_free_id(mnt);
88b38782 225out_free_cache:
c63181e6 226 kmem_cache_free(mnt_cache, mnt);
88b38782 227 return NULL;
1da177e4
LT
228}
229
3d733633
DH
230/*
231 * Most r/o checks on a fs are for operations that take
232 * discrete amounts of time, like a write() or unlink().
233 * We must keep track of when those operations start
234 * (for permission checks) and when they end, so that
235 * we can determine when writes are able to occur to
236 * a filesystem.
237 */
238/*
239 * __mnt_is_readonly: check whether a mount is read-only
240 * @mnt: the mount to check for its write status
241 *
242 * This shouldn't be used directly ouside of the VFS.
243 * It does not guarantee that the filesystem will stay
244 * r/w, just that it is right *now*. This can not and
245 * should not be used in place of IS_RDONLY(inode).
246 * mnt_want/drop_write() will _keep_ the filesystem
247 * r/w.
248 */
249int __mnt_is_readonly(struct vfsmount *mnt)
250{
2e4b7fcd
DH
251 if (mnt->mnt_flags & MNT_READONLY)
252 return 1;
bc98a42c 253 if (sb_rdonly(mnt->mnt_sb))
2e4b7fcd
DH
254 return 1;
255 return 0;
3d733633
DH
256}
257EXPORT_SYMBOL_GPL(__mnt_is_readonly);
258
83adc753 259static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 260{
261#ifdef CONFIG_SMP
68e8a9fe 262 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 263#else
68e8a9fe 264 mnt->mnt_writers++;
d3ef3d73 265#endif
266}
3d733633 267
83adc753 268static inline void mnt_dec_writers(struct mount *mnt)
3d733633 269{
d3ef3d73 270#ifdef CONFIG_SMP
68e8a9fe 271 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 272#else
68e8a9fe 273 mnt->mnt_writers--;
d3ef3d73 274#endif
3d733633 275}
3d733633 276
83adc753 277static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 278{
d3ef3d73 279#ifdef CONFIG_SMP
280 unsigned int count = 0;
3d733633 281 int cpu;
3d733633
DH
282
283 for_each_possible_cpu(cpu) {
68e8a9fe 284 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 285 }
3d733633 286
d3ef3d73 287 return count;
288#else
289 return mnt->mnt_writers;
290#endif
3d733633
DH
291}
292
4ed5e82f
MS
293static int mnt_is_readonly(struct vfsmount *mnt)
294{
295 if (mnt->mnt_sb->s_readonly_remount)
296 return 1;
297 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
298 smp_rmb();
299 return __mnt_is_readonly(mnt);
300}
301
8366025e 302/*
eb04c282
JK
303 * Most r/o & frozen checks on a fs are for operations that take discrete
304 * amounts of time, like a write() or unlink(). We must keep track of when
305 * those operations start (for permission checks) and when they end, so that we
306 * can determine when writes are able to occur to a filesystem.
8366025e
DH
307 */
308/**
eb04c282 309 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 310 * @m: the mount on which to take a write
8366025e 311 *
eb04c282
JK
312 * This tells the low-level filesystem that a write is about to be performed to
313 * it, and makes sure that writes are allowed (mnt it read-write) before
314 * returning success. This operation does not protect against filesystem being
315 * frozen. When the write operation is finished, __mnt_drop_write() must be
316 * called. This is effectively a refcount.
8366025e 317 */
eb04c282 318int __mnt_want_write(struct vfsmount *m)
8366025e 319{
83adc753 320 struct mount *mnt = real_mount(m);
3d733633 321 int ret = 0;
3d733633 322
d3ef3d73 323 preempt_disable();
c6653a83 324 mnt_inc_writers(mnt);
d3ef3d73 325 /*
c6653a83 326 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 327 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
328 * incremented count after it has set MNT_WRITE_HOLD.
329 */
330 smp_mb();
6aa7de05 331 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 332 cpu_relax();
333 /*
334 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
335 * be set to match its requirements. So we must not load that until
336 * MNT_WRITE_HOLD is cleared.
337 */
338 smp_rmb();
4ed5e82f 339 if (mnt_is_readonly(m)) {
c6653a83 340 mnt_dec_writers(mnt);
3d733633 341 ret = -EROFS;
3d733633 342 }
d3ef3d73 343 preempt_enable();
eb04c282
JK
344
345 return ret;
346}
347
348/**
349 * mnt_want_write - get write access to a mount
350 * @m: the mount on which to take a write
351 *
352 * This tells the low-level filesystem that a write is about to be performed to
353 * it, and makes sure that writes are allowed (mount is read-write, filesystem
354 * is not frozen) before returning success. When the write operation is
355 * finished, mnt_drop_write() must be called. This is effectively a refcount.
356 */
357int mnt_want_write(struct vfsmount *m)
358{
359 int ret;
360
361 sb_start_write(m->mnt_sb);
362 ret = __mnt_want_write(m);
363 if (ret)
364 sb_end_write(m->mnt_sb);
3d733633 365 return ret;
8366025e
DH
366}
367EXPORT_SYMBOL_GPL(mnt_want_write);
368
96029c4e 369/**
370 * mnt_clone_write - get write access to a mount
371 * @mnt: the mount on which to take a write
372 *
373 * This is effectively like mnt_want_write, except
374 * it must only be used to take an extra write reference
375 * on a mountpoint that we already know has a write reference
376 * on it. This allows some optimisation.
377 *
378 * After finished, mnt_drop_write must be called as usual to
379 * drop the reference.
380 */
381int mnt_clone_write(struct vfsmount *mnt)
382{
383 /* superblock may be r/o */
384 if (__mnt_is_readonly(mnt))
385 return -EROFS;
386 preempt_disable();
83adc753 387 mnt_inc_writers(real_mount(mnt));
96029c4e 388 preempt_enable();
389 return 0;
390}
391EXPORT_SYMBOL_GPL(mnt_clone_write);
392
393/**
eb04c282 394 * __mnt_want_write_file - get write access to a file's mount
96029c4e 395 * @file: the file who's mount on which to take a write
396 *
eb04c282 397 * This is like __mnt_want_write, but it takes a file and can
96029c4e 398 * do some optimisations if the file is open for write already
399 */
eb04c282 400int __mnt_want_write_file(struct file *file)
96029c4e 401{
83f936c7 402 if (!(file->f_mode & FMODE_WRITER))
eb04c282 403 return __mnt_want_write(file->f_path.mnt);
96029c4e 404 else
405 return mnt_clone_write(file->f_path.mnt);
406}
eb04c282 407
7c6893e3
MS
408/**
409 * mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
412 * This is like mnt_want_write, but it takes a file and can
413 * do some optimisations if the file is open for write already
7c6893e3
MS
414 */
415int mnt_want_write_file(struct file *file)
416{
417 int ret;
418
a6795a58 419 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
420 ret = __mnt_want_write_file(file);
421 if (ret)
a6795a58 422 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
423 return ret;
424}
96029c4e 425EXPORT_SYMBOL_GPL(mnt_want_write_file);
426
8366025e 427/**
eb04c282 428 * __mnt_drop_write - give up write access to a mount
8366025e
DH
429 * @mnt: the mount on which to give up write access
430 *
431 * Tells the low-level filesystem that we are done
432 * performing writes to it. Must be matched with
eb04c282 433 * __mnt_want_write() call above.
8366025e 434 */
eb04c282 435void __mnt_drop_write(struct vfsmount *mnt)
8366025e 436{
d3ef3d73 437 preempt_disable();
83adc753 438 mnt_dec_writers(real_mount(mnt));
d3ef3d73 439 preempt_enable();
8366025e 440}
eb04c282
JK
441
442/**
443 * mnt_drop_write - give up write access to a mount
444 * @mnt: the mount on which to give up write access
445 *
446 * Tells the low-level filesystem that we are done performing writes to it and
447 * also allows filesystem to be frozen again. Must be matched with
448 * mnt_want_write() call above.
449 */
450void mnt_drop_write(struct vfsmount *mnt)
451{
452 __mnt_drop_write(mnt);
453 sb_end_write(mnt->mnt_sb);
454}
8366025e
DH
455EXPORT_SYMBOL_GPL(mnt_drop_write);
456
eb04c282
JK
457void __mnt_drop_write_file(struct file *file)
458{
459 __mnt_drop_write(file->f_path.mnt);
460}
461
7c6893e3
MS
462void mnt_drop_write_file(struct file *file)
463{
a6795a58 464 __mnt_drop_write_file(file);
7c6893e3
MS
465 sb_end_write(file_inode(file)->i_sb);
466}
2a79f17e
AV
467EXPORT_SYMBOL(mnt_drop_write_file);
468
83adc753 469static int mnt_make_readonly(struct mount *mnt)
8366025e 470{
3d733633
DH
471 int ret = 0;
472
719ea2fb 473 lock_mount_hash();
83adc753 474 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 475 /*
d3ef3d73 476 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
477 * should be visible before we do.
3d733633 478 */
d3ef3d73 479 smp_mb();
480
3d733633 481 /*
d3ef3d73 482 * With writers on hold, if this value is zero, then there are
483 * definitely no active writers (although held writers may subsequently
484 * increment the count, they'll have to wait, and decrement it after
485 * seeing MNT_READONLY).
486 *
487 * It is OK to have counter incremented on one CPU and decremented on
488 * another: the sum will add up correctly. The danger would be when we
489 * sum up each counter, if we read a counter before it is incremented,
490 * but then read another CPU's count which it has been subsequently
491 * decremented from -- we would see more decrements than we should.
492 * MNT_WRITE_HOLD protects against this scenario, because
493 * mnt_want_write first increments count, then smp_mb, then spins on
494 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
495 * we're counting up here.
3d733633 496 */
c6653a83 497 if (mnt_get_writers(mnt) > 0)
d3ef3d73 498 ret = -EBUSY;
499 else
83adc753 500 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 501 /*
502 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
503 * that become unheld will see MNT_READONLY.
504 */
505 smp_wmb();
83adc753 506 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 507 unlock_mount_hash();
3d733633 508 return ret;
8366025e 509}
8366025e 510
83adc753 511static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 512{
719ea2fb 513 lock_mount_hash();
83adc753 514 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 515 unlock_mount_hash();
2e4b7fcd
DH
516}
517
4ed5e82f
MS
518int sb_prepare_remount_readonly(struct super_block *sb)
519{
520 struct mount *mnt;
521 int err = 0;
522
8e8b8796
MS
523 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
524 if (atomic_long_read(&sb->s_remove_count))
525 return -EBUSY;
526
719ea2fb 527 lock_mount_hash();
4ed5e82f
MS
528 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
529 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
530 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
531 smp_mb();
532 if (mnt_get_writers(mnt) > 0) {
533 err = -EBUSY;
534 break;
535 }
536 }
537 }
8e8b8796
MS
538 if (!err && atomic_long_read(&sb->s_remove_count))
539 err = -EBUSY;
540
4ed5e82f
MS
541 if (!err) {
542 sb->s_readonly_remount = 1;
543 smp_wmb();
544 }
545 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
546 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
547 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
548 }
719ea2fb 549 unlock_mount_hash();
4ed5e82f
MS
550
551 return err;
552}
553
b105e270 554static void free_vfsmnt(struct mount *mnt)
1da177e4 555{
fcc139ae 556 kfree_const(mnt->mnt_devname);
d3ef3d73 557#ifdef CONFIG_SMP
68e8a9fe 558 free_percpu(mnt->mnt_pcp);
d3ef3d73 559#endif
b105e270 560 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
561}
562
8ffcb32e
DH
563static void delayed_free_vfsmnt(struct rcu_head *head)
564{
565 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
566}
567
48a066e7 568/* call under rcu_read_lock */
294d71ff 569int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
570{
571 struct mount *mnt;
572 if (read_seqretry(&mount_lock, seq))
294d71ff 573 return 1;
48a066e7 574 if (bastard == NULL)
294d71ff 575 return 0;
48a066e7
AV
576 mnt = real_mount(bastard);
577 mnt_add_count(mnt, 1);
119e1ef8 578 smp_mb(); // see mntput_no_expire()
48a066e7 579 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 580 return 0;
48a066e7
AV
581 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
582 mnt_add_count(mnt, -1);
294d71ff
AV
583 return 1;
584 }
119e1ef8
AV
585 lock_mount_hash();
586 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
587 mnt_add_count(mnt, -1);
588 unlock_mount_hash();
589 return 1;
590 }
591 unlock_mount_hash();
592 /* caller will mntput() */
294d71ff
AV
593 return -1;
594}
595
596/* call under rcu_read_lock */
597bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598{
599 int res = __legitimize_mnt(bastard, seq);
600 if (likely(!res))
601 return true;
602 if (unlikely(res < 0)) {
603 rcu_read_unlock();
604 mntput(bastard);
605 rcu_read_lock();
48a066e7 606 }
48a066e7
AV
607 return false;
608}
609
1da177e4 610/*
474279dc 611 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 612 * call under rcu_read_lock()
1da177e4 613 */
474279dc 614struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 615{
38129a13 616 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
617 struct mount *p;
618
38129a13 619 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
620 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
621 return p;
622 return NULL;
623}
624
a05964f3 625/*
f015f126
DH
626 * lookup_mnt - Return the first child mount mounted at path
627 *
628 * "First" means first mounted chronologically. If you create the
629 * following mounts:
630 *
631 * mount /dev/sda1 /mnt
632 * mount /dev/sda2 /mnt
633 * mount /dev/sda3 /mnt
634 *
635 * Then lookup_mnt() on the base /mnt dentry in the root mount will
636 * return successively the root dentry and vfsmount of /dev/sda1, then
637 * /dev/sda2, then /dev/sda3, then NULL.
638 *
639 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 640 */
ca71cf71 641struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 642{
c7105365 643 struct mount *child_mnt;
48a066e7
AV
644 struct vfsmount *m;
645 unsigned seq;
99b7db7b 646
48a066e7
AV
647 rcu_read_lock();
648 do {
649 seq = read_seqbegin(&mount_lock);
650 child_mnt = __lookup_mnt(path->mnt, path->dentry);
651 m = child_mnt ? &child_mnt->mnt : NULL;
652 } while (!legitimize_mnt(m, seq));
653 rcu_read_unlock();
654 return m;
a05964f3
RP
655}
656
7af1364f
EB
657/*
658 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
659 * current mount namespace.
660 *
661 * The common case is dentries are not mountpoints at all and that
662 * test is handled inline. For the slow case when we are actually
663 * dealing with a mountpoint of some kind, walk through all of the
664 * mounts in the current mount namespace and test to see if the dentry
665 * is a mountpoint.
666 *
667 * The mount_hashtable is not usable in the context because we
668 * need to identify all mounts that may be in the current mount
669 * namespace not just a mount that happens to have some specified
670 * parent mount.
671 */
672bool __is_local_mountpoint(struct dentry *dentry)
673{
674 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
675 struct mount *mnt;
676 bool is_covered = false;
677
678 if (!d_mountpoint(dentry))
679 goto out;
680
681 down_read(&namespace_sem);
682 list_for_each_entry(mnt, &ns->list, mnt_list) {
683 is_covered = (mnt->mnt_mountpoint == dentry);
684 if (is_covered)
685 break;
686 }
687 up_read(&namespace_sem);
688out:
689 return is_covered;
690}
691
e2dfa935 692static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 693{
0818bf27 694 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
695 struct mountpoint *mp;
696
0818bf27 697 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
698 if (mp->m_dentry == dentry) {
699 /* might be worth a WARN_ON() */
700 if (d_unlinked(dentry))
701 return ERR_PTR(-ENOENT);
702 mp->m_count++;
703 return mp;
704 }
705 }
e2dfa935
EB
706 return NULL;
707}
708
3895dbf8 709static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 710{
3895dbf8 711 struct mountpoint *mp, *new = NULL;
e2dfa935 712 int ret;
84d17192 713
3895dbf8
EB
714 if (d_mountpoint(dentry)) {
715mountpoint:
716 read_seqlock_excl(&mount_lock);
717 mp = lookup_mountpoint(dentry);
718 read_sequnlock_excl(&mount_lock);
719 if (mp)
720 goto done;
721 }
722
723 if (!new)
724 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
725 if (!new)
84d17192
AV
726 return ERR_PTR(-ENOMEM);
727
3895dbf8
EB
728
729 /* Exactly one processes may set d_mounted */
eed81007 730 ret = d_set_mounted(dentry);
eed81007 731
3895dbf8
EB
732 /* Someone else set d_mounted? */
733 if (ret == -EBUSY)
734 goto mountpoint;
735
736 /* The dentry is not available as a mountpoint? */
737 mp = ERR_PTR(ret);
738 if (ret)
739 goto done;
740
741 /* Add the new mountpoint to the hash table */
742 read_seqlock_excl(&mount_lock);
743 new->m_dentry = dentry;
744 new->m_count = 1;
745 hlist_add_head(&new->m_hash, mp_hash(dentry));
746 INIT_HLIST_HEAD(&new->m_list);
747 read_sequnlock_excl(&mount_lock);
748
749 mp = new;
750 new = NULL;
751done:
752 kfree(new);
84d17192
AV
753 return mp;
754}
755
756static void put_mountpoint(struct mountpoint *mp)
757{
758 if (!--mp->m_count) {
759 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 760 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
761 spin_lock(&dentry->d_lock);
762 dentry->d_flags &= ~DCACHE_MOUNTED;
763 spin_unlock(&dentry->d_lock);
0818bf27 764 hlist_del(&mp->m_hash);
84d17192
AV
765 kfree(mp);
766 }
767}
768
143c8c91 769static inline int check_mnt(struct mount *mnt)
1da177e4 770{
6b3286ed 771 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
772}
773
99b7db7b
NP
774/*
775 * vfsmount lock must be held for write
776 */
6b3286ed 777static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
778{
779 if (ns) {
780 ns->event = ++event;
781 wake_up_interruptible(&ns->poll);
782 }
783}
784
99b7db7b
NP
785/*
786 * vfsmount lock must be held for write
787 */
6b3286ed 788static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
789{
790 if (ns && ns->event != event) {
791 ns->event = event;
792 wake_up_interruptible(&ns->poll);
793 }
794}
795
99b7db7b
NP
796/*
797 * vfsmount lock must be held for write
798 */
7bdb11de 799static void unhash_mnt(struct mount *mnt)
419148da 800{
0714a533 801 mnt->mnt_parent = mnt;
a73324da 802 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 803 list_del_init(&mnt->mnt_child);
38129a13 804 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 805 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
806 put_mountpoint(mnt->mnt_mp);
807 mnt->mnt_mp = NULL;
1da177e4
LT
808}
809
7bdb11de
EB
810/*
811 * vfsmount lock must be held for write
812 */
813static void detach_mnt(struct mount *mnt, struct path *old_path)
814{
815 old_path->dentry = mnt->mnt_mountpoint;
816 old_path->mnt = &mnt->mnt_parent->mnt;
817 unhash_mnt(mnt);
818}
819
6a46c573
EB
820/*
821 * vfsmount lock must be held for write
822 */
823static void umount_mnt(struct mount *mnt)
824{
825 /* old mountpoint will be dropped when we can do that */
826 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
827 unhash_mnt(mnt);
828}
829
99b7db7b
NP
830/*
831 * vfsmount lock must be held for write
832 */
84d17192
AV
833void mnt_set_mountpoint(struct mount *mnt,
834 struct mountpoint *mp,
44d964d6 835 struct mount *child_mnt)
b90fa9ae 836{
84d17192 837 mp->m_count++;
3a2393d7 838 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 839 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 840 child_mnt->mnt_parent = mnt;
84d17192 841 child_mnt->mnt_mp = mp;
0a5eb7c8 842 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
843}
844
1064f874
EB
845static void __attach_mnt(struct mount *mnt, struct mount *parent)
846{
847 hlist_add_head_rcu(&mnt->mnt_hash,
848 m_hash(&parent->mnt, mnt->mnt_mountpoint));
849 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
850}
851
99b7db7b
NP
852/*
853 * vfsmount lock must be held for write
854 */
84d17192
AV
855static void attach_mnt(struct mount *mnt,
856 struct mount *parent,
857 struct mountpoint *mp)
1da177e4 858{
84d17192 859 mnt_set_mountpoint(parent, mp, mnt);
1064f874 860 __attach_mnt(mnt, parent);
b90fa9ae
RP
861}
862
1064f874 863void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 864{
1064f874
EB
865 struct mountpoint *old_mp = mnt->mnt_mp;
866 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
867 struct mount *old_parent = mnt->mnt_parent;
868
869 list_del_init(&mnt->mnt_child);
870 hlist_del_init(&mnt->mnt_mp_list);
871 hlist_del_init_rcu(&mnt->mnt_hash);
872
873 attach_mnt(mnt, parent, mp);
874
875 put_mountpoint(old_mp);
876
877 /*
878 * Safely avoid even the suggestion this code might sleep or
879 * lock the mount hash by taking advantage of the knowledge that
880 * mnt_change_mountpoint will not release the final reference
881 * to a mountpoint.
882 *
883 * During mounting, the mount passed in as the parent mount will
884 * continue to use the old mountpoint and during unmounting, the
885 * old mountpoint will continue to exist until namespace_unlock,
886 * which happens well after mnt_change_mountpoint.
887 */
888 spin_lock(&old_mountpoint->d_lock);
889 old_mountpoint->d_lockref.count--;
890 spin_unlock(&old_mountpoint->d_lock);
891
892 mnt_add_count(old_parent, -1);
12a5b529
AV
893}
894
b90fa9ae 895/*
99b7db7b 896 * vfsmount lock must be held for write
b90fa9ae 897 */
1064f874 898static void commit_tree(struct mount *mnt)
b90fa9ae 899{
0714a533 900 struct mount *parent = mnt->mnt_parent;
83adc753 901 struct mount *m;
b90fa9ae 902 LIST_HEAD(head);
143c8c91 903 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 904
0714a533 905 BUG_ON(parent == mnt);
b90fa9ae 906
1a4eeaf2 907 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 908 list_for_each_entry(m, &head, mnt_list)
143c8c91 909 m->mnt_ns = n;
f03c6599 910
b90fa9ae
RP
911 list_splice(&head, n->list.prev);
912
d2921684
EB
913 n->mounts += n->pending_mounts;
914 n->pending_mounts = 0;
915
1064f874 916 __attach_mnt(mnt, parent);
6b3286ed 917 touch_mnt_namespace(n);
1da177e4
LT
918}
919
909b0a88 920static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 921{
6b41d536
AV
922 struct list_head *next = p->mnt_mounts.next;
923 if (next == &p->mnt_mounts) {
1da177e4 924 while (1) {
909b0a88 925 if (p == root)
1da177e4 926 return NULL;
6b41d536
AV
927 next = p->mnt_child.next;
928 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 929 break;
0714a533 930 p = p->mnt_parent;
1da177e4
LT
931 }
932 }
6b41d536 933 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
934}
935
315fc83e 936static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 937{
6b41d536
AV
938 struct list_head *prev = p->mnt_mounts.prev;
939 while (prev != &p->mnt_mounts) {
940 p = list_entry(prev, struct mount, mnt_child);
941 prev = p->mnt_mounts.prev;
9676f0c6
RP
942 }
943 return p;
944}
945
9d412a43
AV
946struct vfsmount *
947vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
948{
b105e270 949 struct mount *mnt;
9d412a43
AV
950 struct dentry *root;
951
952 if (!type)
953 return ERR_PTR(-ENODEV);
954
955 mnt = alloc_vfsmnt(name);
956 if (!mnt)
957 return ERR_PTR(-ENOMEM);
958
e462ec50 959 if (flags & SB_KERNMOUNT)
b105e270 960 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
961
962 root = mount_fs(type, flags, name, data);
963 if (IS_ERR(root)) {
8ffcb32e 964 mnt_free_id(mnt);
9d412a43
AV
965 free_vfsmnt(mnt);
966 return ERR_CAST(root);
967 }
968
b105e270
AV
969 mnt->mnt.mnt_root = root;
970 mnt->mnt.mnt_sb = root->d_sb;
a73324da 971 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 972 mnt->mnt_parent = mnt;
719ea2fb 973 lock_mount_hash();
39f7c4db 974 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 975 unlock_mount_hash();
b105e270 976 return &mnt->mnt;
9d412a43
AV
977}
978EXPORT_SYMBOL_GPL(vfs_kern_mount);
979
93faccbb
EB
980struct vfsmount *
981vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
982 const char *name, void *data)
983{
984 /* Until it is worked out how to pass the user namespace
985 * through from the parent mount to the submount don't support
986 * unprivileged mounts with submounts.
987 */
988 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
989 return ERR_PTR(-EPERM);
990
e462ec50 991 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
992}
993EXPORT_SYMBOL_GPL(vfs_submount);
994
87129cc0 995static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 996 int flag)
1da177e4 997{
87129cc0 998 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
999 struct mount *mnt;
1000 int err;
1da177e4 1001
be34d1a3
DH
1002 mnt = alloc_vfsmnt(old->mnt_devname);
1003 if (!mnt)
1004 return ERR_PTR(-ENOMEM);
719f5d7f 1005
7a472ef4 1006 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1007 mnt->mnt_group_id = 0; /* not a peer of original */
1008 else
1009 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1010
be34d1a3
DH
1011 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1012 err = mnt_alloc_group_id(mnt);
1013 if (err)
1014 goto out_free;
1da177e4 1015 }
be34d1a3 1016
16a34adb
AV
1017 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1018 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
132c94e3 1019 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1020 if (flag & CL_UNPRIVILEGED) {
1021 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1022
1023 if (mnt->mnt.mnt_flags & MNT_READONLY)
1024 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1025
1026 if (mnt->mnt.mnt_flags & MNT_NODEV)
1027 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1028
1029 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1030 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1031
1032 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1033 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1034 }
132c94e3 1035
5ff9d8a6 1036 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1037 if ((flag & CL_UNPRIVILEGED) &&
1038 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1039 mnt->mnt.mnt_flags |= MNT_LOCKED;
1040
be34d1a3
DH
1041 atomic_inc(&sb->s_active);
1042 mnt->mnt.mnt_sb = sb;
1043 mnt->mnt.mnt_root = dget(root);
1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 mnt->mnt_parent = mnt;
719ea2fb 1046 lock_mount_hash();
be34d1a3 1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1048 unlock_mount_hash();
be34d1a3 1049
7a472ef4
EB
1050 if ((flag & CL_SLAVE) ||
1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 mnt->mnt_master = old;
1054 CLEAR_MNT_SHARED(mnt);
1055 } else if (!(flag & CL_PRIVATE)) {
1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 list_add(&mnt->mnt_share, &old->mnt_share);
1058 if (IS_MNT_SLAVE(old))
1059 list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 mnt->mnt_master = old->mnt_master;
5235d448
AV
1061 } else {
1062 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1063 }
1064 if (flag & CL_MAKE_SHARED)
1065 set_mnt_shared(mnt);
1066
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag & CL_EXPIRE) {
1070 if (!list_empty(&old->mnt_expire))
1071 list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 }
1073
cb338d06 1074 return mnt;
719f5d7f
MS
1075
1076 out_free:
8ffcb32e 1077 mnt_free_id(mnt);
719f5d7f 1078 free_vfsmnt(mnt);
be34d1a3 1079 return ERR_PTR(err);
1da177e4
LT
1080}
1081
9ea459e1
AV
1082static void cleanup_mnt(struct mount *mnt)
1083{
1084 /*
1085 * This probably indicates that somebody messed
1086 * up a mnt_want/drop_write() pair. If this
1087 * happens, the filesystem was probably unable
1088 * to make r/w->r/o transitions.
1089 */
1090 /*
1091 * The locking used to deal with mnt_count decrement provides barriers,
1092 * so mnt_get_writers() below is safe.
1093 */
1094 WARN_ON(mnt_get_writers(mnt));
1095 if (unlikely(mnt->mnt_pins.first))
1096 mnt_pin_kill(mnt);
1097 fsnotify_vfsmount_delete(&mnt->mnt);
1098 dput(mnt->mnt.mnt_root);
1099 deactivate_super(mnt->mnt.mnt_sb);
1100 mnt_free_id(mnt);
1101 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1102}
1103
1104static void __cleanup_mnt(struct rcu_head *head)
1105{
1106 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1107}
1108
1109static LLIST_HEAD(delayed_mntput_list);
1110static void delayed_mntput(struct work_struct *unused)
1111{
1112 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1113 struct mount *m, *t;
9ea459e1 1114
29785735
BP
1115 llist_for_each_entry_safe(m, t, node, mnt_llist)
1116 cleanup_mnt(m);
9ea459e1
AV
1117}
1118static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1119
900148dc 1120static void mntput_no_expire(struct mount *mnt)
b3e19d92 1121{
48a066e7 1122 rcu_read_lock();
9ea0a46c
AV
1123 if (likely(READ_ONCE(mnt->mnt_ns))) {
1124 /*
1125 * Since we don't do lock_mount_hash() here,
1126 * ->mnt_ns can change under us. However, if it's
1127 * non-NULL, then there's a reference that won't
1128 * be dropped until after an RCU delay done after
1129 * turning ->mnt_ns NULL. So if we observe it
1130 * non-NULL under rcu_read_lock(), the reference
1131 * we are dropping is not the final one.
1132 */
1133 mnt_add_count(mnt, -1);
48a066e7 1134 rcu_read_unlock();
f03c6599 1135 return;
b3e19d92 1136 }
719ea2fb 1137 lock_mount_hash();
119e1ef8
AV
1138 /*
1139 * make sure that if __legitimize_mnt() has not seen us grab
1140 * mount_lock, we'll see their refcount increment here.
1141 */
1142 smp_mb();
9ea0a46c 1143 mnt_add_count(mnt, -1);
b3e19d92 1144 if (mnt_get_count(mnt)) {
48a066e7 1145 rcu_read_unlock();
719ea2fb 1146 unlock_mount_hash();
99b7db7b
NP
1147 return;
1148 }
48a066e7
AV
1149 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1150 rcu_read_unlock();
1151 unlock_mount_hash();
1152 return;
1153 }
1154 mnt->mnt.mnt_flags |= MNT_DOOMED;
1155 rcu_read_unlock();
962830df 1156
39f7c4db 1157 list_del(&mnt->mnt_instance);
ce07d891
EB
1158
1159 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1160 struct mount *p, *tmp;
1161 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1162 umount_mnt(p);
1163 }
1164 }
719ea2fb 1165 unlock_mount_hash();
649a795a 1166
9ea459e1
AV
1167 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1168 struct task_struct *task = current;
1169 if (likely(!(task->flags & PF_KTHREAD))) {
1170 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1171 if (!task_work_add(task, &mnt->mnt_rcu, true))
1172 return;
1173 }
1174 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1175 schedule_delayed_work(&delayed_mntput_work, 1);
1176 return;
1177 }
1178 cleanup_mnt(mnt);
b3e19d92 1179}
b3e19d92
NP
1180
1181void mntput(struct vfsmount *mnt)
1182{
1183 if (mnt) {
863d684f 1184 struct mount *m = real_mount(mnt);
b3e19d92 1185 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1186 if (unlikely(m->mnt_expiry_mark))
1187 m->mnt_expiry_mark = 0;
1188 mntput_no_expire(m);
b3e19d92
NP
1189 }
1190}
1191EXPORT_SYMBOL(mntput);
1192
1193struct vfsmount *mntget(struct vfsmount *mnt)
1194{
1195 if (mnt)
83adc753 1196 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1197 return mnt;
1198}
1199EXPORT_SYMBOL(mntget);
1200
c6609c0a
IK
1201/* path_is_mountpoint() - Check if path is a mount in the current
1202 * namespace.
1203 *
1204 * d_mountpoint() can only be used reliably to establish if a dentry is
1205 * not mounted in any namespace and that common case is handled inline.
1206 * d_mountpoint() isn't aware of the possibility there may be multiple
1207 * mounts using a given dentry in a different namespace. This function
1208 * checks if the passed in path is a mountpoint rather than the dentry
1209 * alone.
1210 */
1211bool path_is_mountpoint(const struct path *path)
1212{
1213 unsigned seq;
1214 bool res;
1215
1216 if (!d_mountpoint(path->dentry))
1217 return false;
1218
1219 rcu_read_lock();
1220 do {
1221 seq = read_seqbegin(&mount_lock);
1222 res = __path_is_mountpoint(path);
1223 } while (read_seqretry(&mount_lock, seq));
1224 rcu_read_unlock();
1225
1226 return res;
1227}
1228EXPORT_SYMBOL(path_is_mountpoint);
1229
ca71cf71 1230struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1231{
3064c356
AV
1232 struct mount *p;
1233 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1234 if (IS_ERR(p))
1235 return ERR_CAST(p);
1236 p->mnt.mnt_flags |= MNT_INTERNAL;
1237 return &p->mnt;
7b7b1ace 1238}
1da177e4 1239
a1a2c409 1240#ifdef CONFIG_PROC_FS
0226f492 1241/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1242static void *m_start(struct seq_file *m, loff_t *pos)
1243{
ede1bf0d 1244 struct proc_mounts *p = m->private;
1da177e4 1245
390c6843 1246 down_read(&namespace_sem);
c7999c36
AV
1247 if (p->cached_event == p->ns->event) {
1248 void *v = p->cached_mount;
1249 if (*pos == p->cached_index)
1250 return v;
1251 if (*pos == p->cached_index + 1) {
1252 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1253 return p->cached_mount = v;
1254 }
1255 }
1256
1257 p->cached_event = p->ns->event;
1258 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1259 p->cached_index = *pos;
1260 return p->cached_mount;
1da177e4
LT
1261}
1262
1263static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1264{
ede1bf0d 1265 struct proc_mounts *p = m->private;
b0765fb8 1266
c7999c36
AV
1267 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1268 p->cached_index = *pos;
1269 return p->cached_mount;
1da177e4
LT
1270}
1271
1272static void m_stop(struct seq_file *m, void *v)
1273{
390c6843 1274 up_read(&namespace_sem);
1da177e4
LT
1275}
1276
0226f492 1277static int m_show(struct seq_file *m, void *v)
2d4d4864 1278{
ede1bf0d 1279 struct proc_mounts *p = m->private;
1a4eeaf2 1280 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1281 return p->show(m, &r->mnt);
1da177e4
LT
1282}
1283
a1a2c409 1284const struct seq_operations mounts_op = {
1da177e4
LT
1285 .start = m_start,
1286 .next = m_next,
1287 .stop = m_stop,
0226f492 1288 .show = m_show,
b4629fe2 1289};
a1a2c409 1290#endif /* CONFIG_PROC_FS */
b4629fe2 1291
1da177e4
LT
1292/**
1293 * may_umount_tree - check if a mount tree is busy
1294 * @mnt: root of mount tree
1295 *
1296 * This is called to check if a tree of mounts has any
1297 * open files, pwds, chroots or sub mounts that are
1298 * busy.
1299 */
909b0a88 1300int may_umount_tree(struct vfsmount *m)
1da177e4 1301{
909b0a88 1302 struct mount *mnt = real_mount(m);
36341f64
RP
1303 int actual_refs = 0;
1304 int minimum_refs = 0;
315fc83e 1305 struct mount *p;
909b0a88 1306 BUG_ON(!m);
1da177e4 1307
b3e19d92 1308 /* write lock needed for mnt_get_count */
719ea2fb 1309 lock_mount_hash();
909b0a88 1310 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1311 actual_refs += mnt_get_count(p);
1da177e4 1312 minimum_refs += 2;
1da177e4 1313 }
719ea2fb 1314 unlock_mount_hash();
1da177e4
LT
1315
1316 if (actual_refs > minimum_refs)
e3474a8e 1317 return 0;
1da177e4 1318
e3474a8e 1319 return 1;
1da177e4
LT
1320}
1321
1322EXPORT_SYMBOL(may_umount_tree);
1323
1324/**
1325 * may_umount - check if a mount point is busy
1326 * @mnt: root of mount
1327 *
1328 * This is called to check if a mount point has any
1329 * open files, pwds, chroots or sub mounts. If the
1330 * mount has sub mounts this will return busy
1331 * regardless of whether the sub mounts are busy.
1332 *
1333 * Doesn't take quota and stuff into account. IOW, in some cases it will
1334 * give false negatives. The main reason why it's here is that we need
1335 * a non-destructive way to look for easily umountable filesystems.
1336 */
1337int may_umount(struct vfsmount *mnt)
1338{
e3474a8e 1339 int ret = 1;
8ad08d8a 1340 down_read(&namespace_sem);
719ea2fb 1341 lock_mount_hash();
1ab59738 1342 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1343 ret = 0;
719ea2fb 1344 unlock_mount_hash();
8ad08d8a 1345 up_read(&namespace_sem);
a05964f3 1346 return ret;
1da177e4
LT
1347}
1348
1349EXPORT_SYMBOL(may_umount);
1350
38129a13 1351static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1352
97216be0 1353static void namespace_unlock(void)
70fbcdf4 1354{
a3b3c562 1355 struct hlist_head head;
97216be0 1356
a3b3c562 1357 hlist_move_list(&unmounted, &head);
97216be0 1358
97216be0
AV
1359 up_write(&namespace_sem);
1360
a3b3c562
EB
1361 if (likely(hlist_empty(&head)))
1362 return;
1363
48a066e7
AV
1364 synchronize_rcu();
1365
87b95ce0 1366 group_pin_kill(&head);
70fbcdf4
RP
1367}
1368
97216be0 1369static inline void namespace_lock(void)
e3197d83 1370{
97216be0 1371 down_write(&namespace_sem);
e3197d83
AV
1372}
1373
e819f152
EB
1374enum umount_tree_flags {
1375 UMOUNT_SYNC = 1,
1376 UMOUNT_PROPAGATE = 2,
e0c9c0af 1377 UMOUNT_CONNECTED = 4,
e819f152 1378};
f2d0a123
EB
1379
1380static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1381{
1382 /* Leaving mounts connected is only valid for lazy umounts */
1383 if (how & UMOUNT_SYNC)
1384 return true;
1385
1386 /* A mount without a parent has nothing to be connected to */
1387 if (!mnt_has_parent(mnt))
1388 return true;
1389
1390 /* Because the reference counting rules change when mounts are
1391 * unmounted and connected, umounted mounts may not be
1392 * connected to mounted mounts.
1393 */
1394 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1395 return true;
1396
1397 /* Has it been requested that the mount remain connected? */
1398 if (how & UMOUNT_CONNECTED)
1399 return false;
1400
1401 /* Is the mount locked such that it needs to remain connected? */
1402 if (IS_MNT_LOCKED(mnt))
1403 return false;
1404
1405 /* By default disconnect the mount */
1406 return true;
1407}
1408
99b7db7b 1409/*
48a066e7 1410 * mount_lock must be held
99b7db7b
NP
1411 * namespace_sem must be held for write
1412 */
e819f152 1413static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1414{
c003b26f 1415 LIST_HEAD(tmp_list);
315fc83e 1416 struct mount *p;
1da177e4 1417
5d88457e
EB
1418 if (how & UMOUNT_PROPAGATE)
1419 propagate_mount_unlock(mnt);
1420
c003b26f 1421 /* Gather the mounts to umount */
590ce4bc
EB
1422 for (p = mnt; p; p = next_mnt(p, mnt)) {
1423 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1424 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1425 }
1da177e4 1426
411a938b 1427 /* Hide the mounts from mnt_mounts */
c003b26f 1428 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1429 list_del_init(&p->mnt_child);
c003b26f 1430 }
88b368f2 1431
c003b26f 1432 /* Add propogated mounts to the tmp_list */
e819f152 1433 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1434 propagate_umount(&tmp_list);
a05964f3 1435
c003b26f 1436 while (!list_empty(&tmp_list)) {
d2921684 1437 struct mnt_namespace *ns;
ce07d891 1438 bool disconnect;
c003b26f 1439 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1440 list_del_init(&p->mnt_expire);
1a4eeaf2 1441 list_del_init(&p->mnt_list);
d2921684
EB
1442 ns = p->mnt_ns;
1443 if (ns) {
1444 ns->mounts--;
1445 __touch_mnt_namespace(ns);
1446 }
143c8c91 1447 p->mnt_ns = NULL;
e819f152 1448 if (how & UMOUNT_SYNC)
48a066e7 1449 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1450
f2d0a123 1451 disconnect = disconnect_mount(p, how);
ce07d891
EB
1452
1453 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1454 disconnect ? &unmounted : NULL);
676da58d 1455 if (mnt_has_parent(p)) {
81b6b061 1456 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1457 if (!disconnect) {
1458 /* Don't forget about p */
1459 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1460 } else {
1461 umount_mnt(p);
1462 }
7c4b93d8 1463 }
0f0afb1d 1464 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1465 }
1466}
1467
b54b9be7 1468static void shrink_submounts(struct mount *mnt);
c35038be 1469
1ab59738 1470static int do_umount(struct mount *mnt, int flags)
1da177e4 1471{
1ab59738 1472 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1473 int retval;
1474
1ab59738 1475 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1476 if (retval)
1477 return retval;
1478
1479 /*
1480 * Allow userspace to request a mountpoint be expired rather than
1481 * unmounting unconditionally. Unmount only happens if:
1482 * (1) the mark is already set (the mark is cleared by mntput())
1483 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1484 */
1485 if (flags & MNT_EXPIRE) {
1ab59738 1486 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1487 flags & (MNT_FORCE | MNT_DETACH))
1488 return -EINVAL;
1489
b3e19d92
NP
1490 /*
1491 * probably don't strictly need the lock here if we examined
1492 * all race cases, but it's a slowpath.
1493 */
719ea2fb 1494 lock_mount_hash();
83adc753 1495 if (mnt_get_count(mnt) != 2) {
719ea2fb 1496 unlock_mount_hash();
1da177e4 1497 return -EBUSY;
b3e19d92 1498 }
719ea2fb 1499 unlock_mount_hash();
1da177e4 1500
863d684f 1501 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1502 return -EAGAIN;
1503 }
1504
1505 /*
1506 * If we may have to abort operations to get out of this
1507 * mount, and they will themselves hold resources we must
1508 * allow the fs to do things. In the Unix tradition of
1509 * 'Gee thats tricky lets do it in userspace' the umount_begin
1510 * might fail to complete on the first run through as other tasks
1511 * must return, and the like. Thats for the mount program to worry
1512 * about for the moment.
1513 */
1514
42faad99 1515 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1516 sb->s_op->umount_begin(sb);
42faad99 1517 }
1da177e4
LT
1518
1519 /*
1520 * No sense to grab the lock for this test, but test itself looks
1521 * somewhat bogus. Suggestions for better replacement?
1522 * Ho-hum... In principle, we might treat that as umount + switch
1523 * to rootfs. GC would eventually take care of the old vfsmount.
1524 * Actually it makes sense, especially if rootfs would contain a
1525 * /reboot - static binary that would close all descriptors and
1526 * call reboot(9). Then init(8) could umount root and exec /reboot.
1527 */
1ab59738 1528 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1529 /*
1530 * Special case for "unmounting" root ...
1531 * we just try to remount it readonly.
1532 */
bc6155d1 1533 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1534 return -EPERM;
1da177e4 1535 down_write(&sb->s_umount);
bc98a42c 1536 if (!sb_rdonly(sb))
e462ec50 1537 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1538 up_write(&sb->s_umount);
1539 return retval;
1540 }
1541
97216be0 1542 namespace_lock();
719ea2fb 1543 lock_mount_hash();
5addc5dd 1544 event++;
1da177e4 1545
48a066e7 1546 if (flags & MNT_DETACH) {
1a4eeaf2 1547 if (!list_empty(&mnt->mnt_list))
e819f152 1548 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1549 retval = 0;
48a066e7
AV
1550 } else {
1551 shrink_submounts(mnt);
1552 retval = -EBUSY;
1553 if (!propagate_mount_busy(mnt, 2)) {
1554 if (!list_empty(&mnt->mnt_list))
e819f152 1555 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1556 retval = 0;
1557 }
1da177e4 1558 }
719ea2fb 1559 unlock_mount_hash();
e3197d83 1560 namespace_unlock();
1da177e4
LT
1561 return retval;
1562}
1563
80b5dce8
EB
1564/*
1565 * __detach_mounts - lazily unmount all mounts on the specified dentry
1566 *
1567 * During unlink, rmdir, and d_drop it is possible to loose the path
1568 * to an existing mountpoint, and wind up leaking the mount.
1569 * detach_mounts allows lazily unmounting those mounts instead of
1570 * leaking them.
1571 *
1572 * The caller may hold dentry->d_inode->i_mutex.
1573 */
1574void __detach_mounts(struct dentry *dentry)
1575{
1576 struct mountpoint *mp;
1577 struct mount *mnt;
1578
1579 namespace_lock();
3895dbf8 1580 lock_mount_hash();
80b5dce8 1581 mp = lookup_mountpoint(dentry);
f53e5797 1582 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1583 goto out_unlock;
1584
e06b933e 1585 event++;
80b5dce8
EB
1586 while (!hlist_empty(&mp->m_list)) {
1587 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1588 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1589 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1590 umount_mnt(mnt);
ce07d891 1591 }
e0c9c0af 1592 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1593 }
80b5dce8
EB
1594 put_mountpoint(mp);
1595out_unlock:
3895dbf8 1596 unlock_mount_hash();
80b5dce8
EB
1597 namespace_unlock();
1598}
1599
dd111b31 1600/*
9b40bc90
AV
1601 * Is the caller allowed to modify his namespace?
1602 */
1603static inline bool may_mount(void)
1604{
1605 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1606}
1607
9e8925b6
JL
1608static inline bool may_mandlock(void)
1609{
1610#ifndef CONFIG_MANDATORY_FILE_LOCKING
1611 return false;
1612#endif
95ace754 1613 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1614}
1615
1da177e4
LT
1616/*
1617 * Now umount can handle mount points as well as block devices.
1618 * This is important for filesystems which use unnamed block devices.
1619 *
1620 * We now support a flag for forced unmount like the other 'big iron'
1621 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1622 */
1623
3a18ef5c 1624int ksys_umount(char __user *name, int flags)
1da177e4 1625{
2d8f3038 1626 struct path path;
900148dc 1627 struct mount *mnt;
1da177e4 1628 int retval;
db1f05bb 1629 int lookup_flags = 0;
1da177e4 1630
db1f05bb
MS
1631 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1632 return -EINVAL;
1633
9b40bc90
AV
1634 if (!may_mount())
1635 return -EPERM;
1636
db1f05bb
MS
1637 if (!(flags & UMOUNT_NOFOLLOW))
1638 lookup_flags |= LOOKUP_FOLLOW;
1639
197df04c 1640 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1641 if (retval)
1642 goto out;
900148dc 1643 mnt = real_mount(path.mnt);
1da177e4 1644 retval = -EINVAL;
2d8f3038 1645 if (path.dentry != path.mnt->mnt_root)
1da177e4 1646 goto dput_and_out;
143c8c91 1647 if (!check_mnt(mnt))
1da177e4 1648 goto dput_and_out;
5ff9d8a6
EB
1649 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1650 goto dput_and_out;
b2f5d4dc
EB
1651 retval = -EPERM;
1652 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1653 goto dput_and_out;
1da177e4 1654
900148dc 1655 retval = do_umount(mnt, flags);
1da177e4 1656dput_and_out:
429731b1 1657 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1658 dput(path.dentry);
900148dc 1659 mntput_no_expire(mnt);
1da177e4
LT
1660out:
1661 return retval;
1662}
1663
3a18ef5c
DB
1664SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1665{
1666 return ksys_umount(name, flags);
1667}
1668
1da177e4
LT
1669#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1670
1671/*
b58fed8b 1672 * The 2.0 compatible umount. No flags.
1da177e4 1673 */
bdc480e3 1674SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1675{
3a18ef5c 1676 return ksys_umount(name, 0);
1da177e4
LT
1677}
1678
1679#endif
1680
4ce5d2b1 1681static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1682{
4ce5d2b1 1683 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1684 return dentry->d_op == &ns_dentry_operations &&
1685 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1686}
1687
58be2825
AV
1688struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1689{
1690 return container_of(ns, struct mnt_namespace, ns);
1691}
1692
4ce5d2b1
EB
1693static bool mnt_ns_loop(struct dentry *dentry)
1694{
1695 /* Could bind mounting the mount namespace inode cause a
1696 * mount namespace loop?
1697 */
1698 struct mnt_namespace *mnt_ns;
1699 if (!is_mnt_ns_file(dentry))
1700 return false;
1701
f77c8014 1702 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1703 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1704}
1705
87129cc0 1706struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1707 int flag)
1da177e4 1708{
84d17192 1709 struct mount *res, *p, *q, *r, *parent;
1da177e4 1710
4ce5d2b1
EB
1711 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1712 return ERR_PTR(-EINVAL);
1713
1714 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1715 return ERR_PTR(-EINVAL);
9676f0c6 1716
36341f64 1717 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1718 if (IS_ERR(q))
1719 return q;
1720
a73324da 1721 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1722
1723 p = mnt;
6b41d536 1724 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1725 struct mount *s;
7ec02ef1 1726 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1727 continue;
1728
909b0a88 1729 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1730 if (!(flag & CL_COPY_UNBINDABLE) &&
1731 IS_MNT_UNBINDABLE(s)) {
1732 s = skip_mnt_tree(s);
1733 continue;
1734 }
1735 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1736 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1737 s = skip_mnt_tree(s);
1738 continue;
1739 }
0714a533
AV
1740 while (p != s->mnt_parent) {
1741 p = p->mnt_parent;
1742 q = q->mnt_parent;
1da177e4 1743 }
87129cc0 1744 p = s;
84d17192 1745 parent = q;
87129cc0 1746 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1747 if (IS_ERR(q))
1748 goto out;
719ea2fb 1749 lock_mount_hash();
1a4eeaf2 1750 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1751 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1752 unlock_mount_hash();
1da177e4
LT
1753 }
1754 }
1755 return res;
be34d1a3 1756out:
1da177e4 1757 if (res) {
719ea2fb 1758 lock_mount_hash();
e819f152 1759 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1760 unlock_mount_hash();
1da177e4 1761 }
be34d1a3 1762 return q;
1da177e4
LT
1763}
1764
be34d1a3
DH
1765/* Caller should check returned pointer for errors */
1766
ca71cf71 1767struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1768{
cb338d06 1769 struct mount *tree;
97216be0 1770 namespace_lock();
cd4a4017
EB
1771 if (!check_mnt(real_mount(path->mnt)))
1772 tree = ERR_PTR(-EINVAL);
1773 else
1774 tree = copy_tree(real_mount(path->mnt), path->dentry,
1775 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1776 namespace_unlock();
be34d1a3 1777 if (IS_ERR(tree))
52e220d3 1778 return ERR_CAST(tree);
be34d1a3 1779 return &tree->mnt;
8aec0809
AV
1780}
1781
1782void drop_collected_mounts(struct vfsmount *mnt)
1783{
97216be0 1784 namespace_lock();
719ea2fb 1785 lock_mount_hash();
e819f152 1786 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1787 unlock_mount_hash();
3ab6abee 1788 namespace_unlock();
8aec0809
AV
1789}
1790
c771d683
MS
1791/**
1792 * clone_private_mount - create a private clone of a path
1793 *
1794 * This creates a new vfsmount, which will be the clone of @path. The new will
1795 * not be attached anywhere in the namespace and will be private (i.e. changes
1796 * to the originating mount won't be propagated into this).
1797 *
1798 * Release with mntput().
1799 */
ca71cf71 1800struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1801{
1802 struct mount *old_mnt = real_mount(path->mnt);
1803 struct mount *new_mnt;
1804
1805 if (IS_MNT_UNBINDABLE(old_mnt))
1806 return ERR_PTR(-EINVAL);
1807
c771d683 1808 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1809 if (IS_ERR(new_mnt))
1810 return ERR_CAST(new_mnt);
1811
1812 return &new_mnt->mnt;
1813}
1814EXPORT_SYMBOL_GPL(clone_private_mount);
1815
1f707137
AV
1816int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1817 struct vfsmount *root)
1818{
1a4eeaf2 1819 struct mount *mnt;
1f707137
AV
1820 int res = f(root, arg);
1821 if (res)
1822 return res;
1a4eeaf2
AV
1823 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1824 res = f(&mnt->mnt, arg);
1f707137
AV
1825 if (res)
1826 return res;
1827 }
1828 return 0;
1829}
1830
4b8b21f4 1831static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1832{
315fc83e 1833 struct mount *p;
719f5d7f 1834
909b0a88 1835 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1836 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1837 mnt_release_group_id(p);
719f5d7f
MS
1838 }
1839}
1840
4b8b21f4 1841static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1842{
315fc83e 1843 struct mount *p;
719f5d7f 1844
909b0a88 1845 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1846 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1847 int err = mnt_alloc_group_id(p);
719f5d7f 1848 if (err) {
4b8b21f4 1849 cleanup_group_ids(mnt, p);
719f5d7f
MS
1850 return err;
1851 }
1852 }
1853 }
1854
1855 return 0;
1856}
1857
d2921684
EB
1858int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1859{
1860 unsigned int max = READ_ONCE(sysctl_mount_max);
1861 unsigned int mounts = 0, old, pending, sum;
1862 struct mount *p;
1863
1864 for (p = mnt; p; p = next_mnt(p, mnt))
1865 mounts++;
1866
1867 old = ns->mounts;
1868 pending = ns->pending_mounts;
1869 sum = old + pending;
1870 if ((old > sum) ||
1871 (pending > sum) ||
1872 (max < sum) ||
1873 (mounts > (max - sum)))
1874 return -ENOSPC;
1875
1876 ns->pending_mounts = pending + mounts;
1877 return 0;
1878}
1879
b90fa9ae
RP
1880/*
1881 * @source_mnt : mount tree to be attached
21444403
RP
1882 * @nd : place the mount tree @source_mnt is attached
1883 * @parent_nd : if non-null, detach the source_mnt from its parent and
1884 * store the parent mount and mountpoint dentry.
1885 * (done when source_mnt is moved)
b90fa9ae
RP
1886 *
1887 * NOTE: in the table below explains the semantics when a source mount
1888 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1889 * ---------------------------------------------------------------------------
1890 * | BIND MOUNT OPERATION |
1891 * |**************************************************************************
1892 * | source-->| shared | private | slave | unbindable |
1893 * | dest | | | | |
1894 * | | | | | | |
1895 * | v | | | | |
1896 * |**************************************************************************
1897 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1898 * | | | | | |
1899 * |non-shared| shared (+) | private | slave (*) | invalid |
1900 * ***************************************************************************
b90fa9ae
RP
1901 * A bind operation clones the source mount and mounts the clone on the
1902 * destination mount.
1903 *
1904 * (++) the cloned mount is propagated to all the mounts in the propagation
1905 * tree of the destination mount and the cloned mount is added to
1906 * the peer group of the source mount.
1907 * (+) the cloned mount is created under the destination mount and is marked
1908 * as shared. The cloned mount is added to the peer group of the source
1909 * mount.
5afe0022
RP
1910 * (+++) the mount is propagated to all the mounts in the propagation tree
1911 * of the destination mount and the cloned mount is made slave
1912 * of the same master as that of the source mount. The cloned mount
1913 * is marked as 'shared and slave'.
1914 * (*) the cloned mount is made a slave of the same master as that of the
1915 * source mount.
1916 *
9676f0c6
RP
1917 * ---------------------------------------------------------------------------
1918 * | MOVE MOUNT OPERATION |
1919 * |**************************************************************************
1920 * | source-->| shared | private | slave | unbindable |
1921 * | dest | | | | |
1922 * | | | | | | |
1923 * | v | | | | |
1924 * |**************************************************************************
1925 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1926 * | | | | | |
1927 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1928 * ***************************************************************************
5afe0022
RP
1929 *
1930 * (+) the mount is moved to the destination. And is then propagated to
1931 * all the mounts in the propagation tree of the destination mount.
21444403 1932 * (+*) the mount is moved to the destination.
5afe0022
RP
1933 * (+++) the mount is moved to the destination and is then propagated to
1934 * all the mounts belonging to the destination mount's propagation tree.
1935 * the mount is marked as 'shared and slave'.
1936 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1937 *
1938 * if the source mount is a tree, the operations explained above is
1939 * applied to each mount in the tree.
1940 * Must be called without spinlocks held, since this function can sleep
1941 * in allocations.
1942 */
0fb54e50 1943static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1944 struct mount *dest_mnt,
1945 struct mountpoint *dest_mp,
1946 struct path *parent_path)
b90fa9ae 1947{
38129a13 1948 HLIST_HEAD(tree_list);
d2921684 1949 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 1950 struct mountpoint *smp;
315fc83e 1951 struct mount *child, *p;
38129a13 1952 struct hlist_node *n;
719f5d7f 1953 int err;
b90fa9ae 1954
1064f874
EB
1955 /* Preallocate a mountpoint in case the new mounts need
1956 * to be tucked under other mounts.
1957 */
1958 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1959 if (IS_ERR(smp))
1960 return PTR_ERR(smp);
1961
d2921684
EB
1962 /* Is there space to add these mounts to the mount namespace? */
1963 if (!parent_path) {
1964 err = count_mounts(ns, source_mnt);
1965 if (err)
1966 goto out;
1967 }
1968
fc7be130 1969 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1970 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1971 if (err)
1972 goto out;
0b1b901b 1973 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1974 lock_mount_hash();
0b1b901b
AV
1975 if (err)
1976 goto out_cleanup_ids;
909b0a88 1977 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1978 set_mnt_shared(p);
0b1b901b
AV
1979 } else {
1980 lock_mount_hash();
b90fa9ae 1981 }
1a390689 1982 if (parent_path) {
0fb54e50 1983 detach_mnt(source_mnt, parent_path);
84d17192 1984 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1985 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1986 } else {
84d17192 1987 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 1988 commit_tree(source_mnt);
21444403 1989 }
b90fa9ae 1990
38129a13 1991 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1992 struct mount *q;
38129a13 1993 hlist_del_init(&child->mnt_hash);
1064f874
EB
1994 q = __lookup_mnt(&child->mnt_parent->mnt,
1995 child->mnt_mountpoint);
1996 if (q)
1997 mnt_change_mountpoint(child, smp, q);
1998 commit_tree(child);
b90fa9ae 1999 }
1064f874 2000 put_mountpoint(smp);
719ea2fb 2001 unlock_mount_hash();
99b7db7b 2002
b90fa9ae 2003 return 0;
719f5d7f
MS
2004
2005 out_cleanup_ids:
f2ebb3a9
AV
2006 while (!hlist_empty(&tree_list)) {
2007 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2008 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2009 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2010 }
2011 unlock_mount_hash();
0b1b901b 2012 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2013 out:
d2921684 2014 ns->pending_mounts = 0;
1064f874
EB
2015
2016 read_seqlock_excl(&mount_lock);
2017 put_mountpoint(smp);
2018 read_sequnlock_excl(&mount_lock);
2019
719f5d7f 2020 return err;
b90fa9ae
RP
2021}
2022
84d17192 2023static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2024{
2025 struct vfsmount *mnt;
84d17192 2026 struct dentry *dentry = path->dentry;
b12cea91 2027retry:
5955102c 2028 inode_lock(dentry->d_inode);
84d17192 2029 if (unlikely(cant_mount(dentry))) {
5955102c 2030 inode_unlock(dentry->d_inode);
84d17192 2031 return ERR_PTR(-ENOENT);
b12cea91 2032 }
97216be0 2033 namespace_lock();
b12cea91 2034 mnt = lookup_mnt(path);
84d17192 2035 if (likely(!mnt)) {
3895dbf8 2036 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2037 if (IS_ERR(mp)) {
97216be0 2038 namespace_unlock();
5955102c 2039 inode_unlock(dentry->d_inode);
84d17192
AV
2040 return mp;
2041 }
2042 return mp;
2043 }
97216be0 2044 namespace_unlock();
5955102c 2045 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2046 path_put(path);
2047 path->mnt = mnt;
84d17192 2048 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2049 goto retry;
2050}
2051
84d17192 2052static void unlock_mount(struct mountpoint *where)
b12cea91 2053{
84d17192 2054 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2055
2056 read_seqlock_excl(&mount_lock);
84d17192 2057 put_mountpoint(where);
3895dbf8
EB
2058 read_sequnlock_excl(&mount_lock);
2059
328e6d90 2060 namespace_unlock();
5955102c 2061 inode_unlock(dentry->d_inode);
b12cea91
AV
2062}
2063
84d17192 2064static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2065{
e462ec50 2066 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2067 return -EINVAL;
2068
e36cb0b8
DH
2069 if (d_is_dir(mp->m_dentry) !=
2070 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2071 return -ENOTDIR;
2072
84d17192 2073 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2074}
2075
7a2e8a8f
VA
2076/*
2077 * Sanity check the flags to change_mnt_propagation.
2078 */
2079
e462ec50 2080static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2081{
e462ec50 2082 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2083
2084 /* Fail if any non-propagation flags are set */
2085 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2086 return 0;
2087 /* Only one propagation flag should be set */
2088 if (!is_power_of_2(type))
2089 return 0;
2090 return type;
2091}
2092
07b20889
RP
2093/*
2094 * recursively change the type of the mountpoint.
2095 */
e462ec50 2096static int do_change_type(struct path *path, int ms_flags)
07b20889 2097{
315fc83e 2098 struct mount *m;
4b8b21f4 2099 struct mount *mnt = real_mount(path->mnt);
e462ec50 2100 int recurse = ms_flags & MS_REC;
7a2e8a8f 2101 int type;
719f5d7f 2102 int err = 0;
07b20889 2103
2d92ab3c 2104 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2105 return -EINVAL;
2106
e462ec50 2107 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2108 if (!type)
2109 return -EINVAL;
2110
97216be0 2111 namespace_lock();
719f5d7f
MS
2112 if (type == MS_SHARED) {
2113 err = invent_group_ids(mnt, recurse);
2114 if (err)
2115 goto out_unlock;
2116 }
2117
719ea2fb 2118 lock_mount_hash();
909b0a88 2119 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2120 change_mnt_propagation(m, type);
719ea2fb 2121 unlock_mount_hash();
719f5d7f
MS
2122
2123 out_unlock:
97216be0 2124 namespace_unlock();
719f5d7f 2125 return err;
07b20889
RP
2126}
2127
5ff9d8a6
EB
2128static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2129{
2130 struct mount *child;
2131 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2132 if (!is_subdir(child->mnt_mountpoint, dentry))
2133 continue;
2134
2135 if (child->mnt.mnt_flags & MNT_LOCKED)
2136 return true;
2137 }
2138 return false;
2139}
2140
1da177e4
LT
2141/*
2142 * do loopback mount.
2143 */
808d4e3c 2144static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2145 int recurse)
1da177e4 2146{
2d92ab3c 2147 struct path old_path;
84d17192
AV
2148 struct mount *mnt = NULL, *old, *parent;
2149 struct mountpoint *mp;
57eccb83 2150 int err;
1da177e4
LT
2151 if (!old_name || !*old_name)
2152 return -EINVAL;
815d405c 2153 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2154 if (err)
2155 return err;
2156
8823c079 2157 err = -EINVAL;
4ce5d2b1 2158 if (mnt_ns_loop(old_path.dentry))
dd111b31 2159 goto out;
8823c079 2160
84d17192
AV
2161 mp = lock_mount(path);
2162 err = PTR_ERR(mp);
2163 if (IS_ERR(mp))
b12cea91
AV
2164 goto out;
2165
87129cc0 2166 old = real_mount(old_path.mnt);
84d17192 2167 parent = real_mount(path->mnt);
87129cc0 2168
1da177e4 2169 err = -EINVAL;
fc7be130 2170 if (IS_MNT_UNBINDABLE(old))
b12cea91 2171 goto out2;
9676f0c6 2172
e149ed2b
AV
2173 if (!check_mnt(parent))
2174 goto out2;
2175
2176 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2177 goto out2;
1da177e4 2178
5ff9d8a6
EB
2179 if (!recurse && has_locked_children(old, old_path.dentry))
2180 goto out2;
2181
ccd48bc7 2182 if (recurse)
4ce5d2b1 2183 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2184 else
87129cc0 2185 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2186
be34d1a3
DH
2187 if (IS_ERR(mnt)) {
2188 err = PTR_ERR(mnt);
e9c5d8a5 2189 goto out2;
be34d1a3 2190 }
ccd48bc7 2191
5ff9d8a6
EB
2192 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2193
84d17192 2194 err = graft_tree(mnt, parent, mp);
ccd48bc7 2195 if (err) {
719ea2fb 2196 lock_mount_hash();
e819f152 2197 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2198 unlock_mount_hash();
5b83d2c5 2199 }
b12cea91 2200out2:
84d17192 2201 unlock_mount(mp);
ccd48bc7 2202out:
2d92ab3c 2203 path_put(&old_path);
1da177e4
LT
2204 return err;
2205}
2206
2e4b7fcd
DH
2207static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2208{
2209 int error = 0;
2210 int readonly_request = 0;
2211
2212 if (ms_flags & MS_RDONLY)
2213 readonly_request = 1;
2214 if (readonly_request == __mnt_is_readonly(mnt))
2215 return 0;
2216
2217 if (readonly_request)
83adc753 2218 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2219 else
83adc753 2220 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2221 return error;
2222}
2223
1da177e4
LT
2224/*
2225 * change filesystem flags. dir should be a physical root of filesystem.
2226 * If you've mounted a non-root directory somewhere and want to do remount
2227 * on it - tough luck.
2228 */
e462ec50
DH
2229static int do_remount(struct path *path, int ms_flags, int sb_flags,
2230 int mnt_flags, void *data)
1da177e4
LT
2231{
2232 int err;
2d92ab3c 2233 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2234 struct mount *mnt = real_mount(path->mnt);
1da177e4 2235
143c8c91 2236 if (!check_mnt(mnt))
1da177e4
LT
2237 return -EINVAL;
2238
2d92ab3c 2239 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2240 return -EINVAL;
2241
07b64558
EB
2242 /* Don't allow changing of locked mnt flags.
2243 *
2244 * No locks need to be held here while testing the various
2245 * MNT_LOCK flags because those flags can never be cleared
2246 * once they are set.
2247 */
2248 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2249 !(mnt_flags & MNT_READONLY)) {
2250 return -EPERM;
2251 }
9566d674
EB
2252 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2253 !(mnt_flags & MNT_NODEV)) {
67690f93 2254 return -EPERM;
9566d674
EB
2255 }
2256 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2257 !(mnt_flags & MNT_NOSUID)) {
2258 return -EPERM;
2259 }
2260 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2261 !(mnt_flags & MNT_NOEXEC)) {
2262 return -EPERM;
2263 }
2264 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2265 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2266 return -EPERM;
2267 }
2268
ff36fe2c
EP
2269 err = security_sb_remount(sb, data);
2270 if (err)
2271 return err;
2272
1da177e4 2273 down_write(&sb->s_umount);
e462ec50
DH
2274 if (ms_flags & MS_BIND)
2275 err = change_mount_flags(path->mnt, ms_flags);
bc6155d1 2276 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2277 err = -EPERM;
4aa98cf7 2278 else
e462ec50 2279 err = do_remount_sb(sb, sb_flags, data, 0);
7b43a79f 2280 if (!err) {
719ea2fb 2281 lock_mount_hash();
a6138db8 2282 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2283 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2284 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2285 unlock_mount_hash();
0e55a7cc 2286 }
6339dab8 2287 up_write(&sb->s_umount);
1da177e4
LT
2288 return err;
2289}
2290
cbbe362c 2291static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2292{
315fc83e 2293 struct mount *p;
909b0a88 2294 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2295 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2296 return 1;
2297 }
2298 return 0;
2299}
2300
808d4e3c 2301static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2302{
2d92ab3c 2303 struct path old_path, parent_path;
676da58d 2304 struct mount *p;
0fb54e50 2305 struct mount *old;
84d17192 2306 struct mountpoint *mp;
57eccb83 2307 int err;
1da177e4
LT
2308 if (!old_name || !*old_name)
2309 return -EINVAL;
2d92ab3c 2310 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2311 if (err)
2312 return err;
2313
84d17192
AV
2314 mp = lock_mount(path);
2315 err = PTR_ERR(mp);
2316 if (IS_ERR(mp))
cc53ce53
DH
2317 goto out;
2318
143c8c91 2319 old = real_mount(old_path.mnt);
fc7be130 2320 p = real_mount(path->mnt);
143c8c91 2321
1da177e4 2322 err = -EINVAL;
fc7be130 2323 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2324 goto out1;
2325
5ff9d8a6
EB
2326 if (old->mnt.mnt_flags & MNT_LOCKED)
2327 goto out1;
2328
1da177e4 2329 err = -EINVAL;
2d92ab3c 2330 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2331 goto out1;
1da177e4 2332
676da58d 2333 if (!mnt_has_parent(old))
21444403 2334 goto out1;
1da177e4 2335
e36cb0b8
DH
2336 if (d_is_dir(path->dentry) !=
2337 d_is_dir(old_path.dentry))
21444403
RP
2338 goto out1;
2339 /*
2340 * Don't move a mount residing in a shared parent.
2341 */
fc7be130 2342 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2343 goto out1;
9676f0c6
RP
2344 /*
2345 * Don't move a mount tree containing unbindable mounts to a destination
2346 * mount which is shared.
2347 */
fc7be130 2348 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2349 goto out1;
1da177e4 2350 err = -ELOOP;
fc7be130 2351 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2352 if (p == old)
21444403 2353 goto out1;
1da177e4 2354
84d17192 2355 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2356 if (err)
21444403 2357 goto out1;
1da177e4
LT
2358
2359 /* if the mount is moved, it should no longer be expire
2360 * automatically */
6776db3d 2361 list_del_init(&old->mnt_expire);
1da177e4 2362out1:
84d17192 2363 unlock_mount(mp);
1da177e4 2364out:
1da177e4 2365 if (!err)
1a390689 2366 path_put(&parent_path);
2d92ab3c 2367 path_put(&old_path);
1da177e4
LT
2368 return err;
2369}
2370
9d412a43
AV
2371static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2372{
2373 int err;
2374 const char *subtype = strchr(fstype, '.');
2375 if (subtype) {
2376 subtype++;
2377 err = -EINVAL;
2378 if (!subtype[0])
2379 goto err;
2380 } else
2381 subtype = "";
2382
2383 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2384 err = -ENOMEM;
2385 if (!mnt->mnt_sb->s_subtype)
2386 goto err;
2387 return mnt;
2388
2389 err:
2390 mntput(mnt);
2391 return ERR_PTR(err);
2392}
2393
9d412a43
AV
2394/*
2395 * add a mount into a namespace's mount tree
2396 */
95bc5f25 2397static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2398{
84d17192
AV
2399 struct mountpoint *mp;
2400 struct mount *parent;
9d412a43
AV
2401 int err;
2402
f2ebb3a9 2403 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2404
84d17192
AV
2405 mp = lock_mount(path);
2406 if (IS_ERR(mp))
2407 return PTR_ERR(mp);
9d412a43 2408
84d17192 2409 parent = real_mount(path->mnt);
9d412a43 2410 err = -EINVAL;
84d17192 2411 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2412 /* that's acceptable only for automounts done in private ns */
2413 if (!(mnt_flags & MNT_SHRINKABLE))
2414 goto unlock;
2415 /* ... and for those we'd better have mountpoint still alive */
84d17192 2416 if (!parent->mnt_ns)
156cacb1
AV
2417 goto unlock;
2418 }
9d412a43
AV
2419
2420 /* Refuse the same filesystem on the same mount point */
2421 err = -EBUSY;
95bc5f25 2422 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2423 path->mnt->mnt_root == path->dentry)
2424 goto unlock;
2425
2426 err = -EINVAL;
e36cb0b8 2427 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2428 goto unlock;
2429
95bc5f25 2430 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2431 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2432
2433unlock:
84d17192 2434 unlock_mount(mp);
9d412a43
AV
2435 return err;
2436}
b1e75df4 2437
8654df4e 2438static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2439
1da177e4
LT
2440/*
2441 * create a new mount for userspace and request it to be added into the
2442 * namespace's tree
2443 */
e462ec50 2444static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2445 int mnt_flags, const char *name, void *data)
1da177e4 2446{
0c55cfc4 2447 struct file_system_type *type;
1da177e4 2448 struct vfsmount *mnt;
15f9a3f3 2449 int err;
1da177e4 2450
0c55cfc4 2451 if (!fstype)
1da177e4
LT
2452 return -EINVAL;
2453
0c55cfc4
EB
2454 type = get_fs_type(fstype);
2455 if (!type)
2456 return -ENODEV;
2457
e462ec50 2458 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2459 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2460 !mnt->mnt_sb->s_subtype)
2461 mnt = fs_set_subtype(mnt, fstype);
2462
2463 put_filesystem(type);
1da177e4
LT
2464 if (IS_ERR(mnt))
2465 return PTR_ERR(mnt);
2466
8654df4e
EB
2467 if (mount_too_revealing(mnt, &mnt_flags)) {
2468 mntput(mnt);
2469 return -EPERM;
2470 }
2471
95bc5f25 2472 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2473 if (err)
2474 mntput(mnt);
2475 return err;
1da177e4
LT
2476}
2477
19a167af
AV
2478int finish_automount(struct vfsmount *m, struct path *path)
2479{
6776db3d 2480 struct mount *mnt = real_mount(m);
19a167af
AV
2481 int err;
2482 /* The new mount record should have at least 2 refs to prevent it being
2483 * expired before we get a chance to add it
2484 */
6776db3d 2485 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2486
2487 if (m->mnt_sb == path->mnt->mnt_sb &&
2488 m->mnt_root == path->dentry) {
b1e75df4
AV
2489 err = -ELOOP;
2490 goto fail;
19a167af
AV
2491 }
2492
95bc5f25 2493 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2494 if (!err)
2495 return 0;
2496fail:
2497 /* remove m from any expiration list it may be on */
6776db3d 2498 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2499 namespace_lock();
6776db3d 2500 list_del_init(&mnt->mnt_expire);
97216be0 2501 namespace_unlock();
19a167af 2502 }
b1e75df4
AV
2503 mntput(m);
2504 mntput(m);
19a167af
AV
2505 return err;
2506}
2507
ea5b778a
DH
2508/**
2509 * mnt_set_expiry - Put a mount on an expiration list
2510 * @mnt: The mount to list.
2511 * @expiry_list: The list to add the mount to.
2512 */
2513void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2514{
97216be0 2515 namespace_lock();
ea5b778a 2516
6776db3d 2517 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2518
97216be0 2519 namespace_unlock();
ea5b778a
DH
2520}
2521EXPORT_SYMBOL(mnt_set_expiry);
2522
1da177e4
LT
2523/*
2524 * process a list of expirable mountpoints with the intent of discarding any
2525 * mountpoints that aren't in use and haven't been touched since last we came
2526 * here
2527 */
2528void mark_mounts_for_expiry(struct list_head *mounts)
2529{
761d5c38 2530 struct mount *mnt, *next;
1da177e4
LT
2531 LIST_HEAD(graveyard);
2532
2533 if (list_empty(mounts))
2534 return;
2535
97216be0 2536 namespace_lock();
719ea2fb 2537 lock_mount_hash();
1da177e4
LT
2538
2539 /* extract from the expiration list every vfsmount that matches the
2540 * following criteria:
2541 * - only referenced by its parent vfsmount
2542 * - still marked for expiry (marked on the last call here; marks are
2543 * cleared by mntput())
2544 */
6776db3d 2545 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2546 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2547 propagate_mount_busy(mnt, 1))
1da177e4 2548 continue;
6776db3d 2549 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2550 }
bcc5c7d2 2551 while (!list_empty(&graveyard)) {
6776db3d 2552 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2553 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2554 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2555 }
719ea2fb 2556 unlock_mount_hash();
3ab6abee 2557 namespace_unlock();
5528f911
TM
2558}
2559
2560EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2561
2562/*
2563 * Ripoff of 'select_parent()'
2564 *
2565 * search the list of submounts for a given mountpoint, and move any
2566 * shrinkable submounts to the 'graveyard' list.
2567 */
692afc31 2568static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2569{
692afc31 2570 struct mount *this_parent = parent;
5528f911
TM
2571 struct list_head *next;
2572 int found = 0;
2573
2574repeat:
6b41d536 2575 next = this_parent->mnt_mounts.next;
5528f911 2576resume:
6b41d536 2577 while (next != &this_parent->mnt_mounts) {
5528f911 2578 struct list_head *tmp = next;
6b41d536 2579 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2580
2581 next = tmp->next;
692afc31 2582 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2583 continue;
5528f911
TM
2584 /*
2585 * Descend a level if the d_mounts list is non-empty.
2586 */
6b41d536 2587 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2588 this_parent = mnt;
2589 goto repeat;
2590 }
1da177e4 2591
1ab59738 2592 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2593 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2594 found++;
2595 }
1da177e4 2596 }
5528f911
TM
2597 /*
2598 * All done at this level ... ascend and resume the search
2599 */
2600 if (this_parent != parent) {
6b41d536 2601 next = this_parent->mnt_child.next;
0714a533 2602 this_parent = this_parent->mnt_parent;
5528f911
TM
2603 goto resume;
2604 }
2605 return found;
2606}
2607
2608/*
2609 * process a list of expirable mountpoints with the intent of discarding any
2610 * submounts of a specific parent mountpoint
99b7db7b 2611 *
48a066e7 2612 * mount_lock must be held for write
5528f911 2613 */
b54b9be7 2614static void shrink_submounts(struct mount *mnt)
5528f911
TM
2615{
2616 LIST_HEAD(graveyard);
761d5c38 2617 struct mount *m;
5528f911 2618
5528f911 2619 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2620 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2621 while (!list_empty(&graveyard)) {
761d5c38 2622 m = list_first_entry(&graveyard, struct mount,
6776db3d 2623 mnt_expire);
143c8c91 2624 touch_mnt_namespace(m->mnt_ns);
e819f152 2625 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2626 }
2627 }
1da177e4
LT
2628}
2629
1da177e4
LT
2630/*
2631 * Some copy_from_user() implementations do not return the exact number of
2632 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2633 * Note that this function differs from copy_from_user() in that it will oops
2634 * on bad values of `to', rather than returning a short copy.
2635 */
b58fed8b
RP
2636static long exact_copy_from_user(void *to, const void __user * from,
2637 unsigned long n)
1da177e4
LT
2638{
2639 char *t = to;
2640 const char __user *f = from;
2641 char c;
2642
2643 if (!access_ok(VERIFY_READ, from, n))
2644 return n;
2645
9da3f2b7 2646 current->kernel_uaccess_faults_ok++;
1da177e4
LT
2647 while (n) {
2648 if (__get_user(c, f)) {
2649 memset(t, 0, n);
2650 break;
2651 }
2652 *t++ = c;
2653 f++;
2654 n--;
2655 }
9da3f2b7 2656 current->kernel_uaccess_faults_ok--;
1da177e4
LT
2657 return n;
2658}
2659
b40ef869 2660void *copy_mount_options(const void __user * data)
1da177e4
LT
2661{
2662 int i;
1da177e4 2663 unsigned long size;
b40ef869 2664 char *copy;
b58fed8b 2665
1da177e4 2666 if (!data)
b40ef869 2667 return NULL;
1da177e4 2668
b40ef869
AV
2669 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2670 if (!copy)
2671 return ERR_PTR(-ENOMEM);
1da177e4
LT
2672
2673 /* We only care that *some* data at the address the user
2674 * gave us is valid. Just in case, we'll zero
2675 * the remainder of the page.
2676 */
2677 /* copy_from_user cannot cross TASK_SIZE ! */
2678 size = TASK_SIZE - (unsigned long)data;
2679 if (size > PAGE_SIZE)
2680 size = PAGE_SIZE;
2681
b40ef869 2682 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2683 if (!i) {
b40ef869
AV
2684 kfree(copy);
2685 return ERR_PTR(-EFAULT);
1da177e4
LT
2686 }
2687 if (i != PAGE_SIZE)
b40ef869
AV
2688 memset(copy + i, 0, PAGE_SIZE - i);
2689 return copy;
1da177e4
LT
2690}
2691
b8850d1f 2692char *copy_mount_string(const void __user *data)
eca6f534 2693{
b8850d1f 2694 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2695}
2696
1da177e4
LT
2697/*
2698 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2699 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2700 *
2701 * data is a (void *) that can point to any structure up to
2702 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2703 * information (or be NULL).
2704 *
2705 * Pre-0.97 versions of mount() didn't have a flags word.
2706 * When the flags word was introduced its top half was required
2707 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2708 * Therefore, if this magic number is present, it carries no information
2709 * and must be discarded.
2710 */
5e6123f3 2711long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2712 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2713{
2d92ab3c 2714 struct path path;
e462ec50 2715 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2716 int retval = 0;
1da177e4
LT
2717
2718 /* Discard magic */
2719 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2720 flags &= ~MS_MGC_MSK;
2721
2722 /* Basic sanity checks */
1da177e4
LT
2723 if (data_page)
2724 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2725
e462ec50
DH
2726 if (flags & MS_NOUSER)
2727 return -EINVAL;
2728
a27ab9f2 2729 /* ... and get the mountpoint */
5e6123f3 2730 retval = user_path(dir_name, &path);
a27ab9f2
TH
2731 if (retval)
2732 return retval;
2733
2734 retval = security_sb_mount(dev_name, &path,
2735 type_page, flags, data_page);
0d5cadb8
AV
2736 if (!retval && !may_mount())
2737 retval = -EPERM;
e462ec50 2738 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2739 retval = -EPERM;
a27ab9f2
TH
2740 if (retval)
2741 goto dput_out;
2742
613cbe3d
AK
2743 /* Default to relatime unless overriden */
2744 if (!(flags & MS_NOATIME))
2745 mnt_flags |= MNT_RELATIME;
0a1c01c9 2746
1da177e4
LT
2747 /* Separate the per-mountpoint flags */
2748 if (flags & MS_NOSUID)
2749 mnt_flags |= MNT_NOSUID;
2750 if (flags & MS_NODEV)
2751 mnt_flags |= MNT_NODEV;
2752 if (flags & MS_NOEXEC)
2753 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2754 if (flags & MS_NOATIME)
2755 mnt_flags |= MNT_NOATIME;
2756 if (flags & MS_NODIRATIME)
2757 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2758 if (flags & MS_STRICTATIME)
2759 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 2760 if (flags & MS_RDONLY)
2e4b7fcd 2761 mnt_flags |= MNT_READONLY;
fc33a7bb 2762
ffbc6f0e
EB
2763 /* The default atime for remount is preservation */
2764 if ((flags & MS_REMOUNT) &&
2765 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2766 MS_STRICTATIME)) == 0)) {
2767 mnt_flags &= ~MNT_ATIME_MASK;
2768 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2769 }
2770
e462ec50
DH
2771 sb_flags = flags & (SB_RDONLY |
2772 SB_SYNCHRONOUS |
2773 SB_MANDLOCK |
2774 SB_DIRSYNC |
2775 SB_SILENT |
917086ff 2776 SB_POSIXACL |
d7ee9469 2777 SB_LAZYTIME |
917086ff 2778 SB_I_VERSION);
1da177e4 2779
1da177e4 2780 if (flags & MS_REMOUNT)
e462ec50 2781 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2782 data_page);
2783 else if (flags & MS_BIND)
2d92ab3c 2784 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2785 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2786 retval = do_change_type(&path, flags);
1da177e4 2787 else if (flags & MS_MOVE)
2d92ab3c 2788 retval = do_move_mount(&path, dev_name);
1da177e4 2789 else
e462ec50 2790 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2791 dev_name, data_page);
2792dput_out:
2d92ab3c 2793 path_put(&path);
1da177e4
LT
2794 return retval;
2795}
2796
537f7ccb
EB
2797static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2798{
2799 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2800}
2801
2802static void dec_mnt_namespaces(struct ucounts *ucounts)
2803{
2804 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2805}
2806
771b1371
EB
2807static void free_mnt_ns(struct mnt_namespace *ns)
2808{
6344c433 2809 ns_free_inum(&ns->ns);
537f7ccb 2810 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2811 put_user_ns(ns->user_ns);
2812 kfree(ns);
2813}
2814
8823c079
EB
2815/*
2816 * Assign a sequence number so we can detect when we attempt to bind
2817 * mount a reference to an older mount namespace into the current
2818 * mount namespace, preventing reference counting loops. A 64bit
2819 * number incrementing at 10Ghz will take 12,427 years to wrap which
2820 * is effectively never, so we can ignore the possibility.
2821 */
2822static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2823
771b1371 2824static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2825{
2826 struct mnt_namespace *new_ns;
537f7ccb 2827 struct ucounts *ucounts;
98f842e6 2828 int ret;
cf8d2c11 2829
537f7ccb
EB
2830 ucounts = inc_mnt_namespaces(user_ns);
2831 if (!ucounts)
df75e774 2832 return ERR_PTR(-ENOSPC);
537f7ccb 2833
cf8d2c11 2834 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2835 if (!new_ns) {
2836 dec_mnt_namespaces(ucounts);
cf8d2c11 2837 return ERR_PTR(-ENOMEM);
537f7ccb 2838 }
6344c433 2839 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2840 if (ret) {
2841 kfree(new_ns);
537f7ccb 2842 dec_mnt_namespaces(ucounts);
98f842e6
EB
2843 return ERR_PTR(ret);
2844 }
33c42940 2845 new_ns->ns.ops = &mntns_operations;
8823c079 2846 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2847 atomic_set(&new_ns->count, 1);
2848 new_ns->root = NULL;
2849 INIT_LIST_HEAD(&new_ns->list);
2850 init_waitqueue_head(&new_ns->poll);
2851 new_ns->event = 0;
771b1371 2852 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2853 new_ns->ucounts = ucounts;
d2921684
EB
2854 new_ns->mounts = 0;
2855 new_ns->pending_mounts = 0;
cf8d2c11
TM
2856 return new_ns;
2857}
2858
0766f788 2859__latent_entropy
9559f689
AV
2860struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2861 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2862{
6b3286ed 2863 struct mnt_namespace *new_ns;
7f2da1e7 2864 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2865 struct mount *p, *q;
9559f689 2866 struct mount *old;
cb338d06 2867 struct mount *new;
7a472ef4 2868 int copy_flags;
1da177e4 2869
9559f689
AV
2870 BUG_ON(!ns);
2871
2872 if (likely(!(flags & CLONE_NEWNS))) {
2873 get_mnt_ns(ns);
2874 return ns;
2875 }
2876
2877 old = ns->root;
2878
771b1371 2879 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2880 if (IS_ERR(new_ns))
2881 return new_ns;
1da177e4 2882
97216be0 2883 namespace_lock();
1da177e4 2884 /* First pass: copy the tree topology */
4ce5d2b1 2885 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2886 if (user_ns != ns->user_ns)
132c94e3 2887 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2888 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2889 if (IS_ERR(new)) {
328e6d90 2890 namespace_unlock();
771b1371 2891 free_mnt_ns(new_ns);
be34d1a3 2892 return ERR_CAST(new);
1da177e4 2893 }
be08d6d2 2894 new_ns->root = new;
1a4eeaf2 2895 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2896
2897 /*
2898 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2899 * as belonging to new namespace. We have already acquired a private
2900 * fs_struct, so tsk->fs->lock is not needed.
2901 */
909b0a88 2902 p = old;
cb338d06 2903 q = new;
1da177e4 2904 while (p) {
143c8c91 2905 q->mnt_ns = new_ns;
d2921684 2906 new_ns->mounts++;
9559f689
AV
2907 if (new_fs) {
2908 if (&p->mnt == new_fs->root.mnt) {
2909 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2910 rootmnt = &p->mnt;
1da177e4 2911 }
9559f689
AV
2912 if (&p->mnt == new_fs->pwd.mnt) {
2913 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2914 pwdmnt = &p->mnt;
1da177e4 2915 }
1da177e4 2916 }
909b0a88
AV
2917 p = next_mnt(p, old);
2918 q = next_mnt(q, new);
4ce5d2b1
EB
2919 if (!q)
2920 break;
2921 while (p->mnt.mnt_root != q->mnt.mnt_root)
2922 p = next_mnt(p, old);
1da177e4 2923 }
328e6d90 2924 namespace_unlock();
1da177e4 2925
1da177e4 2926 if (rootmnt)
f03c6599 2927 mntput(rootmnt);
1da177e4 2928 if (pwdmnt)
f03c6599 2929 mntput(pwdmnt);
1da177e4 2930
741a2951 2931 return new_ns;
1da177e4
LT
2932}
2933
cf8d2c11
TM
2934/**
2935 * create_mnt_ns - creates a private namespace and adds a root filesystem
2936 * @mnt: pointer to the new root filesystem mountpoint
2937 */
1a4eeaf2 2938static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2939{
771b1371 2940 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2941 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2942 struct mount *mnt = real_mount(m);
2943 mnt->mnt_ns = new_ns;
be08d6d2 2944 new_ns->root = mnt;
d2921684 2945 new_ns->mounts++;
b1983cd8 2946 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2947 } else {
1a4eeaf2 2948 mntput(m);
cf8d2c11
TM
2949 }
2950 return new_ns;
2951}
cf8d2c11 2952
ea441d11
AV
2953struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2954{
2955 struct mnt_namespace *ns;
d31da0f0 2956 struct super_block *s;
ea441d11
AV
2957 struct path path;
2958 int err;
2959
2960 ns = create_mnt_ns(mnt);
2961 if (IS_ERR(ns))
2962 return ERR_CAST(ns);
2963
2964 err = vfs_path_lookup(mnt->mnt_root, mnt,
2965 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2966
2967 put_mnt_ns(ns);
2968
2969 if (err)
2970 return ERR_PTR(err);
2971
2972 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2973 s = path.mnt->mnt_sb;
2974 atomic_inc(&s->s_active);
ea441d11
AV
2975 mntput(path.mnt);
2976 /* lock the sucker */
d31da0f0 2977 down_write(&s->s_umount);
ea441d11
AV
2978 /* ... and return the root of (sub)tree on it */
2979 return path.dentry;
2980}
2981EXPORT_SYMBOL(mount_subtree);
2982
312db1aa
DB
2983int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
2984 unsigned long flags, void __user *data)
1da177e4 2985{
eca6f534
VN
2986 int ret;
2987 char *kernel_type;
eca6f534 2988 char *kernel_dev;
b40ef869 2989 void *options;
1da177e4 2990
b8850d1f
TG
2991 kernel_type = copy_mount_string(type);
2992 ret = PTR_ERR(kernel_type);
2993 if (IS_ERR(kernel_type))
eca6f534 2994 goto out_type;
1da177e4 2995
b8850d1f
TG
2996 kernel_dev = copy_mount_string(dev_name);
2997 ret = PTR_ERR(kernel_dev);
2998 if (IS_ERR(kernel_dev))
eca6f534 2999 goto out_dev;
1da177e4 3000
b40ef869
AV
3001 options = copy_mount_options(data);
3002 ret = PTR_ERR(options);
3003 if (IS_ERR(options))
eca6f534 3004 goto out_data;
1da177e4 3005
b40ef869 3006 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3007
b40ef869 3008 kfree(options);
eca6f534
VN
3009out_data:
3010 kfree(kernel_dev);
3011out_dev:
eca6f534
VN
3012 kfree(kernel_type);
3013out_type:
3014 return ret;
1da177e4
LT
3015}
3016
312db1aa
DB
3017SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3018 char __user *, type, unsigned long, flags, void __user *, data)
3019{
3020 return ksys_mount(dev_name, dir_name, type, flags, data);
3021}
3022
afac7cba
AV
3023/*
3024 * Return true if path is reachable from root
3025 *
48a066e7 3026 * namespace_sem or mount_lock is held
afac7cba 3027 */
643822b4 3028bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3029 const struct path *root)
3030{
643822b4 3031 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3032 dentry = mnt->mnt_mountpoint;
0714a533 3033 mnt = mnt->mnt_parent;
afac7cba 3034 }
643822b4 3035 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3036}
3037
640eb7e7 3038bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3039{
25ab4c9b 3040 bool res;
48a066e7 3041 read_seqlock_excl(&mount_lock);
643822b4 3042 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3043 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3044 return res;
3045}
3046EXPORT_SYMBOL(path_is_under);
3047
1da177e4
LT
3048/*
3049 * pivot_root Semantics:
3050 * Moves the root file system of the current process to the directory put_old,
3051 * makes new_root as the new root file system of the current process, and sets
3052 * root/cwd of all processes which had them on the current root to new_root.
3053 *
3054 * Restrictions:
3055 * The new_root and put_old must be directories, and must not be on the
3056 * same file system as the current process root. The put_old must be
3057 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3058 * pointed to by put_old must yield the same directory as new_root. No other
3059 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3060 *
4a0d11fa
NB
3061 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3062 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3063 * in this situation.
3064 *
1da177e4
LT
3065 * Notes:
3066 * - we don't move root/cwd if they are not at the root (reason: if something
3067 * cared enough to change them, it's probably wrong to force them elsewhere)
3068 * - it's okay to pick a root that isn't the root of a file system, e.g.
3069 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3070 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3071 * first.
3072 */
3480b257
HC
3073SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3074 const char __user *, put_old)
1da177e4 3075{
2d8f3038 3076 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3077 struct mount *new_mnt, *root_mnt, *old_mnt;
3078 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3079 int error;
3080
9b40bc90 3081 if (!may_mount())
1da177e4
LT
3082 return -EPERM;
3083
2d8f3038 3084 error = user_path_dir(new_root, &new);
1da177e4
LT
3085 if (error)
3086 goto out0;
1da177e4 3087
2d8f3038 3088 error = user_path_dir(put_old, &old);
1da177e4
LT
3089 if (error)
3090 goto out1;
3091
2d8f3038 3092 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3093 if (error)
3094 goto out2;
1da177e4 3095
f7ad3c6b 3096 get_fs_root(current->fs, &root);
84d17192
AV
3097 old_mp = lock_mount(&old);
3098 error = PTR_ERR(old_mp);
3099 if (IS_ERR(old_mp))
b12cea91
AV
3100 goto out3;
3101
1da177e4 3102 error = -EINVAL;
419148da
AV
3103 new_mnt = real_mount(new.mnt);
3104 root_mnt = real_mount(root.mnt);
84d17192
AV
3105 old_mnt = real_mount(old.mnt);
3106 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3107 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3108 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3109 goto out4;
143c8c91 3110 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3111 goto out4;
5ff9d8a6
EB
3112 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3113 goto out4;
1da177e4 3114 error = -ENOENT;
f3da392e 3115 if (d_unlinked(new.dentry))
b12cea91 3116 goto out4;
1da177e4 3117 error = -EBUSY;
84d17192 3118 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3119 goto out4; /* loop, on the same file system */
1da177e4 3120 error = -EINVAL;
8c3ee42e 3121 if (root.mnt->mnt_root != root.dentry)
b12cea91 3122 goto out4; /* not a mountpoint */
676da58d 3123 if (!mnt_has_parent(root_mnt))
b12cea91 3124 goto out4; /* not attached */
84d17192 3125 root_mp = root_mnt->mnt_mp;
2d8f3038 3126 if (new.mnt->mnt_root != new.dentry)
b12cea91 3127 goto out4; /* not a mountpoint */
676da58d 3128 if (!mnt_has_parent(new_mnt))
b12cea91 3129 goto out4; /* not attached */
4ac91378 3130 /* make sure we can reach put_old from new_root */
84d17192 3131 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3132 goto out4;
0d082601
EB
3133 /* make certain new is below the root */
3134 if (!is_path_reachable(new_mnt, new.dentry, &root))
3135 goto out4;
84d17192 3136 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3137 lock_mount_hash();
419148da
AV
3138 detach_mnt(new_mnt, &parent_path);
3139 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3140 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3141 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3142 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3143 }
4ac91378 3144 /* mount old root on put_old */
84d17192 3145 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3146 /* mount new_root on / */
84d17192 3147 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3148 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3149 /* A moved mount should not expire automatically */
3150 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3151 put_mountpoint(root_mp);
719ea2fb 3152 unlock_mount_hash();
2d8f3038 3153 chroot_fs_refs(&root, &new);
1da177e4 3154 error = 0;
b12cea91 3155out4:
84d17192 3156 unlock_mount(old_mp);
b12cea91
AV
3157 if (!error) {
3158 path_put(&root_parent);
3159 path_put(&parent_path);
3160 }
3161out3:
8c3ee42e 3162 path_put(&root);
b12cea91 3163out2:
2d8f3038 3164 path_put(&old);
1da177e4 3165out1:
2d8f3038 3166 path_put(&new);
1da177e4 3167out0:
1da177e4 3168 return error;
1da177e4
LT
3169}
3170
3171static void __init init_mount_tree(void)
3172{
3173 struct vfsmount *mnt;
6b3286ed 3174 struct mnt_namespace *ns;
ac748a09 3175 struct path root;
0c55cfc4 3176 struct file_system_type *type;
1da177e4 3177
0c55cfc4
EB
3178 type = get_fs_type("rootfs");
3179 if (!type)
3180 panic("Can't find rootfs type");
3181 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3182 put_filesystem(type);
1da177e4
LT
3183 if (IS_ERR(mnt))
3184 panic("Can't create rootfs");
b3e19d92 3185
3b22edc5
TM
3186 ns = create_mnt_ns(mnt);
3187 if (IS_ERR(ns))
1da177e4 3188 panic("Can't allocate initial namespace");
6b3286ed
KK
3189
3190 init_task.nsproxy->mnt_ns = ns;
3191 get_mnt_ns(ns);
3192
be08d6d2
AV
3193 root.mnt = mnt;
3194 root.dentry = mnt->mnt_root;
da362b09 3195 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3196
3197 set_fs_pwd(current->fs, &root);
3198 set_fs_root(current->fs, &root);
1da177e4
LT
3199}
3200
74bf17cf 3201void __init mnt_init(void)
1da177e4 3202{
15a67dd8 3203 int err;
1da177e4 3204
7d6fec45 3205 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3206 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3207
0818bf27 3208 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3209 sizeof(struct hlist_head),
0818bf27 3210 mhash_entries, 19,
3d375d78 3211 HASH_ZERO,
0818bf27
AV
3212 &m_hash_shift, &m_hash_mask, 0, 0);
3213 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3214 sizeof(struct hlist_head),
3215 mphash_entries, 19,
3d375d78 3216 HASH_ZERO,
0818bf27 3217 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3218
84d17192 3219 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3220 panic("Failed to allocate mount hash table\n");
3221
4b93dc9b
TH
3222 kernfs_init();
3223
15a67dd8
RD
3224 err = sysfs_init();
3225 if (err)
3226 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3227 __func__, err);
00d26666
GKH
3228 fs_kobj = kobject_create_and_add("fs", NULL);
3229 if (!fs_kobj)
8e24eea7 3230 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3231 init_rootfs();
3232 init_mount_tree();
3233}
3234
616511d0 3235void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3236{
d498b25a 3237 if (!atomic_dec_and_test(&ns->count))
616511d0 3238 return;
7b00ed6f 3239 drop_collected_mounts(&ns->root->mnt);
771b1371 3240 free_mnt_ns(ns);
1da177e4 3241}
9d412a43
AV
3242
3243struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3244{
423e0ab0 3245 struct vfsmount *mnt;
e462ec50 3246 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3247 if (!IS_ERR(mnt)) {
3248 /*
3249 * it is a longterm mount, don't release mnt until
3250 * we unmount before file sys is unregistered
3251 */
f7a99c5b 3252 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3253 }
3254 return mnt;
9d412a43
AV
3255}
3256EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3257
3258void kern_unmount(struct vfsmount *mnt)
3259{
3260 /* release long term mount so mount point can be released */
3261 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3262 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3263 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3264 mntput(mnt);
3265 }
3266}
3267EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3268
3269bool our_mnt(struct vfsmount *mnt)
3270{
143c8c91 3271 return check_mnt(real_mount(mnt));
02125a82 3272}
8823c079 3273
3151527e
EB
3274bool current_chrooted(void)
3275{
3276 /* Does the current process have a non-standard root */
3277 struct path ns_root;
3278 struct path fs_root;
3279 bool chrooted;
3280
3281 /* Find the namespace root */
3282 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3283 ns_root.dentry = ns_root.mnt->mnt_root;
3284 path_get(&ns_root);
3285 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3286 ;
3287
3288 get_fs_root(current->fs, &fs_root);
3289
3290 chrooted = !path_equal(&fs_root, &ns_root);
3291
3292 path_put(&fs_root);
3293 path_put(&ns_root);
3294
3295 return chrooted;
3296}
3297
8654df4e
EB
3298static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3299 int *new_mnt_flags)
87a8ebd6 3300{
8c6cf9cc 3301 int new_flags = *new_mnt_flags;
87a8ebd6 3302 struct mount *mnt;
e51db735 3303 bool visible = false;
87a8ebd6 3304
44bb4385 3305 down_read(&namespace_sem);
87a8ebd6 3306 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3307 struct mount *child;
77b1a97d
EB
3308 int mnt_flags;
3309
8654df4e 3310 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3311 continue;
3312
7e96c1b0
EB
3313 /* This mount is not fully visible if it's root directory
3314 * is not the root directory of the filesystem.
3315 */
3316 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3317 continue;
3318
a1935c17 3319 /* A local view of the mount flags */
77b1a97d 3320 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3321
695e9df0 3322 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3323 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3324 mnt_flags |= MNT_LOCK_READONLY;
3325
8c6cf9cc
EB
3326 /* Verify the mount flags are equal to or more permissive
3327 * than the proposed new mount.
3328 */
77b1a97d 3329 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3330 !(new_flags & MNT_READONLY))
3331 continue;
77b1a97d
EB
3332 if ((mnt_flags & MNT_LOCK_ATIME) &&
3333 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3334 continue;
3335
ceeb0e5d
EB
3336 /* This mount is not fully visible if there are any
3337 * locked child mounts that cover anything except for
3338 * empty directories.
e51db735
EB
3339 */
3340 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3341 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3342 /* Only worry about locked mounts */
d71ed6c9 3343 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3344 continue;
7236c85e
EB
3345 /* Is the directory permanetly empty? */
3346 if (!is_empty_dir_inode(inode))
e51db735 3347 goto next;
87a8ebd6 3348 }
8c6cf9cc 3349 /* Preserve the locked attributes */
77b1a97d 3350 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3351 MNT_LOCK_ATIME);
e51db735
EB
3352 visible = true;
3353 goto found;
3354 next: ;
87a8ebd6 3355 }
e51db735 3356found:
44bb4385 3357 up_read(&namespace_sem);
e51db735 3358 return visible;
87a8ebd6
EB
3359}
3360
8654df4e
EB
3361static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3362{
a1935c17 3363 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3364 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3365 unsigned long s_iflags;
3366
3367 if (ns->user_ns == &init_user_ns)
3368 return false;
3369
3370 /* Can this filesystem be too revealing? */
3371 s_iflags = mnt->mnt_sb->s_iflags;
3372 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3373 return false;
3374
a1935c17
EB
3375 if ((s_iflags & required_iflags) != required_iflags) {
3376 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3377 required_iflags);
3378 return true;
3379 }
3380
8654df4e
EB
3381 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3382}
3383
380cf5ba
AL
3384bool mnt_may_suid(struct vfsmount *mnt)
3385{
3386 /*
3387 * Foreign mounts (accessed via fchdir or through /proc
3388 * symlinks) are always treated as if they are nosuid. This
3389 * prevents namespaces from trusting potentially unsafe
3390 * suid/sgid bits, file caps, or security labels that originate
3391 * in other namespaces.
3392 */
3393 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3394 current_in_userns(mnt->mnt_sb->s_user_ns);
3395}
3396
64964528 3397static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3398{
58be2825 3399 struct ns_common *ns = NULL;
8823c079
EB
3400 struct nsproxy *nsproxy;
3401
728dba3a
EB
3402 task_lock(task);
3403 nsproxy = task->nsproxy;
8823c079 3404 if (nsproxy) {
58be2825
AV
3405 ns = &nsproxy->mnt_ns->ns;
3406 get_mnt_ns(to_mnt_ns(ns));
8823c079 3407 }
728dba3a 3408 task_unlock(task);
8823c079
EB
3409
3410 return ns;
3411}
3412
64964528 3413static void mntns_put(struct ns_common *ns)
8823c079 3414{
58be2825 3415 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3416}
3417
64964528 3418static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3419{
3420 struct fs_struct *fs = current->fs;
4f757f3c 3421 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3422 struct path root;
4f757f3c 3423 int err;
8823c079 3424
0c55cfc4 3425 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3426 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3427 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3428 return -EPERM;
8823c079
EB
3429
3430 if (fs->users != 1)
3431 return -EINVAL;
3432
3433 get_mnt_ns(mnt_ns);
4f757f3c 3434 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3435 nsproxy->mnt_ns = mnt_ns;
3436
3437 /* Find the root */
4f757f3c
AV
3438 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3439 "/", LOOKUP_DOWN, &root);
3440 if (err) {
3441 /* revert to old namespace */
3442 nsproxy->mnt_ns = old_mnt_ns;
3443 put_mnt_ns(mnt_ns);
3444 return err;
3445 }
8823c079 3446
4068367c
AV
3447 put_mnt_ns(old_mnt_ns);
3448
8823c079
EB
3449 /* Update the pwd and root */
3450 set_fs_pwd(fs, &root);
3451 set_fs_root(fs, &root);
3452
3453 path_put(&root);
3454 return 0;
3455}
3456
bcac25a5
AV
3457static struct user_namespace *mntns_owner(struct ns_common *ns)
3458{
3459 return to_mnt_ns(ns)->user_ns;
3460}
3461
8823c079
EB
3462const struct proc_ns_operations mntns_operations = {
3463 .name = "mnt",
3464 .type = CLONE_NEWNS,
3465 .get = mntns_get,
3466 .put = mntns_put,
3467 .install = mntns_install,
bcac25a5 3468 .owner = mntns_owner,
8823c079 3469};