mnt: Factor out unhash_mnt from detach_mnt and umount_tree
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7
AV
592/* call under rcu_read_lock */
593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612}
613
1da177e4 614/*
474279dc 615 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 616 * call under rcu_read_lock()
1da177e4 617 */
474279dc 618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 619{
38129a13 620 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
621 struct mount *p;
622
38129a13 623 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627}
628
629/*
630 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 631 * mount_lock must be held.
474279dc
AV
632 */
633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634{
411a938b
EB
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
38129a13
AV
637 if (!p)
638 goto out;
411a938b
EB
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
38129a13 641 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
411a938b
EB
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
1d6a32ac 646 }
38129a13 647out:
1d6a32ac 648 return res;
1da177e4
LT
649}
650
a05964f3 651/*
f015f126
DH
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 666 */
1c755af4 667struct vfsmount *lookup_mnt(struct path *path)
a05964f3 668{
c7105365 669 struct mount *child_mnt;
48a066e7
AV
670 struct vfsmount *m;
671 unsigned seq;
99b7db7b 672
48a066e7
AV
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
a05964f3
RP
681}
682
7af1364f
EB
683/*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698bool __is_local_mountpoint(struct dentry *dentry)
699{
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 if (!d_mountpoint(dentry))
705 goto out;
706
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 up_read(&namespace_sem);
714out:
715 return is_covered;
716}
717
e2dfa935 718static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 719{
0818bf27 720 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
721 struct mountpoint *mp;
722
0818bf27 723 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
730 }
731 }
e2dfa935
EB
732 return NULL;
733}
734
735static struct mountpoint *new_mountpoint(struct dentry *dentry)
736{
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
84d17192
AV
740
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
744
eed81007
MS
745 ret = d_set_mounted(dentry);
746 if (ret) {
84d17192 747 kfree(mp);
eed81007 748 return ERR_PTR(ret);
84d17192 749 }
eed81007 750
84d17192
AV
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
0818bf27 753 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 754 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
755 return mp;
756}
757
758static void put_mountpoint(struct mountpoint *mp)
759{
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 762 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
0818bf27 766 hlist_del(&mp->m_hash);
84d17192
AV
767 kfree(mp);
768 }
769}
770
143c8c91 771static inline int check_mnt(struct mount *mnt)
1da177e4 772{
6b3286ed 773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
774}
775
99b7db7b
NP
776/*
777 * vfsmount lock must be held for write
778 */
6b3286ed 779static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
780{
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
784 }
785}
786
99b7db7b
NP
787/*
788 * vfsmount lock must be held for write
789 */
6b3286ed 790static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
791{
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
795 }
796}
797
99b7db7b
NP
798/*
799 * vfsmount lock must be held for write
800 */
7bdb11de 801static void unhash_mnt(struct mount *mnt)
419148da 802{
0714a533 803 mnt->mnt_parent = mnt;
a73324da 804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 805 list_del_init(&mnt->mnt_child);
38129a13 806 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 807 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
808 put_mountpoint(mnt->mnt_mp);
809 mnt->mnt_mp = NULL;
1da177e4
LT
810}
811
7bdb11de
EB
812/*
813 * vfsmount lock must be held for write
814 */
815static void detach_mnt(struct mount *mnt, struct path *old_path)
816{
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
819 unhash_mnt(mnt);
820}
821
99b7db7b
NP
822/*
823 * vfsmount lock must be held for write
824 */
84d17192
AV
825void mnt_set_mountpoint(struct mount *mnt,
826 struct mountpoint *mp,
44d964d6 827 struct mount *child_mnt)
b90fa9ae 828{
84d17192 829 mp->m_count++;
3a2393d7 830 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 831 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 832 child_mnt->mnt_parent = mnt;
84d17192 833 child_mnt->mnt_mp = mp;
0a5eb7c8 834 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
835}
836
99b7db7b
NP
837/*
838 * vfsmount lock must be held for write
839 */
84d17192
AV
840static void attach_mnt(struct mount *mnt,
841 struct mount *parent,
842 struct mountpoint *mp)
1da177e4 843{
84d17192 844 mnt_set_mountpoint(parent, mp, mnt);
38129a13 845 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 846 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
847}
848
12a5b529
AV
849static void attach_shadowed(struct mount *mnt,
850 struct mount *parent,
851 struct mount *shadows)
852{
853 if (shadows) {
f6f99332 854 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
855 list_add(&mnt->mnt_child, &shadows->mnt_child);
856 } else {
857 hlist_add_head_rcu(&mnt->mnt_hash,
858 m_hash(&parent->mnt, mnt->mnt_mountpoint));
859 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
860 }
861}
862
b90fa9ae 863/*
99b7db7b 864 * vfsmount lock must be held for write
b90fa9ae 865 */
1d6a32ac 866static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 867{
0714a533 868 struct mount *parent = mnt->mnt_parent;
83adc753 869 struct mount *m;
b90fa9ae 870 LIST_HEAD(head);
143c8c91 871 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 872
0714a533 873 BUG_ON(parent == mnt);
b90fa9ae 874
1a4eeaf2 875 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 876 list_for_each_entry(m, &head, mnt_list)
143c8c91 877 m->mnt_ns = n;
f03c6599 878
b90fa9ae
RP
879 list_splice(&head, n->list.prev);
880
12a5b529 881 attach_shadowed(mnt, parent, shadows);
6b3286ed 882 touch_mnt_namespace(n);
1da177e4
LT
883}
884
909b0a88 885static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 886{
6b41d536
AV
887 struct list_head *next = p->mnt_mounts.next;
888 if (next == &p->mnt_mounts) {
1da177e4 889 while (1) {
909b0a88 890 if (p == root)
1da177e4 891 return NULL;
6b41d536
AV
892 next = p->mnt_child.next;
893 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 894 break;
0714a533 895 p = p->mnt_parent;
1da177e4
LT
896 }
897 }
6b41d536 898 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
899}
900
315fc83e 901static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 902{
6b41d536
AV
903 struct list_head *prev = p->mnt_mounts.prev;
904 while (prev != &p->mnt_mounts) {
905 p = list_entry(prev, struct mount, mnt_child);
906 prev = p->mnt_mounts.prev;
9676f0c6
RP
907 }
908 return p;
909}
910
9d412a43
AV
911struct vfsmount *
912vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
913{
b105e270 914 struct mount *mnt;
9d412a43
AV
915 struct dentry *root;
916
917 if (!type)
918 return ERR_PTR(-ENODEV);
919
920 mnt = alloc_vfsmnt(name);
921 if (!mnt)
922 return ERR_PTR(-ENOMEM);
923
924 if (flags & MS_KERNMOUNT)
b105e270 925 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
926
927 root = mount_fs(type, flags, name, data);
928 if (IS_ERR(root)) {
8ffcb32e 929 mnt_free_id(mnt);
9d412a43
AV
930 free_vfsmnt(mnt);
931 return ERR_CAST(root);
932 }
933
b105e270
AV
934 mnt->mnt.mnt_root = root;
935 mnt->mnt.mnt_sb = root->d_sb;
a73324da 936 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 937 mnt->mnt_parent = mnt;
719ea2fb 938 lock_mount_hash();
39f7c4db 939 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 940 unlock_mount_hash();
b105e270 941 return &mnt->mnt;
9d412a43
AV
942}
943EXPORT_SYMBOL_GPL(vfs_kern_mount);
944
87129cc0 945static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 946 int flag)
1da177e4 947{
87129cc0 948 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
949 struct mount *mnt;
950 int err;
1da177e4 951
be34d1a3
DH
952 mnt = alloc_vfsmnt(old->mnt_devname);
953 if (!mnt)
954 return ERR_PTR(-ENOMEM);
719f5d7f 955
7a472ef4 956 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
957 mnt->mnt_group_id = 0; /* not a peer of original */
958 else
959 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 960
be34d1a3
DH
961 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
962 err = mnt_alloc_group_id(mnt);
963 if (err)
964 goto out_free;
1da177e4 965 }
be34d1a3 966
f2ebb3a9 967 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 968 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
969 if (flag & CL_UNPRIVILEGED) {
970 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
971
972 if (mnt->mnt.mnt_flags & MNT_READONLY)
973 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
974
975 if (mnt->mnt.mnt_flags & MNT_NODEV)
976 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
977
978 if (mnt->mnt.mnt_flags & MNT_NOSUID)
979 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
980
981 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
982 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
983 }
132c94e3 984
5ff9d8a6 985 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
986 if ((flag & CL_UNPRIVILEGED) &&
987 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
988 mnt->mnt.mnt_flags |= MNT_LOCKED;
989
be34d1a3
DH
990 atomic_inc(&sb->s_active);
991 mnt->mnt.mnt_sb = sb;
992 mnt->mnt.mnt_root = dget(root);
993 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
994 mnt->mnt_parent = mnt;
719ea2fb 995 lock_mount_hash();
be34d1a3 996 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 997 unlock_mount_hash();
be34d1a3 998
7a472ef4
EB
999 if ((flag & CL_SLAVE) ||
1000 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1001 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1002 mnt->mnt_master = old;
1003 CLEAR_MNT_SHARED(mnt);
1004 } else if (!(flag & CL_PRIVATE)) {
1005 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1006 list_add(&mnt->mnt_share, &old->mnt_share);
1007 if (IS_MNT_SLAVE(old))
1008 list_add(&mnt->mnt_slave, &old->mnt_slave);
1009 mnt->mnt_master = old->mnt_master;
1010 }
1011 if (flag & CL_MAKE_SHARED)
1012 set_mnt_shared(mnt);
1013
1014 /* stick the duplicate mount on the same expiry list
1015 * as the original if that was on one */
1016 if (flag & CL_EXPIRE) {
1017 if (!list_empty(&old->mnt_expire))
1018 list_add(&mnt->mnt_expire, &old->mnt_expire);
1019 }
1020
cb338d06 1021 return mnt;
719f5d7f
MS
1022
1023 out_free:
8ffcb32e 1024 mnt_free_id(mnt);
719f5d7f 1025 free_vfsmnt(mnt);
be34d1a3 1026 return ERR_PTR(err);
1da177e4
LT
1027}
1028
9ea459e1
AV
1029static void cleanup_mnt(struct mount *mnt)
1030{
1031 /*
1032 * This probably indicates that somebody messed
1033 * up a mnt_want/drop_write() pair. If this
1034 * happens, the filesystem was probably unable
1035 * to make r/w->r/o transitions.
1036 */
1037 /*
1038 * The locking used to deal with mnt_count decrement provides barriers,
1039 * so mnt_get_writers() below is safe.
1040 */
1041 WARN_ON(mnt_get_writers(mnt));
1042 if (unlikely(mnt->mnt_pins.first))
1043 mnt_pin_kill(mnt);
1044 fsnotify_vfsmount_delete(&mnt->mnt);
1045 dput(mnt->mnt.mnt_root);
1046 deactivate_super(mnt->mnt.mnt_sb);
1047 mnt_free_id(mnt);
1048 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1049}
1050
1051static void __cleanup_mnt(struct rcu_head *head)
1052{
1053 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1054}
1055
1056static LLIST_HEAD(delayed_mntput_list);
1057static void delayed_mntput(struct work_struct *unused)
1058{
1059 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1060 struct llist_node *next;
1061
1062 for (; node; node = next) {
1063 next = llist_next(node);
1064 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1065 }
1066}
1067static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1068
900148dc 1069static void mntput_no_expire(struct mount *mnt)
b3e19d92 1070{
48a066e7
AV
1071 rcu_read_lock();
1072 mnt_add_count(mnt, -1);
1073 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1074 rcu_read_unlock();
f03c6599 1075 return;
b3e19d92 1076 }
719ea2fb 1077 lock_mount_hash();
b3e19d92 1078 if (mnt_get_count(mnt)) {
48a066e7 1079 rcu_read_unlock();
719ea2fb 1080 unlock_mount_hash();
99b7db7b
NP
1081 return;
1082 }
48a066e7
AV
1083 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1084 rcu_read_unlock();
1085 unlock_mount_hash();
1086 return;
1087 }
1088 mnt->mnt.mnt_flags |= MNT_DOOMED;
1089 rcu_read_unlock();
962830df 1090
39f7c4db 1091 list_del(&mnt->mnt_instance);
719ea2fb 1092 unlock_mount_hash();
649a795a 1093
9ea459e1
AV
1094 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1095 struct task_struct *task = current;
1096 if (likely(!(task->flags & PF_KTHREAD))) {
1097 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1098 if (!task_work_add(task, &mnt->mnt_rcu, true))
1099 return;
1100 }
1101 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1102 schedule_delayed_work(&delayed_mntput_work, 1);
1103 return;
1104 }
1105 cleanup_mnt(mnt);
b3e19d92 1106}
b3e19d92
NP
1107
1108void mntput(struct vfsmount *mnt)
1109{
1110 if (mnt) {
863d684f 1111 struct mount *m = real_mount(mnt);
b3e19d92 1112 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1113 if (unlikely(m->mnt_expiry_mark))
1114 m->mnt_expiry_mark = 0;
1115 mntput_no_expire(m);
b3e19d92
NP
1116 }
1117}
1118EXPORT_SYMBOL(mntput);
1119
1120struct vfsmount *mntget(struct vfsmount *mnt)
1121{
1122 if (mnt)
83adc753 1123 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1124 return mnt;
1125}
1126EXPORT_SYMBOL(mntget);
1127
3064c356 1128struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1129{
3064c356
AV
1130 struct mount *p;
1131 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1132 if (IS_ERR(p))
1133 return ERR_CAST(p);
1134 p->mnt.mnt_flags |= MNT_INTERNAL;
1135 return &p->mnt;
7b7b1ace 1136}
1da177e4 1137
b3b304a2
MS
1138static inline void mangle(struct seq_file *m, const char *s)
1139{
1140 seq_escape(m, s, " \t\n\\");
1141}
1142
1143/*
1144 * Simple .show_options callback for filesystems which don't want to
1145 * implement more complex mount option showing.
1146 *
1147 * See also save_mount_options().
1148 */
34c80b1d 1149int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1150{
2a32cebd
AV
1151 const char *options;
1152
1153 rcu_read_lock();
34c80b1d 1154 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1155
1156 if (options != NULL && options[0]) {
1157 seq_putc(m, ',');
1158 mangle(m, options);
1159 }
2a32cebd 1160 rcu_read_unlock();
b3b304a2
MS
1161
1162 return 0;
1163}
1164EXPORT_SYMBOL(generic_show_options);
1165
1166/*
1167 * If filesystem uses generic_show_options(), this function should be
1168 * called from the fill_super() callback.
1169 *
1170 * The .remount_fs callback usually needs to be handled in a special
1171 * way, to make sure, that previous options are not overwritten if the
1172 * remount fails.
1173 *
1174 * Also note, that if the filesystem's .remount_fs function doesn't
1175 * reset all options to their default value, but changes only newly
1176 * given options, then the displayed options will not reflect reality
1177 * any more.
1178 */
1179void save_mount_options(struct super_block *sb, char *options)
1180{
2a32cebd
AV
1181 BUG_ON(sb->s_options);
1182 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1183}
1184EXPORT_SYMBOL(save_mount_options);
1185
2a32cebd
AV
1186void replace_mount_options(struct super_block *sb, char *options)
1187{
1188 char *old = sb->s_options;
1189 rcu_assign_pointer(sb->s_options, options);
1190 if (old) {
1191 synchronize_rcu();
1192 kfree(old);
1193 }
1194}
1195EXPORT_SYMBOL(replace_mount_options);
1196
a1a2c409 1197#ifdef CONFIG_PROC_FS
0226f492 1198/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1199static void *m_start(struct seq_file *m, loff_t *pos)
1200{
6ce6e24e 1201 struct proc_mounts *p = proc_mounts(m);
1da177e4 1202
390c6843 1203 down_read(&namespace_sem);
c7999c36
AV
1204 if (p->cached_event == p->ns->event) {
1205 void *v = p->cached_mount;
1206 if (*pos == p->cached_index)
1207 return v;
1208 if (*pos == p->cached_index + 1) {
1209 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1210 return p->cached_mount = v;
1211 }
1212 }
1213
1214 p->cached_event = p->ns->event;
1215 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1216 p->cached_index = *pos;
1217 return p->cached_mount;
1da177e4
LT
1218}
1219
1220static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1221{
6ce6e24e 1222 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1223
c7999c36
AV
1224 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1225 p->cached_index = *pos;
1226 return p->cached_mount;
1da177e4
LT
1227}
1228
1229static void m_stop(struct seq_file *m, void *v)
1230{
390c6843 1231 up_read(&namespace_sem);
1da177e4
LT
1232}
1233
0226f492 1234static int m_show(struct seq_file *m, void *v)
2d4d4864 1235{
6ce6e24e 1236 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1237 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1238 return p->show(m, &r->mnt);
1da177e4
LT
1239}
1240
a1a2c409 1241const struct seq_operations mounts_op = {
1da177e4
LT
1242 .start = m_start,
1243 .next = m_next,
1244 .stop = m_stop,
0226f492 1245 .show = m_show,
b4629fe2 1246};
a1a2c409 1247#endif /* CONFIG_PROC_FS */
b4629fe2 1248
1da177e4
LT
1249/**
1250 * may_umount_tree - check if a mount tree is busy
1251 * @mnt: root of mount tree
1252 *
1253 * This is called to check if a tree of mounts has any
1254 * open files, pwds, chroots or sub mounts that are
1255 * busy.
1256 */
909b0a88 1257int may_umount_tree(struct vfsmount *m)
1da177e4 1258{
909b0a88 1259 struct mount *mnt = real_mount(m);
36341f64
RP
1260 int actual_refs = 0;
1261 int minimum_refs = 0;
315fc83e 1262 struct mount *p;
909b0a88 1263 BUG_ON(!m);
1da177e4 1264
b3e19d92 1265 /* write lock needed for mnt_get_count */
719ea2fb 1266 lock_mount_hash();
909b0a88 1267 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1268 actual_refs += mnt_get_count(p);
1da177e4 1269 minimum_refs += 2;
1da177e4 1270 }
719ea2fb 1271 unlock_mount_hash();
1da177e4
LT
1272
1273 if (actual_refs > minimum_refs)
e3474a8e 1274 return 0;
1da177e4 1275
e3474a8e 1276 return 1;
1da177e4
LT
1277}
1278
1279EXPORT_SYMBOL(may_umount_tree);
1280
1281/**
1282 * may_umount - check if a mount point is busy
1283 * @mnt: root of mount
1284 *
1285 * This is called to check if a mount point has any
1286 * open files, pwds, chroots or sub mounts. If the
1287 * mount has sub mounts this will return busy
1288 * regardless of whether the sub mounts are busy.
1289 *
1290 * Doesn't take quota and stuff into account. IOW, in some cases it will
1291 * give false negatives. The main reason why it's here is that we need
1292 * a non-destructive way to look for easily umountable filesystems.
1293 */
1294int may_umount(struct vfsmount *mnt)
1295{
e3474a8e 1296 int ret = 1;
8ad08d8a 1297 down_read(&namespace_sem);
719ea2fb 1298 lock_mount_hash();
1ab59738 1299 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1300 ret = 0;
719ea2fb 1301 unlock_mount_hash();
8ad08d8a 1302 up_read(&namespace_sem);
a05964f3 1303 return ret;
1da177e4
LT
1304}
1305
1306EXPORT_SYMBOL(may_umount);
1307
38129a13 1308static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1309
97216be0 1310static void namespace_unlock(void)
70fbcdf4 1311{
a3b3c562 1312 struct hlist_head head;
97216be0 1313
a3b3c562 1314 hlist_move_list(&unmounted, &head);
97216be0 1315
97216be0
AV
1316 up_write(&namespace_sem);
1317
a3b3c562
EB
1318 if (likely(hlist_empty(&head)))
1319 return;
1320
48a066e7
AV
1321 synchronize_rcu();
1322
87b95ce0 1323 group_pin_kill(&head);
70fbcdf4
RP
1324}
1325
97216be0 1326static inline void namespace_lock(void)
e3197d83 1327{
97216be0 1328 down_write(&namespace_sem);
e3197d83
AV
1329}
1330
e819f152
EB
1331enum umount_tree_flags {
1332 UMOUNT_SYNC = 1,
1333 UMOUNT_PROPAGATE = 2,
1334};
99b7db7b 1335/*
48a066e7 1336 * mount_lock must be held
99b7db7b
NP
1337 * namespace_sem must be held for write
1338 */
e819f152 1339static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1340{
c003b26f 1341 LIST_HEAD(tmp_list);
315fc83e 1342 struct mount *p;
1da177e4 1343
5d88457e
EB
1344 if (how & UMOUNT_PROPAGATE)
1345 propagate_mount_unlock(mnt);
1346
c003b26f 1347 /* Gather the mounts to umount */
590ce4bc
EB
1348 for (p = mnt; p; p = next_mnt(p, mnt)) {
1349 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1350 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1351 }
1da177e4 1352
411a938b 1353 /* Hide the mounts from mnt_mounts */
c003b26f 1354 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1355 list_del_init(&p->mnt_child);
c003b26f 1356 }
88b368f2 1357
c003b26f 1358 /* Add propogated mounts to the tmp_list */
e819f152 1359 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1360 propagate_umount(&tmp_list);
a05964f3 1361
c003b26f
EB
1362 while (!list_empty(&tmp_list)) {
1363 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1364 list_del_init(&p->mnt_expire);
1a4eeaf2 1365 list_del_init(&p->mnt_list);
143c8c91
AV
1366 __touch_mnt_namespace(p->mnt_ns);
1367 p->mnt_ns = NULL;
e819f152 1368 if (how & UMOUNT_SYNC)
48a066e7 1369 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0
AV
1370
1371 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
676da58d 1372 if (mnt_has_parent(p)) {
81b6b061 1373 mnt_add_count(p->mnt_parent, -1);
87b95ce0
AV
1374 /* old mountpoint will be dropped when we can do that */
1375 p->mnt_ex_mountpoint = p->mnt_mountpoint;
7bdb11de 1376 unhash_mnt(p);
7c4b93d8 1377 }
0f0afb1d 1378 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1379 }
1380}
1381
b54b9be7 1382static void shrink_submounts(struct mount *mnt);
c35038be 1383
1ab59738 1384static int do_umount(struct mount *mnt, int flags)
1da177e4 1385{
1ab59738 1386 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1387 int retval;
1388
1ab59738 1389 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1390 if (retval)
1391 return retval;
1392
1393 /*
1394 * Allow userspace to request a mountpoint be expired rather than
1395 * unmounting unconditionally. Unmount only happens if:
1396 * (1) the mark is already set (the mark is cleared by mntput())
1397 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1398 */
1399 if (flags & MNT_EXPIRE) {
1ab59738 1400 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1401 flags & (MNT_FORCE | MNT_DETACH))
1402 return -EINVAL;
1403
b3e19d92
NP
1404 /*
1405 * probably don't strictly need the lock here if we examined
1406 * all race cases, but it's a slowpath.
1407 */
719ea2fb 1408 lock_mount_hash();
83adc753 1409 if (mnt_get_count(mnt) != 2) {
719ea2fb 1410 unlock_mount_hash();
1da177e4 1411 return -EBUSY;
b3e19d92 1412 }
719ea2fb 1413 unlock_mount_hash();
1da177e4 1414
863d684f 1415 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1416 return -EAGAIN;
1417 }
1418
1419 /*
1420 * If we may have to abort operations to get out of this
1421 * mount, and they will themselves hold resources we must
1422 * allow the fs to do things. In the Unix tradition of
1423 * 'Gee thats tricky lets do it in userspace' the umount_begin
1424 * might fail to complete on the first run through as other tasks
1425 * must return, and the like. Thats for the mount program to worry
1426 * about for the moment.
1427 */
1428
42faad99 1429 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1430 sb->s_op->umount_begin(sb);
42faad99 1431 }
1da177e4
LT
1432
1433 /*
1434 * No sense to grab the lock for this test, but test itself looks
1435 * somewhat bogus. Suggestions for better replacement?
1436 * Ho-hum... In principle, we might treat that as umount + switch
1437 * to rootfs. GC would eventually take care of the old vfsmount.
1438 * Actually it makes sense, especially if rootfs would contain a
1439 * /reboot - static binary that would close all descriptors and
1440 * call reboot(9). Then init(8) could umount root and exec /reboot.
1441 */
1ab59738 1442 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1443 /*
1444 * Special case for "unmounting" root ...
1445 * we just try to remount it readonly.
1446 */
a1480dcc
AL
1447 if (!capable(CAP_SYS_ADMIN))
1448 return -EPERM;
1da177e4 1449 down_write(&sb->s_umount);
4aa98cf7 1450 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1451 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1452 up_write(&sb->s_umount);
1453 return retval;
1454 }
1455
97216be0 1456 namespace_lock();
719ea2fb 1457 lock_mount_hash();
5addc5dd 1458 event++;
1da177e4 1459
48a066e7 1460 if (flags & MNT_DETACH) {
1a4eeaf2 1461 if (!list_empty(&mnt->mnt_list))
e819f152 1462 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1463 retval = 0;
48a066e7
AV
1464 } else {
1465 shrink_submounts(mnt);
1466 retval = -EBUSY;
1467 if (!propagate_mount_busy(mnt, 2)) {
1468 if (!list_empty(&mnt->mnt_list))
e819f152 1469 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1470 retval = 0;
1471 }
1da177e4 1472 }
719ea2fb 1473 unlock_mount_hash();
e3197d83 1474 namespace_unlock();
1da177e4
LT
1475 return retval;
1476}
1477
80b5dce8
EB
1478/*
1479 * __detach_mounts - lazily unmount all mounts on the specified dentry
1480 *
1481 * During unlink, rmdir, and d_drop it is possible to loose the path
1482 * to an existing mountpoint, and wind up leaking the mount.
1483 * detach_mounts allows lazily unmounting those mounts instead of
1484 * leaking them.
1485 *
1486 * The caller may hold dentry->d_inode->i_mutex.
1487 */
1488void __detach_mounts(struct dentry *dentry)
1489{
1490 struct mountpoint *mp;
1491 struct mount *mnt;
1492
1493 namespace_lock();
1494 mp = lookup_mountpoint(dentry);
1495 if (!mp)
1496 goto out_unlock;
1497
1498 lock_mount_hash();
1499 while (!hlist_empty(&mp->m_list)) {
1500 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
8318e667 1501 umount_tree(mnt, 0);
80b5dce8
EB
1502 }
1503 unlock_mount_hash();
1504 put_mountpoint(mp);
1505out_unlock:
1506 namespace_unlock();
1507}
1508
9b40bc90
AV
1509/*
1510 * Is the caller allowed to modify his namespace?
1511 */
1512static inline bool may_mount(void)
1513{
1514 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1515}
1516
1da177e4
LT
1517/*
1518 * Now umount can handle mount points as well as block devices.
1519 * This is important for filesystems which use unnamed block devices.
1520 *
1521 * We now support a flag for forced unmount like the other 'big iron'
1522 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1523 */
1524
bdc480e3 1525SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1526{
2d8f3038 1527 struct path path;
900148dc 1528 struct mount *mnt;
1da177e4 1529 int retval;
db1f05bb 1530 int lookup_flags = 0;
1da177e4 1531
db1f05bb
MS
1532 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1533 return -EINVAL;
1534
9b40bc90
AV
1535 if (!may_mount())
1536 return -EPERM;
1537
db1f05bb
MS
1538 if (!(flags & UMOUNT_NOFOLLOW))
1539 lookup_flags |= LOOKUP_FOLLOW;
1540
197df04c 1541 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1542 if (retval)
1543 goto out;
900148dc 1544 mnt = real_mount(path.mnt);
1da177e4 1545 retval = -EINVAL;
2d8f3038 1546 if (path.dentry != path.mnt->mnt_root)
1da177e4 1547 goto dput_and_out;
143c8c91 1548 if (!check_mnt(mnt))
1da177e4 1549 goto dput_and_out;
5ff9d8a6
EB
1550 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1551 goto dput_and_out;
b2f5d4dc
EB
1552 retval = -EPERM;
1553 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1554 goto dput_and_out;
1da177e4 1555
900148dc 1556 retval = do_umount(mnt, flags);
1da177e4 1557dput_and_out:
429731b1 1558 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1559 dput(path.dentry);
900148dc 1560 mntput_no_expire(mnt);
1da177e4
LT
1561out:
1562 return retval;
1563}
1564
1565#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1566
1567/*
b58fed8b 1568 * The 2.0 compatible umount. No flags.
1da177e4 1569 */
bdc480e3 1570SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1571{
b58fed8b 1572 return sys_umount(name, 0);
1da177e4
LT
1573}
1574
1575#endif
1576
4ce5d2b1 1577static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1578{
4ce5d2b1 1579 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1580 return dentry->d_op == &ns_dentry_operations &&
1581 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1582}
1583
58be2825
AV
1584struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1585{
1586 return container_of(ns, struct mnt_namespace, ns);
1587}
1588
4ce5d2b1
EB
1589static bool mnt_ns_loop(struct dentry *dentry)
1590{
1591 /* Could bind mounting the mount namespace inode cause a
1592 * mount namespace loop?
1593 */
1594 struct mnt_namespace *mnt_ns;
1595 if (!is_mnt_ns_file(dentry))
1596 return false;
1597
f77c8014 1598 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1599 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1600}
1601
87129cc0 1602struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1603 int flag)
1da177e4 1604{
84d17192 1605 struct mount *res, *p, *q, *r, *parent;
1da177e4 1606
4ce5d2b1
EB
1607 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1608 return ERR_PTR(-EINVAL);
1609
1610 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1611 return ERR_PTR(-EINVAL);
9676f0c6 1612
36341f64 1613 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1614 if (IS_ERR(q))
1615 return q;
1616
a73324da 1617 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1618
1619 p = mnt;
6b41d536 1620 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1621 struct mount *s;
7ec02ef1 1622 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1623 continue;
1624
909b0a88 1625 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1626 struct mount *t = NULL;
4ce5d2b1
EB
1627 if (!(flag & CL_COPY_UNBINDABLE) &&
1628 IS_MNT_UNBINDABLE(s)) {
1629 s = skip_mnt_tree(s);
1630 continue;
1631 }
1632 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1633 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1634 s = skip_mnt_tree(s);
1635 continue;
1636 }
0714a533
AV
1637 while (p != s->mnt_parent) {
1638 p = p->mnt_parent;
1639 q = q->mnt_parent;
1da177e4 1640 }
87129cc0 1641 p = s;
84d17192 1642 parent = q;
87129cc0 1643 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1644 if (IS_ERR(q))
1645 goto out;
719ea2fb 1646 lock_mount_hash();
1a4eeaf2 1647 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1648 mnt_set_mountpoint(parent, p->mnt_mp, q);
1649 if (!list_empty(&parent->mnt_mounts)) {
1650 t = list_last_entry(&parent->mnt_mounts,
1651 struct mount, mnt_child);
1652 if (t->mnt_mp != p->mnt_mp)
1653 t = NULL;
1654 }
1655 attach_shadowed(q, parent, t);
719ea2fb 1656 unlock_mount_hash();
1da177e4
LT
1657 }
1658 }
1659 return res;
be34d1a3 1660out:
1da177e4 1661 if (res) {
719ea2fb 1662 lock_mount_hash();
e819f152 1663 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1664 unlock_mount_hash();
1da177e4 1665 }
be34d1a3 1666 return q;
1da177e4
LT
1667}
1668
be34d1a3
DH
1669/* Caller should check returned pointer for errors */
1670
589ff870 1671struct vfsmount *collect_mounts(struct path *path)
8aec0809 1672{
cb338d06 1673 struct mount *tree;
97216be0 1674 namespace_lock();
cd4a4017
EB
1675 if (!check_mnt(real_mount(path->mnt)))
1676 tree = ERR_PTR(-EINVAL);
1677 else
1678 tree = copy_tree(real_mount(path->mnt), path->dentry,
1679 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1680 namespace_unlock();
be34d1a3 1681 if (IS_ERR(tree))
52e220d3 1682 return ERR_CAST(tree);
be34d1a3 1683 return &tree->mnt;
8aec0809
AV
1684}
1685
1686void drop_collected_mounts(struct vfsmount *mnt)
1687{
97216be0 1688 namespace_lock();
719ea2fb 1689 lock_mount_hash();
e819f152 1690 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1691 unlock_mount_hash();
3ab6abee 1692 namespace_unlock();
8aec0809
AV
1693}
1694
c771d683
MS
1695/**
1696 * clone_private_mount - create a private clone of a path
1697 *
1698 * This creates a new vfsmount, which will be the clone of @path. The new will
1699 * not be attached anywhere in the namespace and will be private (i.e. changes
1700 * to the originating mount won't be propagated into this).
1701 *
1702 * Release with mntput().
1703 */
1704struct vfsmount *clone_private_mount(struct path *path)
1705{
1706 struct mount *old_mnt = real_mount(path->mnt);
1707 struct mount *new_mnt;
1708
1709 if (IS_MNT_UNBINDABLE(old_mnt))
1710 return ERR_PTR(-EINVAL);
1711
1712 down_read(&namespace_sem);
1713 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1714 up_read(&namespace_sem);
1715 if (IS_ERR(new_mnt))
1716 return ERR_CAST(new_mnt);
1717
1718 return &new_mnt->mnt;
1719}
1720EXPORT_SYMBOL_GPL(clone_private_mount);
1721
1f707137
AV
1722int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1723 struct vfsmount *root)
1724{
1a4eeaf2 1725 struct mount *mnt;
1f707137
AV
1726 int res = f(root, arg);
1727 if (res)
1728 return res;
1a4eeaf2
AV
1729 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1730 res = f(&mnt->mnt, arg);
1f707137
AV
1731 if (res)
1732 return res;
1733 }
1734 return 0;
1735}
1736
4b8b21f4 1737static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1738{
315fc83e 1739 struct mount *p;
719f5d7f 1740
909b0a88 1741 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1742 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1743 mnt_release_group_id(p);
719f5d7f
MS
1744 }
1745}
1746
4b8b21f4 1747static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1748{
315fc83e 1749 struct mount *p;
719f5d7f 1750
909b0a88 1751 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1752 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1753 int err = mnt_alloc_group_id(p);
719f5d7f 1754 if (err) {
4b8b21f4 1755 cleanup_group_ids(mnt, p);
719f5d7f
MS
1756 return err;
1757 }
1758 }
1759 }
1760
1761 return 0;
1762}
1763
b90fa9ae
RP
1764/*
1765 * @source_mnt : mount tree to be attached
21444403
RP
1766 * @nd : place the mount tree @source_mnt is attached
1767 * @parent_nd : if non-null, detach the source_mnt from its parent and
1768 * store the parent mount and mountpoint dentry.
1769 * (done when source_mnt is moved)
b90fa9ae
RP
1770 *
1771 * NOTE: in the table below explains the semantics when a source mount
1772 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1773 * ---------------------------------------------------------------------------
1774 * | BIND MOUNT OPERATION |
1775 * |**************************************************************************
1776 * | source-->| shared | private | slave | unbindable |
1777 * | dest | | | | |
1778 * | | | | | | |
1779 * | v | | | | |
1780 * |**************************************************************************
1781 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1782 * | | | | | |
1783 * |non-shared| shared (+) | private | slave (*) | invalid |
1784 * ***************************************************************************
b90fa9ae
RP
1785 * A bind operation clones the source mount and mounts the clone on the
1786 * destination mount.
1787 *
1788 * (++) the cloned mount is propagated to all the mounts in the propagation
1789 * tree of the destination mount and the cloned mount is added to
1790 * the peer group of the source mount.
1791 * (+) the cloned mount is created under the destination mount and is marked
1792 * as shared. The cloned mount is added to the peer group of the source
1793 * mount.
5afe0022
RP
1794 * (+++) the mount is propagated to all the mounts in the propagation tree
1795 * of the destination mount and the cloned mount is made slave
1796 * of the same master as that of the source mount. The cloned mount
1797 * is marked as 'shared and slave'.
1798 * (*) the cloned mount is made a slave of the same master as that of the
1799 * source mount.
1800 *
9676f0c6
RP
1801 * ---------------------------------------------------------------------------
1802 * | MOVE MOUNT OPERATION |
1803 * |**************************************************************************
1804 * | source-->| shared | private | slave | unbindable |
1805 * | dest | | | | |
1806 * | | | | | | |
1807 * | v | | | | |
1808 * |**************************************************************************
1809 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1810 * | | | | | |
1811 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1812 * ***************************************************************************
5afe0022
RP
1813 *
1814 * (+) the mount is moved to the destination. And is then propagated to
1815 * all the mounts in the propagation tree of the destination mount.
21444403 1816 * (+*) the mount is moved to the destination.
5afe0022
RP
1817 * (+++) the mount is moved to the destination and is then propagated to
1818 * all the mounts belonging to the destination mount's propagation tree.
1819 * the mount is marked as 'shared and slave'.
1820 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1821 *
1822 * if the source mount is a tree, the operations explained above is
1823 * applied to each mount in the tree.
1824 * Must be called without spinlocks held, since this function can sleep
1825 * in allocations.
1826 */
0fb54e50 1827static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1828 struct mount *dest_mnt,
1829 struct mountpoint *dest_mp,
1830 struct path *parent_path)
b90fa9ae 1831{
38129a13 1832 HLIST_HEAD(tree_list);
315fc83e 1833 struct mount *child, *p;
38129a13 1834 struct hlist_node *n;
719f5d7f 1835 int err;
b90fa9ae 1836
fc7be130 1837 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1838 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1839 if (err)
1840 goto out;
0b1b901b 1841 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1842 lock_mount_hash();
0b1b901b
AV
1843 if (err)
1844 goto out_cleanup_ids;
909b0a88 1845 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1846 set_mnt_shared(p);
0b1b901b
AV
1847 } else {
1848 lock_mount_hash();
b90fa9ae 1849 }
1a390689 1850 if (parent_path) {
0fb54e50 1851 detach_mnt(source_mnt, parent_path);
84d17192 1852 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1853 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1854 } else {
84d17192 1855 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1856 commit_tree(source_mnt, NULL);
21444403 1857 }
b90fa9ae 1858
38129a13 1859 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1860 struct mount *q;
38129a13 1861 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1862 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1863 child->mnt_mountpoint);
1864 commit_tree(child, q);
b90fa9ae 1865 }
719ea2fb 1866 unlock_mount_hash();
99b7db7b 1867
b90fa9ae 1868 return 0;
719f5d7f
MS
1869
1870 out_cleanup_ids:
f2ebb3a9
AV
1871 while (!hlist_empty(&tree_list)) {
1872 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
e819f152 1873 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
1874 }
1875 unlock_mount_hash();
0b1b901b 1876 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1877 out:
1878 return err;
b90fa9ae
RP
1879}
1880
84d17192 1881static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1882{
1883 struct vfsmount *mnt;
84d17192 1884 struct dentry *dentry = path->dentry;
b12cea91 1885retry:
84d17192
AV
1886 mutex_lock(&dentry->d_inode->i_mutex);
1887 if (unlikely(cant_mount(dentry))) {
1888 mutex_unlock(&dentry->d_inode->i_mutex);
1889 return ERR_PTR(-ENOENT);
b12cea91 1890 }
97216be0 1891 namespace_lock();
b12cea91 1892 mnt = lookup_mnt(path);
84d17192 1893 if (likely(!mnt)) {
e2dfa935
EB
1894 struct mountpoint *mp = lookup_mountpoint(dentry);
1895 if (!mp)
1896 mp = new_mountpoint(dentry);
84d17192 1897 if (IS_ERR(mp)) {
97216be0 1898 namespace_unlock();
84d17192
AV
1899 mutex_unlock(&dentry->d_inode->i_mutex);
1900 return mp;
1901 }
1902 return mp;
1903 }
97216be0 1904 namespace_unlock();
b12cea91
AV
1905 mutex_unlock(&path->dentry->d_inode->i_mutex);
1906 path_put(path);
1907 path->mnt = mnt;
84d17192 1908 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1909 goto retry;
1910}
1911
84d17192 1912static void unlock_mount(struct mountpoint *where)
b12cea91 1913{
84d17192
AV
1914 struct dentry *dentry = where->m_dentry;
1915 put_mountpoint(where);
328e6d90 1916 namespace_unlock();
84d17192 1917 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1918}
1919
84d17192 1920static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1921{
95bc5f25 1922 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1923 return -EINVAL;
1924
e36cb0b8
DH
1925 if (d_is_dir(mp->m_dentry) !=
1926 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
1927 return -ENOTDIR;
1928
84d17192 1929 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1930}
1931
7a2e8a8f
VA
1932/*
1933 * Sanity check the flags to change_mnt_propagation.
1934 */
1935
1936static int flags_to_propagation_type(int flags)
1937{
7c6e984d 1938 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1939
1940 /* Fail if any non-propagation flags are set */
1941 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1942 return 0;
1943 /* Only one propagation flag should be set */
1944 if (!is_power_of_2(type))
1945 return 0;
1946 return type;
1947}
1948
07b20889
RP
1949/*
1950 * recursively change the type of the mountpoint.
1951 */
0a0d8a46 1952static int do_change_type(struct path *path, int flag)
07b20889 1953{
315fc83e 1954 struct mount *m;
4b8b21f4 1955 struct mount *mnt = real_mount(path->mnt);
07b20889 1956 int recurse = flag & MS_REC;
7a2e8a8f 1957 int type;
719f5d7f 1958 int err = 0;
07b20889 1959
2d92ab3c 1960 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1961 return -EINVAL;
1962
7a2e8a8f
VA
1963 type = flags_to_propagation_type(flag);
1964 if (!type)
1965 return -EINVAL;
1966
97216be0 1967 namespace_lock();
719f5d7f
MS
1968 if (type == MS_SHARED) {
1969 err = invent_group_ids(mnt, recurse);
1970 if (err)
1971 goto out_unlock;
1972 }
1973
719ea2fb 1974 lock_mount_hash();
909b0a88 1975 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1976 change_mnt_propagation(m, type);
719ea2fb 1977 unlock_mount_hash();
719f5d7f
MS
1978
1979 out_unlock:
97216be0 1980 namespace_unlock();
719f5d7f 1981 return err;
07b20889
RP
1982}
1983
5ff9d8a6
EB
1984static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1985{
1986 struct mount *child;
1987 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1988 if (!is_subdir(child->mnt_mountpoint, dentry))
1989 continue;
1990
1991 if (child->mnt.mnt_flags & MNT_LOCKED)
1992 return true;
1993 }
1994 return false;
1995}
1996
1da177e4
LT
1997/*
1998 * do loopback mount.
1999 */
808d4e3c 2000static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2001 int recurse)
1da177e4 2002{
2d92ab3c 2003 struct path old_path;
84d17192
AV
2004 struct mount *mnt = NULL, *old, *parent;
2005 struct mountpoint *mp;
57eccb83 2006 int err;
1da177e4
LT
2007 if (!old_name || !*old_name)
2008 return -EINVAL;
815d405c 2009 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2010 if (err)
2011 return err;
2012
8823c079 2013 err = -EINVAL;
4ce5d2b1 2014 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2015 goto out;
2016
84d17192
AV
2017 mp = lock_mount(path);
2018 err = PTR_ERR(mp);
2019 if (IS_ERR(mp))
b12cea91
AV
2020 goto out;
2021
87129cc0 2022 old = real_mount(old_path.mnt);
84d17192 2023 parent = real_mount(path->mnt);
87129cc0 2024
1da177e4 2025 err = -EINVAL;
fc7be130 2026 if (IS_MNT_UNBINDABLE(old))
b12cea91 2027 goto out2;
9676f0c6 2028
e149ed2b
AV
2029 if (!check_mnt(parent))
2030 goto out2;
2031
2032 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2033 goto out2;
1da177e4 2034
5ff9d8a6
EB
2035 if (!recurse && has_locked_children(old, old_path.dentry))
2036 goto out2;
2037
ccd48bc7 2038 if (recurse)
4ce5d2b1 2039 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2040 else
87129cc0 2041 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2042
be34d1a3
DH
2043 if (IS_ERR(mnt)) {
2044 err = PTR_ERR(mnt);
e9c5d8a5 2045 goto out2;
be34d1a3 2046 }
ccd48bc7 2047
5ff9d8a6
EB
2048 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2049
84d17192 2050 err = graft_tree(mnt, parent, mp);
ccd48bc7 2051 if (err) {
719ea2fb 2052 lock_mount_hash();
e819f152 2053 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2054 unlock_mount_hash();
5b83d2c5 2055 }
b12cea91 2056out2:
84d17192 2057 unlock_mount(mp);
ccd48bc7 2058out:
2d92ab3c 2059 path_put(&old_path);
1da177e4
LT
2060 return err;
2061}
2062
2e4b7fcd
DH
2063static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2064{
2065 int error = 0;
2066 int readonly_request = 0;
2067
2068 if (ms_flags & MS_RDONLY)
2069 readonly_request = 1;
2070 if (readonly_request == __mnt_is_readonly(mnt))
2071 return 0;
2072
2073 if (readonly_request)
83adc753 2074 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2075 else
83adc753 2076 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2077 return error;
2078}
2079
1da177e4
LT
2080/*
2081 * change filesystem flags. dir should be a physical root of filesystem.
2082 * If you've mounted a non-root directory somewhere and want to do remount
2083 * on it - tough luck.
2084 */
0a0d8a46 2085static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2086 void *data)
2087{
2088 int err;
2d92ab3c 2089 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2090 struct mount *mnt = real_mount(path->mnt);
1da177e4 2091
143c8c91 2092 if (!check_mnt(mnt))
1da177e4
LT
2093 return -EINVAL;
2094
2d92ab3c 2095 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2096 return -EINVAL;
2097
07b64558
EB
2098 /* Don't allow changing of locked mnt flags.
2099 *
2100 * No locks need to be held here while testing the various
2101 * MNT_LOCK flags because those flags can never be cleared
2102 * once they are set.
2103 */
2104 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2105 !(mnt_flags & MNT_READONLY)) {
2106 return -EPERM;
2107 }
9566d674
EB
2108 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2109 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2110 /* Was the nodev implicitly added in mount? */
2111 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2112 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2113 mnt_flags |= MNT_NODEV;
2114 } else {
2115 return -EPERM;
2116 }
9566d674
EB
2117 }
2118 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2119 !(mnt_flags & MNT_NOSUID)) {
2120 return -EPERM;
2121 }
2122 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2123 !(mnt_flags & MNT_NOEXEC)) {
2124 return -EPERM;
2125 }
2126 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2127 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2128 return -EPERM;
2129 }
2130
ff36fe2c
EP
2131 err = security_sb_remount(sb, data);
2132 if (err)
2133 return err;
2134
1da177e4 2135 down_write(&sb->s_umount);
2e4b7fcd 2136 if (flags & MS_BIND)
2d92ab3c 2137 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2138 else if (!capable(CAP_SYS_ADMIN))
2139 err = -EPERM;
4aa98cf7 2140 else
2e4b7fcd 2141 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2142 if (!err) {
719ea2fb 2143 lock_mount_hash();
a6138db8 2144 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2145 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2146 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2147 unlock_mount_hash();
0e55a7cc 2148 }
6339dab8 2149 up_write(&sb->s_umount);
1da177e4
LT
2150 return err;
2151}
2152
cbbe362c 2153static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2154{
315fc83e 2155 struct mount *p;
909b0a88 2156 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2157 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2158 return 1;
2159 }
2160 return 0;
2161}
2162
808d4e3c 2163static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2164{
2d92ab3c 2165 struct path old_path, parent_path;
676da58d 2166 struct mount *p;
0fb54e50 2167 struct mount *old;
84d17192 2168 struct mountpoint *mp;
57eccb83 2169 int err;
1da177e4
LT
2170 if (!old_name || !*old_name)
2171 return -EINVAL;
2d92ab3c 2172 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2173 if (err)
2174 return err;
2175
84d17192
AV
2176 mp = lock_mount(path);
2177 err = PTR_ERR(mp);
2178 if (IS_ERR(mp))
cc53ce53
DH
2179 goto out;
2180
143c8c91 2181 old = real_mount(old_path.mnt);
fc7be130 2182 p = real_mount(path->mnt);
143c8c91 2183
1da177e4 2184 err = -EINVAL;
fc7be130 2185 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2186 goto out1;
2187
5ff9d8a6
EB
2188 if (old->mnt.mnt_flags & MNT_LOCKED)
2189 goto out1;
2190
1da177e4 2191 err = -EINVAL;
2d92ab3c 2192 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2193 goto out1;
1da177e4 2194
676da58d 2195 if (!mnt_has_parent(old))
21444403 2196 goto out1;
1da177e4 2197
e36cb0b8
DH
2198 if (d_is_dir(path->dentry) !=
2199 d_is_dir(old_path.dentry))
21444403
RP
2200 goto out1;
2201 /*
2202 * Don't move a mount residing in a shared parent.
2203 */
fc7be130 2204 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2205 goto out1;
9676f0c6
RP
2206 /*
2207 * Don't move a mount tree containing unbindable mounts to a destination
2208 * mount which is shared.
2209 */
fc7be130 2210 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2211 goto out1;
1da177e4 2212 err = -ELOOP;
fc7be130 2213 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2214 if (p == old)
21444403 2215 goto out1;
1da177e4 2216
84d17192 2217 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2218 if (err)
21444403 2219 goto out1;
1da177e4
LT
2220
2221 /* if the mount is moved, it should no longer be expire
2222 * automatically */
6776db3d 2223 list_del_init(&old->mnt_expire);
1da177e4 2224out1:
84d17192 2225 unlock_mount(mp);
1da177e4 2226out:
1da177e4 2227 if (!err)
1a390689 2228 path_put(&parent_path);
2d92ab3c 2229 path_put(&old_path);
1da177e4
LT
2230 return err;
2231}
2232
9d412a43
AV
2233static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2234{
2235 int err;
2236 const char *subtype = strchr(fstype, '.');
2237 if (subtype) {
2238 subtype++;
2239 err = -EINVAL;
2240 if (!subtype[0])
2241 goto err;
2242 } else
2243 subtype = "";
2244
2245 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2246 err = -ENOMEM;
2247 if (!mnt->mnt_sb->s_subtype)
2248 goto err;
2249 return mnt;
2250
2251 err:
2252 mntput(mnt);
2253 return ERR_PTR(err);
2254}
2255
9d412a43
AV
2256/*
2257 * add a mount into a namespace's mount tree
2258 */
95bc5f25 2259static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2260{
84d17192
AV
2261 struct mountpoint *mp;
2262 struct mount *parent;
9d412a43
AV
2263 int err;
2264
f2ebb3a9 2265 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2266
84d17192
AV
2267 mp = lock_mount(path);
2268 if (IS_ERR(mp))
2269 return PTR_ERR(mp);
9d412a43 2270
84d17192 2271 parent = real_mount(path->mnt);
9d412a43 2272 err = -EINVAL;
84d17192 2273 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2274 /* that's acceptable only for automounts done in private ns */
2275 if (!(mnt_flags & MNT_SHRINKABLE))
2276 goto unlock;
2277 /* ... and for those we'd better have mountpoint still alive */
84d17192 2278 if (!parent->mnt_ns)
156cacb1
AV
2279 goto unlock;
2280 }
9d412a43
AV
2281
2282 /* Refuse the same filesystem on the same mount point */
2283 err = -EBUSY;
95bc5f25 2284 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2285 path->mnt->mnt_root == path->dentry)
2286 goto unlock;
2287
2288 err = -EINVAL;
e36cb0b8 2289 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2290 goto unlock;
2291
95bc5f25 2292 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2293 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2294
2295unlock:
84d17192 2296 unlock_mount(mp);
9d412a43
AV
2297 return err;
2298}
b1e75df4 2299
1da177e4
LT
2300/*
2301 * create a new mount for userspace and request it to be added into the
2302 * namespace's tree
2303 */
0c55cfc4 2304static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2305 int mnt_flags, const char *name, void *data)
1da177e4 2306{
0c55cfc4 2307 struct file_system_type *type;
9b40bc90 2308 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2309 struct vfsmount *mnt;
15f9a3f3 2310 int err;
1da177e4 2311
0c55cfc4 2312 if (!fstype)
1da177e4
LT
2313 return -EINVAL;
2314
0c55cfc4
EB
2315 type = get_fs_type(fstype);
2316 if (!type)
2317 return -ENODEV;
2318
2319 if (user_ns != &init_user_ns) {
2320 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2321 put_filesystem(type);
2322 return -EPERM;
2323 }
2324 /* Only in special cases allow devices from mounts
2325 * created outside the initial user namespace.
2326 */
2327 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2328 flags |= MS_NODEV;
9566d674 2329 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2330 }
2331 }
2332
2333 mnt = vfs_kern_mount(type, flags, name, data);
2334 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2335 !mnt->mnt_sb->s_subtype)
2336 mnt = fs_set_subtype(mnt, fstype);
2337
2338 put_filesystem(type);
1da177e4
LT
2339 if (IS_ERR(mnt))
2340 return PTR_ERR(mnt);
2341
95bc5f25 2342 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2343 if (err)
2344 mntput(mnt);
2345 return err;
1da177e4
LT
2346}
2347
19a167af
AV
2348int finish_automount(struct vfsmount *m, struct path *path)
2349{
6776db3d 2350 struct mount *mnt = real_mount(m);
19a167af
AV
2351 int err;
2352 /* The new mount record should have at least 2 refs to prevent it being
2353 * expired before we get a chance to add it
2354 */
6776db3d 2355 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2356
2357 if (m->mnt_sb == path->mnt->mnt_sb &&
2358 m->mnt_root == path->dentry) {
b1e75df4
AV
2359 err = -ELOOP;
2360 goto fail;
19a167af
AV
2361 }
2362
95bc5f25 2363 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2364 if (!err)
2365 return 0;
2366fail:
2367 /* remove m from any expiration list it may be on */
6776db3d 2368 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2369 namespace_lock();
6776db3d 2370 list_del_init(&mnt->mnt_expire);
97216be0 2371 namespace_unlock();
19a167af 2372 }
b1e75df4
AV
2373 mntput(m);
2374 mntput(m);
19a167af
AV
2375 return err;
2376}
2377
ea5b778a
DH
2378/**
2379 * mnt_set_expiry - Put a mount on an expiration list
2380 * @mnt: The mount to list.
2381 * @expiry_list: The list to add the mount to.
2382 */
2383void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2384{
97216be0 2385 namespace_lock();
ea5b778a 2386
6776db3d 2387 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2388
97216be0 2389 namespace_unlock();
ea5b778a
DH
2390}
2391EXPORT_SYMBOL(mnt_set_expiry);
2392
1da177e4
LT
2393/*
2394 * process a list of expirable mountpoints with the intent of discarding any
2395 * mountpoints that aren't in use and haven't been touched since last we came
2396 * here
2397 */
2398void mark_mounts_for_expiry(struct list_head *mounts)
2399{
761d5c38 2400 struct mount *mnt, *next;
1da177e4
LT
2401 LIST_HEAD(graveyard);
2402
2403 if (list_empty(mounts))
2404 return;
2405
97216be0 2406 namespace_lock();
719ea2fb 2407 lock_mount_hash();
1da177e4
LT
2408
2409 /* extract from the expiration list every vfsmount that matches the
2410 * following criteria:
2411 * - only referenced by its parent vfsmount
2412 * - still marked for expiry (marked on the last call here; marks are
2413 * cleared by mntput())
2414 */
6776db3d 2415 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2416 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2417 propagate_mount_busy(mnt, 1))
1da177e4 2418 continue;
6776db3d 2419 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2420 }
bcc5c7d2 2421 while (!list_empty(&graveyard)) {
6776db3d 2422 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2423 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2424 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2425 }
719ea2fb 2426 unlock_mount_hash();
3ab6abee 2427 namespace_unlock();
5528f911
TM
2428}
2429
2430EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2431
2432/*
2433 * Ripoff of 'select_parent()'
2434 *
2435 * search the list of submounts for a given mountpoint, and move any
2436 * shrinkable submounts to the 'graveyard' list.
2437 */
692afc31 2438static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2439{
692afc31 2440 struct mount *this_parent = parent;
5528f911
TM
2441 struct list_head *next;
2442 int found = 0;
2443
2444repeat:
6b41d536 2445 next = this_parent->mnt_mounts.next;
5528f911 2446resume:
6b41d536 2447 while (next != &this_parent->mnt_mounts) {
5528f911 2448 struct list_head *tmp = next;
6b41d536 2449 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2450
2451 next = tmp->next;
692afc31 2452 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2453 continue;
5528f911
TM
2454 /*
2455 * Descend a level if the d_mounts list is non-empty.
2456 */
6b41d536 2457 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2458 this_parent = mnt;
2459 goto repeat;
2460 }
1da177e4 2461
1ab59738 2462 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2463 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2464 found++;
2465 }
1da177e4 2466 }
5528f911
TM
2467 /*
2468 * All done at this level ... ascend and resume the search
2469 */
2470 if (this_parent != parent) {
6b41d536 2471 next = this_parent->mnt_child.next;
0714a533 2472 this_parent = this_parent->mnt_parent;
5528f911
TM
2473 goto resume;
2474 }
2475 return found;
2476}
2477
2478/*
2479 * process a list of expirable mountpoints with the intent of discarding any
2480 * submounts of a specific parent mountpoint
99b7db7b 2481 *
48a066e7 2482 * mount_lock must be held for write
5528f911 2483 */
b54b9be7 2484static void shrink_submounts(struct mount *mnt)
5528f911
TM
2485{
2486 LIST_HEAD(graveyard);
761d5c38 2487 struct mount *m;
5528f911 2488
5528f911 2489 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2490 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2491 while (!list_empty(&graveyard)) {
761d5c38 2492 m = list_first_entry(&graveyard, struct mount,
6776db3d 2493 mnt_expire);
143c8c91 2494 touch_mnt_namespace(m->mnt_ns);
e819f152 2495 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2496 }
2497 }
1da177e4
LT
2498}
2499
1da177e4
LT
2500/*
2501 * Some copy_from_user() implementations do not return the exact number of
2502 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2503 * Note that this function differs from copy_from_user() in that it will oops
2504 * on bad values of `to', rather than returning a short copy.
2505 */
b58fed8b
RP
2506static long exact_copy_from_user(void *to, const void __user * from,
2507 unsigned long n)
1da177e4
LT
2508{
2509 char *t = to;
2510 const char __user *f = from;
2511 char c;
2512
2513 if (!access_ok(VERIFY_READ, from, n))
2514 return n;
2515
2516 while (n) {
2517 if (__get_user(c, f)) {
2518 memset(t, 0, n);
2519 break;
2520 }
2521 *t++ = c;
2522 f++;
2523 n--;
2524 }
2525 return n;
2526}
2527
b58fed8b 2528int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2529{
2530 int i;
2531 unsigned long page;
2532 unsigned long size;
b58fed8b 2533
1da177e4
LT
2534 *where = 0;
2535 if (!data)
2536 return 0;
2537
2538 if (!(page = __get_free_page(GFP_KERNEL)))
2539 return -ENOMEM;
2540
2541 /* We only care that *some* data at the address the user
2542 * gave us is valid. Just in case, we'll zero
2543 * the remainder of the page.
2544 */
2545 /* copy_from_user cannot cross TASK_SIZE ! */
2546 size = TASK_SIZE - (unsigned long)data;
2547 if (size > PAGE_SIZE)
2548 size = PAGE_SIZE;
2549
2550 i = size - exact_copy_from_user((void *)page, data, size);
2551 if (!i) {
b58fed8b 2552 free_page(page);
1da177e4
LT
2553 return -EFAULT;
2554 }
2555 if (i != PAGE_SIZE)
2556 memset((char *)page + i, 0, PAGE_SIZE - i);
2557 *where = page;
2558 return 0;
2559}
2560
b8850d1f 2561char *copy_mount_string(const void __user *data)
eca6f534 2562{
b8850d1f 2563 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2564}
2565
1da177e4
LT
2566/*
2567 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2568 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2569 *
2570 * data is a (void *) that can point to any structure up to
2571 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2572 * information (or be NULL).
2573 *
2574 * Pre-0.97 versions of mount() didn't have a flags word.
2575 * When the flags word was introduced its top half was required
2576 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2577 * Therefore, if this magic number is present, it carries no information
2578 * and must be discarded.
2579 */
5e6123f3 2580long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2581 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2582{
2d92ab3c 2583 struct path path;
1da177e4
LT
2584 int retval = 0;
2585 int mnt_flags = 0;
2586
2587 /* Discard magic */
2588 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2589 flags &= ~MS_MGC_MSK;
2590
2591 /* Basic sanity checks */
1da177e4
LT
2592 if (data_page)
2593 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2594
a27ab9f2 2595 /* ... and get the mountpoint */
5e6123f3 2596 retval = user_path(dir_name, &path);
a27ab9f2
TH
2597 if (retval)
2598 return retval;
2599
2600 retval = security_sb_mount(dev_name, &path,
2601 type_page, flags, data_page);
0d5cadb8
AV
2602 if (!retval && !may_mount())
2603 retval = -EPERM;
a27ab9f2
TH
2604 if (retval)
2605 goto dput_out;
2606
613cbe3d
AK
2607 /* Default to relatime unless overriden */
2608 if (!(flags & MS_NOATIME))
2609 mnt_flags |= MNT_RELATIME;
0a1c01c9 2610
1da177e4
LT
2611 /* Separate the per-mountpoint flags */
2612 if (flags & MS_NOSUID)
2613 mnt_flags |= MNT_NOSUID;
2614 if (flags & MS_NODEV)
2615 mnt_flags |= MNT_NODEV;
2616 if (flags & MS_NOEXEC)
2617 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2618 if (flags & MS_NOATIME)
2619 mnt_flags |= MNT_NOATIME;
2620 if (flags & MS_NODIRATIME)
2621 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2622 if (flags & MS_STRICTATIME)
2623 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2624 if (flags & MS_RDONLY)
2625 mnt_flags |= MNT_READONLY;
fc33a7bb 2626
ffbc6f0e
EB
2627 /* The default atime for remount is preservation */
2628 if ((flags & MS_REMOUNT) &&
2629 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2630 MS_STRICTATIME)) == 0)) {
2631 mnt_flags &= ~MNT_ATIME_MASK;
2632 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2633 }
2634
7a4dec53 2635 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2636 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2637 MS_STRICTATIME);
1da177e4 2638
1da177e4 2639 if (flags & MS_REMOUNT)
2d92ab3c 2640 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2641 data_page);
2642 else if (flags & MS_BIND)
2d92ab3c 2643 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2644 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2645 retval = do_change_type(&path, flags);
1da177e4 2646 else if (flags & MS_MOVE)
2d92ab3c 2647 retval = do_move_mount(&path, dev_name);
1da177e4 2648 else
2d92ab3c 2649 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2650 dev_name, data_page);
2651dput_out:
2d92ab3c 2652 path_put(&path);
1da177e4
LT
2653 return retval;
2654}
2655
771b1371
EB
2656static void free_mnt_ns(struct mnt_namespace *ns)
2657{
6344c433 2658 ns_free_inum(&ns->ns);
771b1371
EB
2659 put_user_ns(ns->user_ns);
2660 kfree(ns);
2661}
2662
8823c079
EB
2663/*
2664 * Assign a sequence number so we can detect when we attempt to bind
2665 * mount a reference to an older mount namespace into the current
2666 * mount namespace, preventing reference counting loops. A 64bit
2667 * number incrementing at 10Ghz will take 12,427 years to wrap which
2668 * is effectively never, so we can ignore the possibility.
2669 */
2670static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2671
771b1371 2672static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2673{
2674 struct mnt_namespace *new_ns;
98f842e6 2675 int ret;
cf8d2c11
TM
2676
2677 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2678 if (!new_ns)
2679 return ERR_PTR(-ENOMEM);
6344c433 2680 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2681 if (ret) {
2682 kfree(new_ns);
2683 return ERR_PTR(ret);
2684 }
33c42940 2685 new_ns->ns.ops = &mntns_operations;
8823c079 2686 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2687 atomic_set(&new_ns->count, 1);
2688 new_ns->root = NULL;
2689 INIT_LIST_HEAD(&new_ns->list);
2690 init_waitqueue_head(&new_ns->poll);
2691 new_ns->event = 0;
771b1371 2692 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2693 return new_ns;
2694}
2695
9559f689
AV
2696struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2697 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2698{
6b3286ed 2699 struct mnt_namespace *new_ns;
7f2da1e7 2700 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2701 struct mount *p, *q;
9559f689 2702 struct mount *old;
cb338d06 2703 struct mount *new;
7a472ef4 2704 int copy_flags;
1da177e4 2705
9559f689
AV
2706 BUG_ON(!ns);
2707
2708 if (likely(!(flags & CLONE_NEWNS))) {
2709 get_mnt_ns(ns);
2710 return ns;
2711 }
2712
2713 old = ns->root;
2714
771b1371 2715 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2716 if (IS_ERR(new_ns))
2717 return new_ns;
1da177e4 2718
97216be0 2719 namespace_lock();
1da177e4 2720 /* First pass: copy the tree topology */
4ce5d2b1 2721 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2722 if (user_ns != ns->user_ns)
132c94e3 2723 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2724 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2725 if (IS_ERR(new)) {
328e6d90 2726 namespace_unlock();
771b1371 2727 free_mnt_ns(new_ns);
be34d1a3 2728 return ERR_CAST(new);
1da177e4 2729 }
be08d6d2 2730 new_ns->root = new;
1a4eeaf2 2731 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2732
2733 /*
2734 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2735 * as belonging to new namespace. We have already acquired a private
2736 * fs_struct, so tsk->fs->lock is not needed.
2737 */
909b0a88 2738 p = old;
cb338d06 2739 q = new;
1da177e4 2740 while (p) {
143c8c91 2741 q->mnt_ns = new_ns;
9559f689
AV
2742 if (new_fs) {
2743 if (&p->mnt == new_fs->root.mnt) {
2744 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2745 rootmnt = &p->mnt;
1da177e4 2746 }
9559f689
AV
2747 if (&p->mnt == new_fs->pwd.mnt) {
2748 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2749 pwdmnt = &p->mnt;
1da177e4 2750 }
1da177e4 2751 }
909b0a88
AV
2752 p = next_mnt(p, old);
2753 q = next_mnt(q, new);
4ce5d2b1
EB
2754 if (!q)
2755 break;
2756 while (p->mnt.mnt_root != q->mnt.mnt_root)
2757 p = next_mnt(p, old);
1da177e4 2758 }
328e6d90 2759 namespace_unlock();
1da177e4 2760
1da177e4 2761 if (rootmnt)
f03c6599 2762 mntput(rootmnt);
1da177e4 2763 if (pwdmnt)
f03c6599 2764 mntput(pwdmnt);
1da177e4 2765
741a2951 2766 return new_ns;
1da177e4
LT
2767}
2768
cf8d2c11
TM
2769/**
2770 * create_mnt_ns - creates a private namespace and adds a root filesystem
2771 * @mnt: pointer to the new root filesystem mountpoint
2772 */
1a4eeaf2 2773static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2774{
771b1371 2775 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2776 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2777 struct mount *mnt = real_mount(m);
2778 mnt->mnt_ns = new_ns;
be08d6d2 2779 new_ns->root = mnt;
b1983cd8 2780 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2781 } else {
1a4eeaf2 2782 mntput(m);
cf8d2c11
TM
2783 }
2784 return new_ns;
2785}
cf8d2c11 2786
ea441d11
AV
2787struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2788{
2789 struct mnt_namespace *ns;
d31da0f0 2790 struct super_block *s;
ea441d11
AV
2791 struct path path;
2792 int err;
2793
2794 ns = create_mnt_ns(mnt);
2795 if (IS_ERR(ns))
2796 return ERR_CAST(ns);
2797
2798 err = vfs_path_lookup(mnt->mnt_root, mnt,
2799 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2800
2801 put_mnt_ns(ns);
2802
2803 if (err)
2804 return ERR_PTR(err);
2805
2806 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2807 s = path.mnt->mnt_sb;
2808 atomic_inc(&s->s_active);
ea441d11
AV
2809 mntput(path.mnt);
2810 /* lock the sucker */
d31da0f0 2811 down_write(&s->s_umount);
ea441d11
AV
2812 /* ... and return the root of (sub)tree on it */
2813 return path.dentry;
2814}
2815EXPORT_SYMBOL(mount_subtree);
2816
bdc480e3
HC
2817SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2818 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2819{
eca6f534
VN
2820 int ret;
2821 char *kernel_type;
eca6f534 2822 char *kernel_dev;
1da177e4 2823 unsigned long data_page;
1da177e4 2824
b8850d1f
TG
2825 kernel_type = copy_mount_string(type);
2826 ret = PTR_ERR(kernel_type);
2827 if (IS_ERR(kernel_type))
eca6f534 2828 goto out_type;
1da177e4 2829
b8850d1f
TG
2830 kernel_dev = copy_mount_string(dev_name);
2831 ret = PTR_ERR(kernel_dev);
2832 if (IS_ERR(kernel_dev))
eca6f534 2833 goto out_dev;
1da177e4 2834
eca6f534
VN
2835 ret = copy_mount_options(data, &data_page);
2836 if (ret < 0)
2837 goto out_data;
1da177e4 2838
5e6123f3 2839 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 2840 (void *) data_page);
1da177e4 2841
eca6f534
VN
2842 free_page(data_page);
2843out_data:
2844 kfree(kernel_dev);
2845out_dev:
eca6f534
VN
2846 kfree(kernel_type);
2847out_type:
2848 return ret;
1da177e4
LT
2849}
2850
afac7cba
AV
2851/*
2852 * Return true if path is reachable from root
2853 *
48a066e7 2854 * namespace_sem or mount_lock is held
afac7cba 2855 */
643822b4 2856bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2857 const struct path *root)
2858{
643822b4 2859 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2860 dentry = mnt->mnt_mountpoint;
0714a533 2861 mnt = mnt->mnt_parent;
afac7cba 2862 }
643822b4 2863 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2864}
2865
2866int path_is_under(struct path *path1, struct path *path2)
2867{
2868 int res;
48a066e7 2869 read_seqlock_excl(&mount_lock);
643822b4 2870 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2871 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2872 return res;
2873}
2874EXPORT_SYMBOL(path_is_under);
2875
1da177e4
LT
2876/*
2877 * pivot_root Semantics:
2878 * Moves the root file system of the current process to the directory put_old,
2879 * makes new_root as the new root file system of the current process, and sets
2880 * root/cwd of all processes which had them on the current root to new_root.
2881 *
2882 * Restrictions:
2883 * The new_root and put_old must be directories, and must not be on the
2884 * same file system as the current process root. The put_old must be
2885 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2886 * pointed to by put_old must yield the same directory as new_root. No other
2887 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2888 *
4a0d11fa
NB
2889 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2890 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2891 * in this situation.
2892 *
1da177e4
LT
2893 * Notes:
2894 * - we don't move root/cwd if they are not at the root (reason: if something
2895 * cared enough to change them, it's probably wrong to force them elsewhere)
2896 * - it's okay to pick a root that isn't the root of a file system, e.g.
2897 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2898 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2899 * first.
2900 */
3480b257
HC
2901SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2902 const char __user *, put_old)
1da177e4 2903{
2d8f3038 2904 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2905 struct mount *new_mnt, *root_mnt, *old_mnt;
2906 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2907 int error;
2908
9b40bc90 2909 if (!may_mount())
1da177e4
LT
2910 return -EPERM;
2911
2d8f3038 2912 error = user_path_dir(new_root, &new);
1da177e4
LT
2913 if (error)
2914 goto out0;
1da177e4 2915
2d8f3038 2916 error = user_path_dir(put_old, &old);
1da177e4
LT
2917 if (error)
2918 goto out1;
2919
2d8f3038 2920 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2921 if (error)
2922 goto out2;
1da177e4 2923
f7ad3c6b 2924 get_fs_root(current->fs, &root);
84d17192
AV
2925 old_mp = lock_mount(&old);
2926 error = PTR_ERR(old_mp);
2927 if (IS_ERR(old_mp))
b12cea91
AV
2928 goto out3;
2929
1da177e4 2930 error = -EINVAL;
419148da
AV
2931 new_mnt = real_mount(new.mnt);
2932 root_mnt = real_mount(root.mnt);
84d17192
AV
2933 old_mnt = real_mount(old.mnt);
2934 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2935 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2936 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2937 goto out4;
143c8c91 2938 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2939 goto out4;
5ff9d8a6
EB
2940 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2941 goto out4;
1da177e4 2942 error = -ENOENT;
f3da392e 2943 if (d_unlinked(new.dentry))
b12cea91 2944 goto out4;
1da177e4 2945 error = -EBUSY;
84d17192 2946 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2947 goto out4; /* loop, on the same file system */
1da177e4 2948 error = -EINVAL;
8c3ee42e 2949 if (root.mnt->mnt_root != root.dentry)
b12cea91 2950 goto out4; /* not a mountpoint */
676da58d 2951 if (!mnt_has_parent(root_mnt))
b12cea91 2952 goto out4; /* not attached */
84d17192 2953 root_mp = root_mnt->mnt_mp;
2d8f3038 2954 if (new.mnt->mnt_root != new.dentry)
b12cea91 2955 goto out4; /* not a mountpoint */
676da58d 2956 if (!mnt_has_parent(new_mnt))
b12cea91 2957 goto out4; /* not attached */
4ac91378 2958 /* make sure we can reach put_old from new_root */
84d17192 2959 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2960 goto out4;
0d082601
EB
2961 /* make certain new is below the root */
2962 if (!is_path_reachable(new_mnt, new.dentry, &root))
2963 goto out4;
84d17192 2964 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2965 lock_mount_hash();
419148da
AV
2966 detach_mnt(new_mnt, &parent_path);
2967 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2968 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2969 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2970 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2971 }
4ac91378 2972 /* mount old root on put_old */
84d17192 2973 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2974 /* mount new_root on / */
84d17192 2975 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2976 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
2977 /* A moved mount should not expire automatically */
2978 list_del_init(&new_mnt->mnt_expire);
719ea2fb 2979 unlock_mount_hash();
2d8f3038 2980 chroot_fs_refs(&root, &new);
84d17192 2981 put_mountpoint(root_mp);
1da177e4 2982 error = 0;
b12cea91 2983out4:
84d17192 2984 unlock_mount(old_mp);
b12cea91
AV
2985 if (!error) {
2986 path_put(&root_parent);
2987 path_put(&parent_path);
2988 }
2989out3:
8c3ee42e 2990 path_put(&root);
b12cea91 2991out2:
2d8f3038 2992 path_put(&old);
1da177e4 2993out1:
2d8f3038 2994 path_put(&new);
1da177e4 2995out0:
1da177e4 2996 return error;
1da177e4
LT
2997}
2998
2999static void __init init_mount_tree(void)
3000{
3001 struct vfsmount *mnt;
6b3286ed 3002 struct mnt_namespace *ns;
ac748a09 3003 struct path root;
0c55cfc4 3004 struct file_system_type *type;
1da177e4 3005
0c55cfc4
EB
3006 type = get_fs_type("rootfs");
3007 if (!type)
3008 panic("Can't find rootfs type");
3009 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3010 put_filesystem(type);
1da177e4
LT
3011 if (IS_ERR(mnt))
3012 panic("Can't create rootfs");
b3e19d92 3013
3b22edc5
TM
3014 ns = create_mnt_ns(mnt);
3015 if (IS_ERR(ns))
1da177e4 3016 panic("Can't allocate initial namespace");
6b3286ed
KK
3017
3018 init_task.nsproxy->mnt_ns = ns;
3019 get_mnt_ns(ns);
3020
be08d6d2
AV
3021 root.mnt = mnt;
3022 root.dentry = mnt->mnt_root;
da362b09 3023 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3024
3025 set_fs_pwd(current->fs, &root);
3026 set_fs_root(current->fs, &root);
1da177e4
LT
3027}
3028
74bf17cf 3029void __init mnt_init(void)
1da177e4 3030{
13f14b4d 3031 unsigned u;
15a67dd8 3032 int err;
1da177e4 3033
7d6fec45 3034 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3035 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3036
0818bf27 3037 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3038 sizeof(struct hlist_head),
0818bf27
AV
3039 mhash_entries, 19,
3040 0,
3041 &m_hash_shift, &m_hash_mask, 0, 0);
3042 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3043 sizeof(struct hlist_head),
3044 mphash_entries, 19,
3045 0,
3046 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3047
84d17192 3048 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3049 panic("Failed to allocate mount hash table\n");
3050
0818bf27 3051 for (u = 0; u <= m_hash_mask; u++)
38129a13 3052 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3053 for (u = 0; u <= mp_hash_mask; u++)
3054 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3055
4b93dc9b
TH
3056 kernfs_init();
3057
15a67dd8
RD
3058 err = sysfs_init();
3059 if (err)
3060 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3061 __func__, err);
00d26666
GKH
3062 fs_kobj = kobject_create_and_add("fs", NULL);
3063 if (!fs_kobj)
8e24eea7 3064 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3065 init_rootfs();
3066 init_mount_tree();
3067}
3068
616511d0 3069void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3070{
d498b25a 3071 if (!atomic_dec_and_test(&ns->count))
616511d0 3072 return;
7b00ed6f 3073 drop_collected_mounts(&ns->root->mnt);
771b1371 3074 free_mnt_ns(ns);
1da177e4 3075}
9d412a43
AV
3076
3077struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3078{
423e0ab0
TC
3079 struct vfsmount *mnt;
3080 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3081 if (!IS_ERR(mnt)) {
3082 /*
3083 * it is a longterm mount, don't release mnt until
3084 * we unmount before file sys is unregistered
3085 */
f7a99c5b 3086 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3087 }
3088 return mnt;
9d412a43
AV
3089}
3090EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3091
3092void kern_unmount(struct vfsmount *mnt)
3093{
3094 /* release long term mount so mount point can be released */
3095 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3096 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3097 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3098 mntput(mnt);
3099 }
3100}
3101EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3102
3103bool our_mnt(struct vfsmount *mnt)
3104{
143c8c91 3105 return check_mnt(real_mount(mnt));
02125a82 3106}
8823c079 3107
3151527e
EB
3108bool current_chrooted(void)
3109{
3110 /* Does the current process have a non-standard root */
3111 struct path ns_root;
3112 struct path fs_root;
3113 bool chrooted;
3114
3115 /* Find the namespace root */
3116 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3117 ns_root.dentry = ns_root.mnt->mnt_root;
3118 path_get(&ns_root);
3119 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3120 ;
3121
3122 get_fs_root(current->fs, &fs_root);
3123
3124 chrooted = !path_equal(&fs_root, &ns_root);
3125
3126 path_put(&fs_root);
3127 path_put(&ns_root);
3128
3129 return chrooted;
3130}
3131
e51db735 3132bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3133{
3134 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3135 struct mount *mnt;
e51db735 3136 bool visible = false;
87a8ebd6 3137
e51db735
EB
3138 if (unlikely(!ns))
3139 return false;
3140
44bb4385 3141 down_read(&namespace_sem);
87a8ebd6 3142 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3143 struct mount *child;
3144 if (mnt->mnt.mnt_sb->s_type != type)
3145 continue;
3146
3147 /* This mount is not fully visible if there are any child mounts
3148 * that cover anything except for empty directories.
3149 */
3150 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3151 struct inode *inode = child->mnt_mountpoint->d_inode;
3152 if (!S_ISDIR(inode->i_mode))
3153 goto next;
41301ae7 3154 if (inode->i_nlink > 2)
e51db735 3155 goto next;
87a8ebd6 3156 }
e51db735
EB
3157 visible = true;
3158 goto found;
3159 next: ;
87a8ebd6 3160 }
e51db735 3161found:
44bb4385 3162 up_read(&namespace_sem);
e51db735 3163 return visible;
87a8ebd6
EB
3164}
3165
64964528 3166static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3167{
58be2825 3168 struct ns_common *ns = NULL;
8823c079
EB
3169 struct nsproxy *nsproxy;
3170
728dba3a
EB
3171 task_lock(task);
3172 nsproxy = task->nsproxy;
8823c079 3173 if (nsproxy) {
58be2825
AV
3174 ns = &nsproxy->mnt_ns->ns;
3175 get_mnt_ns(to_mnt_ns(ns));
8823c079 3176 }
728dba3a 3177 task_unlock(task);
8823c079
EB
3178
3179 return ns;
3180}
3181
64964528 3182static void mntns_put(struct ns_common *ns)
8823c079 3183{
58be2825 3184 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3185}
3186
64964528 3187static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3188{
3189 struct fs_struct *fs = current->fs;
58be2825 3190 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3191 struct path root;
3192
0c55cfc4 3193 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3194 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3195 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3196 return -EPERM;
8823c079
EB
3197
3198 if (fs->users != 1)
3199 return -EINVAL;
3200
3201 get_mnt_ns(mnt_ns);
3202 put_mnt_ns(nsproxy->mnt_ns);
3203 nsproxy->mnt_ns = mnt_ns;
3204
3205 /* Find the root */
3206 root.mnt = &mnt_ns->root->mnt;
3207 root.dentry = mnt_ns->root->mnt.mnt_root;
3208 path_get(&root);
3209 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3210 ;
3211
3212 /* Update the pwd and root */
3213 set_fs_pwd(fs, &root);
3214 set_fs_root(fs, &root);
3215
3216 path_put(&root);
3217 return 0;
3218}
3219
3220const struct proc_ns_operations mntns_operations = {
3221 .name = "mnt",
3222 .type = CLONE_NEWNS,
3223 .get = mntns_get,
3224 .put = mntns_put,
3225 .install = mntns_install,
3226};