mount: make {lock,unlock}_mount_hash() static
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
037f11b4 32#include <linux/shmem_fs.h>
9164bb4a 33
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
d2921684
EB
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
0818bf27
AV
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
13f14b4d 64
c7999c36 65static u64 event;
73cd49ec 66static DEFINE_IDA(mnt_id_ida);
719f5d7f 67static DEFINE_IDA(mnt_group_ida);
1da177e4 68
38129a13 69static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 70static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 71static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 72static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 75
f87fd4c2 76/* /sys/fs */
00d26666
GKH
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 79
99b7db7b
NP
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
48a066e7 88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 89
d033cb67
CB
90static inline void lock_mount_hash(void)
91{
92 write_seqlock(&mount_lock);
93}
94
95static inline void unlock_mount_hash(void)
96{
97 write_sequnlock(&mount_lock);
98}
99
38129a13 100static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 101{
b58fed8b
RP
102 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
103 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
104 tmp = tmp + (tmp >> m_hash_shift);
105 return &mount_hashtable[tmp & m_hash_mask];
106}
107
108static inline struct hlist_head *mp_hash(struct dentry *dentry)
109{
110 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
111 tmp = tmp + (tmp >> mp_hash_shift);
112 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
113}
114
b105e270 115static int mnt_alloc_id(struct mount *mnt)
73cd49ec 116{
169b480e
MW
117 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
118
119 if (res < 0)
120 return res;
121 mnt->mnt_id = res;
122 return 0;
73cd49ec
MS
123}
124
b105e270 125static void mnt_free_id(struct mount *mnt)
73cd49ec 126{
169b480e 127 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
128}
129
719f5d7f
MS
130/*
131 * Allocate a new peer group ID
719f5d7f 132 */
4b8b21f4 133static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 134{
169b480e 135 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 136
169b480e
MW
137 if (res < 0)
138 return res;
139 mnt->mnt_group_id = res;
140 return 0;
719f5d7f
MS
141}
142
143/*
144 * Release a peer group ID
145 */
4b8b21f4 146void mnt_release_group_id(struct mount *mnt)
719f5d7f 147{
169b480e 148 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 149 mnt->mnt_group_id = 0;
719f5d7f
MS
150}
151
b3e19d92
NP
152/*
153 * vfsmount lock must be held for read
154 */
83adc753 155static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
156{
157#ifdef CONFIG_SMP
68e8a9fe 158 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
159#else
160 preempt_disable();
68e8a9fe 161 mnt->mnt_count += n;
b3e19d92
NP
162 preempt_enable();
163#endif
164}
165
b3e19d92
NP
166/*
167 * vfsmount lock must be held for write
168 */
edf7ddbf 169int mnt_get_count(struct mount *mnt)
b3e19d92
NP
170{
171#ifdef CONFIG_SMP
edf7ddbf 172 int count = 0;
b3e19d92
NP
173 int cpu;
174
175 for_each_possible_cpu(cpu) {
68e8a9fe 176 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
177 }
178
179 return count;
180#else
68e8a9fe 181 return mnt->mnt_count;
b3e19d92
NP
182#endif
183}
184
b105e270 185static struct mount *alloc_vfsmnt(const char *name)
1da177e4 186{
c63181e6
AV
187 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
188 if (mnt) {
73cd49ec
MS
189 int err;
190
c63181e6 191 err = mnt_alloc_id(mnt);
88b38782
LZ
192 if (err)
193 goto out_free_cache;
194
195 if (name) {
fcc139ae 196 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 197 if (!mnt->mnt_devname)
88b38782 198 goto out_free_id;
73cd49ec
MS
199 }
200
b3e19d92 201#ifdef CONFIG_SMP
c63181e6
AV
202 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
203 if (!mnt->mnt_pcp)
b3e19d92
NP
204 goto out_free_devname;
205
c63181e6 206 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 207#else
c63181e6
AV
208 mnt->mnt_count = 1;
209 mnt->mnt_writers = 0;
b3e19d92
NP
210#endif
211
38129a13 212 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
213 INIT_LIST_HEAD(&mnt->mnt_child);
214 INIT_LIST_HEAD(&mnt->mnt_mounts);
215 INIT_LIST_HEAD(&mnt->mnt_list);
216 INIT_LIST_HEAD(&mnt->mnt_expire);
217 INIT_LIST_HEAD(&mnt->mnt_share);
218 INIT_LIST_HEAD(&mnt->mnt_slave_list);
219 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 220 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 221 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 222 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
a6435940 223 mnt->mnt.mnt_userns = &init_user_ns;
1da177e4 224 }
c63181e6 225 return mnt;
88b38782 226
d3ef3d73 227#ifdef CONFIG_SMP
228out_free_devname:
fcc139ae 229 kfree_const(mnt->mnt_devname);
d3ef3d73 230#endif
88b38782 231out_free_id:
c63181e6 232 mnt_free_id(mnt);
88b38782 233out_free_cache:
c63181e6 234 kmem_cache_free(mnt_cache, mnt);
88b38782 235 return NULL;
1da177e4
LT
236}
237
3d733633
DH
238/*
239 * Most r/o checks on a fs are for operations that take
240 * discrete amounts of time, like a write() or unlink().
241 * We must keep track of when those operations start
242 * (for permission checks) and when they end, so that
243 * we can determine when writes are able to occur to
244 * a filesystem.
245 */
246/*
247 * __mnt_is_readonly: check whether a mount is read-only
248 * @mnt: the mount to check for its write status
249 *
250 * This shouldn't be used directly ouside of the VFS.
251 * It does not guarantee that the filesystem will stay
252 * r/w, just that it is right *now*. This can not and
253 * should not be used in place of IS_RDONLY(inode).
254 * mnt_want/drop_write() will _keep_ the filesystem
255 * r/w.
256 */
43f5e655 257bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 258{
43f5e655 259 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
260}
261EXPORT_SYMBOL_GPL(__mnt_is_readonly);
262
83adc753 263static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 264{
265#ifdef CONFIG_SMP
68e8a9fe 266 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 267#else
68e8a9fe 268 mnt->mnt_writers++;
d3ef3d73 269#endif
270}
3d733633 271
83adc753 272static inline void mnt_dec_writers(struct mount *mnt)
3d733633 273{
d3ef3d73 274#ifdef CONFIG_SMP
68e8a9fe 275 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 276#else
68e8a9fe 277 mnt->mnt_writers--;
d3ef3d73 278#endif
3d733633 279}
3d733633 280
83adc753 281static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 282{
d3ef3d73 283#ifdef CONFIG_SMP
284 unsigned int count = 0;
3d733633 285 int cpu;
3d733633
DH
286
287 for_each_possible_cpu(cpu) {
68e8a9fe 288 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 289 }
3d733633 290
d3ef3d73 291 return count;
292#else
293 return mnt->mnt_writers;
294#endif
3d733633
DH
295}
296
4ed5e82f
MS
297static int mnt_is_readonly(struct vfsmount *mnt)
298{
299 if (mnt->mnt_sb->s_readonly_remount)
300 return 1;
301 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
302 smp_rmb();
303 return __mnt_is_readonly(mnt);
304}
305
8366025e 306/*
eb04c282
JK
307 * Most r/o & frozen checks on a fs are for operations that take discrete
308 * amounts of time, like a write() or unlink(). We must keep track of when
309 * those operations start (for permission checks) and when they end, so that we
310 * can determine when writes are able to occur to a filesystem.
8366025e
DH
311 */
312/**
eb04c282 313 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 314 * @m: the mount on which to take a write
8366025e 315 *
eb04c282
JK
316 * This tells the low-level filesystem that a write is about to be performed to
317 * it, and makes sure that writes are allowed (mnt it read-write) before
318 * returning success. This operation does not protect against filesystem being
319 * frozen. When the write operation is finished, __mnt_drop_write() must be
320 * called. This is effectively a refcount.
8366025e 321 */
eb04c282 322int __mnt_want_write(struct vfsmount *m)
8366025e 323{
83adc753 324 struct mount *mnt = real_mount(m);
3d733633 325 int ret = 0;
3d733633 326
d3ef3d73 327 preempt_disable();
c6653a83 328 mnt_inc_writers(mnt);
d3ef3d73 329 /*
c6653a83 330 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 331 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
332 * incremented count after it has set MNT_WRITE_HOLD.
333 */
334 smp_mb();
6aa7de05 335 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 336 cpu_relax();
337 /*
338 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
339 * be set to match its requirements. So we must not load that until
340 * MNT_WRITE_HOLD is cleared.
341 */
342 smp_rmb();
4ed5e82f 343 if (mnt_is_readonly(m)) {
c6653a83 344 mnt_dec_writers(mnt);
3d733633 345 ret = -EROFS;
3d733633 346 }
d3ef3d73 347 preempt_enable();
eb04c282
JK
348
349 return ret;
350}
351
352/**
353 * mnt_want_write - get write access to a mount
354 * @m: the mount on which to take a write
355 *
356 * This tells the low-level filesystem that a write is about to be performed to
357 * it, and makes sure that writes are allowed (mount is read-write, filesystem
358 * is not frozen) before returning success. When the write operation is
359 * finished, mnt_drop_write() must be called. This is effectively a refcount.
360 */
361int mnt_want_write(struct vfsmount *m)
362{
363 int ret;
364
365 sb_start_write(m->mnt_sb);
366 ret = __mnt_want_write(m);
367 if (ret)
368 sb_end_write(m->mnt_sb);
3d733633 369 return ret;
8366025e
DH
370}
371EXPORT_SYMBOL_GPL(mnt_want_write);
372
96029c4e 373/**
374 * mnt_clone_write - get write access to a mount
375 * @mnt: the mount on which to take a write
376 *
377 * This is effectively like mnt_want_write, except
378 * it must only be used to take an extra write reference
379 * on a mountpoint that we already know has a write reference
380 * on it. This allows some optimisation.
381 *
382 * After finished, mnt_drop_write must be called as usual to
383 * drop the reference.
384 */
385int mnt_clone_write(struct vfsmount *mnt)
386{
387 /* superblock may be r/o */
388 if (__mnt_is_readonly(mnt))
389 return -EROFS;
390 preempt_disable();
83adc753 391 mnt_inc_writers(real_mount(mnt));
96029c4e 392 preempt_enable();
393 return 0;
394}
395EXPORT_SYMBOL_GPL(mnt_clone_write);
396
397/**
eb04c282 398 * __mnt_want_write_file - get write access to a file's mount
96029c4e 399 * @file: the file who's mount on which to take a write
400 *
eb04c282 401 * This is like __mnt_want_write, but it takes a file and can
96029c4e 402 * do some optimisations if the file is open for write already
403 */
eb04c282 404int __mnt_want_write_file(struct file *file)
96029c4e 405{
83f936c7 406 if (!(file->f_mode & FMODE_WRITER))
eb04c282 407 return __mnt_want_write(file->f_path.mnt);
96029c4e 408 else
409 return mnt_clone_write(file->f_path.mnt);
410}
eb04c282 411
7c6893e3
MS
412/**
413 * mnt_want_write_file - get write access to a file's mount
414 * @file: the file who's mount on which to take a write
415 *
416 * This is like mnt_want_write, but it takes a file and can
417 * do some optimisations if the file is open for write already
7c6893e3
MS
418 */
419int mnt_want_write_file(struct file *file)
420{
421 int ret;
422
a6795a58 423 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
424 ret = __mnt_want_write_file(file);
425 if (ret)
a6795a58 426 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
427 return ret;
428}
96029c4e 429EXPORT_SYMBOL_GPL(mnt_want_write_file);
430
8366025e 431/**
eb04c282 432 * __mnt_drop_write - give up write access to a mount
8366025e
DH
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done
436 * performing writes to it. Must be matched with
eb04c282 437 * __mnt_want_write() call above.
8366025e 438 */
eb04c282 439void __mnt_drop_write(struct vfsmount *mnt)
8366025e 440{
d3ef3d73 441 preempt_disable();
83adc753 442 mnt_dec_writers(real_mount(mnt));
d3ef3d73 443 preempt_enable();
8366025e 444}
eb04c282
JK
445
446/**
447 * mnt_drop_write - give up write access to a mount
448 * @mnt: the mount on which to give up write access
449 *
450 * Tells the low-level filesystem that we are done performing writes to it and
451 * also allows filesystem to be frozen again. Must be matched with
452 * mnt_want_write() call above.
453 */
454void mnt_drop_write(struct vfsmount *mnt)
455{
456 __mnt_drop_write(mnt);
457 sb_end_write(mnt->mnt_sb);
458}
8366025e
DH
459EXPORT_SYMBOL_GPL(mnt_drop_write);
460
eb04c282
JK
461void __mnt_drop_write_file(struct file *file)
462{
463 __mnt_drop_write(file->f_path.mnt);
464}
465
7c6893e3
MS
466void mnt_drop_write_file(struct file *file)
467{
a6795a58 468 __mnt_drop_write_file(file);
7c6893e3
MS
469 sb_end_write(file_inode(file)->i_sb);
470}
2a79f17e
AV
471EXPORT_SYMBOL(mnt_drop_write_file);
472
83adc753 473static int mnt_make_readonly(struct mount *mnt)
8366025e 474{
3d733633
DH
475 int ret = 0;
476
83adc753 477 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 478 /*
d3ef3d73 479 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
480 * should be visible before we do.
3d733633 481 */
d3ef3d73 482 smp_mb();
483
3d733633 484 /*
d3ef3d73 485 * With writers on hold, if this value is zero, then there are
486 * definitely no active writers (although held writers may subsequently
487 * increment the count, they'll have to wait, and decrement it after
488 * seeing MNT_READONLY).
489 *
490 * It is OK to have counter incremented on one CPU and decremented on
491 * another: the sum will add up correctly. The danger would be when we
492 * sum up each counter, if we read a counter before it is incremented,
493 * but then read another CPU's count which it has been subsequently
494 * decremented from -- we would see more decrements than we should.
495 * MNT_WRITE_HOLD protects against this scenario, because
496 * mnt_want_write first increments count, then smp_mb, then spins on
497 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
498 * we're counting up here.
3d733633 499 */
c6653a83 500 if (mnt_get_writers(mnt) > 0)
d3ef3d73 501 ret = -EBUSY;
502 else
83adc753 503 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 504 /*
505 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
506 * that become unheld will see MNT_READONLY.
507 */
508 smp_wmb();
83adc753 509 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
3d733633 510 return ret;
8366025e 511}
8366025e 512
4ed5e82f
MS
513int sb_prepare_remount_readonly(struct super_block *sb)
514{
515 struct mount *mnt;
516 int err = 0;
517
8e8b8796
MS
518 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
519 if (atomic_long_read(&sb->s_remove_count))
520 return -EBUSY;
521
719ea2fb 522 lock_mount_hash();
4ed5e82f
MS
523 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
524 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 smp_mb();
527 if (mnt_get_writers(mnt) > 0) {
528 err = -EBUSY;
529 break;
530 }
531 }
532 }
8e8b8796
MS
533 if (!err && atomic_long_read(&sb->s_remove_count))
534 err = -EBUSY;
535
4ed5e82f
MS
536 if (!err) {
537 sb->s_readonly_remount = 1;
538 smp_wmb();
539 }
540 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
541 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
542 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 }
719ea2fb 544 unlock_mount_hash();
4ed5e82f
MS
545
546 return err;
547}
548
b105e270 549static void free_vfsmnt(struct mount *mnt)
1da177e4 550{
a6435940
CB
551 struct user_namespace *mnt_userns;
552
553 mnt_userns = mnt_user_ns(&mnt->mnt);
554 if (mnt_userns != &init_user_ns)
555 put_user_ns(mnt_userns);
fcc139ae 556 kfree_const(mnt->mnt_devname);
d3ef3d73 557#ifdef CONFIG_SMP
68e8a9fe 558 free_percpu(mnt->mnt_pcp);
d3ef3d73 559#endif
b105e270 560 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
561}
562
8ffcb32e
DH
563static void delayed_free_vfsmnt(struct rcu_head *head)
564{
565 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
566}
567
48a066e7 568/* call under rcu_read_lock */
294d71ff 569int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
570{
571 struct mount *mnt;
572 if (read_seqretry(&mount_lock, seq))
294d71ff 573 return 1;
48a066e7 574 if (bastard == NULL)
294d71ff 575 return 0;
48a066e7
AV
576 mnt = real_mount(bastard);
577 mnt_add_count(mnt, 1);
119e1ef8 578 smp_mb(); // see mntput_no_expire()
48a066e7 579 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 580 return 0;
48a066e7
AV
581 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
582 mnt_add_count(mnt, -1);
294d71ff
AV
583 return 1;
584 }
119e1ef8
AV
585 lock_mount_hash();
586 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
587 mnt_add_count(mnt, -1);
588 unlock_mount_hash();
589 return 1;
590 }
591 unlock_mount_hash();
592 /* caller will mntput() */
294d71ff
AV
593 return -1;
594}
595
596/* call under rcu_read_lock */
597bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598{
599 int res = __legitimize_mnt(bastard, seq);
600 if (likely(!res))
601 return true;
602 if (unlikely(res < 0)) {
603 rcu_read_unlock();
604 mntput(bastard);
605 rcu_read_lock();
48a066e7 606 }
48a066e7
AV
607 return false;
608}
609
1da177e4 610/*
474279dc 611 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 612 * call under rcu_read_lock()
1da177e4 613 */
474279dc 614struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 615{
38129a13 616 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
617 struct mount *p;
618
38129a13 619 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
620 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
621 return p;
622 return NULL;
623}
624
a05964f3 625/*
f015f126
DH
626 * lookup_mnt - Return the first child mount mounted at path
627 *
628 * "First" means first mounted chronologically. If you create the
629 * following mounts:
630 *
631 * mount /dev/sda1 /mnt
632 * mount /dev/sda2 /mnt
633 * mount /dev/sda3 /mnt
634 *
635 * Then lookup_mnt() on the base /mnt dentry in the root mount will
636 * return successively the root dentry and vfsmount of /dev/sda1, then
637 * /dev/sda2, then /dev/sda3, then NULL.
638 *
639 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 640 */
ca71cf71 641struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 642{
c7105365 643 struct mount *child_mnt;
48a066e7
AV
644 struct vfsmount *m;
645 unsigned seq;
99b7db7b 646
48a066e7
AV
647 rcu_read_lock();
648 do {
649 seq = read_seqbegin(&mount_lock);
650 child_mnt = __lookup_mnt(path->mnt, path->dentry);
651 m = child_mnt ? &child_mnt->mnt : NULL;
652 } while (!legitimize_mnt(m, seq));
653 rcu_read_unlock();
654 return m;
a05964f3
RP
655}
656
9f6c61f9
MS
657static inline void lock_ns_list(struct mnt_namespace *ns)
658{
659 spin_lock(&ns->ns_lock);
660}
661
662static inline void unlock_ns_list(struct mnt_namespace *ns)
663{
664 spin_unlock(&ns->ns_lock);
665}
666
667static inline bool mnt_is_cursor(struct mount *mnt)
668{
669 return mnt->mnt.mnt_flags & MNT_CURSOR;
670}
671
7af1364f
EB
672/*
673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674 * current mount namespace.
675 *
676 * The common case is dentries are not mountpoints at all and that
677 * test is handled inline. For the slow case when we are actually
678 * dealing with a mountpoint of some kind, walk through all of the
679 * mounts in the current mount namespace and test to see if the dentry
680 * is a mountpoint.
681 *
682 * The mount_hashtable is not usable in the context because we
683 * need to identify all mounts that may be in the current mount
684 * namespace not just a mount that happens to have some specified
685 * parent mount.
686 */
687bool __is_local_mountpoint(struct dentry *dentry)
688{
689 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
690 struct mount *mnt;
691 bool is_covered = false;
692
7af1364f 693 down_read(&namespace_sem);
9f6c61f9 694 lock_ns_list(ns);
7af1364f 695 list_for_each_entry(mnt, &ns->list, mnt_list) {
9f6c61f9
MS
696 if (mnt_is_cursor(mnt))
697 continue;
7af1364f
EB
698 is_covered = (mnt->mnt_mountpoint == dentry);
699 if (is_covered)
700 break;
701 }
9f6c61f9 702 unlock_ns_list(ns);
7af1364f 703 up_read(&namespace_sem);
5ad05cc8 704
7af1364f
EB
705 return is_covered;
706}
707
e2dfa935 708static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 709{
0818bf27 710 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
711 struct mountpoint *mp;
712
0818bf27 713 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 714 if (mp->m_dentry == dentry) {
84d17192
AV
715 mp->m_count++;
716 return mp;
717 }
718 }
e2dfa935
EB
719 return NULL;
720}
721
3895dbf8 722static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 723{
3895dbf8 724 struct mountpoint *mp, *new = NULL;
e2dfa935 725 int ret;
84d17192 726
3895dbf8 727 if (d_mountpoint(dentry)) {
1e9c75fb
BC
728 /* might be worth a WARN_ON() */
729 if (d_unlinked(dentry))
730 return ERR_PTR(-ENOENT);
3895dbf8
EB
731mountpoint:
732 read_seqlock_excl(&mount_lock);
733 mp = lookup_mountpoint(dentry);
734 read_sequnlock_excl(&mount_lock);
735 if (mp)
736 goto done;
737 }
738
739 if (!new)
740 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
741 if (!new)
84d17192
AV
742 return ERR_PTR(-ENOMEM);
743
3895dbf8
EB
744
745 /* Exactly one processes may set d_mounted */
eed81007 746 ret = d_set_mounted(dentry);
eed81007 747
3895dbf8
EB
748 /* Someone else set d_mounted? */
749 if (ret == -EBUSY)
750 goto mountpoint;
751
752 /* The dentry is not available as a mountpoint? */
753 mp = ERR_PTR(ret);
754 if (ret)
755 goto done;
756
757 /* Add the new mountpoint to the hash table */
758 read_seqlock_excl(&mount_lock);
4edbe133 759 new->m_dentry = dget(dentry);
3895dbf8
EB
760 new->m_count = 1;
761 hlist_add_head(&new->m_hash, mp_hash(dentry));
762 INIT_HLIST_HEAD(&new->m_list);
763 read_sequnlock_excl(&mount_lock);
764
765 mp = new;
766 new = NULL;
767done:
768 kfree(new);
84d17192
AV
769 return mp;
770}
771
4edbe133
AV
772/*
773 * vfsmount lock must be held. Additionally, the caller is responsible
774 * for serializing calls for given disposal list.
775 */
776static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
777{
778 if (!--mp->m_count) {
779 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 780 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
781 spin_lock(&dentry->d_lock);
782 dentry->d_flags &= ~DCACHE_MOUNTED;
783 spin_unlock(&dentry->d_lock);
4edbe133 784 dput_to_list(dentry, list);
0818bf27 785 hlist_del(&mp->m_hash);
84d17192
AV
786 kfree(mp);
787 }
788}
789
4edbe133
AV
790/* called with namespace_lock and vfsmount lock */
791static void put_mountpoint(struct mountpoint *mp)
792{
793 __put_mountpoint(mp, &ex_mountpoints);
794}
795
143c8c91 796static inline int check_mnt(struct mount *mnt)
1da177e4 797{
6b3286ed 798 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
799}
800
99b7db7b
NP
801/*
802 * vfsmount lock must be held for write
803 */
6b3286ed 804static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
805{
806 if (ns) {
807 ns->event = ++event;
808 wake_up_interruptible(&ns->poll);
809 }
810}
811
99b7db7b
NP
812/*
813 * vfsmount lock must be held for write
814 */
6b3286ed 815static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
816{
817 if (ns && ns->event != event) {
818 ns->event = event;
819 wake_up_interruptible(&ns->poll);
820 }
821}
822
99b7db7b
NP
823/*
824 * vfsmount lock must be held for write
825 */
e4e59906 826static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 827{
e4e59906 828 struct mountpoint *mp;
0714a533 829 mnt->mnt_parent = mnt;
a73324da 830 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 831 list_del_init(&mnt->mnt_child);
38129a13 832 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 833 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 834 mp = mnt->mnt_mp;
84d17192 835 mnt->mnt_mp = NULL;
e4e59906 836 return mp;
7bdb11de
EB
837}
838
6a46c573
EB
839/*
840 * vfsmount lock must be held for write
841 */
842static void umount_mnt(struct mount *mnt)
843{
e4e59906 844 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
845}
846
99b7db7b
NP
847/*
848 * vfsmount lock must be held for write
849 */
84d17192
AV
850void mnt_set_mountpoint(struct mount *mnt,
851 struct mountpoint *mp,
44d964d6 852 struct mount *child_mnt)
b90fa9ae 853{
84d17192 854 mp->m_count++;
3a2393d7 855 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 856 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 857 child_mnt->mnt_parent = mnt;
84d17192 858 child_mnt->mnt_mp = mp;
0a5eb7c8 859 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
860}
861
1064f874
EB
862static void __attach_mnt(struct mount *mnt, struct mount *parent)
863{
864 hlist_add_head_rcu(&mnt->mnt_hash,
865 m_hash(&parent->mnt, mnt->mnt_mountpoint));
866 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
867}
868
99b7db7b
NP
869/*
870 * vfsmount lock must be held for write
871 */
84d17192
AV
872static void attach_mnt(struct mount *mnt,
873 struct mount *parent,
874 struct mountpoint *mp)
1da177e4 875{
84d17192 876 mnt_set_mountpoint(parent, mp, mnt);
1064f874 877 __attach_mnt(mnt, parent);
b90fa9ae
RP
878}
879
1064f874 880void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 881{
1064f874 882 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
883 struct mount *old_parent = mnt->mnt_parent;
884
885 list_del_init(&mnt->mnt_child);
886 hlist_del_init(&mnt->mnt_mp_list);
887 hlist_del_init_rcu(&mnt->mnt_hash);
888
889 attach_mnt(mnt, parent, mp);
890
891 put_mountpoint(old_mp);
1064f874 892 mnt_add_count(old_parent, -1);
12a5b529
AV
893}
894
b90fa9ae 895/*
99b7db7b 896 * vfsmount lock must be held for write
b90fa9ae 897 */
1064f874 898static void commit_tree(struct mount *mnt)
b90fa9ae 899{
0714a533 900 struct mount *parent = mnt->mnt_parent;
83adc753 901 struct mount *m;
b90fa9ae 902 LIST_HEAD(head);
143c8c91 903 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 904
0714a533 905 BUG_ON(parent == mnt);
b90fa9ae 906
1a4eeaf2 907 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 908 list_for_each_entry(m, &head, mnt_list)
143c8c91 909 m->mnt_ns = n;
f03c6599 910
b90fa9ae
RP
911 list_splice(&head, n->list.prev);
912
d2921684
EB
913 n->mounts += n->pending_mounts;
914 n->pending_mounts = 0;
915
1064f874 916 __attach_mnt(mnt, parent);
6b3286ed 917 touch_mnt_namespace(n);
1da177e4
LT
918}
919
909b0a88 920static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 921{
6b41d536
AV
922 struct list_head *next = p->mnt_mounts.next;
923 if (next == &p->mnt_mounts) {
1da177e4 924 while (1) {
909b0a88 925 if (p == root)
1da177e4 926 return NULL;
6b41d536
AV
927 next = p->mnt_child.next;
928 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 929 break;
0714a533 930 p = p->mnt_parent;
1da177e4
LT
931 }
932 }
6b41d536 933 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
934}
935
315fc83e 936static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 937{
6b41d536
AV
938 struct list_head *prev = p->mnt_mounts.prev;
939 while (prev != &p->mnt_mounts) {
940 p = list_entry(prev, struct mount, mnt_child);
941 prev = p->mnt_mounts.prev;
9676f0c6
RP
942 }
943 return p;
944}
945
8f291889
AV
946/**
947 * vfs_create_mount - Create a mount for a configured superblock
948 * @fc: The configuration context with the superblock attached
949 *
950 * Create a mount to an already configured superblock. If necessary, the
951 * caller should invoke vfs_get_tree() before calling this.
952 *
953 * Note that this does not attach the mount to anything.
954 */
955struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 956{
b105e270 957 struct mount *mnt;
9d412a43 958
8f291889
AV
959 if (!fc->root)
960 return ERR_PTR(-EINVAL);
9d412a43 961
8f291889 962 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
963 if (!mnt)
964 return ERR_PTR(-ENOMEM);
965
8f291889 966 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 967 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 968
8f291889
AV
969 atomic_inc(&fc->root->d_sb->s_active);
970 mnt->mnt.mnt_sb = fc->root->d_sb;
971 mnt->mnt.mnt_root = dget(fc->root);
972 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
973 mnt->mnt_parent = mnt;
9d412a43 974
719ea2fb 975 lock_mount_hash();
8f291889 976 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 977 unlock_mount_hash();
b105e270 978 return &mnt->mnt;
9d412a43 979}
8f291889
AV
980EXPORT_SYMBOL(vfs_create_mount);
981
982struct vfsmount *fc_mount(struct fs_context *fc)
983{
984 int err = vfs_get_tree(fc);
985 if (!err) {
986 up_write(&fc->root->d_sb->s_umount);
987 return vfs_create_mount(fc);
988 }
989 return ERR_PTR(err);
990}
991EXPORT_SYMBOL(fc_mount);
992
9bc61ab1
DH
993struct vfsmount *vfs_kern_mount(struct file_system_type *type,
994 int flags, const char *name,
995 void *data)
9d412a43 996{
9bc61ab1 997 struct fs_context *fc;
8f291889 998 struct vfsmount *mnt;
9bc61ab1 999 int ret = 0;
9d412a43
AV
1000
1001 if (!type)
3e1aeb00 1002 return ERR_PTR(-EINVAL);
9d412a43 1003
9bc61ab1
DH
1004 fc = fs_context_for_mount(type, flags);
1005 if (IS_ERR(fc))
1006 return ERR_CAST(fc);
1007
3e1aeb00
DH
1008 if (name)
1009 ret = vfs_parse_fs_string(fc, "source",
1010 name, strlen(name));
9bc61ab1
DH
1011 if (!ret)
1012 ret = parse_monolithic_mount_data(fc, data);
1013 if (!ret)
8f291889
AV
1014 mnt = fc_mount(fc);
1015 else
1016 mnt = ERR_PTR(ret);
9d412a43 1017
9bc61ab1 1018 put_fs_context(fc);
8f291889 1019 return mnt;
9d412a43
AV
1020}
1021EXPORT_SYMBOL_GPL(vfs_kern_mount);
1022
93faccbb
EB
1023struct vfsmount *
1024vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1025 const char *name, void *data)
1026{
1027 /* Until it is worked out how to pass the user namespace
1028 * through from the parent mount to the submount don't support
1029 * unprivileged mounts with submounts.
1030 */
1031 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1032 return ERR_PTR(-EPERM);
1033
e462ec50 1034 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1035}
1036EXPORT_SYMBOL_GPL(vfs_submount);
1037
87129cc0 1038static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1039 int flag)
1da177e4 1040{
87129cc0 1041 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1042 struct mount *mnt;
1043 int err;
1da177e4 1044
be34d1a3
DH
1045 mnt = alloc_vfsmnt(old->mnt_devname);
1046 if (!mnt)
1047 return ERR_PTR(-ENOMEM);
719f5d7f 1048
7a472ef4 1049 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1050 mnt->mnt_group_id = 0; /* not a peer of original */
1051 else
1052 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1053
be34d1a3
DH
1054 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1055 err = mnt_alloc_group_id(mnt);
1056 if (err)
1057 goto out_free;
1da177e4 1058 }
be34d1a3 1059
16a34adb
AV
1060 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1061 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1062
be34d1a3 1063 atomic_inc(&sb->s_active);
a6435940
CB
1064 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1065 if (mnt->mnt.mnt_userns != &init_user_ns)
1066 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
be34d1a3
DH
1067 mnt->mnt.mnt_sb = sb;
1068 mnt->mnt.mnt_root = dget(root);
1069 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1070 mnt->mnt_parent = mnt;
719ea2fb 1071 lock_mount_hash();
be34d1a3 1072 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1073 unlock_mount_hash();
be34d1a3 1074
7a472ef4
EB
1075 if ((flag & CL_SLAVE) ||
1076 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1077 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1078 mnt->mnt_master = old;
1079 CLEAR_MNT_SHARED(mnt);
1080 } else if (!(flag & CL_PRIVATE)) {
1081 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1082 list_add(&mnt->mnt_share, &old->mnt_share);
1083 if (IS_MNT_SLAVE(old))
1084 list_add(&mnt->mnt_slave, &old->mnt_slave);
1085 mnt->mnt_master = old->mnt_master;
5235d448
AV
1086 } else {
1087 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1088 }
1089 if (flag & CL_MAKE_SHARED)
1090 set_mnt_shared(mnt);
1091
1092 /* stick the duplicate mount on the same expiry list
1093 * as the original if that was on one */
1094 if (flag & CL_EXPIRE) {
1095 if (!list_empty(&old->mnt_expire))
1096 list_add(&mnt->mnt_expire, &old->mnt_expire);
1097 }
1098
cb338d06 1099 return mnt;
719f5d7f
MS
1100
1101 out_free:
8ffcb32e 1102 mnt_free_id(mnt);
719f5d7f 1103 free_vfsmnt(mnt);
be34d1a3 1104 return ERR_PTR(err);
1da177e4
LT
1105}
1106
9ea459e1
AV
1107static void cleanup_mnt(struct mount *mnt)
1108{
56cbb429
AV
1109 struct hlist_node *p;
1110 struct mount *m;
9ea459e1 1111 /*
56cbb429
AV
1112 * The warning here probably indicates that somebody messed
1113 * up a mnt_want/drop_write() pair. If this happens, the
1114 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1115 * The locking used to deal with mnt_count decrement provides barriers,
1116 * so mnt_get_writers() below is safe.
1117 */
1118 WARN_ON(mnt_get_writers(mnt));
1119 if (unlikely(mnt->mnt_pins.first))
1120 mnt_pin_kill(mnt);
56cbb429
AV
1121 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1122 hlist_del(&m->mnt_umount);
1123 mntput(&m->mnt);
1124 }
9ea459e1
AV
1125 fsnotify_vfsmount_delete(&mnt->mnt);
1126 dput(mnt->mnt.mnt_root);
1127 deactivate_super(mnt->mnt.mnt_sb);
1128 mnt_free_id(mnt);
1129 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1130}
1131
1132static void __cleanup_mnt(struct rcu_head *head)
1133{
1134 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1135}
1136
1137static LLIST_HEAD(delayed_mntput_list);
1138static void delayed_mntput(struct work_struct *unused)
1139{
1140 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1141 struct mount *m, *t;
9ea459e1 1142
29785735
BP
1143 llist_for_each_entry_safe(m, t, node, mnt_llist)
1144 cleanup_mnt(m);
9ea459e1
AV
1145}
1146static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1147
900148dc 1148static void mntput_no_expire(struct mount *mnt)
b3e19d92 1149{
4edbe133 1150 LIST_HEAD(list);
edf7ddbf 1151 int count;
4edbe133 1152
48a066e7 1153 rcu_read_lock();
9ea0a46c
AV
1154 if (likely(READ_ONCE(mnt->mnt_ns))) {
1155 /*
1156 * Since we don't do lock_mount_hash() here,
1157 * ->mnt_ns can change under us. However, if it's
1158 * non-NULL, then there's a reference that won't
1159 * be dropped until after an RCU delay done after
1160 * turning ->mnt_ns NULL. So if we observe it
1161 * non-NULL under rcu_read_lock(), the reference
1162 * we are dropping is not the final one.
1163 */
1164 mnt_add_count(mnt, -1);
48a066e7 1165 rcu_read_unlock();
f03c6599 1166 return;
b3e19d92 1167 }
719ea2fb 1168 lock_mount_hash();
119e1ef8
AV
1169 /*
1170 * make sure that if __legitimize_mnt() has not seen us grab
1171 * mount_lock, we'll see their refcount increment here.
1172 */
1173 smp_mb();
9ea0a46c 1174 mnt_add_count(mnt, -1);
edf7ddbf
EB
1175 count = mnt_get_count(mnt);
1176 if (count != 0) {
1177 WARN_ON(count < 0);
48a066e7 1178 rcu_read_unlock();
719ea2fb 1179 unlock_mount_hash();
99b7db7b
NP
1180 return;
1181 }
48a066e7
AV
1182 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1183 rcu_read_unlock();
1184 unlock_mount_hash();
1185 return;
1186 }
1187 mnt->mnt.mnt_flags |= MNT_DOOMED;
1188 rcu_read_unlock();
962830df 1189
39f7c4db 1190 list_del(&mnt->mnt_instance);
ce07d891
EB
1191
1192 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1193 struct mount *p, *tmp;
1194 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1195 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1196 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1197 }
1198 }
719ea2fb 1199 unlock_mount_hash();
4edbe133 1200 shrink_dentry_list(&list);
649a795a 1201
9ea459e1
AV
1202 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1203 struct task_struct *task = current;
1204 if (likely(!(task->flags & PF_KTHREAD))) {
1205 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
91989c70 1206 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
9ea459e1
AV
1207 return;
1208 }
1209 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1210 schedule_delayed_work(&delayed_mntput_work, 1);
1211 return;
1212 }
1213 cleanup_mnt(mnt);
b3e19d92 1214}
b3e19d92
NP
1215
1216void mntput(struct vfsmount *mnt)
1217{
1218 if (mnt) {
863d684f 1219 struct mount *m = real_mount(mnt);
b3e19d92 1220 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1221 if (unlikely(m->mnt_expiry_mark))
1222 m->mnt_expiry_mark = 0;
1223 mntput_no_expire(m);
b3e19d92
NP
1224 }
1225}
1226EXPORT_SYMBOL(mntput);
1227
1228struct vfsmount *mntget(struct vfsmount *mnt)
1229{
1230 if (mnt)
83adc753 1231 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1232 return mnt;
1233}
1234EXPORT_SYMBOL(mntget);
1235
c6609c0a
IK
1236/* path_is_mountpoint() - Check if path is a mount in the current
1237 * namespace.
1238 *
1239 * d_mountpoint() can only be used reliably to establish if a dentry is
1240 * not mounted in any namespace and that common case is handled inline.
1241 * d_mountpoint() isn't aware of the possibility there may be multiple
1242 * mounts using a given dentry in a different namespace. This function
1243 * checks if the passed in path is a mountpoint rather than the dentry
1244 * alone.
1245 */
1246bool path_is_mountpoint(const struct path *path)
1247{
1248 unsigned seq;
1249 bool res;
1250
1251 if (!d_mountpoint(path->dentry))
1252 return false;
1253
1254 rcu_read_lock();
1255 do {
1256 seq = read_seqbegin(&mount_lock);
1257 res = __path_is_mountpoint(path);
1258 } while (read_seqretry(&mount_lock, seq));
1259 rcu_read_unlock();
1260
1261 return res;
1262}
1263EXPORT_SYMBOL(path_is_mountpoint);
1264
ca71cf71 1265struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1266{
3064c356
AV
1267 struct mount *p;
1268 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1269 if (IS_ERR(p))
1270 return ERR_CAST(p);
1271 p->mnt.mnt_flags |= MNT_INTERNAL;
1272 return &p->mnt;
7b7b1ace 1273}
1da177e4 1274
a1a2c409 1275#ifdef CONFIG_PROC_FS
9f6c61f9
MS
1276static struct mount *mnt_list_next(struct mnt_namespace *ns,
1277 struct list_head *p)
1278{
1279 struct mount *mnt, *ret = NULL;
1280
1281 lock_ns_list(ns);
1282 list_for_each_continue(p, &ns->list) {
1283 mnt = list_entry(p, typeof(*mnt), mnt_list);
1284 if (!mnt_is_cursor(mnt)) {
1285 ret = mnt;
1286 break;
1287 }
1288 }
1289 unlock_ns_list(ns);
1290
1291 return ret;
1292}
1293
0226f492 1294/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1295static void *m_start(struct seq_file *m, loff_t *pos)
1296{
ede1bf0d 1297 struct proc_mounts *p = m->private;
9f6c61f9 1298 struct list_head *prev;
1da177e4 1299
390c6843 1300 down_read(&namespace_sem);
9f6c61f9
MS
1301 if (!*pos) {
1302 prev = &p->ns->list;
1303 } else {
1304 prev = &p->cursor.mnt_list;
1305
1306 /* Read after we'd reached the end? */
1307 if (list_empty(prev))
1308 return NULL;
c7999c36
AV
1309 }
1310
9f6c61f9 1311 return mnt_list_next(p->ns, prev);
1da177e4
LT
1312}
1313
1314static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1315{
ede1bf0d 1316 struct proc_mounts *p = m->private;
9f6c61f9 1317 struct mount *mnt = v;
b0765fb8 1318
9f6c61f9
MS
1319 ++*pos;
1320 return mnt_list_next(p->ns, &mnt->mnt_list);
1da177e4
LT
1321}
1322
1323static void m_stop(struct seq_file *m, void *v)
1324{
9f6c61f9
MS
1325 struct proc_mounts *p = m->private;
1326 struct mount *mnt = v;
1327
1328 lock_ns_list(p->ns);
1329 if (mnt)
1330 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1331 else
1332 list_del_init(&p->cursor.mnt_list);
1333 unlock_ns_list(p->ns);
390c6843 1334 up_read(&namespace_sem);
1da177e4
LT
1335}
1336
0226f492 1337static int m_show(struct seq_file *m, void *v)
2d4d4864 1338{
ede1bf0d 1339 struct proc_mounts *p = m->private;
9f6c61f9 1340 struct mount *r = v;
0226f492 1341 return p->show(m, &r->mnt);
1da177e4
LT
1342}
1343
a1a2c409 1344const struct seq_operations mounts_op = {
1da177e4
LT
1345 .start = m_start,
1346 .next = m_next,
1347 .stop = m_stop,
0226f492 1348 .show = m_show,
b4629fe2 1349};
9f6c61f9
MS
1350
1351void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1352{
1353 down_read(&namespace_sem);
1354 lock_ns_list(ns);
1355 list_del(&cursor->mnt_list);
1356 unlock_ns_list(ns);
1357 up_read(&namespace_sem);
1358}
a1a2c409 1359#endif /* CONFIG_PROC_FS */
b4629fe2 1360
1da177e4
LT
1361/**
1362 * may_umount_tree - check if a mount tree is busy
1363 * @mnt: root of mount tree
1364 *
1365 * This is called to check if a tree of mounts has any
1366 * open files, pwds, chroots or sub mounts that are
1367 * busy.
1368 */
909b0a88 1369int may_umount_tree(struct vfsmount *m)
1da177e4 1370{
909b0a88 1371 struct mount *mnt = real_mount(m);
36341f64
RP
1372 int actual_refs = 0;
1373 int minimum_refs = 0;
315fc83e 1374 struct mount *p;
909b0a88 1375 BUG_ON(!m);
1da177e4 1376
b3e19d92 1377 /* write lock needed for mnt_get_count */
719ea2fb 1378 lock_mount_hash();
909b0a88 1379 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1380 actual_refs += mnt_get_count(p);
1da177e4 1381 minimum_refs += 2;
1da177e4 1382 }
719ea2fb 1383 unlock_mount_hash();
1da177e4
LT
1384
1385 if (actual_refs > minimum_refs)
e3474a8e 1386 return 0;
1da177e4 1387
e3474a8e 1388 return 1;
1da177e4
LT
1389}
1390
1391EXPORT_SYMBOL(may_umount_tree);
1392
1393/**
1394 * may_umount - check if a mount point is busy
1395 * @mnt: root of mount
1396 *
1397 * This is called to check if a mount point has any
1398 * open files, pwds, chroots or sub mounts. If the
1399 * mount has sub mounts this will return busy
1400 * regardless of whether the sub mounts are busy.
1401 *
1402 * Doesn't take quota and stuff into account. IOW, in some cases it will
1403 * give false negatives. The main reason why it's here is that we need
1404 * a non-destructive way to look for easily umountable filesystems.
1405 */
1406int may_umount(struct vfsmount *mnt)
1407{
e3474a8e 1408 int ret = 1;
8ad08d8a 1409 down_read(&namespace_sem);
719ea2fb 1410 lock_mount_hash();
1ab59738 1411 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1412 ret = 0;
719ea2fb 1413 unlock_mount_hash();
8ad08d8a 1414 up_read(&namespace_sem);
a05964f3 1415 return ret;
1da177e4
LT
1416}
1417
1418EXPORT_SYMBOL(may_umount);
1419
97216be0 1420static void namespace_unlock(void)
70fbcdf4 1421{
a3b3c562 1422 struct hlist_head head;
56cbb429
AV
1423 struct hlist_node *p;
1424 struct mount *m;
4edbe133 1425 LIST_HEAD(list);
97216be0 1426
a3b3c562 1427 hlist_move_list(&unmounted, &head);
4edbe133 1428 list_splice_init(&ex_mountpoints, &list);
97216be0 1429
97216be0
AV
1430 up_write(&namespace_sem);
1431
4edbe133
AV
1432 shrink_dentry_list(&list);
1433
a3b3c562
EB
1434 if (likely(hlist_empty(&head)))
1435 return;
1436
22cb7405 1437 synchronize_rcu_expedited();
48a066e7 1438
56cbb429
AV
1439 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1440 hlist_del(&m->mnt_umount);
1441 mntput(&m->mnt);
1442 }
70fbcdf4
RP
1443}
1444
97216be0 1445static inline void namespace_lock(void)
e3197d83 1446{
97216be0 1447 down_write(&namespace_sem);
e3197d83
AV
1448}
1449
e819f152
EB
1450enum umount_tree_flags {
1451 UMOUNT_SYNC = 1,
1452 UMOUNT_PROPAGATE = 2,
e0c9c0af 1453 UMOUNT_CONNECTED = 4,
e819f152 1454};
f2d0a123
EB
1455
1456static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1457{
1458 /* Leaving mounts connected is only valid for lazy umounts */
1459 if (how & UMOUNT_SYNC)
1460 return true;
1461
1462 /* A mount without a parent has nothing to be connected to */
1463 if (!mnt_has_parent(mnt))
1464 return true;
1465
1466 /* Because the reference counting rules change when mounts are
1467 * unmounted and connected, umounted mounts may not be
1468 * connected to mounted mounts.
1469 */
1470 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1471 return true;
1472
1473 /* Has it been requested that the mount remain connected? */
1474 if (how & UMOUNT_CONNECTED)
1475 return false;
1476
1477 /* Is the mount locked such that it needs to remain connected? */
1478 if (IS_MNT_LOCKED(mnt))
1479 return false;
1480
1481 /* By default disconnect the mount */
1482 return true;
1483}
1484
99b7db7b 1485/*
48a066e7 1486 * mount_lock must be held
99b7db7b
NP
1487 * namespace_sem must be held for write
1488 */
e819f152 1489static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1490{
c003b26f 1491 LIST_HEAD(tmp_list);
315fc83e 1492 struct mount *p;
1da177e4 1493
5d88457e
EB
1494 if (how & UMOUNT_PROPAGATE)
1495 propagate_mount_unlock(mnt);
1496
c003b26f 1497 /* Gather the mounts to umount */
590ce4bc
EB
1498 for (p = mnt; p; p = next_mnt(p, mnt)) {
1499 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1500 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1501 }
1da177e4 1502
411a938b 1503 /* Hide the mounts from mnt_mounts */
c003b26f 1504 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1505 list_del_init(&p->mnt_child);
c003b26f 1506 }
88b368f2 1507
c003b26f 1508 /* Add propogated mounts to the tmp_list */
e819f152 1509 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1510 propagate_umount(&tmp_list);
a05964f3 1511
c003b26f 1512 while (!list_empty(&tmp_list)) {
d2921684 1513 struct mnt_namespace *ns;
ce07d891 1514 bool disconnect;
c003b26f 1515 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1516 list_del_init(&p->mnt_expire);
1a4eeaf2 1517 list_del_init(&p->mnt_list);
d2921684
EB
1518 ns = p->mnt_ns;
1519 if (ns) {
1520 ns->mounts--;
1521 __touch_mnt_namespace(ns);
1522 }
143c8c91 1523 p->mnt_ns = NULL;
e819f152 1524 if (how & UMOUNT_SYNC)
48a066e7 1525 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1526
f2d0a123 1527 disconnect = disconnect_mount(p, how);
676da58d 1528 if (mnt_has_parent(p)) {
81b6b061 1529 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1530 if (!disconnect) {
1531 /* Don't forget about p */
1532 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1533 } else {
1534 umount_mnt(p);
1535 }
7c4b93d8 1536 }
0f0afb1d 1537 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1538 if (disconnect)
1539 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1540 }
1541}
1542
b54b9be7 1543static void shrink_submounts(struct mount *mnt);
c35038be 1544
8d0347f6
DH
1545static int do_umount_root(struct super_block *sb)
1546{
1547 int ret = 0;
1548
1549 down_write(&sb->s_umount);
1550 if (!sb_rdonly(sb)) {
1551 struct fs_context *fc;
1552
1553 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1554 SB_RDONLY);
1555 if (IS_ERR(fc)) {
1556 ret = PTR_ERR(fc);
1557 } else {
1558 ret = parse_monolithic_mount_data(fc, NULL);
1559 if (!ret)
1560 ret = reconfigure_super(fc);
1561 put_fs_context(fc);
1562 }
1563 }
1564 up_write(&sb->s_umount);
1565 return ret;
1566}
1567
1ab59738 1568static int do_umount(struct mount *mnt, int flags)
1da177e4 1569{
1ab59738 1570 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1571 int retval;
1572
1ab59738 1573 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1574 if (retval)
1575 return retval;
1576
1577 /*
1578 * Allow userspace to request a mountpoint be expired rather than
1579 * unmounting unconditionally. Unmount only happens if:
1580 * (1) the mark is already set (the mark is cleared by mntput())
1581 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1582 */
1583 if (flags & MNT_EXPIRE) {
1ab59738 1584 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1585 flags & (MNT_FORCE | MNT_DETACH))
1586 return -EINVAL;
1587
b3e19d92
NP
1588 /*
1589 * probably don't strictly need the lock here if we examined
1590 * all race cases, but it's a slowpath.
1591 */
719ea2fb 1592 lock_mount_hash();
83adc753 1593 if (mnt_get_count(mnt) != 2) {
719ea2fb 1594 unlock_mount_hash();
1da177e4 1595 return -EBUSY;
b3e19d92 1596 }
719ea2fb 1597 unlock_mount_hash();
1da177e4 1598
863d684f 1599 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1600 return -EAGAIN;
1601 }
1602
1603 /*
1604 * If we may have to abort operations to get out of this
1605 * mount, and they will themselves hold resources we must
1606 * allow the fs to do things. In the Unix tradition of
1607 * 'Gee thats tricky lets do it in userspace' the umount_begin
1608 * might fail to complete on the first run through as other tasks
1609 * must return, and the like. Thats for the mount program to worry
1610 * about for the moment.
1611 */
1612
42faad99 1613 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1614 sb->s_op->umount_begin(sb);
42faad99 1615 }
1da177e4
LT
1616
1617 /*
1618 * No sense to grab the lock for this test, but test itself looks
1619 * somewhat bogus. Suggestions for better replacement?
1620 * Ho-hum... In principle, we might treat that as umount + switch
1621 * to rootfs. GC would eventually take care of the old vfsmount.
1622 * Actually it makes sense, especially if rootfs would contain a
1623 * /reboot - static binary that would close all descriptors and
1624 * call reboot(9). Then init(8) could umount root and exec /reboot.
1625 */
1ab59738 1626 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1627 /*
1628 * Special case for "unmounting" root ...
1629 * we just try to remount it readonly.
1630 */
bc6155d1 1631 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1632 return -EPERM;
8d0347f6 1633 return do_umount_root(sb);
1da177e4
LT
1634 }
1635
97216be0 1636 namespace_lock();
719ea2fb 1637 lock_mount_hash();
1da177e4 1638
25d202ed
EB
1639 /* Recheck MNT_LOCKED with the locks held */
1640 retval = -EINVAL;
1641 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1642 goto out;
1643
1644 event++;
48a066e7 1645 if (flags & MNT_DETACH) {
1a4eeaf2 1646 if (!list_empty(&mnt->mnt_list))
e819f152 1647 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1648 retval = 0;
48a066e7
AV
1649 } else {
1650 shrink_submounts(mnt);
1651 retval = -EBUSY;
1652 if (!propagate_mount_busy(mnt, 2)) {
1653 if (!list_empty(&mnt->mnt_list))
e819f152 1654 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1655 retval = 0;
1656 }
1da177e4 1657 }
25d202ed 1658out:
719ea2fb 1659 unlock_mount_hash();
e3197d83 1660 namespace_unlock();
1da177e4
LT
1661 return retval;
1662}
1663
80b5dce8
EB
1664/*
1665 * __detach_mounts - lazily unmount all mounts on the specified dentry
1666 *
1667 * During unlink, rmdir, and d_drop it is possible to loose the path
1668 * to an existing mountpoint, and wind up leaking the mount.
1669 * detach_mounts allows lazily unmounting those mounts instead of
1670 * leaking them.
1671 *
1672 * The caller may hold dentry->d_inode->i_mutex.
1673 */
1674void __detach_mounts(struct dentry *dentry)
1675{
1676 struct mountpoint *mp;
1677 struct mount *mnt;
1678
1679 namespace_lock();
3895dbf8 1680 lock_mount_hash();
80b5dce8 1681 mp = lookup_mountpoint(dentry);
adc9b5c0 1682 if (!mp)
80b5dce8
EB
1683 goto out_unlock;
1684
e06b933e 1685 event++;
80b5dce8
EB
1686 while (!hlist_empty(&mp->m_list)) {
1687 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1688 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1689 umount_mnt(mnt);
56cbb429 1690 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1691 }
e0c9c0af 1692 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1693 }
80b5dce8
EB
1694 put_mountpoint(mp);
1695out_unlock:
3895dbf8 1696 unlock_mount_hash();
80b5dce8
EB
1697 namespace_unlock();
1698}
1699
dd111b31 1700/*
9b40bc90
AV
1701 * Is the caller allowed to modify his namespace?
1702 */
1703static inline bool may_mount(void)
1704{
1705 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1706}
1707
df2474a2 1708#ifdef CONFIG_MANDATORY_FILE_LOCKING
9e8925b6
JL
1709static inline bool may_mandlock(void)
1710{
95ace754 1711 return capable(CAP_SYS_ADMIN);
9e8925b6 1712}
df2474a2
JL
1713#else
1714static inline bool may_mandlock(void)
1715{
1716 pr_warn("VFS: \"mand\" mount option not supported");
1717 return false;
1718}
1719#endif
9e8925b6 1720
25ccd24f 1721static int can_umount(const struct path *path, int flags)
1da177e4 1722{
25ccd24f 1723 struct mount *mnt = real_mount(path->mnt);
1da177e4 1724
9b40bc90
AV
1725 if (!may_mount())
1726 return -EPERM;
41525f56 1727 if (path->dentry != path->mnt->mnt_root)
25ccd24f 1728 return -EINVAL;
143c8c91 1729 if (!check_mnt(mnt))
25ccd24f 1730 return -EINVAL;
25d202ed 1731 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
25ccd24f 1732 return -EINVAL;
b2f5d4dc 1733 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
25ccd24f
CH
1734 return -EPERM;
1735 return 0;
1736}
1737
a0a6df9a 1738// caller is responsible for flags being sane
25ccd24f
CH
1739int path_umount(struct path *path, int flags)
1740{
1741 struct mount *mnt = real_mount(path->mnt);
1742 int ret;
1743
1744 ret = can_umount(path, flags);
1745 if (!ret)
1746 ret = do_umount(mnt, flags);
1da177e4 1747
429731b1 1748 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
41525f56 1749 dput(path->dentry);
900148dc 1750 mntput_no_expire(mnt);
25ccd24f 1751 return ret;
1da177e4
LT
1752}
1753
09267def 1754static int ksys_umount(char __user *name, int flags)
41525f56
CH
1755{
1756 int lookup_flags = LOOKUP_MOUNTPOINT;
1757 struct path path;
1758 int ret;
1759
a0a6df9a
AV
1760 // basic validity checks done first
1761 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1762 return -EINVAL;
1763
41525f56
CH
1764 if (!(flags & UMOUNT_NOFOLLOW))
1765 lookup_flags |= LOOKUP_FOLLOW;
1766 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1767 if (ret)
1768 return ret;
1769 return path_umount(&path, flags);
1770}
1771
3a18ef5c
DB
1772SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1773{
1774 return ksys_umount(name, flags);
1775}
1776
1da177e4
LT
1777#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1778
1779/*
b58fed8b 1780 * The 2.0 compatible umount. No flags.
1da177e4 1781 */
bdc480e3 1782SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1783{
3a18ef5c 1784 return ksys_umount(name, 0);
1da177e4
LT
1785}
1786
1787#endif
1788
4ce5d2b1 1789static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1790{
4ce5d2b1 1791 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1792 return dentry->d_op == &ns_dentry_operations &&
1793 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1794}
1795
213921f9 1796static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1797{
1798 return container_of(ns, struct mnt_namespace, ns);
1799}
1800
303cc571
CB
1801struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1802{
1803 return &mnt->ns;
1804}
1805
4ce5d2b1
EB
1806static bool mnt_ns_loop(struct dentry *dentry)
1807{
1808 /* Could bind mounting the mount namespace inode cause a
1809 * mount namespace loop?
1810 */
1811 struct mnt_namespace *mnt_ns;
1812 if (!is_mnt_ns_file(dentry))
1813 return false;
1814
f77c8014 1815 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1816 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1817}
1818
87129cc0 1819struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1820 int flag)
1da177e4 1821{
84d17192 1822 struct mount *res, *p, *q, *r, *parent;
1da177e4 1823
4ce5d2b1
EB
1824 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1825 return ERR_PTR(-EINVAL);
1826
1827 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1828 return ERR_PTR(-EINVAL);
9676f0c6 1829
36341f64 1830 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1831 if (IS_ERR(q))
1832 return q;
1833
a73324da 1834 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1835
1836 p = mnt;
6b41d536 1837 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1838 struct mount *s;
7ec02ef1 1839 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1840 continue;
1841
909b0a88 1842 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1843 if (!(flag & CL_COPY_UNBINDABLE) &&
1844 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1845 if (s->mnt.mnt_flags & MNT_LOCKED) {
1846 /* Both unbindable and locked. */
1847 q = ERR_PTR(-EPERM);
1848 goto out;
1849 } else {
1850 s = skip_mnt_tree(s);
1851 continue;
1852 }
4ce5d2b1
EB
1853 }
1854 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1855 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1856 s = skip_mnt_tree(s);
1857 continue;
1858 }
0714a533
AV
1859 while (p != s->mnt_parent) {
1860 p = p->mnt_parent;
1861 q = q->mnt_parent;
1da177e4 1862 }
87129cc0 1863 p = s;
84d17192 1864 parent = q;
87129cc0 1865 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1866 if (IS_ERR(q))
1867 goto out;
719ea2fb 1868 lock_mount_hash();
1a4eeaf2 1869 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1870 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1871 unlock_mount_hash();
1da177e4
LT
1872 }
1873 }
1874 return res;
be34d1a3 1875out:
1da177e4 1876 if (res) {
719ea2fb 1877 lock_mount_hash();
e819f152 1878 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1879 unlock_mount_hash();
1da177e4 1880 }
be34d1a3 1881 return q;
1da177e4
LT
1882}
1883
be34d1a3
DH
1884/* Caller should check returned pointer for errors */
1885
ca71cf71 1886struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1887{
cb338d06 1888 struct mount *tree;
97216be0 1889 namespace_lock();
cd4a4017
EB
1890 if (!check_mnt(real_mount(path->mnt)))
1891 tree = ERR_PTR(-EINVAL);
1892 else
1893 tree = copy_tree(real_mount(path->mnt), path->dentry,
1894 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1895 namespace_unlock();
be34d1a3 1896 if (IS_ERR(tree))
52e220d3 1897 return ERR_CAST(tree);
be34d1a3 1898 return &tree->mnt;
8aec0809
AV
1899}
1900
a07b2000
AV
1901static void free_mnt_ns(struct mnt_namespace *);
1902static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1903
1904void dissolve_on_fput(struct vfsmount *mnt)
1905{
1906 struct mnt_namespace *ns;
1907 namespace_lock();
1908 lock_mount_hash();
1909 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1910 if (ns) {
1911 if (is_anon_ns(ns))
1912 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1913 else
1914 ns = NULL;
1915 }
a07b2000
AV
1916 unlock_mount_hash();
1917 namespace_unlock();
44dfd84a
DH
1918 if (ns)
1919 free_mnt_ns(ns);
a07b2000
AV
1920}
1921
8aec0809
AV
1922void drop_collected_mounts(struct vfsmount *mnt)
1923{
97216be0 1924 namespace_lock();
719ea2fb 1925 lock_mount_hash();
9c8e0a1b 1926 umount_tree(real_mount(mnt), 0);
719ea2fb 1927 unlock_mount_hash();
3ab6abee 1928 namespace_unlock();
8aec0809
AV
1929}
1930
c771d683
MS
1931/**
1932 * clone_private_mount - create a private clone of a path
1933 *
1934 * This creates a new vfsmount, which will be the clone of @path. The new will
1935 * not be attached anywhere in the namespace and will be private (i.e. changes
1936 * to the originating mount won't be propagated into this).
1937 *
1938 * Release with mntput().
1939 */
ca71cf71 1940struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1941{
1942 struct mount *old_mnt = real_mount(path->mnt);
1943 struct mount *new_mnt;
1944
1945 if (IS_MNT_UNBINDABLE(old_mnt))
1946 return ERR_PTR(-EINVAL);
1947
c771d683 1948 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1949 if (IS_ERR(new_mnt))
1950 return ERR_CAST(new_mnt);
1951
df820f8d
MS
1952 /* Longterm mount to be removed by kern_unmount*() */
1953 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1954
c771d683
MS
1955 return &new_mnt->mnt;
1956}
1957EXPORT_SYMBOL_GPL(clone_private_mount);
1958
1f707137
AV
1959int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1960 struct vfsmount *root)
1961{
1a4eeaf2 1962 struct mount *mnt;
1f707137
AV
1963 int res = f(root, arg);
1964 if (res)
1965 return res;
1a4eeaf2
AV
1966 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1967 res = f(&mnt->mnt, arg);
1f707137
AV
1968 if (res)
1969 return res;
1970 }
1971 return 0;
1972}
1973
3bd045cc
AV
1974static void lock_mnt_tree(struct mount *mnt)
1975{
1976 struct mount *p;
1977
1978 for (p = mnt; p; p = next_mnt(p, mnt)) {
1979 int flags = p->mnt.mnt_flags;
1980 /* Don't allow unprivileged users to change mount flags */
1981 flags |= MNT_LOCK_ATIME;
1982
1983 if (flags & MNT_READONLY)
1984 flags |= MNT_LOCK_READONLY;
1985
1986 if (flags & MNT_NODEV)
1987 flags |= MNT_LOCK_NODEV;
1988
1989 if (flags & MNT_NOSUID)
1990 flags |= MNT_LOCK_NOSUID;
1991
1992 if (flags & MNT_NOEXEC)
1993 flags |= MNT_LOCK_NOEXEC;
1994 /* Don't allow unprivileged users to reveal what is under a mount */
1995 if (list_empty(&p->mnt_expire))
1996 flags |= MNT_LOCKED;
1997 p->mnt.mnt_flags = flags;
1998 }
1999}
2000
4b8b21f4 2001static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 2002{
315fc83e 2003 struct mount *p;
719f5d7f 2004
909b0a88 2005 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 2006 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 2007 mnt_release_group_id(p);
719f5d7f
MS
2008 }
2009}
2010
4b8b21f4 2011static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 2012{
315fc83e 2013 struct mount *p;
719f5d7f 2014
909b0a88 2015 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 2016 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 2017 int err = mnt_alloc_group_id(p);
719f5d7f 2018 if (err) {
4b8b21f4 2019 cleanup_group_ids(mnt, p);
719f5d7f
MS
2020 return err;
2021 }
2022 }
2023 }
2024
2025 return 0;
2026}
2027
d2921684
EB
2028int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2029{
2030 unsigned int max = READ_ONCE(sysctl_mount_max);
2031 unsigned int mounts = 0, old, pending, sum;
2032 struct mount *p;
2033
2034 for (p = mnt; p; p = next_mnt(p, mnt))
2035 mounts++;
2036
2037 old = ns->mounts;
2038 pending = ns->pending_mounts;
2039 sum = old + pending;
2040 if ((old > sum) ||
2041 (pending > sum) ||
2042 (max < sum) ||
2043 (mounts > (max - sum)))
2044 return -ENOSPC;
2045
2046 ns->pending_mounts = pending + mounts;
2047 return 0;
2048}
2049
b90fa9ae
RP
2050/*
2051 * @source_mnt : mount tree to be attached
21444403
RP
2052 * @nd : place the mount tree @source_mnt is attached
2053 * @parent_nd : if non-null, detach the source_mnt from its parent and
2054 * store the parent mount and mountpoint dentry.
2055 * (done when source_mnt is moved)
b90fa9ae
RP
2056 *
2057 * NOTE: in the table below explains the semantics when a source mount
2058 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
2059 * ---------------------------------------------------------------------------
2060 * | BIND MOUNT OPERATION |
2061 * |**************************************************************************
2062 * | source-->| shared | private | slave | unbindable |
2063 * | dest | | | | |
2064 * | | | | | | |
2065 * | v | | | | |
2066 * |**************************************************************************
2067 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2068 * | | | | | |
2069 * |non-shared| shared (+) | private | slave (*) | invalid |
2070 * ***************************************************************************
b90fa9ae
RP
2071 * A bind operation clones the source mount and mounts the clone on the
2072 * destination mount.
2073 *
2074 * (++) the cloned mount is propagated to all the mounts in the propagation
2075 * tree of the destination mount and the cloned mount is added to
2076 * the peer group of the source mount.
2077 * (+) the cloned mount is created under the destination mount and is marked
2078 * as shared. The cloned mount is added to the peer group of the source
2079 * mount.
5afe0022
RP
2080 * (+++) the mount is propagated to all the mounts in the propagation tree
2081 * of the destination mount and the cloned mount is made slave
2082 * of the same master as that of the source mount. The cloned mount
2083 * is marked as 'shared and slave'.
2084 * (*) the cloned mount is made a slave of the same master as that of the
2085 * source mount.
2086 *
9676f0c6
RP
2087 * ---------------------------------------------------------------------------
2088 * | MOVE MOUNT OPERATION |
2089 * |**************************************************************************
2090 * | source-->| shared | private | slave | unbindable |
2091 * | dest | | | | |
2092 * | | | | | | |
2093 * | v | | | | |
2094 * |**************************************************************************
2095 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2096 * | | | | | |
2097 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2098 * ***************************************************************************
5afe0022
RP
2099 *
2100 * (+) the mount is moved to the destination. And is then propagated to
2101 * all the mounts in the propagation tree of the destination mount.
21444403 2102 * (+*) the mount is moved to the destination.
5afe0022
RP
2103 * (+++) the mount is moved to the destination and is then propagated to
2104 * all the mounts belonging to the destination mount's propagation tree.
2105 * the mount is marked as 'shared and slave'.
2106 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2107 *
2108 * if the source mount is a tree, the operations explained above is
2109 * applied to each mount in the tree.
2110 * Must be called without spinlocks held, since this function can sleep
2111 * in allocations.
2112 */
0fb54e50 2113static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2114 struct mount *dest_mnt,
2115 struct mountpoint *dest_mp,
2763d119 2116 bool moving)
b90fa9ae 2117{
3bd045cc 2118 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2119 HLIST_HEAD(tree_list);
d2921684 2120 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2121 struct mountpoint *smp;
315fc83e 2122 struct mount *child, *p;
38129a13 2123 struct hlist_node *n;
719f5d7f 2124 int err;
b90fa9ae 2125
1064f874
EB
2126 /* Preallocate a mountpoint in case the new mounts need
2127 * to be tucked under other mounts.
2128 */
2129 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2130 if (IS_ERR(smp))
2131 return PTR_ERR(smp);
2132
d2921684 2133 /* Is there space to add these mounts to the mount namespace? */
2763d119 2134 if (!moving) {
d2921684
EB
2135 err = count_mounts(ns, source_mnt);
2136 if (err)
2137 goto out;
2138 }
2139
fc7be130 2140 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2141 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2142 if (err)
2143 goto out;
0b1b901b 2144 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2145 lock_mount_hash();
0b1b901b
AV
2146 if (err)
2147 goto out_cleanup_ids;
909b0a88 2148 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2149 set_mnt_shared(p);
0b1b901b
AV
2150 } else {
2151 lock_mount_hash();
b90fa9ae 2152 }
2763d119
AV
2153 if (moving) {
2154 unhash_mnt(source_mnt);
84d17192 2155 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2156 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2157 } else {
44dfd84a
DH
2158 if (source_mnt->mnt_ns) {
2159 /* move from anon - the caller will destroy */
2160 list_del_init(&source_mnt->mnt_ns->list);
2161 }
84d17192 2162 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2163 commit_tree(source_mnt);
21444403 2164 }
b90fa9ae 2165
38129a13 2166 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2167 struct mount *q;
38129a13 2168 hlist_del_init(&child->mnt_hash);
1064f874
EB
2169 q = __lookup_mnt(&child->mnt_parent->mnt,
2170 child->mnt_mountpoint);
2171 if (q)
2172 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2173 /* Notice when we are propagating across user namespaces */
2174 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2175 lock_mnt_tree(child);
d728cf79 2176 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2177 commit_tree(child);
b90fa9ae 2178 }
1064f874 2179 put_mountpoint(smp);
719ea2fb 2180 unlock_mount_hash();
99b7db7b 2181
b90fa9ae 2182 return 0;
719f5d7f
MS
2183
2184 out_cleanup_ids:
f2ebb3a9
AV
2185 while (!hlist_empty(&tree_list)) {
2186 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2187 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2188 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2189 }
2190 unlock_mount_hash();
0b1b901b 2191 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2192 out:
d2921684 2193 ns->pending_mounts = 0;
1064f874
EB
2194
2195 read_seqlock_excl(&mount_lock);
2196 put_mountpoint(smp);
2197 read_sequnlock_excl(&mount_lock);
2198
719f5d7f 2199 return err;
b90fa9ae
RP
2200}
2201
84d17192 2202static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2203{
2204 struct vfsmount *mnt;
84d17192 2205 struct dentry *dentry = path->dentry;
b12cea91 2206retry:
5955102c 2207 inode_lock(dentry->d_inode);
84d17192 2208 if (unlikely(cant_mount(dentry))) {
5955102c 2209 inode_unlock(dentry->d_inode);
84d17192 2210 return ERR_PTR(-ENOENT);
b12cea91 2211 }
97216be0 2212 namespace_lock();
b12cea91 2213 mnt = lookup_mnt(path);
84d17192 2214 if (likely(!mnt)) {
3895dbf8 2215 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2216 if (IS_ERR(mp)) {
97216be0 2217 namespace_unlock();
5955102c 2218 inode_unlock(dentry->d_inode);
84d17192
AV
2219 return mp;
2220 }
2221 return mp;
2222 }
97216be0 2223 namespace_unlock();
5955102c 2224 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2225 path_put(path);
2226 path->mnt = mnt;
84d17192 2227 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2228 goto retry;
2229}
2230
84d17192 2231static void unlock_mount(struct mountpoint *where)
b12cea91 2232{
84d17192 2233 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2234
2235 read_seqlock_excl(&mount_lock);
84d17192 2236 put_mountpoint(where);
3895dbf8
EB
2237 read_sequnlock_excl(&mount_lock);
2238
328e6d90 2239 namespace_unlock();
5955102c 2240 inode_unlock(dentry->d_inode);
b12cea91
AV
2241}
2242
84d17192 2243static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2244{
e462ec50 2245 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2246 return -EINVAL;
2247
e36cb0b8
DH
2248 if (d_is_dir(mp->m_dentry) !=
2249 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2250 return -ENOTDIR;
2251
2763d119 2252 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2253}
2254
7a2e8a8f
VA
2255/*
2256 * Sanity check the flags to change_mnt_propagation.
2257 */
2258
e462ec50 2259static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2260{
e462ec50 2261 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2262
2263 /* Fail if any non-propagation flags are set */
2264 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2265 return 0;
2266 /* Only one propagation flag should be set */
2267 if (!is_power_of_2(type))
2268 return 0;
2269 return type;
2270}
2271
07b20889
RP
2272/*
2273 * recursively change the type of the mountpoint.
2274 */
e462ec50 2275static int do_change_type(struct path *path, int ms_flags)
07b20889 2276{
315fc83e 2277 struct mount *m;
4b8b21f4 2278 struct mount *mnt = real_mount(path->mnt);
e462ec50 2279 int recurse = ms_flags & MS_REC;
7a2e8a8f 2280 int type;
719f5d7f 2281 int err = 0;
07b20889 2282
2d92ab3c 2283 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2284 return -EINVAL;
2285
e462ec50 2286 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2287 if (!type)
2288 return -EINVAL;
2289
97216be0 2290 namespace_lock();
719f5d7f
MS
2291 if (type == MS_SHARED) {
2292 err = invent_group_ids(mnt, recurse);
2293 if (err)
2294 goto out_unlock;
2295 }
2296
719ea2fb 2297 lock_mount_hash();
909b0a88 2298 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2299 change_mnt_propagation(m, type);
719ea2fb 2300 unlock_mount_hash();
719f5d7f
MS
2301
2302 out_unlock:
97216be0 2303 namespace_unlock();
719f5d7f 2304 return err;
07b20889
RP
2305}
2306
5ff9d8a6
EB
2307static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2308{
2309 struct mount *child;
2310 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2311 if (!is_subdir(child->mnt_mountpoint, dentry))
2312 continue;
2313
2314 if (child->mnt.mnt_flags & MNT_LOCKED)
2315 return true;
2316 }
2317 return false;
2318}
2319
a07b2000
AV
2320static struct mount *__do_loopback(struct path *old_path, int recurse)
2321{
2322 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2323
2324 if (IS_MNT_UNBINDABLE(old))
2325 return mnt;
2326
2327 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2328 return mnt;
2329
2330 if (!recurse && has_locked_children(old, old_path->dentry))
2331 return mnt;
2332
2333 if (recurse)
2334 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2335 else
2336 mnt = clone_mnt(old, old_path->dentry, 0);
2337
2338 if (!IS_ERR(mnt))
2339 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2340
2341 return mnt;
2342}
2343
1da177e4
LT
2344/*
2345 * do loopback mount.
2346 */
808d4e3c 2347static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2348 int recurse)
1da177e4 2349{
2d92ab3c 2350 struct path old_path;
a07b2000 2351 struct mount *mnt = NULL, *parent;
84d17192 2352 struct mountpoint *mp;
57eccb83 2353 int err;
1da177e4
LT
2354 if (!old_name || !*old_name)
2355 return -EINVAL;
815d405c 2356 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2357 if (err)
2358 return err;
2359
8823c079 2360 err = -EINVAL;
4ce5d2b1 2361 if (mnt_ns_loop(old_path.dentry))
dd111b31 2362 goto out;
8823c079 2363
84d17192 2364 mp = lock_mount(path);
a07b2000
AV
2365 if (IS_ERR(mp)) {
2366 err = PTR_ERR(mp);
b12cea91 2367 goto out;
a07b2000 2368 }
b12cea91 2369
84d17192 2370 parent = real_mount(path->mnt);
e149ed2b
AV
2371 if (!check_mnt(parent))
2372 goto out2;
2373
a07b2000 2374 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2375 if (IS_ERR(mnt)) {
2376 err = PTR_ERR(mnt);
e9c5d8a5 2377 goto out2;
be34d1a3 2378 }
ccd48bc7 2379
84d17192 2380 err = graft_tree(mnt, parent, mp);
ccd48bc7 2381 if (err) {
719ea2fb 2382 lock_mount_hash();
e819f152 2383 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2384 unlock_mount_hash();
5b83d2c5 2385 }
b12cea91 2386out2:
84d17192 2387 unlock_mount(mp);
ccd48bc7 2388out:
2d92ab3c 2389 path_put(&old_path);
1da177e4
LT
2390 return err;
2391}
2392
a07b2000
AV
2393static struct file *open_detached_copy(struct path *path, bool recursive)
2394{
2395 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2396 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2397 struct mount *mnt, *p;
2398 struct file *file;
2399
2400 if (IS_ERR(ns))
2401 return ERR_CAST(ns);
2402
2403 namespace_lock();
2404 mnt = __do_loopback(path, recursive);
2405 if (IS_ERR(mnt)) {
2406 namespace_unlock();
2407 free_mnt_ns(ns);
2408 return ERR_CAST(mnt);
2409 }
2410
2411 lock_mount_hash();
2412 for (p = mnt; p; p = next_mnt(p, mnt)) {
2413 p->mnt_ns = ns;
2414 ns->mounts++;
2415 }
2416 ns->root = mnt;
2417 list_add_tail(&ns->list, &mnt->mnt_list);
2418 mntget(&mnt->mnt);
2419 unlock_mount_hash();
2420 namespace_unlock();
2421
2422 mntput(path->mnt);
2423 path->mnt = &mnt->mnt;
2424 file = dentry_open(path, O_PATH, current_cred());
2425 if (IS_ERR(file))
2426 dissolve_on_fput(path->mnt);
2427 else
2428 file->f_mode |= FMODE_NEED_UNMOUNT;
2429 return file;
2430}
2431
2658ce09 2432SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2433{
2434 struct file *file;
2435 struct path path;
2436 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2437 bool detached = flags & OPEN_TREE_CLONE;
2438 int error;
2439 int fd;
2440
2441 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2442
2443 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2444 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2445 OPEN_TREE_CLOEXEC))
2446 return -EINVAL;
2447
2448 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2449 return -EINVAL;
2450
2451 if (flags & AT_NO_AUTOMOUNT)
2452 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2453 if (flags & AT_SYMLINK_NOFOLLOW)
2454 lookup_flags &= ~LOOKUP_FOLLOW;
2455 if (flags & AT_EMPTY_PATH)
2456 lookup_flags |= LOOKUP_EMPTY;
2457
2458 if (detached && !may_mount())
2459 return -EPERM;
2460
2461 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2462 if (fd < 0)
2463 return fd;
2464
2465 error = user_path_at(dfd, filename, lookup_flags, &path);
2466 if (unlikely(error)) {
2467 file = ERR_PTR(error);
2468 } else {
2469 if (detached)
2470 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2471 else
2472 file = dentry_open(&path, O_PATH, current_cred());
2473 path_put(&path);
2474 }
2475 if (IS_ERR(file)) {
2476 put_unused_fd(fd);
2477 return PTR_ERR(file);
2478 }
2479 fd_install(fd, file);
2480 return fd;
2481}
2482
43f5e655
DH
2483/*
2484 * Don't allow locked mount flags to be cleared.
2485 *
2486 * No locks need to be held here while testing the various MNT_LOCK
2487 * flags because those flags can never be cleared once they are set.
2488 */
2489static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2490{
43f5e655
DH
2491 unsigned int fl = mnt->mnt.mnt_flags;
2492
2493 if ((fl & MNT_LOCK_READONLY) &&
2494 !(mnt_flags & MNT_READONLY))
2495 return false;
2496
2497 if ((fl & MNT_LOCK_NODEV) &&
2498 !(mnt_flags & MNT_NODEV))
2499 return false;
2500
2501 if ((fl & MNT_LOCK_NOSUID) &&
2502 !(mnt_flags & MNT_NOSUID))
2503 return false;
2504
2505 if ((fl & MNT_LOCK_NOEXEC) &&
2506 !(mnt_flags & MNT_NOEXEC))
2507 return false;
2508
2509 if ((fl & MNT_LOCK_ATIME) &&
2510 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2511 return false;
2e4b7fcd 2512
43f5e655
DH
2513 return true;
2514}
2515
2516static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2517{
43f5e655 2518 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2519
43f5e655 2520 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2521 return 0;
2522
2523 if (readonly_request)
43f5e655
DH
2524 return mnt_make_readonly(mnt);
2525
68847c94
CB
2526 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2527 return 0;
43f5e655
DH
2528}
2529
2530/*
2531 * Update the user-settable attributes on a mount. The caller must hold
2532 * sb->s_umount for writing.
2533 */
2534static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2535{
43f5e655
DH
2536 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2537 mnt->mnt.mnt_flags = mnt_flags;
2538 touch_mnt_namespace(mnt->mnt_ns);
43f5e655
DH
2539}
2540
f8b92ba6
DD
2541static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2542{
2543 struct super_block *sb = mnt->mnt_sb;
2544
2545 if (!__mnt_is_readonly(mnt) &&
2546 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2547 char *buf = (char *)__get_free_page(GFP_KERNEL);
2548 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2549 struct tm tm;
2550
2551 time64_to_tm(sb->s_time_max, 0, &tm);
2552
0ecee669
EB
2553 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2554 sb->s_type->name,
2555 is_mounted(mnt) ? "remounted" : "mounted",
2556 mntpath,
f8b92ba6
DD
2557 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2558
2559 free_page((unsigned long)buf);
2560 }
2561}
2562
43f5e655
DH
2563/*
2564 * Handle reconfiguration of the mountpoint only without alteration of the
2565 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2566 * to mount(2).
2567 */
2568static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2569{
2570 struct super_block *sb = path->mnt->mnt_sb;
2571 struct mount *mnt = real_mount(path->mnt);
2572 int ret;
2573
2574 if (!check_mnt(mnt))
2575 return -EINVAL;
2576
2577 if (path->dentry != mnt->mnt.mnt_root)
2578 return -EINVAL;
2579
2580 if (!can_change_locked_flags(mnt, mnt_flags))
2581 return -EPERM;
2582
2583 down_write(&sb->s_umount);
68847c94 2584 lock_mount_hash();
43f5e655
DH
2585 ret = change_mount_ro_state(mnt, mnt_flags);
2586 if (ret == 0)
2587 set_mount_attributes(mnt, mnt_flags);
68847c94 2588 unlock_mount_hash();
43f5e655 2589 up_write(&sb->s_umount);
f8b92ba6
DD
2590
2591 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2592
43f5e655 2593 return ret;
2e4b7fcd
DH
2594}
2595
1da177e4
LT
2596/*
2597 * change filesystem flags. dir should be a physical root of filesystem.
2598 * If you've mounted a non-root directory somewhere and want to do remount
2599 * on it - tough luck.
2600 */
e462ec50
DH
2601static int do_remount(struct path *path, int ms_flags, int sb_flags,
2602 int mnt_flags, void *data)
1da177e4
LT
2603{
2604 int err;
2d92ab3c 2605 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2606 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2607 struct fs_context *fc;
1da177e4 2608
143c8c91 2609 if (!check_mnt(mnt))
1da177e4
LT
2610 return -EINVAL;
2611
2d92ab3c 2612 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2613 return -EINVAL;
2614
43f5e655 2615 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2616 return -EPERM;
9566d674 2617
8d0347f6
DH
2618 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2619 if (IS_ERR(fc))
2620 return PTR_ERR(fc);
ff36fe2c 2621
b330966f 2622 fc->oldapi = true;
8d0347f6
DH
2623 err = parse_monolithic_mount_data(fc, data);
2624 if (!err) {
2625 down_write(&sb->s_umount);
2626 err = -EPERM;
2627 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2628 err = reconfigure_super(fc);
68847c94
CB
2629 if (!err) {
2630 lock_mount_hash();
8d0347f6 2631 set_mount_attributes(mnt, mnt_flags);
68847c94
CB
2632 unlock_mount_hash();
2633 }
8d0347f6
DH
2634 }
2635 up_write(&sb->s_umount);
0e55a7cc 2636 }
f8b92ba6
DD
2637
2638 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2639
8d0347f6 2640 put_fs_context(fc);
1da177e4
LT
2641 return err;
2642}
2643
cbbe362c 2644static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2645{
315fc83e 2646 struct mount *p;
909b0a88 2647 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2648 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2649 return 1;
2650 }
2651 return 0;
2652}
2653
44dfd84a
DH
2654/*
2655 * Check that there aren't references to earlier/same mount namespaces in the
2656 * specified subtree. Such references can act as pins for mount namespaces
2657 * that aren't checked by the mount-cycle checking code, thereby allowing
2658 * cycles to be made.
2659 */
2660static bool check_for_nsfs_mounts(struct mount *subtree)
2661{
2662 struct mount *p;
2663 bool ret = false;
2664
2665 lock_mount_hash();
2666 for (p = subtree; p; p = next_mnt(p, subtree))
2667 if (mnt_ns_loop(p->mnt.mnt_root))
2668 goto out;
2669
2670 ret = true;
2671out:
2672 unlock_mount_hash();
2673 return ret;
2674}
2675
2db154b3 2676static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2677{
44dfd84a 2678 struct mnt_namespace *ns;
676da58d 2679 struct mount *p;
0fb54e50 2680 struct mount *old;
2763d119
AV
2681 struct mount *parent;
2682 struct mountpoint *mp, *old_mp;
57eccb83 2683 int err;
44dfd84a 2684 bool attached;
1da177e4 2685
2db154b3 2686 mp = lock_mount(new_path);
84d17192 2687 if (IS_ERR(mp))
2db154b3 2688 return PTR_ERR(mp);
cc53ce53 2689
2db154b3
DH
2690 old = real_mount(old_path->mnt);
2691 p = real_mount(new_path->mnt);
2763d119 2692 parent = old->mnt_parent;
44dfd84a 2693 attached = mnt_has_parent(old);
2763d119 2694 old_mp = old->mnt_mp;
44dfd84a 2695 ns = old->mnt_ns;
143c8c91 2696
1da177e4 2697 err = -EINVAL;
44dfd84a
DH
2698 /* The mountpoint must be in our namespace. */
2699 if (!check_mnt(p))
2db154b3 2700 goto out;
1da177e4 2701
570d7a98
EB
2702 /* The thing moved must be mounted... */
2703 if (!is_mounted(&old->mnt))
44dfd84a
DH
2704 goto out;
2705
570d7a98
EB
2706 /* ... and either ours or the root of anon namespace */
2707 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2708 goto out;
5ff9d8a6 2709
2db154b3
DH
2710 if (old->mnt.mnt_flags & MNT_LOCKED)
2711 goto out;
1da177e4 2712
2db154b3
DH
2713 if (old_path->dentry != old_path->mnt->mnt_root)
2714 goto out;
1da177e4 2715
2db154b3
DH
2716 if (d_is_dir(new_path->dentry) !=
2717 d_is_dir(old_path->dentry))
2718 goto out;
21444403
RP
2719 /*
2720 * Don't move a mount residing in a shared parent.
2721 */
2763d119 2722 if (attached && IS_MNT_SHARED(parent))
2db154b3 2723 goto out;
9676f0c6
RP
2724 /*
2725 * Don't move a mount tree containing unbindable mounts to a destination
2726 * mount which is shared.
2727 */
fc7be130 2728 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2729 goto out;
1da177e4 2730 err = -ELOOP;
44dfd84a
DH
2731 if (!check_for_nsfs_mounts(old))
2732 goto out;
fc7be130 2733 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2734 if (p == old)
2db154b3 2735 goto out;
1da177e4 2736
2db154b3 2737 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2738 attached);
4ac91378 2739 if (err)
2db154b3 2740 goto out;
1da177e4
LT
2741
2742 /* if the mount is moved, it should no longer be expire
2743 * automatically */
6776db3d 2744 list_del_init(&old->mnt_expire);
2763d119
AV
2745 if (attached)
2746 put_mountpoint(old_mp);
1da177e4 2747out:
2db154b3 2748 unlock_mount(mp);
44dfd84a 2749 if (!err) {
2763d119
AV
2750 if (attached)
2751 mntput_no_expire(parent);
2752 else
44dfd84a
DH
2753 free_mnt_ns(ns);
2754 }
2db154b3
DH
2755 return err;
2756}
2757
2758static int do_move_mount_old(struct path *path, const char *old_name)
2759{
2760 struct path old_path;
2761 int err;
2762
2763 if (!old_name || !*old_name)
2764 return -EINVAL;
2765
2766 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2767 if (err)
2768 return err;
2769
2770 err = do_move_mount(&old_path, path);
2d92ab3c 2771 path_put(&old_path);
1da177e4
LT
2772 return err;
2773}
2774
9d412a43
AV
2775/*
2776 * add a mount into a namespace's mount tree
2777 */
8f11538e
AV
2778static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2779 struct path *path, int mnt_flags)
9d412a43 2780{
8f11538e 2781 struct mount *parent = real_mount(path->mnt);
9d412a43 2782
f2ebb3a9 2783 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2784
84d17192 2785 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2786 /* that's acceptable only for automounts done in private ns */
2787 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2788 return -EINVAL;
156cacb1 2789 /* ... and for those we'd better have mountpoint still alive */
84d17192 2790 if (!parent->mnt_ns)
8f11538e 2791 return -EINVAL;
156cacb1 2792 }
9d412a43
AV
2793
2794 /* Refuse the same filesystem on the same mount point */
95bc5f25 2795 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2796 path->mnt->mnt_root == path->dentry)
8f11538e 2797 return -EBUSY;
9d412a43 2798
e36cb0b8 2799 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2800 return -EINVAL;
9d412a43 2801
95bc5f25 2802 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2803 return graft_tree(newmnt, parent, mp);
9d412a43 2804}
b1e75df4 2805
132e4608
DH
2806static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2807
2808/*
2809 * Create a new mount using a superblock configuration and request it
2810 * be added to the namespace tree.
2811 */
2812static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2813 unsigned int mnt_flags)
2814{
2815 struct vfsmount *mnt;
8f11538e 2816 struct mountpoint *mp;
132e4608
DH
2817 struct super_block *sb = fc->root->d_sb;
2818 int error;
2819
c9ce29ed
AV
2820 error = security_sb_kern_mount(sb);
2821 if (!error && mount_too_revealing(sb, &mnt_flags))
2822 error = -EPERM;
2823
2824 if (unlikely(error)) {
2825 fc_drop_locked(fc);
2826 return error;
132e4608
DH
2827 }
2828
2829 up_write(&sb->s_umount);
2830
2831 mnt = vfs_create_mount(fc);
2832 if (IS_ERR(mnt))
2833 return PTR_ERR(mnt);
2834
f8b92ba6
DD
2835 mnt_warn_timestamp_expiry(mountpoint, mnt);
2836
8f11538e
AV
2837 mp = lock_mount(mountpoint);
2838 if (IS_ERR(mp)) {
2839 mntput(mnt);
2840 return PTR_ERR(mp);
2841 }
2842 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2843 unlock_mount(mp);
0ecee669
EB
2844 if (error < 0)
2845 mntput(mnt);
132e4608
DH
2846 return error;
2847}
1b852bce 2848
1da177e4
LT
2849/*
2850 * create a new mount for userspace and request it to be added into the
2851 * namespace's tree
2852 */
e462ec50 2853static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2854 int mnt_flags, const char *name, void *data)
1da177e4 2855{
0c55cfc4 2856 struct file_system_type *type;
a0c9a8b8
AV
2857 struct fs_context *fc;
2858 const char *subtype = NULL;
2859 int err = 0;
1da177e4 2860
0c55cfc4 2861 if (!fstype)
1da177e4
LT
2862 return -EINVAL;
2863
0c55cfc4
EB
2864 type = get_fs_type(fstype);
2865 if (!type)
2866 return -ENODEV;
2867
a0c9a8b8
AV
2868 if (type->fs_flags & FS_HAS_SUBTYPE) {
2869 subtype = strchr(fstype, '.');
2870 if (subtype) {
2871 subtype++;
2872 if (!*subtype) {
2873 put_filesystem(type);
2874 return -EINVAL;
2875 }
a0c9a8b8
AV
2876 }
2877 }
0c55cfc4 2878
a0c9a8b8 2879 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2880 put_filesystem(type);
a0c9a8b8
AV
2881 if (IS_ERR(fc))
2882 return PTR_ERR(fc);
2883
3e1aeb00
DH
2884 if (subtype)
2885 err = vfs_parse_fs_string(fc, "subtype",
2886 subtype, strlen(subtype));
2887 if (!err && name)
2888 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2889 if (!err)
2890 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2891 if (!err && !mount_capable(fc))
2892 err = -EPERM;
a0c9a8b8
AV
2893 if (!err)
2894 err = vfs_get_tree(fc);
132e4608
DH
2895 if (!err)
2896 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2897
a0c9a8b8 2898 put_fs_context(fc);
15f9a3f3 2899 return err;
1da177e4
LT
2900}
2901
19a167af
AV
2902int finish_automount(struct vfsmount *m, struct path *path)
2903{
26df6034 2904 struct dentry *dentry = path->dentry;
8f11538e 2905 struct mountpoint *mp;
25e195aa 2906 struct mount *mnt;
19a167af 2907 int err;
25e195aa
AV
2908
2909 if (!m)
2910 return 0;
2911 if (IS_ERR(m))
2912 return PTR_ERR(m);
2913
2914 mnt = real_mount(m);
19a167af
AV
2915 /* The new mount record should have at least 2 refs to prevent it being
2916 * expired before we get a chance to add it
2917 */
6776db3d 2918 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2919
2920 if (m->mnt_sb == path->mnt->mnt_sb &&
26df6034 2921 m->mnt_root == dentry) {
b1e75df4 2922 err = -ELOOP;
26df6034 2923 goto discard;
19a167af
AV
2924 }
2925
26df6034
AV
2926 /*
2927 * we don't want to use lock_mount() - in this case finding something
2928 * that overmounts our mountpoint to be means "quitely drop what we've
2929 * got", not "try to mount it on top".
2930 */
2931 inode_lock(dentry->d_inode);
2932 namespace_lock();
2933 if (unlikely(cant_mount(dentry))) {
2934 err = -ENOENT;
2935 goto discard_locked;
2936 }
2937 rcu_read_lock();
2938 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2939 rcu_read_unlock();
2940 err = 0;
2941 goto discard_locked;
2942 }
2943 rcu_read_unlock();
2944 mp = get_mountpoint(dentry);
8f11538e
AV
2945 if (IS_ERR(mp)) {
2946 err = PTR_ERR(mp);
26df6034 2947 goto discard_locked;
8f11538e 2948 }
26df6034 2949
8f11538e
AV
2950 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2951 unlock_mount(mp);
26df6034
AV
2952 if (unlikely(err))
2953 goto discard;
2954 mntput(m);
2955 return 0;
2956
2957discard_locked:
2958 namespace_unlock();
2959 inode_unlock(dentry->d_inode);
2960discard:
b1e75df4 2961 /* remove m from any expiration list it may be on */
6776db3d 2962 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2963 namespace_lock();
6776db3d 2964 list_del_init(&mnt->mnt_expire);
97216be0 2965 namespace_unlock();
19a167af 2966 }
b1e75df4
AV
2967 mntput(m);
2968 mntput(m);
19a167af
AV
2969 return err;
2970}
2971
ea5b778a
DH
2972/**
2973 * mnt_set_expiry - Put a mount on an expiration list
2974 * @mnt: The mount to list.
2975 * @expiry_list: The list to add the mount to.
2976 */
2977void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2978{
97216be0 2979 namespace_lock();
ea5b778a 2980
6776db3d 2981 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2982
97216be0 2983 namespace_unlock();
ea5b778a
DH
2984}
2985EXPORT_SYMBOL(mnt_set_expiry);
2986
1da177e4
LT
2987/*
2988 * process a list of expirable mountpoints with the intent of discarding any
2989 * mountpoints that aren't in use and haven't been touched since last we came
2990 * here
2991 */
2992void mark_mounts_for_expiry(struct list_head *mounts)
2993{
761d5c38 2994 struct mount *mnt, *next;
1da177e4
LT
2995 LIST_HEAD(graveyard);
2996
2997 if (list_empty(mounts))
2998 return;
2999
97216be0 3000 namespace_lock();
719ea2fb 3001 lock_mount_hash();
1da177e4
LT
3002
3003 /* extract from the expiration list every vfsmount that matches the
3004 * following criteria:
3005 * - only referenced by its parent vfsmount
3006 * - still marked for expiry (marked on the last call here; marks are
3007 * cleared by mntput())
3008 */
6776db3d 3009 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 3010 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 3011 propagate_mount_busy(mnt, 1))
1da177e4 3012 continue;
6776db3d 3013 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 3014 }
bcc5c7d2 3015 while (!list_empty(&graveyard)) {
6776db3d 3016 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 3017 touch_mnt_namespace(mnt->mnt_ns);
e819f152 3018 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 3019 }
719ea2fb 3020 unlock_mount_hash();
3ab6abee 3021 namespace_unlock();
5528f911
TM
3022}
3023
3024EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3025
3026/*
3027 * Ripoff of 'select_parent()'
3028 *
3029 * search the list of submounts for a given mountpoint, and move any
3030 * shrinkable submounts to the 'graveyard' list.
3031 */
692afc31 3032static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 3033{
692afc31 3034 struct mount *this_parent = parent;
5528f911
TM
3035 struct list_head *next;
3036 int found = 0;
3037
3038repeat:
6b41d536 3039 next = this_parent->mnt_mounts.next;
5528f911 3040resume:
6b41d536 3041 while (next != &this_parent->mnt_mounts) {
5528f911 3042 struct list_head *tmp = next;
6b41d536 3043 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
3044
3045 next = tmp->next;
692afc31 3046 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 3047 continue;
5528f911
TM
3048 /*
3049 * Descend a level if the d_mounts list is non-empty.
3050 */
6b41d536 3051 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
3052 this_parent = mnt;
3053 goto repeat;
3054 }
1da177e4 3055
1ab59738 3056 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 3057 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
3058 found++;
3059 }
1da177e4 3060 }
5528f911
TM
3061 /*
3062 * All done at this level ... ascend and resume the search
3063 */
3064 if (this_parent != parent) {
6b41d536 3065 next = this_parent->mnt_child.next;
0714a533 3066 this_parent = this_parent->mnt_parent;
5528f911
TM
3067 goto resume;
3068 }
3069 return found;
3070}
3071
3072/*
3073 * process a list of expirable mountpoints with the intent of discarding any
3074 * submounts of a specific parent mountpoint
99b7db7b 3075 *
48a066e7 3076 * mount_lock must be held for write
5528f911 3077 */
b54b9be7 3078static void shrink_submounts(struct mount *mnt)
5528f911
TM
3079{
3080 LIST_HEAD(graveyard);
761d5c38 3081 struct mount *m;
5528f911 3082
5528f911 3083 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3084 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3085 while (!list_empty(&graveyard)) {
761d5c38 3086 m = list_first_entry(&graveyard, struct mount,
6776db3d 3087 mnt_expire);
143c8c91 3088 touch_mnt_namespace(m->mnt_ns);
e819f152 3089 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3090 }
3091 }
1da177e4
LT
3092}
3093
028abd92 3094static void *copy_mount_options(const void __user * data)
1da177e4 3095{
b40ef869 3096 char *copy;
d563d678 3097 unsigned left, offset;
b58fed8b 3098
1da177e4 3099 if (!data)
b40ef869 3100 return NULL;
1da177e4 3101
b40ef869
AV
3102 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3103 if (!copy)
3104 return ERR_PTR(-ENOMEM);
1da177e4 3105
d563d678 3106 left = copy_from_user(copy, data, PAGE_SIZE);
1da177e4 3107
d563d678
CM
3108 /*
3109 * Not all architectures have an exact copy_from_user(). Resort to
3110 * byte at a time.
3111 */
3112 offset = PAGE_SIZE - left;
3113 while (left) {
3114 char c;
3115 if (get_user(c, (const char __user *)data + offset))
3116 break;
3117 copy[offset] = c;
3118 left--;
3119 offset++;
3120 }
3121
3122 if (left == PAGE_SIZE) {
b40ef869
AV
3123 kfree(copy);
3124 return ERR_PTR(-EFAULT);
1da177e4 3125 }
d563d678 3126
b40ef869 3127 return copy;
1da177e4
LT
3128}
3129
028abd92 3130static char *copy_mount_string(const void __user *data)
eca6f534 3131{
fbdb4401 3132 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3133}
3134
1da177e4
LT
3135/*
3136 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3137 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3138 *
3139 * data is a (void *) that can point to any structure up to
3140 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3141 * information (or be NULL).
3142 *
3143 * Pre-0.97 versions of mount() didn't have a flags word.
3144 * When the flags word was introduced its top half was required
3145 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3146 * Therefore, if this magic number is present, it carries no information
3147 * and must be discarded.
3148 */
c60166f0 3149int path_mount(const char *dev_name, struct path *path,
808d4e3c 3150 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3151{
e462ec50 3152 unsigned int mnt_flags = 0, sb_flags;
a1e6aaa3 3153 int ret;
1da177e4
LT
3154
3155 /* Discard magic */
3156 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3157 flags &= ~MS_MGC_MSK;
3158
3159 /* Basic sanity checks */
1da177e4
LT
3160 if (data_page)
3161 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3162
e462ec50
DH
3163 if (flags & MS_NOUSER)
3164 return -EINVAL;
3165
a1e6aaa3
CH
3166 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3167 if (ret)
3168 return ret;
3169 if (!may_mount())
3170 return -EPERM;
3171 if ((flags & SB_MANDLOCK) && !may_mandlock())
3172 return -EPERM;
a27ab9f2 3173
613cbe3d
AK
3174 /* Default to relatime unless overriden */
3175 if (!(flags & MS_NOATIME))
3176 mnt_flags |= MNT_RELATIME;
0a1c01c9 3177
1da177e4
LT
3178 /* Separate the per-mountpoint flags */
3179 if (flags & MS_NOSUID)
3180 mnt_flags |= MNT_NOSUID;
3181 if (flags & MS_NODEV)
3182 mnt_flags |= MNT_NODEV;
3183 if (flags & MS_NOEXEC)
3184 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3185 if (flags & MS_NOATIME)
3186 mnt_flags |= MNT_NOATIME;
3187 if (flags & MS_NODIRATIME)
3188 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3189 if (flags & MS_STRICTATIME)
3190 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3191 if (flags & MS_RDONLY)
2e4b7fcd 3192 mnt_flags |= MNT_READONLY;
dab741e0
MN
3193 if (flags & MS_NOSYMFOLLOW)
3194 mnt_flags |= MNT_NOSYMFOLLOW;
fc33a7bb 3195
ffbc6f0e
EB
3196 /* The default atime for remount is preservation */
3197 if ((flags & MS_REMOUNT) &&
3198 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3199 MS_STRICTATIME)) == 0)) {
3200 mnt_flags &= ~MNT_ATIME_MASK;
a1e6aaa3 3201 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
ffbc6f0e
EB
3202 }
3203
e462ec50
DH
3204 sb_flags = flags & (SB_RDONLY |
3205 SB_SYNCHRONOUS |
3206 SB_MANDLOCK |
3207 SB_DIRSYNC |
3208 SB_SILENT |
917086ff 3209 SB_POSIXACL |
d7ee9469 3210 SB_LAZYTIME |
917086ff 3211 SB_I_VERSION);
1da177e4 3212
43f5e655 3213 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
a1e6aaa3
CH
3214 return do_reconfigure_mnt(path, mnt_flags);
3215 if (flags & MS_REMOUNT)
3216 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3217 if (flags & MS_BIND)
3218 return do_loopback(path, dev_name, flags & MS_REC);
3219 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3220 return do_change_type(path, flags);
3221 if (flags & MS_MOVE)
3222 return do_move_mount_old(path, dev_name);
3223
3224 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3225 data_page);
3226}
3227
3228long do_mount(const char *dev_name, const char __user *dir_name,
3229 const char *type_page, unsigned long flags, void *data_page)
3230{
3231 struct path path;
3232 int ret;
3233
3234 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3235 if (ret)
3236 return ret;
3237 ret = path_mount(dev_name, &path, type_page, flags, data_page);
2d92ab3c 3238 path_put(&path);
a1e6aaa3 3239 return ret;
1da177e4
LT
3240}
3241
537f7ccb
EB
3242static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3243{
3244 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3245}
3246
3247static void dec_mnt_namespaces(struct ucounts *ucounts)
3248{
3249 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3250}
3251
771b1371
EB
3252static void free_mnt_ns(struct mnt_namespace *ns)
3253{
74e83122
AV
3254 if (!is_anon_ns(ns))
3255 ns_free_inum(&ns->ns);
537f7ccb 3256 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3257 put_user_ns(ns->user_ns);
3258 kfree(ns);
3259}
3260
8823c079
EB
3261/*
3262 * Assign a sequence number so we can detect when we attempt to bind
3263 * mount a reference to an older mount namespace into the current
3264 * mount namespace, preventing reference counting loops. A 64bit
3265 * number incrementing at 10Ghz will take 12,427 years to wrap which
3266 * is effectively never, so we can ignore the possibility.
3267 */
3268static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3269
74e83122 3270static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3271{
3272 struct mnt_namespace *new_ns;
537f7ccb 3273 struct ucounts *ucounts;
98f842e6 3274 int ret;
cf8d2c11 3275
537f7ccb
EB
3276 ucounts = inc_mnt_namespaces(user_ns);
3277 if (!ucounts)
df75e774 3278 return ERR_PTR(-ENOSPC);
537f7ccb 3279
74e83122 3280 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3281 if (!new_ns) {
3282 dec_mnt_namespaces(ucounts);
cf8d2c11 3283 return ERR_PTR(-ENOMEM);
537f7ccb 3284 }
74e83122
AV
3285 if (!anon) {
3286 ret = ns_alloc_inum(&new_ns->ns);
3287 if (ret) {
3288 kfree(new_ns);
3289 dec_mnt_namespaces(ucounts);
3290 return ERR_PTR(ret);
3291 }
98f842e6 3292 }
33c42940 3293 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3294 if (!anon)
3295 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
1a7b8969 3296 refcount_set(&new_ns->ns.count, 1);
cf8d2c11
TM
3297 INIT_LIST_HEAD(&new_ns->list);
3298 init_waitqueue_head(&new_ns->poll);
9f6c61f9 3299 spin_lock_init(&new_ns->ns_lock);
771b1371 3300 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3301 new_ns->ucounts = ucounts;
cf8d2c11
TM
3302 return new_ns;
3303}
3304
0766f788 3305__latent_entropy
9559f689
AV
3306struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3307 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3308{
6b3286ed 3309 struct mnt_namespace *new_ns;
7f2da1e7 3310 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3311 struct mount *p, *q;
9559f689 3312 struct mount *old;
cb338d06 3313 struct mount *new;
7a472ef4 3314 int copy_flags;
1da177e4 3315
9559f689
AV
3316 BUG_ON(!ns);
3317
3318 if (likely(!(flags & CLONE_NEWNS))) {
3319 get_mnt_ns(ns);
3320 return ns;
3321 }
3322
3323 old = ns->root;
3324
74e83122 3325 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3326 if (IS_ERR(new_ns))
3327 return new_ns;
1da177e4 3328
97216be0 3329 namespace_lock();
1da177e4 3330 /* First pass: copy the tree topology */
4ce5d2b1 3331 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3332 if (user_ns != ns->user_ns)
3bd045cc 3333 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3334 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3335 if (IS_ERR(new)) {
328e6d90 3336 namespace_unlock();
771b1371 3337 free_mnt_ns(new_ns);
be34d1a3 3338 return ERR_CAST(new);
1da177e4 3339 }
3bd045cc
AV
3340 if (user_ns != ns->user_ns) {
3341 lock_mount_hash();
3342 lock_mnt_tree(new);
3343 unlock_mount_hash();
3344 }
be08d6d2 3345 new_ns->root = new;
1a4eeaf2 3346 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3347
3348 /*
3349 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3350 * as belonging to new namespace. We have already acquired a private
3351 * fs_struct, so tsk->fs->lock is not needed.
3352 */
909b0a88 3353 p = old;
cb338d06 3354 q = new;
1da177e4 3355 while (p) {
143c8c91 3356 q->mnt_ns = new_ns;
d2921684 3357 new_ns->mounts++;
9559f689
AV
3358 if (new_fs) {
3359 if (&p->mnt == new_fs->root.mnt) {
3360 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3361 rootmnt = &p->mnt;
1da177e4 3362 }
9559f689
AV
3363 if (&p->mnt == new_fs->pwd.mnt) {
3364 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3365 pwdmnt = &p->mnt;
1da177e4 3366 }
1da177e4 3367 }
909b0a88
AV
3368 p = next_mnt(p, old);
3369 q = next_mnt(q, new);
4ce5d2b1
EB
3370 if (!q)
3371 break;
3372 while (p->mnt.mnt_root != q->mnt.mnt_root)
3373 p = next_mnt(p, old);
1da177e4 3374 }
328e6d90 3375 namespace_unlock();
1da177e4 3376
1da177e4 3377 if (rootmnt)
f03c6599 3378 mntput(rootmnt);
1da177e4 3379 if (pwdmnt)
f03c6599 3380 mntput(pwdmnt);
1da177e4 3381
741a2951 3382 return new_ns;
1da177e4
LT
3383}
3384
74e83122 3385struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3386{
74e83122 3387 struct mount *mnt = real_mount(m);
ea441d11 3388 struct mnt_namespace *ns;
d31da0f0 3389 struct super_block *s;
ea441d11
AV
3390 struct path path;
3391 int err;
3392
74e83122
AV
3393 ns = alloc_mnt_ns(&init_user_ns, true);
3394 if (IS_ERR(ns)) {
3395 mntput(m);
ea441d11 3396 return ERR_CAST(ns);
74e83122
AV
3397 }
3398 mnt->mnt_ns = ns;
3399 ns->root = mnt;
3400 ns->mounts++;
3401 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3402
74e83122 3403 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3404 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3405
3406 put_mnt_ns(ns);
3407
3408 if (err)
3409 return ERR_PTR(err);
3410
3411 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3412 s = path.mnt->mnt_sb;
3413 atomic_inc(&s->s_active);
ea441d11
AV
3414 mntput(path.mnt);
3415 /* lock the sucker */
d31da0f0 3416 down_write(&s->s_umount);
ea441d11
AV
3417 /* ... and return the root of (sub)tree on it */
3418 return path.dentry;
3419}
3420EXPORT_SYMBOL(mount_subtree);
3421
cccaa5e3
DB
3422SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3423 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3424{
eca6f534
VN
3425 int ret;
3426 char *kernel_type;
eca6f534 3427 char *kernel_dev;
b40ef869 3428 void *options;
1da177e4 3429
b8850d1f
TG
3430 kernel_type = copy_mount_string(type);
3431 ret = PTR_ERR(kernel_type);
3432 if (IS_ERR(kernel_type))
eca6f534 3433 goto out_type;
1da177e4 3434
b8850d1f
TG
3435 kernel_dev = copy_mount_string(dev_name);
3436 ret = PTR_ERR(kernel_dev);
3437 if (IS_ERR(kernel_dev))
eca6f534 3438 goto out_dev;
1da177e4 3439
b40ef869
AV
3440 options = copy_mount_options(data);
3441 ret = PTR_ERR(options);
3442 if (IS_ERR(options))
eca6f534 3443 goto out_data;
1da177e4 3444
b40ef869 3445 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3446
b40ef869 3447 kfree(options);
eca6f534
VN
3448out_data:
3449 kfree(kernel_dev);
3450out_dev:
eca6f534
VN
3451 kfree(kernel_type);
3452out_type:
3453 return ret;
1da177e4
LT
3454}
3455
2db154b3 3456/*
93766fbd
DH
3457 * Create a kernel mount representation for a new, prepared superblock
3458 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3459 */
3460SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3461 unsigned int, attr_flags)
3462{
3463 struct mnt_namespace *ns;
3464 struct fs_context *fc;
3465 struct file *file;
3466 struct path newmount;
3467 struct mount *mnt;
3468 struct fd f;
3469 unsigned int mnt_flags = 0;
3470 long ret;
3471
3472 if (!may_mount())
3473 return -EPERM;
3474
3475 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3476 return -EINVAL;
3477
3478 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3479 MOUNT_ATTR_NOSUID |
3480 MOUNT_ATTR_NODEV |
3481 MOUNT_ATTR_NOEXEC |
3482 MOUNT_ATTR__ATIME |
3483 MOUNT_ATTR_NODIRATIME))
3484 return -EINVAL;
3485
3486 if (attr_flags & MOUNT_ATTR_RDONLY)
3487 mnt_flags |= MNT_READONLY;
3488 if (attr_flags & MOUNT_ATTR_NOSUID)
3489 mnt_flags |= MNT_NOSUID;
3490 if (attr_flags & MOUNT_ATTR_NODEV)
3491 mnt_flags |= MNT_NODEV;
3492 if (attr_flags & MOUNT_ATTR_NOEXEC)
3493 mnt_flags |= MNT_NOEXEC;
3494 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3495 mnt_flags |= MNT_NODIRATIME;
3496
3497 switch (attr_flags & MOUNT_ATTR__ATIME) {
3498 case MOUNT_ATTR_STRICTATIME:
3499 break;
3500 case MOUNT_ATTR_NOATIME:
3501 mnt_flags |= MNT_NOATIME;
3502 break;
3503 case MOUNT_ATTR_RELATIME:
3504 mnt_flags |= MNT_RELATIME;
3505 break;
3506 default:
3507 return -EINVAL;
3508 }
3509
3510 f = fdget(fs_fd);
3511 if (!f.file)
3512 return -EBADF;
3513
3514 ret = -EINVAL;
3515 if (f.file->f_op != &fscontext_fops)
3516 goto err_fsfd;
3517
3518 fc = f.file->private_data;
3519
3520 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3521 if (ret < 0)
3522 goto err_fsfd;
3523
3524 /* There must be a valid superblock or we can't mount it */
3525 ret = -EINVAL;
3526 if (!fc->root)
3527 goto err_unlock;
3528
3529 ret = -EPERM;
3530 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3531 pr_warn("VFS: Mount too revealing\n");
3532 goto err_unlock;
3533 }
3534
3535 ret = -EBUSY;
3536 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3537 goto err_unlock;
3538
3539 ret = -EPERM;
3540 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3541 goto err_unlock;
3542
3543 newmount.mnt = vfs_create_mount(fc);
3544 if (IS_ERR(newmount.mnt)) {
3545 ret = PTR_ERR(newmount.mnt);
3546 goto err_unlock;
3547 }
3548 newmount.dentry = dget(fc->root);
3549 newmount.mnt->mnt_flags = mnt_flags;
3550
3551 /* We've done the mount bit - now move the file context into more or
3552 * less the same state as if we'd done an fspick(). We don't want to
3553 * do any memory allocation or anything like that at this point as we
3554 * don't want to have to handle any errors incurred.
3555 */
3556 vfs_clean_context(fc);
3557
3558 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3559 if (IS_ERR(ns)) {
3560 ret = PTR_ERR(ns);
3561 goto err_path;
3562 }
3563 mnt = real_mount(newmount.mnt);
3564 mnt->mnt_ns = ns;
3565 ns->root = mnt;
3566 ns->mounts = 1;
3567 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3568 mntget(newmount.mnt);
93766fbd
DH
3569
3570 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3571 * it, not just simply put it.
3572 */
3573 file = dentry_open(&newmount, O_PATH, fc->cred);
3574 if (IS_ERR(file)) {
3575 dissolve_on_fput(newmount.mnt);
3576 ret = PTR_ERR(file);
3577 goto err_path;
3578 }
3579 file->f_mode |= FMODE_NEED_UNMOUNT;
3580
3581 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3582 if (ret >= 0)
3583 fd_install(ret, file);
3584 else
3585 fput(file);
3586
3587err_path:
3588 path_put(&newmount);
3589err_unlock:
3590 mutex_unlock(&fc->uapi_mutex);
3591err_fsfd:
3592 fdput(f);
3593 return ret;
3594}
3595
3596/*
3597 * Move a mount from one place to another. In combination with
3598 * fsopen()/fsmount() this is used to install a new mount and in combination
3599 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3600 * a mount subtree.
2db154b3
DH
3601 *
3602 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3603 */
3604SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3605 int, from_dfd, const char __user *, from_pathname,
3606 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3607 unsigned int, flags)
3608{
3609 struct path from_path, to_path;
3610 unsigned int lflags;
3611 int ret = 0;
3612
3613 if (!may_mount())
3614 return -EPERM;
3615
3616 if (flags & ~MOVE_MOUNT__MASK)
3617 return -EINVAL;
3618
3619 /* If someone gives a pathname, they aren't permitted to move
3620 * from an fd that requires unmount as we can't get at the flag
3621 * to clear it afterwards.
3622 */
3623 lflags = 0;
3624 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3625 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3626 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3627
3628 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3629 if (ret < 0)
3630 return ret;
3631
3632 lflags = 0;
3633 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3634 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3635 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3636
3637 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3638 if (ret < 0)
3639 goto out_from;
3640
3641 ret = security_move_mount(&from_path, &to_path);
3642 if (ret < 0)
3643 goto out_to;
3644
3645 ret = do_move_mount(&from_path, &to_path);
3646
3647out_to:
3648 path_put(&to_path);
3649out_from:
3650 path_put(&from_path);
3651 return ret;
3652}
3653
afac7cba
AV
3654/*
3655 * Return true if path is reachable from root
3656 *
48a066e7 3657 * namespace_sem or mount_lock is held
afac7cba 3658 */
643822b4 3659bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3660 const struct path *root)
3661{
643822b4 3662 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3663 dentry = mnt->mnt_mountpoint;
0714a533 3664 mnt = mnt->mnt_parent;
afac7cba 3665 }
643822b4 3666 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3667}
3668
640eb7e7 3669bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3670{
25ab4c9b 3671 bool res;
48a066e7 3672 read_seqlock_excl(&mount_lock);
643822b4 3673 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3674 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3675 return res;
3676}
3677EXPORT_SYMBOL(path_is_under);
3678
1da177e4
LT
3679/*
3680 * pivot_root Semantics:
3681 * Moves the root file system of the current process to the directory put_old,
3682 * makes new_root as the new root file system of the current process, and sets
3683 * root/cwd of all processes which had them on the current root to new_root.
3684 *
3685 * Restrictions:
3686 * The new_root and put_old must be directories, and must not be on the
3687 * same file system as the current process root. The put_old must be
3688 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3689 * pointed to by put_old must yield the same directory as new_root. No other
3690 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3691 *
4a0d11fa 3692 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
0c1bc6b8 3693 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4a0d11fa
NB
3694 * in this situation.
3695 *
1da177e4
LT
3696 * Notes:
3697 * - we don't move root/cwd if they are not at the root (reason: if something
3698 * cared enough to change them, it's probably wrong to force them elsewhere)
3699 * - it's okay to pick a root that isn't the root of a file system, e.g.
3700 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3701 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3702 * first.
3703 */
3480b257
HC
3704SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3705 const char __user *, put_old)
1da177e4 3706{
2763d119
AV
3707 struct path new, old, root;
3708 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3709 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3710 int error;
3711
9b40bc90 3712 if (!may_mount())
1da177e4
LT
3713 return -EPERM;
3714
ce6595a2
AV
3715 error = user_path_at(AT_FDCWD, new_root,
3716 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3717 if (error)
3718 goto out0;
1da177e4 3719
ce6595a2
AV
3720 error = user_path_at(AT_FDCWD, put_old,
3721 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3722 if (error)
3723 goto out1;
3724
2d8f3038 3725 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3726 if (error)
3727 goto out2;
1da177e4 3728
f7ad3c6b 3729 get_fs_root(current->fs, &root);
84d17192
AV
3730 old_mp = lock_mount(&old);
3731 error = PTR_ERR(old_mp);
3732 if (IS_ERR(old_mp))
b12cea91
AV
3733 goto out3;
3734
1da177e4 3735 error = -EINVAL;
419148da
AV
3736 new_mnt = real_mount(new.mnt);
3737 root_mnt = real_mount(root.mnt);
84d17192 3738 old_mnt = real_mount(old.mnt);
2763d119
AV
3739 ex_parent = new_mnt->mnt_parent;
3740 root_parent = root_mnt->mnt_parent;
84d17192 3741 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3742 IS_MNT_SHARED(ex_parent) ||
3743 IS_MNT_SHARED(root_parent))
b12cea91 3744 goto out4;
143c8c91 3745 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3746 goto out4;
5ff9d8a6
EB
3747 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3748 goto out4;
1da177e4 3749 error = -ENOENT;
f3da392e 3750 if (d_unlinked(new.dentry))
b12cea91 3751 goto out4;
1da177e4 3752 error = -EBUSY;
84d17192 3753 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3754 goto out4; /* loop, on the same file system */
1da177e4 3755 error = -EINVAL;
8c3ee42e 3756 if (root.mnt->mnt_root != root.dentry)
b12cea91 3757 goto out4; /* not a mountpoint */
676da58d 3758 if (!mnt_has_parent(root_mnt))
b12cea91 3759 goto out4; /* not attached */
2d8f3038 3760 if (new.mnt->mnt_root != new.dentry)
b12cea91 3761 goto out4; /* not a mountpoint */
676da58d 3762 if (!mnt_has_parent(new_mnt))
b12cea91 3763 goto out4; /* not attached */
4ac91378 3764 /* make sure we can reach put_old from new_root */
84d17192 3765 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3766 goto out4;
0d082601
EB
3767 /* make certain new is below the root */
3768 if (!is_path_reachable(new_mnt, new.dentry, &root))
3769 goto out4;
719ea2fb 3770 lock_mount_hash();
2763d119
AV
3771 umount_mnt(new_mnt);
3772 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3773 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3774 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3775 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3776 }
4ac91378 3777 /* mount old root on put_old */
84d17192 3778 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3779 /* mount new_root on / */
2763d119
AV
3780 attach_mnt(new_mnt, root_parent, root_mp);
3781 mnt_add_count(root_parent, -1);
6b3286ed 3782 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3783 /* A moved mount should not expire automatically */
3784 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3785 put_mountpoint(root_mp);
719ea2fb 3786 unlock_mount_hash();
2d8f3038 3787 chroot_fs_refs(&root, &new);
1da177e4 3788 error = 0;
b12cea91 3789out4:
84d17192 3790 unlock_mount(old_mp);
2763d119
AV
3791 if (!error)
3792 mntput_no_expire(ex_parent);
b12cea91 3793out3:
8c3ee42e 3794 path_put(&root);
b12cea91 3795out2:
2d8f3038 3796 path_put(&old);
1da177e4 3797out1:
2d8f3038 3798 path_put(&new);
1da177e4 3799out0:
1da177e4 3800 return error;
1da177e4
LT
3801}
3802
3803static void __init init_mount_tree(void)
3804{
3805 struct vfsmount *mnt;
74e83122 3806 struct mount *m;
6b3286ed 3807 struct mnt_namespace *ns;
ac748a09 3808 struct path root;
1da177e4 3809
fd3e007f 3810 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
3811 if (IS_ERR(mnt))
3812 panic("Can't create rootfs");
b3e19d92 3813
74e83122 3814 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3815 if (IS_ERR(ns))
1da177e4 3816 panic("Can't allocate initial namespace");
74e83122
AV
3817 m = real_mount(mnt);
3818 m->mnt_ns = ns;
3819 ns->root = m;
3820 ns->mounts = 1;
3821 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3822 init_task.nsproxy->mnt_ns = ns;
3823 get_mnt_ns(ns);
3824
be08d6d2
AV
3825 root.mnt = mnt;
3826 root.dentry = mnt->mnt_root;
da362b09 3827 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3828
3829 set_fs_pwd(current->fs, &root);
3830 set_fs_root(current->fs, &root);
1da177e4
LT
3831}
3832
74bf17cf 3833void __init mnt_init(void)
1da177e4 3834{
15a67dd8 3835 int err;
1da177e4 3836
7d6fec45 3837 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3838 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3839
0818bf27 3840 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3841 sizeof(struct hlist_head),
0818bf27 3842 mhash_entries, 19,
3d375d78 3843 HASH_ZERO,
0818bf27
AV
3844 &m_hash_shift, &m_hash_mask, 0, 0);
3845 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3846 sizeof(struct hlist_head),
3847 mphash_entries, 19,
3d375d78 3848 HASH_ZERO,
0818bf27 3849 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3850
84d17192 3851 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3852 panic("Failed to allocate mount hash table\n");
3853
4b93dc9b
TH
3854 kernfs_init();
3855
15a67dd8
RD
3856 err = sysfs_init();
3857 if (err)
3858 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3859 __func__, err);
00d26666
GKH
3860 fs_kobj = kobject_create_and_add("fs", NULL);
3861 if (!fs_kobj)
8e24eea7 3862 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 3863 shmem_init();
1da177e4
LT
3864 init_rootfs();
3865 init_mount_tree();
3866}
3867
616511d0 3868void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3869{
1a7b8969 3870 if (!refcount_dec_and_test(&ns->ns.count))
616511d0 3871 return;
7b00ed6f 3872 drop_collected_mounts(&ns->root->mnt);
771b1371 3873 free_mnt_ns(ns);
1da177e4 3874}
9d412a43 3875
d911b458 3876struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3877{
423e0ab0 3878 struct vfsmount *mnt;
d911b458 3879 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3880 if (!IS_ERR(mnt)) {
3881 /*
3882 * it is a longterm mount, don't release mnt until
3883 * we unmount before file sys is unregistered
3884 */
f7a99c5b 3885 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3886 }
3887 return mnt;
9d412a43 3888}
d911b458 3889EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3890
3891void kern_unmount(struct vfsmount *mnt)
3892{
3893 /* release long term mount so mount point can be released */
3894 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3895 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3896 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3897 mntput(mnt);
3898 }
3899}
3900EXPORT_SYMBOL(kern_unmount);
02125a82 3901
df820f8d
MS
3902void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3903{
3904 unsigned int i;
3905
3906 for (i = 0; i < num; i++)
3907 if (mnt[i])
3908 real_mount(mnt[i])->mnt_ns = NULL;
3909 synchronize_rcu_expedited();
3910 for (i = 0; i < num; i++)
3911 mntput(mnt[i]);
3912}
3913EXPORT_SYMBOL(kern_unmount_array);
3914
02125a82
AV
3915bool our_mnt(struct vfsmount *mnt)
3916{
143c8c91 3917 return check_mnt(real_mount(mnt));
02125a82 3918}
8823c079 3919
3151527e
EB
3920bool current_chrooted(void)
3921{
3922 /* Does the current process have a non-standard root */
3923 struct path ns_root;
3924 struct path fs_root;
3925 bool chrooted;
3926
3927 /* Find the namespace root */
3928 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3929 ns_root.dentry = ns_root.mnt->mnt_root;
3930 path_get(&ns_root);
3931 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3932 ;
3933
3934 get_fs_root(current->fs, &fs_root);
3935
3936 chrooted = !path_equal(&fs_root, &ns_root);
3937
3938 path_put(&fs_root);
3939 path_put(&ns_root);
3940
3941 return chrooted;
3942}
3943
132e4608
DH
3944static bool mnt_already_visible(struct mnt_namespace *ns,
3945 const struct super_block *sb,
8654df4e 3946 int *new_mnt_flags)
87a8ebd6 3947{
8c6cf9cc 3948 int new_flags = *new_mnt_flags;
87a8ebd6 3949 struct mount *mnt;
e51db735 3950 bool visible = false;
87a8ebd6 3951
44bb4385 3952 down_read(&namespace_sem);
9f6c61f9 3953 lock_ns_list(ns);
87a8ebd6 3954 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3955 struct mount *child;
77b1a97d
EB
3956 int mnt_flags;
3957
9f6c61f9
MS
3958 if (mnt_is_cursor(mnt))
3959 continue;
3960
132e4608 3961 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3962 continue;
3963
7e96c1b0
EB
3964 /* This mount is not fully visible if it's root directory
3965 * is not the root directory of the filesystem.
3966 */
3967 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3968 continue;
3969
a1935c17 3970 /* A local view of the mount flags */
77b1a97d 3971 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3972
695e9df0 3973 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3974 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3975 mnt_flags |= MNT_LOCK_READONLY;
3976
8c6cf9cc
EB
3977 /* Verify the mount flags are equal to or more permissive
3978 * than the proposed new mount.
3979 */
77b1a97d 3980 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3981 !(new_flags & MNT_READONLY))
3982 continue;
77b1a97d
EB
3983 if ((mnt_flags & MNT_LOCK_ATIME) &&
3984 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3985 continue;
3986
ceeb0e5d
EB
3987 /* This mount is not fully visible if there are any
3988 * locked child mounts that cover anything except for
3989 * empty directories.
e51db735
EB
3990 */
3991 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3992 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3993 /* Only worry about locked mounts */
d71ed6c9 3994 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3995 continue;
7236c85e
EB
3996 /* Is the directory permanetly empty? */
3997 if (!is_empty_dir_inode(inode))
e51db735 3998 goto next;
87a8ebd6 3999 }
8c6cf9cc 4000 /* Preserve the locked attributes */
77b1a97d 4001 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 4002 MNT_LOCK_ATIME);
e51db735
EB
4003 visible = true;
4004 goto found;
4005 next: ;
87a8ebd6 4006 }
e51db735 4007found:
9f6c61f9 4008 unlock_ns_list(ns);
44bb4385 4009 up_read(&namespace_sem);
e51db735 4010 return visible;
87a8ebd6
EB
4011}
4012
132e4608 4013static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 4014{
a1935c17 4015 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
4016 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4017 unsigned long s_iflags;
4018
4019 if (ns->user_ns == &init_user_ns)
4020 return false;
4021
4022 /* Can this filesystem be too revealing? */
132e4608 4023 s_iflags = sb->s_iflags;
8654df4e
EB
4024 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4025 return false;
4026
a1935c17
EB
4027 if ((s_iflags & required_iflags) != required_iflags) {
4028 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4029 required_iflags);
4030 return true;
4031 }
4032
132e4608 4033 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
4034}
4035
380cf5ba
AL
4036bool mnt_may_suid(struct vfsmount *mnt)
4037{
4038 /*
4039 * Foreign mounts (accessed via fchdir or through /proc
4040 * symlinks) are always treated as if they are nosuid. This
4041 * prevents namespaces from trusting potentially unsafe
4042 * suid/sgid bits, file caps, or security labels that originate
4043 * in other namespaces.
4044 */
4045 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4046 current_in_userns(mnt->mnt_sb->s_user_ns);
4047}
4048
64964528 4049static struct ns_common *mntns_get(struct task_struct *task)
8823c079 4050{
58be2825 4051 struct ns_common *ns = NULL;
8823c079
EB
4052 struct nsproxy *nsproxy;
4053
728dba3a
EB
4054 task_lock(task);
4055 nsproxy = task->nsproxy;
8823c079 4056 if (nsproxy) {
58be2825
AV
4057 ns = &nsproxy->mnt_ns->ns;
4058 get_mnt_ns(to_mnt_ns(ns));
8823c079 4059 }
728dba3a 4060 task_unlock(task);
8823c079
EB
4061
4062 return ns;
4063}
4064
64964528 4065static void mntns_put(struct ns_common *ns)
8823c079 4066{
58be2825 4067 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
4068}
4069
f2a8d52e 4070static int mntns_install(struct nsset *nsset, struct ns_common *ns)
8823c079 4071{
f2a8d52e
CB
4072 struct nsproxy *nsproxy = nsset->nsproxy;
4073 struct fs_struct *fs = nsset->fs;
4f757f3c 4074 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
f2a8d52e 4075 struct user_namespace *user_ns = nsset->cred->user_ns;
8823c079 4076 struct path root;
4f757f3c 4077 int err;
8823c079 4078
0c55cfc4 4079 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
f2a8d52e
CB
4080 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4081 !ns_capable(user_ns, CAP_SYS_ADMIN))
ae11e0f1 4082 return -EPERM;
8823c079 4083
74e83122
AV
4084 if (is_anon_ns(mnt_ns))
4085 return -EINVAL;
4086
8823c079
EB
4087 if (fs->users != 1)
4088 return -EINVAL;
4089
4090 get_mnt_ns(mnt_ns);
4f757f3c 4091 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
4092 nsproxy->mnt_ns = mnt_ns;
4093
4094 /* Find the root */
4f757f3c
AV
4095 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4096 "/", LOOKUP_DOWN, &root);
4097 if (err) {
4098 /* revert to old namespace */
4099 nsproxy->mnt_ns = old_mnt_ns;
4100 put_mnt_ns(mnt_ns);
4101 return err;
4102 }
8823c079 4103
4068367c
AV
4104 put_mnt_ns(old_mnt_ns);
4105
8823c079
EB
4106 /* Update the pwd and root */
4107 set_fs_pwd(fs, &root);
4108 set_fs_root(fs, &root);
4109
4110 path_put(&root);
4111 return 0;
4112}
4113
bcac25a5
AV
4114static struct user_namespace *mntns_owner(struct ns_common *ns)
4115{
4116 return to_mnt_ns(ns)->user_ns;
4117}
4118
8823c079
EB
4119const struct proc_ns_operations mntns_operations = {
4120 .name = "mnt",
4121 .type = CLONE_NEWNS,
4122 .get = mntns_get,
4123 .put = mntns_put,
4124 .install = mntns_install,
bcac25a5 4125 .owner = mntns_owner,
8823c079 4126};