saner handling of temporary namespaces
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
57c8a661 26#include <linux/memblock.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a 28#include <linux/sched/task.h>
e262e32d 29#include <uapi/linux/mount.h>
9164bb4a 30
07b20889 31#include "pnode.h"
948730b0 32#include "internal.h"
1da177e4 33
d2921684
EB
34/* Maximum number of mounts in a mount namespace */
35unsigned int sysctl_mount_max __read_mostly = 100000;
36
0818bf27
AV
37static unsigned int m_hash_mask __read_mostly;
38static unsigned int m_hash_shift __read_mostly;
39static unsigned int mp_hash_mask __read_mostly;
40static unsigned int mp_hash_shift __read_mostly;
41
42static __initdata unsigned long mhash_entries;
43static int __init set_mhash_entries(char *str)
44{
45 if (!str)
46 return 0;
47 mhash_entries = simple_strtoul(str, &str, 0);
48 return 1;
49}
50__setup("mhash_entries=", set_mhash_entries);
51
52static __initdata unsigned long mphash_entries;
53static int __init set_mphash_entries(char *str)
54{
55 if (!str)
56 return 0;
57 mphash_entries = simple_strtoul(str, &str, 0);
58 return 1;
59}
60__setup("mphash_entries=", set_mphash_entries);
13f14b4d 61
c7999c36 62static u64 event;
73cd49ec 63static DEFINE_IDA(mnt_id_ida);
719f5d7f 64static DEFINE_IDA(mnt_group_ida);
1da177e4 65
38129a13 66static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 67static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 68static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 69static DECLARE_RWSEM(namespace_sem);
1da177e4 70
f87fd4c2 71/* /sys/fs */
00d26666
GKH
72struct kobject *fs_kobj;
73EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 74
99b7db7b
NP
75/*
76 * vfsmount lock may be taken for read to prevent changes to the
77 * vfsmount hash, ie. during mountpoint lookups or walking back
78 * up the tree.
79 *
80 * It should be taken for write in all cases where the vfsmount
81 * tree or hash is modified or when a vfsmount structure is modified.
82 */
48a066e7 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 84
38129a13 85static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 86{
b58fed8b
RP
87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
89 tmp = tmp + (tmp >> m_hash_shift);
90 return &mount_hashtable[tmp & m_hash_mask];
91}
92
93static inline struct hlist_head *mp_hash(struct dentry *dentry)
94{
95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 tmp = tmp + (tmp >> mp_hash_shift);
97 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
98}
99
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec 101{
169b480e
MW
102 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
103
104 if (res < 0)
105 return res;
106 mnt->mnt_id = res;
107 return 0;
73cd49ec
MS
108}
109
b105e270 110static void mnt_free_id(struct mount *mnt)
73cd49ec 111{
169b480e 112 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
113}
114
719f5d7f
MS
115/*
116 * Allocate a new peer group ID
719f5d7f 117 */
4b8b21f4 118static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 119{
169b480e 120 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 121
169b480e
MW
122 if (res < 0)
123 return res;
124 mnt->mnt_group_id = res;
125 return 0;
719f5d7f
MS
126}
127
128/*
129 * Release a peer group ID
130 */
4b8b21f4 131void mnt_release_group_id(struct mount *mnt)
719f5d7f 132{
169b480e 133 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 134 mnt->mnt_group_id = 0;
719f5d7f
MS
135}
136
b3e19d92
NP
137/*
138 * vfsmount lock must be held for read
139 */
83adc753 140static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
141{
142#ifdef CONFIG_SMP
68e8a9fe 143 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
144#else
145 preempt_disable();
68e8a9fe 146 mnt->mnt_count += n;
b3e19d92
NP
147 preempt_enable();
148#endif
149}
150
b3e19d92
NP
151/*
152 * vfsmount lock must be held for write
153 */
83adc753 154unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
155{
156#ifdef CONFIG_SMP
f03c6599 157 unsigned int count = 0;
b3e19d92
NP
158 int cpu;
159
160 for_each_possible_cpu(cpu) {
68e8a9fe 161 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
162 }
163
164 return count;
165#else
68e8a9fe 166 return mnt->mnt_count;
b3e19d92
NP
167#endif
168}
169
87b95ce0
AV
170static void drop_mountpoint(struct fs_pin *p)
171{
172 struct mount *m = container_of(p, struct mount, mnt_umount);
173 dput(m->mnt_ex_mountpoint);
174 pin_remove(p);
175 mntput(&m->mnt);
176}
177
b105e270 178static struct mount *alloc_vfsmnt(const char *name)
1da177e4 179{
c63181e6
AV
180 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
181 if (mnt) {
73cd49ec
MS
182 int err;
183
c63181e6 184 err = mnt_alloc_id(mnt);
88b38782
LZ
185 if (err)
186 goto out_free_cache;
187
188 if (name) {
fcc139ae 189 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 190 if (!mnt->mnt_devname)
88b38782 191 goto out_free_id;
73cd49ec
MS
192 }
193
b3e19d92 194#ifdef CONFIG_SMP
c63181e6
AV
195 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
196 if (!mnt->mnt_pcp)
b3e19d92
NP
197 goto out_free_devname;
198
c63181e6 199 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 200#else
c63181e6
AV
201 mnt->mnt_count = 1;
202 mnt->mnt_writers = 0;
b3e19d92
NP
203#endif
204
38129a13 205 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
206 INIT_LIST_HEAD(&mnt->mnt_child);
207 INIT_LIST_HEAD(&mnt->mnt_mounts);
208 INIT_LIST_HEAD(&mnt->mnt_list);
209 INIT_LIST_HEAD(&mnt->mnt_expire);
210 INIT_LIST_HEAD(&mnt->mnt_share);
211 INIT_LIST_HEAD(&mnt->mnt_slave_list);
212 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 213 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 214 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 215 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 216 }
c63181e6 217 return mnt;
88b38782 218
d3ef3d73 219#ifdef CONFIG_SMP
220out_free_devname:
fcc139ae 221 kfree_const(mnt->mnt_devname);
d3ef3d73 222#endif
88b38782 223out_free_id:
c63181e6 224 mnt_free_id(mnt);
88b38782 225out_free_cache:
c63181e6 226 kmem_cache_free(mnt_cache, mnt);
88b38782 227 return NULL;
1da177e4
LT
228}
229
3d733633
DH
230/*
231 * Most r/o checks on a fs are for operations that take
232 * discrete amounts of time, like a write() or unlink().
233 * We must keep track of when those operations start
234 * (for permission checks) and when they end, so that
235 * we can determine when writes are able to occur to
236 * a filesystem.
237 */
238/*
239 * __mnt_is_readonly: check whether a mount is read-only
240 * @mnt: the mount to check for its write status
241 *
242 * This shouldn't be used directly ouside of the VFS.
243 * It does not guarantee that the filesystem will stay
244 * r/w, just that it is right *now*. This can not and
245 * should not be used in place of IS_RDONLY(inode).
246 * mnt_want/drop_write() will _keep_ the filesystem
247 * r/w.
248 */
43f5e655 249bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 250{
43f5e655 251 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
252}
253EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
83adc753 255static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 256{
257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers++;
d3ef3d73 261#endif
262}
3d733633 263
83adc753 264static inline void mnt_dec_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
68e8a9fe 267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 268#else
68e8a9fe 269 mnt->mnt_writers--;
d3ef3d73 270#endif
3d733633 271}
3d733633 272
83adc753 273static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 274{
d3ef3d73 275#ifdef CONFIG_SMP
276 unsigned int count = 0;
3d733633 277 int cpu;
3d733633
DH
278
279 for_each_possible_cpu(cpu) {
68e8a9fe 280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 281 }
3d733633 282
d3ef3d73 283 return count;
284#else
285 return mnt->mnt_writers;
286#endif
3d733633
DH
287}
288
4ed5e82f
MS
289static int mnt_is_readonly(struct vfsmount *mnt)
290{
291 if (mnt->mnt_sb->s_readonly_remount)
292 return 1;
293 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
294 smp_rmb();
295 return __mnt_is_readonly(mnt);
296}
297
8366025e 298/*
eb04c282
JK
299 * Most r/o & frozen checks on a fs are for operations that take discrete
300 * amounts of time, like a write() or unlink(). We must keep track of when
301 * those operations start (for permission checks) and when they end, so that we
302 * can determine when writes are able to occur to a filesystem.
8366025e
DH
303 */
304/**
eb04c282 305 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 306 * @m: the mount on which to take a write
8366025e 307 *
eb04c282
JK
308 * This tells the low-level filesystem that a write is about to be performed to
309 * it, and makes sure that writes are allowed (mnt it read-write) before
310 * returning success. This operation does not protect against filesystem being
311 * frozen. When the write operation is finished, __mnt_drop_write() must be
312 * called. This is effectively a refcount.
8366025e 313 */
eb04c282 314int __mnt_want_write(struct vfsmount *m)
8366025e 315{
83adc753 316 struct mount *mnt = real_mount(m);
3d733633 317 int ret = 0;
3d733633 318
d3ef3d73 319 preempt_disable();
c6653a83 320 mnt_inc_writers(mnt);
d3ef3d73 321 /*
c6653a83 322 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 323 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
324 * incremented count after it has set MNT_WRITE_HOLD.
325 */
326 smp_mb();
6aa7de05 327 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 328 cpu_relax();
329 /*
330 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
331 * be set to match its requirements. So we must not load that until
332 * MNT_WRITE_HOLD is cleared.
333 */
334 smp_rmb();
4ed5e82f 335 if (mnt_is_readonly(m)) {
c6653a83 336 mnt_dec_writers(mnt);
3d733633 337 ret = -EROFS;
3d733633 338 }
d3ef3d73 339 preempt_enable();
eb04c282
JK
340
341 return ret;
342}
343
344/**
345 * mnt_want_write - get write access to a mount
346 * @m: the mount on which to take a write
347 *
348 * This tells the low-level filesystem that a write is about to be performed to
349 * it, and makes sure that writes are allowed (mount is read-write, filesystem
350 * is not frozen) before returning success. When the write operation is
351 * finished, mnt_drop_write() must be called. This is effectively a refcount.
352 */
353int mnt_want_write(struct vfsmount *m)
354{
355 int ret;
356
357 sb_start_write(m->mnt_sb);
358 ret = __mnt_want_write(m);
359 if (ret)
360 sb_end_write(m->mnt_sb);
3d733633 361 return ret;
8366025e
DH
362}
363EXPORT_SYMBOL_GPL(mnt_want_write);
364
96029c4e 365/**
366 * mnt_clone_write - get write access to a mount
367 * @mnt: the mount on which to take a write
368 *
369 * This is effectively like mnt_want_write, except
370 * it must only be used to take an extra write reference
371 * on a mountpoint that we already know has a write reference
372 * on it. This allows some optimisation.
373 *
374 * After finished, mnt_drop_write must be called as usual to
375 * drop the reference.
376 */
377int mnt_clone_write(struct vfsmount *mnt)
378{
379 /* superblock may be r/o */
380 if (__mnt_is_readonly(mnt))
381 return -EROFS;
382 preempt_disable();
83adc753 383 mnt_inc_writers(real_mount(mnt));
96029c4e 384 preempt_enable();
385 return 0;
386}
387EXPORT_SYMBOL_GPL(mnt_clone_write);
388
389/**
eb04c282 390 * __mnt_want_write_file - get write access to a file's mount
96029c4e 391 * @file: the file who's mount on which to take a write
392 *
eb04c282 393 * This is like __mnt_want_write, but it takes a file and can
96029c4e 394 * do some optimisations if the file is open for write already
395 */
eb04c282 396int __mnt_want_write_file(struct file *file)
96029c4e 397{
83f936c7 398 if (!(file->f_mode & FMODE_WRITER))
eb04c282 399 return __mnt_want_write(file->f_path.mnt);
96029c4e 400 else
401 return mnt_clone_write(file->f_path.mnt);
402}
eb04c282 403
7c6893e3
MS
404/**
405 * mnt_want_write_file - get write access to a file's mount
406 * @file: the file who's mount on which to take a write
407 *
408 * This is like mnt_want_write, but it takes a file and can
409 * do some optimisations if the file is open for write already
7c6893e3
MS
410 */
411int mnt_want_write_file(struct file *file)
412{
413 int ret;
414
a6795a58 415 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
416 ret = __mnt_want_write_file(file);
417 if (ret)
a6795a58 418 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
419 return ret;
420}
96029c4e 421EXPORT_SYMBOL_GPL(mnt_want_write_file);
422
8366025e 423/**
eb04c282 424 * __mnt_drop_write - give up write access to a mount
8366025e
DH
425 * @mnt: the mount on which to give up write access
426 *
427 * Tells the low-level filesystem that we are done
428 * performing writes to it. Must be matched with
eb04c282 429 * __mnt_want_write() call above.
8366025e 430 */
eb04c282 431void __mnt_drop_write(struct vfsmount *mnt)
8366025e 432{
d3ef3d73 433 preempt_disable();
83adc753 434 mnt_dec_writers(real_mount(mnt));
d3ef3d73 435 preempt_enable();
8366025e 436}
eb04c282
JK
437
438/**
439 * mnt_drop_write - give up write access to a mount
440 * @mnt: the mount on which to give up write access
441 *
442 * Tells the low-level filesystem that we are done performing writes to it and
443 * also allows filesystem to be frozen again. Must be matched with
444 * mnt_want_write() call above.
445 */
446void mnt_drop_write(struct vfsmount *mnt)
447{
448 __mnt_drop_write(mnt);
449 sb_end_write(mnt->mnt_sb);
450}
8366025e
DH
451EXPORT_SYMBOL_GPL(mnt_drop_write);
452
eb04c282
JK
453void __mnt_drop_write_file(struct file *file)
454{
455 __mnt_drop_write(file->f_path.mnt);
456}
457
7c6893e3
MS
458void mnt_drop_write_file(struct file *file)
459{
a6795a58 460 __mnt_drop_write_file(file);
7c6893e3
MS
461 sb_end_write(file_inode(file)->i_sb);
462}
2a79f17e
AV
463EXPORT_SYMBOL(mnt_drop_write_file);
464
83adc753 465static int mnt_make_readonly(struct mount *mnt)
8366025e 466{
3d733633
DH
467 int ret = 0;
468
719ea2fb 469 lock_mount_hash();
83adc753 470 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 471 /*
d3ef3d73 472 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
473 * should be visible before we do.
3d733633 474 */
d3ef3d73 475 smp_mb();
476
3d733633 477 /*
d3ef3d73 478 * With writers on hold, if this value is zero, then there are
479 * definitely no active writers (although held writers may subsequently
480 * increment the count, they'll have to wait, and decrement it after
481 * seeing MNT_READONLY).
482 *
483 * It is OK to have counter incremented on one CPU and decremented on
484 * another: the sum will add up correctly. The danger would be when we
485 * sum up each counter, if we read a counter before it is incremented,
486 * but then read another CPU's count which it has been subsequently
487 * decremented from -- we would see more decrements than we should.
488 * MNT_WRITE_HOLD protects against this scenario, because
489 * mnt_want_write first increments count, then smp_mb, then spins on
490 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
491 * we're counting up here.
3d733633 492 */
c6653a83 493 if (mnt_get_writers(mnt) > 0)
d3ef3d73 494 ret = -EBUSY;
495 else
83adc753 496 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 497 /*
498 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
499 * that become unheld will see MNT_READONLY.
500 */
501 smp_wmb();
83adc753 502 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 503 unlock_mount_hash();
3d733633 504 return ret;
8366025e 505}
8366025e 506
43f5e655 507static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 508{
719ea2fb 509 lock_mount_hash();
83adc753 510 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 511 unlock_mount_hash();
43f5e655 512 return 0;
2e4b7fcd
DH
513}
514
4ed5e82f
MS
515int sb_prepare_remount_readonly(struct super_block *sb)
516{
517 struct mount *mnt;
518 int err = 0;
519
8e8b8796
MS
520 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
521 if (atomic_long_read(&sb->s_remove_count))
522 return -EBUSY;
523
719ea2fb 524 lock_mount_hash();
4ed5e82f
MS
525 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
526 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
527 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
528 smp_mb();
529 if (mnt_get_writers(mnt) > 0) {
530 err = -EBUSY;
531 break;
532 }
533 }
534 }
8e8b8796
MS
535 if (!err && atomic_long_read(&sb->s_remove_count))
536 err = -EBUSY;
537
4ed5e82f
MS
538 if (!err) {
539 sb->s_readonly_remount = 1;
540 smp_wmb();
541 }
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
544 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
545 }
719ea2fb 546 unlock_mount_hash();
4ed5e82f
MS
547
548 return err;
549}
550
b105e270 551static void free_vfsmnt(struct mount *mnt)
1da177e4 552{
fcc139ae 553 kfree_const(mnt->mnt_devname);
d3ef3d73 554#ifdef CONFIG_SMP
68e8a9fe 555 free_percpu(mnt->mnt_pcp);
d3ef3d73 556#endif
b105e270 557 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
558}
559
8ffcb32e
DH
560static void delayed_free_vfsmnt(struct rcu_head *head)
561{
562 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
563}
564
48a066e7 565/* call under rcu_read_lock */
294d71ff 566int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
567{
568 struct mount *mnt;
569 if (read_seqretry(&mount_lock, seq))
294d71ff 570 return 1;
48a066e7 571 if (bastard == NULL)
294d71ff 572 return 0;
48a066e7
AV
573 mnt = real_mount(bastard);
574 mnt_add_count(mnt, 1);
119e1ef8 575 smp_mb(); // see mntput_no_expire()
48a066e7 576 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 577 return 0;
48a066e7
AV
578 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
579 mnt_add_count(mnt, -1);
294d71ff
AV
580 return 1;
581 }
119e1ef8
AV
582 lock_mount_hash();
583 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
584 mnt_add_count(mnt, -1);
585 unlock_mount_hash();
586 return 1;
587 }
588 unlock_mount_hash();
589 /* caller will mntput() */
294d71ff
AV
590 return -1;
591}
592
593/* call under rcu_read_lock */
594bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
595{
596 int res = __legitimize_mnt(bastard, seq);
597 if (likely(!res))
598 return true;
599 if (unlikely(res < 0)) {
600 rcu_read_unlock();
601 mntput(bastard);
602 rcu_read_lock();
48a066e7 603 }
48a066e7
AV
604 return false;
605}
606
1da177e4 607/*
474279dc 608 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 609 * call under rcu_read_lock()
1da177e4 610 */
474279dc 611struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 612{
38129a13 613 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
614 struct mount *p;
615
38129a13 616 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
617 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
618 return p;
619 return NULL;
620}
621
a05964f3 622/*
f015f126
DH
623 * lookup_mnt - Return the first child mount mounted at path
624 *
625 * "First" means first mounted chronologically. If you create the
626 * following mounts:
627 *
628 * mount /dev/sda1 /mnt
629 * mount /dev/sda2 /mnt
630 * mount /dev/sda3 /mnt
631 *
632 * Then lookup_mnt() on the base /mnt dentry in the root mount will
633 * return successively the root dentry and vfsmount of /dev/sda1, then
634 * /dev/sda2, then /dev/sda3, then NULL.
635 *
636 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 637 */
ca71cf71 638struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 639{
c7105365 640 struct mount *child_mnt;
48a066e7
AV
641 struct vfsmount *m;
642 unsigned seq;
99b7db7b 643
48a066e7
AV
644 rcu_read_lock();
645 do {
646 seq = read_seqbegin(&mount_lock);
647 child_mnt = __lookup_mnt(path->mnt, path->dentry);
648 m = child_mnt ? &child_mnt->mnt : NULL;
649 } while (!legitimize_mnt(m, seq));
650 rcu_read_unlock();
651 return m;
a05964f3
RP
652}
653
7af1364f
EB
654/*
655 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
656 * current mount namespace.
657 *
658 * The common case is dentries are not mountpoints at all and that
659 * test is handled inline. For the slow case when we are actually
660 * dealing with a mountpoint of some kind, walk through all of the
661 * mounts in the current mount namespace and test to see if the dentry
662 * is a mountpoint.
663 *
664 * The mount_hashtable is not usable in the context because we
665 * need to identify all mounts that may be in the current mount
666 * namespace not just a mount that happens to have some specified
667 * parent mount.
668 */
669bool __is_local_mountpoint(struct dentry *dentry)
670{
671 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
672 struct mount *mnt;
673 bool is_covered = false;
674
675 if (!d_mountpoint(dentry))
676 goto out;
677
678 down_read(&namespace_sem);
679 list_for_each_entry(mnt, &ns->list, mnt_list) {
680 is_covered = (mnt->mnt_mountpoint == dentry);
681 if (is_covered)
682 break;
683 }
684 up_read(&namespace_sem);
685out:
686 return is_covered;
687}
688
e2dfa935 689static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 690{
0818bf27 691 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
692 struct mountpoint *mp;
693
0818bf27 694 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 695 if (mp->m_dentry == dentry) {
84d17192
AV
696 mp->m_count++;
697 return mp;
698 }
699 }
e2dfa935
EB
700 return NULL;
701}
702
3895dbf8 703static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 704{
3895dbf8 705 struct mountpoint *mp, *new = NULL;
e2dfa935 706 int ret;
84d17192 707
3895dbf8 708 if (d_mountpoint(dentry)) {
1e9c75fb
BC
709 /* might be worth a WARN_ON() */
710 if (d_unlinked(dentry))
711 return ERR_PTR(-ENOENT);
3895dbf8
EB
712mountpoint:
713 read_seqlock_excl(&mount_lock);
714 mp = lookup_mountpoint(dentry);
715 read_sequnlock_excl(&mount_lock);
716 if (mp)
717 goto done;
718 }
719
720 if (!new)
721 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
722 if (!new)
84d17192
AV
723 return ERR_PTR(-ENOMEM);
724
3895dbf8
EB
725
726 /* Exactly one processes may set d_mounted */
eed81007 727 ret = d_set_mounted(dentry);
eed81007 728
3895dbf8
EB
729 /* Someone else set d_mounted? */
730 if (ret == -EBUSY)
731 goto mountpoint;
732
733 /* The dentry is not available as a mountpoint? */
734 mp = ERR_PTR(ret);
735 if (ret)
736 goto done;
737
738 /* Add the new mountpoint to the hash table */
739 read_seqlock_excl(&mount_lock);
740 new->m_dentry = dentry;
741 new->m_count = 1;
742 hlist_add_head(&new->m_hash, mp_hash(dentry));
743 INIT_HLIST_HEAD(&new->m_list);
744 read_sequnlock_excl(&mount_lock);
745
746 mp = new;
747 new = NULL;
748done:
749 kfree(new);
84d17192
AV
750 return mp;
751}
752
753static void put_mountpoint(struct mountpoint *mp)
754{
755 if (!--mp->m_count) {
756 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 757 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
758 spin_lock(&dentry->d_lock);
759 dentry->d_flags &= ~DCACHE_MOUNTED;
760 spin_unlock(&dentry->d_lock);
0818bf27 761 hlist_del(&mp->m_hash);
84d17192
AV
762 kfree(mp);
763 }
764}
765
143c8c91 766static inline int check_mnt(struct mount *mnt)
1da177e4 767{
6b3286ed 768 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
769}
770
99b7db7b
NP
771/*
772 * vfsmount lock must be held for write
773 */
6b3286ed 774static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
775{
776 if (ns) {
777 ns->event = ++event;
778 wake_up_interruptible(&ns->poll);
779 }
780}
781
99b7db7b
NP
782/*
783 * vfsmount lock must be held for write
784 */
6b3286ed 785static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
786{
787 if (ns && ns->event != event) {
788 ns->event = event;
789 wake_up_interruptible(&ns->poll);
790 }
791}
792
99b7db7b
NP
793/*
794 * vfsmount lock must be held for write
795 */
7bdb11de 796static void unhash_mnt(struct mount *mnt)
419148da 797{
0714a533 798 mnt->mnt_parent = mnt;
a73324da 799 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 800 list_del_init(&mnt->mnt_child);
38129a13 801 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 802 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
803 put_mountpoint(mnt->mnt_mp);
804 mnt->mnt_mp = NULL;
1da177e4
LT
805}
806
7bdb11de
EB
807/*
808 * vfsmount lock must be held for write
809 */
810static void detach_mnt(struct mount *mnt, struct path *old_path)
811{
812 old_path->dentry = mnt->mnt_mountpoint;
813 old_path->mnt = &mnt->mnt_parent->mnt;
814 unhash_mnt(mnt);
815}
816
6a46c573
EB
817/*
818 * vfsmount lock must be held for write
819 */
820static void umount_mnt(struct mount *mnt)
821{
822 /* old mountpoint will be dropped when we can do that */
823 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
824 unhash_mnt(mnt);
825}
826
99b7db7b
NP
827/*
828 * vfsmount lock must be held for write
829 */
84d17192
AV
830void mnt_set_mountpoint(struct mount *mnt,
831 struct mountpoint *mp,
44d964d6 832 struct mount *child_mnt)
b90fa9ae 833{
84d17192 834 mp->m_count++;
3a2393d7 835 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 836 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 837 child_mnt->mnt_parent = mnt;
84d17192 838 child_mnt->mnt_mp = mp;
0a5eb7c8 839 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
840}
841
1064f874
EB
842static void __attach_mnt(struct mount *mnt, struct mount *parent)
843{
844 hlist_add_head_rcu(&mnt->mnt_hash,
845 m_hash(&parent->mnt, mnt->mnt_mountpoint));
846 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
847}
848
99b7db7b
NP
849/*
850 * vfsmount lock must be held for write
851 */
84d17192
AV
852static void attach_mnt(struct mount *mnt,
853 struct mount *parent,
854 struct mountpoint *mp)
1da177e4 855{
84d17192 856 mnt_set_mountpoint(parent, mp, mnt);
1064f874 857 __attach_mnt(mnt, parent);
b90fa9ae
RP
858}
859
1064f874 860void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 861{
1064f874
EB
862 struct mountpoint *old_mp = mnt->mnt_mp;
863 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
864 struct mount *old_parent = mnt->mnt_parent;
865
866 list_del_init(&mnt->mnt_child);
867 hlist_del_init(&mnt->mnt_mp_list);
868 hlist_del_init_rcu(&mnt->mnt_hash);
869
870 attach_mnt(mnt, parent, mp);
871
872 put_mountpoint(old_mp);
873
874 /*
875 * Safely avoid even the suggestion this code might sleep or
876 * lock the mount hash by taking advantage of the knowledge that
877 * mnt_change_mountpoint will not release the final reference
878 * to a mountpoint.
879 *
880 * During mounting, the mount passed in as the parent mount will
881 * continue to use the old mountpoint and during unmounting, the
882 * old mountpoint will continue to exist until namespace_unlock,
883 * which happens well after mnt_change_mountpoint.
884 */
885 spin_lock(&old_mountpoint->d_lock);
886 old_mountpoint->d_lockref.count--;
887 spin_unlock(&old_mountpoint->d_lock);
888
889 mnt_add_count(old_parent, -1);
12a5b529
AV
890}
891
b90fa9ae 892/*
99b7db7b 893 * vfsmount lock must be held for write
b90fa9ae 894 */
1064f874 895static void commit_tree(struct mount *mnt)
b90fa9ae 896{
0714a533 897 struct mount *parent = mnt->mnt_parent;
83adc753 898 struct mount *m;
b90fa9ae 899 LIST_HEAD(head);
143c8c91 900 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 901
0714a533 902 BUG_ON(parent == mnt);
b90fa9ae 903
1a4eeaf2 904 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 905 list_for_each_entry(m, &head, mnt_list)
143c8c91 906 m->mnt_ns = n;
f03c6599 907
b90fa9ae
RP
908 list_splice(&head, n->list.prev);
909
d2921684
EB
910 n->mounts += n->pending_mounts;
911 n->pending_mounts = 0;
912
1064f874 913 __attach_mnt(mnt, parent);
6b3286ed 914 touch_mnt_namespace(n);
1da177e4
LT
915}
916
909b0a88 917static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 918{
6b41d536
AV
919 struct list_head *next = p->mnt_mounts.next;
920 if (next == &p->mnt_mounts) {
1da177e4 921 while (1) {
909b0a88 922 if (p == root)
1da177e4 923 return NULL;
6b41d536
AV
924 next = p->mnt_child.next;
925 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 926 break;
0714a533 927 p = p->mnt_parent;
1da177e4
LT
928 }
929 }
6b41d536 930 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
931}
932
315fc83e 933static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 934{
6b41d536
AV
935 struct list_head *prev = p->mnt_mounts.prev;
936 while (prev != &p->mnt_mounts) {
937 p = list_entry(prev, struct mount, mnt_child);
938 prev = p->mnt_mounts.prev;
9676f0c6
RP
939 }
940 return p;
941}
942
9d412a43
AV
943struct vfsmount *
944vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
945{
b105e270 946 struct mount *mnt;
9d412a43
AV
947 struct dentry *root;
948
949 if (!type)
950 return ERR_PTR(-ENODEV);
951
952 mnt = alloc_vfsmnt(name);
953 if (!mnt)
954 return ERR_PTR(-ENOMEM);
955
e462ec50 956 if (flags & SB_KERNMOUNT)
b105e270 957 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
958
959 root = mount_fs(type, flags, name, data);
960 if (IS_ERR(root)) {
8ffcb32e 961 mnt_free_id(mnt);
9d412a43
AV
962 free_vfsmnt(mnt);
963 return ERR_CAST(root);
964 }
965
b105e270
AV
966 mnt->mnt.mnt_root = root;
967 mnt->mnt.mnt_sb = root->d_sb;
a73324da 968 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 969 mnt->mnt_parent = mnt;
719ea2fb 970 lock_mount_hash();
39f7c4db 971 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 972 unlock_mount_hash();
b105e270 973 return &mnt->mnt;
9d412a43
AV
974}
975EXPORT_SYMBOL_GPL(vfs_kern_mount);
976
93faccbb
EB
977struct vfsmount *
978vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
979 const char *name, void *data)
980{
981 /* Until it is worked out how to pass the user namespace
982 * through from the parent mount to the submount don't support
983 * unprivileged mounts with submounts.
984 */
985 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
986 return ERR_PTR(-EPERM);
987
e462ec50 988 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
989}
990EXPORT_SYMBOL_GPL(vfs_submount);
991
87129cc0 992static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 993 int flag)
1da177e4 994{
87129cc0 995 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
996 struct mount *mnt;
997 int err;
1da177e4 998
be34d1a3
DH
999 mnt = alloc_vfsmnt(old->mnt_devname);
1000 if (!mnt)
1001 return ERR_PTR(-ENOMEM);
719f5d7f 1002
7a472ef4 1003 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1004 mnt->mnt_group_id = 0; /* not a peer of original */
1005 else
1006 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1007
be34d1a3
DH
1008 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1009 err = mnt_alloc_group_id(mnt);
1010 if (err)
1011 goto out_free;
1da177e4 1012 }
be34d1a3 1013
16a34adb
AV
1014 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1015 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1016
be34d1a3
DH
1017 atomic_inc(&sb->s_active);
1018 mnt->mnt.mnt_sb = sb;
1019 mnt->mnt.mnt_root = dget(root);
1020 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1021 mnt->mnt_parent = mnt;
719ea2fb 1022 lock_mount_hash();
be34d1a3 1023 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1024 unlock_mount_hash();
be34d1a3 1025
7a472ef4
EB
1026 if ((flag & CL_SLAVE) ||
1027 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1028 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1029 mnt->mnt_master = old;
1030 CLEAR_MNT_SHARED(mnt);
1031 } else if (!(flag & CL_PRIVATE)) {
1032 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1033 list_add(&mnt->mnt_share, &old->mnt_share);
1034 if (IS_MNT_SLAVE(old))
1035 list_add(&mnt->mnt_slave, &old->mnt_slave);
1036 mnt->mnt_master = old->mnt_master;
5235d448
AV
1037 } else {
1038 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1039 }
1040 if (flag & CL_MAKE_SHARED)
1041 set_mnt_shared(mnt);
1042
1043 /* stick the duplicate mount on the same expiry list
1044 * as the original if that was on one */
1045 if (flag & CL_EXPIRE) {
1046 if (!list_empty(&old->mnt_expire))
1047 list_add(&mnt->mnt_expire, &old->mnt_expire);
1048 }
1049
cb338d06 1050 return mnt;
719f5d7f
MS
1051
1052 out_free:
8ffcb32e 1053 mnt_free_id(mnt);
719f5d7f 1054 free_vfsmnt(mnt);
be34d1a3 1055 return ERR_PTR(err);
1da177e4
LT
1056}
1057
9ea459e1
AV
1058static void cleanup_mnt(struct mount *mnt)
1059{
1060 /*
1061 * This probably indicates that somebody messed
1062 * up a mnt_want/drop_write() pair. If this
1063 * happens, the filesystem was probably unable
1064 * to make r/w->r/o transitions.
1065 */
1066 /*
1067 * The locking used to deal with mnt_count decrement provides barriers,
1068 * so mnt_get_writers() below is safe.
1069 */
1070 WARN_ON(mnt_get_writers(mnt));
1071 if (unlikely(mnt->mnt_pins.first))
1072 mnt_pin_kill(mnt);
1073 fsnotify_vfsmount_delete(&mnt->mnt);
1074 dput(mnt->mnt.mnt_root);
1075 deactivate_super(mnt->mnt.mnt_sb);
1076 mnt_free_id(mnt);
1077 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1078}
1079
1080static void __cleanup_mnt(struct rcu_head *head)
1081{
1082 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1083}
1084
1085static LLIST_HEAD(delayed_mntput_list);
1086static void delayed_mntput(struct work_struct *unused)
1087{
1088 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1089 struct mount *m, *t;
9ea459e1 1090
29785735
BP
1091 llist_for_each_entry_safe(m, t, node, mnt_llist)
1092 cleanup_mnt(m);
9ea459e1
AV
1093}
1094static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1095
900148dc 1096static void mntput_no_expire(struct mount *mnt)
b3e19d92 1097{
48a066e7 1098 rcu_read_lock();
9ea0a46c
AV
1099 if (likely(READ_ONCE(mnt->mnt_ns))) {
1100 /*
1101 * Since we don't do lock_mount_hash() here,
1102 * ->mnt_ns can change under us. However, if it's
1103 * non-NULL, then there's a reference that won't
1104 * be dropped until after an RCU delay done after
1105 * turning ->mnt_ns NULL. So if we observe it
1106 * non-NULL under rcu_read_lock(), the reference
1107 * we are dropping is not the final one.
1108 */
1109 mnt_add_count(mnt, -1);
48a066e7 1110 rcu_read_unlock();
f03c6599 1111 return;
b3e19d92 1112 }
719ea2fb 1113 lock_mount_hash();
119e1ef8
AV
1114 /*
1115 * make sure that if __legitimize_mnt() has not seen us grab
1116 * mount_lock, we'll see their refcount increment here.
1117 */
1118 smp_mb();
9ea0a46c 1119 mnt_add_count(mnt, -1);
b3e19d92 1120 if (mnt_get_count(mnt)) {
48a066e7 1121 rcu_read_unlock();
719ea2fb 1122 unlock_mount_hash();
99b7db7b
NP
1123 return;
1124 }
48a066e7
AV
1125 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1126 rcu_read_unlock();
1127 unlock_mount_hash();
1128 return;
1129 }
1130 mnt->mnt.mnt_flags |= MNT_DOOMED;
1131 rcu_read_unlock();
962830df 1132
39f7c4db 1133 list_del(&mnt->mnt_instance);
ce07d891
EB
1134
1135 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1136 struct mount *p, *tmp;
1137 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1138 umount_mnt(p);
1139 }
1140 }
719ea2fb 1141 unlock_mount_hash();
649a795a 1142
9ea459e1
AV
1143 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1144 struct task_struct *task = current;
1145 if (likely(!(task->flags & PF_KTHREAD))) {
1146 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1147 if (!task_work_add(task, &mnt->mnt_rcu, true))
1148 return;
1149 }
1150 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1151 schedule_delayed_work(&delayed_mntput_work, 1);
1152 return;
1153 }
1154 cleanup_mnt(mnt);
b3e19d92 1155}
b3e19d92
NP
1156
1157void mntput(struct vfsmount *mnt)
1158{
1159 if (mnt) {
863d684f 1160 struct mount *m = real_mount(mnt);
b3e19d92 1161 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1162 if (unlikely(m->mnt_expiry_mark))
1163 m->mnt_expiry_mark = 0;
1164 mntput_no_expire(m);
b3e19d92
NP
1165 }
1166}
1167EXPORT_SYMBOL(mntput);
1168
1169struct vfsmount *mntget(struct vfsmount *mnt)
1170{
1171 if (mnt)
83adc753 1172 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1173 return mnt;
1174}
1175EXPORT_SYMBOL(mntget);
1176
c6609c0a
IK
1177/* path_is_mountpoint() - Check if path is a mount in the current
1178 * namespace.
1179 *
1180 * d_mountpoint() can only be used reliably to establish if a dentry is
1181 * not mounted in any namespace and that common case is handled inline.
1182 * d_mountpoint() isn't aware of the possibility there may be multiple
1183 * mounts using a given dentry in a different namespace. This function
1184 * checks if the passed in path is a mountpoint rather than the dentry
1185 * alone.
1186 */
1187bool path_is_mountpoint(const struct path *path)
1188{
1189 unsigned seq;
1190 bool res;
1191
1192 if (!d_mountpoint(path->dentry))
1193 return false;
1194
1195 rcu_read_lock();
1196 do {
1197 seq = read_seqbegin(&mount_lock);
1198 res = __path_is_mountpoint(path);
1199 } while (read_seqretry(&mount_lock, seq));
1200 rcu_read_unlock();
1201
1202 return res;
1203}
1204EXPORT_SYMBOL(path_is_mountpoint);
1205
ca71cf71 1206struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1207{
3064c356
AV
1208 struct mount *p;
1209 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1210 if (IS_ERR(p))
1211 return ERR_CAST(p);
1212 p->mnt.mnt_flags |= MNT_INTERNAL;
1213 return &p->mnt;
7b7b1ace 1214}
1da177e4 1215
a1a2c409 1216#ifdef CONFIG_PROC_FS
0226f492 1217/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1218static void *m_start(struct seq_file *m, loff_t *pos)
1219{
ede1bf0d 1220 struct proc_mounts *p = m->private;
1da177e4 1221
390c6843 1222 down_read(&namespace_sem);
c7999c36
AV
1223 if (p->cached_event == p->ns->event) {
1224 void *v = p->cached_mount;
1225 if (*pos == p->cached_index)
1226 return v;
1227 if (*pos == p->cached_index + 1) {
1228 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1229 return p->cached_mount = v;
1230 }
1231 }
1232
1233 p->cached_event = p->ns->event;
1234 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1235 p->cached_index = *pos;
1236 return p->cached_mount;
1da177e4
LT
1237}
1238
1239static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1240{
ede1bf0d 1241 struct proc_mounts *p = m->private;
b0765fb8 1242
c7999c36
AV
1243 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1244 p->cached_index = *pos;
1245 return p->cached_mount;
1da177e4
LT
1246}
1247
1248static void m_stop(struct seq_file *m, void *v)
1249{
390c6843 1250 up_read(&namespace_sem);
1da177e4
LT
1251}
1252
0226f492 1253static int m_show(struct seq_file *m, void *v)
2d4d4864 1254{
ede1bf0d 1255 struct proc_mounts *p = m->private;
1a4eeaf2 1256 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1257 return p->show(m, &r->mnt);
1da177e4
LT
1258}
1259
a1a2c409 1260const struct seq_operations mounts_op = {
1da177e4
LT
1261 .start = m_start,
1262 .next = m_next,
1263 .stop = m_stop,
0226f492 1264 .show = m_show,
b4629fe2 1265};
a1a2c409 1266#endif /* CONFIG_PROC_FS */
b4629fe2 1267
1da177e4
LT
1268/**
1269 * may_umount_tree - check if a mount tree is busy
1270 * @mnt: root of mount tree
1271 *
1272 * This is called to check if a tree of mounts has any
1273 * open files, pwds, chroots or sub mounts that are
1274 * busy.
1275 */
909b0a88 1276int may_umount_tree(struct vfsmount *m)
1da177e4 1277{
909b0a88 1278 struct mount *mnt = real_mount(m);
36341f64
RP
1279 int actual_refs = 0;
1280 int minimum_refs = 0;
315fc83e 1281 struct mount *p;
909b0a88 1282 BUG_ON(!m);
1da177e4 1283
b3e19d92 1284 /* write lock needed for mnt_get_count */
719ea2fb 1285 lock_mount_hash();
909b0a88 1286 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1287 actual_refs += mnt_get_count(p);
1da177e4 1288 minimum_refs += 2;
1da177e4 1289 }
719ea2fb 1290 unlock_mount_hash();
1da177e4
LT
1291
1292 if (actual_refs > minimum_refs)
e3474a8e 1293 return 0;
1da177e4 1294
e3474a8e 1295 return 1;
1da177e4
LT
1296}
1297
1298EXPORT_SYMBOL(may_umount_tree);
1299
1300/**
1301 * may_umount - check if a mount point is busy
1302 * @mnt: root of mount
1303 *
1304 * This is called to check if a mount point has any
1305 * open files, pwds, chroots or sub mounts. If the
1306 * mount has sub mounts this will return busy
1307 * regardless of whether the sub mounts are busy.
1308 *
1309 * Doesn't take quota and stuff into account. IOW, in some cases it will
1310 * give false negatives. The main reason why it's here is that we need
1311 * a non-destructive way to look for easily umountable filesystems.
1312 */
1313int may_umount(struct vfsmount *mnt)
1314{
e3474a8e 1315 int ret = 1;
8ad08d8a 1316 down_read(&namespace_sem);
719ea2fb 1317 lock_mount_hash();
1ab59738 1318 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1319 ret = 0;
719ea2fb 1320 unlock_mount_hash();
8ad08d8a 1321 up_read(&namespace_sem);
a05964f3 1322 return ret;
1da177e4
LT
1323}
1324
1325EXPORT_SYMBOL(may_umount);
1326
38129a13 1327static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1328
97216be0 1329static void namespace_unlock(void)
70fbcdf4 1330{
a3b3c562 1331 struct hlist_head head;
97216be0 1332
a3b3c562 1333 hlist_move_list(&unmounted, &head);
97216be0 1334
97216be0
AV
1335 up_write(&namespace_sem);
1336
a3b3c562
EB
1337 if (likely(hlist_empty(&head)))
1338 return;
1339
22cb7405 1340 synchronize_rcu_expedited();
48a066e7 1341
87b95ce0 1342 group_pin_kill(&head);
70fbcdf4
RP
1343}
1344
97216be0 1345static inline void namespace_lock(void)
e3197d83 1346{
97216be0 1347 down_write(&namespace_sem);
e3197d83
AV
1348}
1349
e819f152
EB
1350enum umount_tree_flags {
1351 UMOUNT_SYNC = 1,
1352 UMOUNT_PROPAGATE = 2,
e0c9c0af 1353 UMOUNT_CONNECTED = 4,
e819f152 1354};
f2d0a123
EB
1355
1356static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1357{
1358 /* Leaving mounts connected is only valid for lazy umounts */
1359 if (how & UMOUNT_SYNC)
1360 return true;
1361
1362 /* A mount without a parent has nothing to be connected to */
1363 if (!mnt_has_parent(mnt))
1364 return true;
1365
1366 /* Because the reference counting rules change when mounts are
1367 * unmounted and connected, umounted mounts may not be
1368 * connected to mounted mounts.
1369 */
1370 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1371 return true;
1372
1373 /* Has it been requested that the mount remain connected? */
1374 if (how & UMOUNT_CONNECTED)
1375 return false;
1376
1377 /* Is the mount locked such that it needs to remain connected? */
1378 if (IS_MNT_LOCKED(mnt))
1379 return false;
1380
1381 /* By default disconnect the mount */
1382 return true;
1383}
1384
99b7db7b 1385/*
48a066e7 1386 * mount_lock must be held
99b7db7b
NP
1387 * namespace_sem must be held for write
1388 */
e819f152 1389static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1390{
c003b26f 1391 LIST_HEAD(tmp_list);
315fc83e 1392 struct mount *p;
1da177e4 1393
5d88457e
EB
1394 if (how & UMOUNT_PROPAGATE)
1395 propagate_mount_unlock(mnt);
1396
c003b26f 1397 /* Gather the mounts to umount */
590ce4bc
EB
1398 for (p = mnt; p; p = next_mnt(p, mnt)) {
1399 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1400 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1401 }
1da177e4 1402
411a938b 1403 /* Hide the mounts from mnt_mounts */
c003b26f 1404 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1405 list_del_init(&p->mnt_child);
c003b26f 1406 }
88b368f2 1407
c003b26f 1408 /* Add propogated mounts to the tmp_list */
e819f152 1409 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1410 propagate_umount(&tmp_list);
a05964f3 1411
c003b26f 1412 while (!list_empty(&tmp_list)) {
d2921684 1413 struct mnt_namespace *ns;
ce07d891 1414 bool disconnect;
c003b26f 1415 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1416 list_del_init(&p->mnt_expire);
1a4eeaf2 1417 list_del_init(&p->mnt_list);
d2921684
EB
1418 ns = p->mnt_ns;
1419 if (ns) {
1420 ns->mounts--;
1421 __touch_mnt_namespace(ns);
1422 }
143c8c91 1423 p->mnt_ns = NULL;
e819f152 1424 if (how & UMOUNT_SYNC)
48a066e7 1425 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1426
f2d0a123 1427 disconnect = disconnect_mount(p, how);
ce07d891
EB
1428
1429 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1430 disconnect ? &unmounted : NULL);
676da58d 1431 if (mnt_has_parent(p)) {
81b6b061 1432 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1433 if (!disconnect) {
1434 /* Don't forget about p */
1435 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1436 } else {
1437 umount_mnt(p);
1438 }
7c4b93d8 1439 }
0f0afb1d 1440 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1441 }
1442}
1443
b54b9be7 1444static void shrink_submounts(struct mount *mnt);
c35038be 1445
1ab59738 1446static int do_umount(struct mount *mnt, int flags)
1da177e4 1447{
1ab59738 1448 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1449 int retval;
1450
1ab59738 1451 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1452 if (retval)
1453 return retval;
1454
1455 /*
1456 * Allow userspace to request a mountpoint be expired rather than
1457 * unmounting unconditionally. Unmount only happens if:
1458 * (1) the mark is already set (the mark is cleared by mntput())
1459 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1460 */
1461 if (flags & MNT_EXPIRE) {
1ab59738 1462 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1463 flags & (MNT_FORCE | MNT_DETACH))
1464 return -EINVAL;
1465
b3e19d92
NP
1466 /*
1467 * probably don't strictly need the lock here if we examined
1468 * all race cases, but it's a slowpath.
1469 */
719ea2fb 1470 lock_mount_hash();
83adc753 1471 if (mnt_get_count(mnt) != 2) {
719ea2fb 1472 unlock_mount_hash();
1da177e4 1473 return -EBUSY;
b3e19d92 1474 }
719ea2fb 1475 unlock_mount_hash();
1da177e4 1476
863d684f 1477 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1478 return -EAGAIN;
1479 }
1480
1481 /*
1482 * If we may have to abort operations to get out of this
1483 * mount, and they will themselves hold resources we must
1484 * allow the fs to do things. In the Unix tradition of
1485 * 'Gee thats tricky lets do it in userspace' the umount_begin
1486 * might fail to complete on the first run through as other tasks
1487 * must return, and the like. Thats for the mount program to worry
1488 * about for the moment.
1489 */
1490
42faad99 1491 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1492 sb->s_op->umount_begin(sb);
42faad99 1493 }
1da177e4
LT
1494
1495 /*
1496 * No sense to grab the lock for this test, but test itself looks
1497 * somewhat bogus. Suggestions for better replacement?
1498 * Ho-hum... In principle, we might treat that as umount + switch
1499 * to rootfs. GC would eventually take care of the old vfsmount.
1500 * Actually it makes sense, especially if rootfs would contain a
1501 * /reboot - static binary that would close all descriptors and
1502 * call reboot(9). Then init(8) could umount root and exec /reboot.
1503 */
1ab59738 1504 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1505 /*
1506 * Special case for "unmounting" root ...
1507 * we just try to remount it readonly.
1508 */
bc6155d1 1509 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1510 return -EPERM;
1da177e4 1511 down_write(&sb->s_umount);
bc98a42c 1512 if (!sb_rdonly(sb))
e462ec50 1513 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1514 up_write(&sb->s_umount);
1515 return retval;
1516 }
1517
97216be0 1518 namespace_lock();
719ea2fb 1519 lock_mount_hash();
1da177e4 1520
25d202ed
EB
1521 /* Recheck MNT_LOCKED with the locks held */
1522 retval = -EINVAL;
1523 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1524 goto out;
1525
1526 event++;
48a066e7 1527 if (flags & MNT_DETACH) {
1a4eeaf2 1528 if (!list_empty(&mnt->mnt_list))
e819f152 1529 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1530 retval = 0;
48a066e7
AV
1531 } else {
1532 shrink_submounts(mnt);
1533 retval = -EBUSY;
1534 if (!propagate_mount_busy(mnt, 2)) {
1535 if (!list_empty(&mnt->mnt_list))
e819f152 1536 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1537 retval = 0;
1538 }
1da177e4 1539 }
25d202ed 1540out:
719ea2fb 1541 unlock_mount_hash();
e3197d83 1542 namespace_unlock();
1da177e4
LT
1543 return retval;
1544}
1545
80b5dce8
EB
1546/*
1547 * __detach_mounts - lazily unmount all mounts on the specified dentry
1548 *
1549 * During unlink, rmdir, and d_drop it is possible to loose the path
1550 * to an existing mountpoint, and wind up leaking the mount.
1551 * detach_mounts allows lazily unmounting those mounts instead of
1552 * leaking them.
1553 *
1554 * The caller may hold dentry->d_inode->i_mutex.
1555 */
1556void __detach_mounts(struct dentry *dentry)
1557{
1558 struct mountpoint *mp;
1559 struct mount *mnt;
1560
1561 namespace_lock();
3895dbf8 1562 lock_mount_hash();
80b5dce8 1563 mp = lookup_mountpoint(dentry);
f53e5797 1564 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1565 goto out_unlock;
1566
e06b933e 1567 event++;
80b5dce8
EB
1568 while (!hlist_empty(&mp->m_list)) {
1569 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1570 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1571 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1572 umount_mnt(mnt);
ce07d891 1573 }
e0c9c0af 1574 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1575 }
80b5dce8
EB
1576 put_mountpoint(mp);
1577out_unlock:
3895dbf8 1578 unlock_mount_hash();
80b5dce8
EB
1579 namespace_unlock();
1580}
1581
dd111b31 1582/*
9b40bc90
AV
1583 * Is the caller allowed to modify his namespace?
1584 */
1585static inline bool may_mount(void)
1586{
1587 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1588}
1589
9e8925b6
JL
1590static inline bool may_mandlock(void)
1591{
1592#ifndef CONFIG_MANDATORY_FILE_LOCKING
1593 return false;
1594#endif
95ace754 1595 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1596}
1597
1da177e4
LT
1598/*
1599 * Now umount can handle mount points as well as block devices.
1600 * This is important for filesystems which use unnamed block devices.
1601 *
1602 * We now support a flag for forced unmount like the other 'big iron'
1603 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1604 */
1605
3a18ef5c 1606int ksys_umount(char __user *name, int flags)
1da177e4 1607{
2d8f3038 1608 struct path path;
900148dc 1609 struct mount *mnt;
1da177e4 1610 int retval;
db1f05bb 1611 int lookup_flags = 0;
1da177e4 1612
db1f05bb
MS
1613 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1614 return -EINVAL;
1615
9b40bc90
AV
1616 if (!may_mount())
1617 return -EPERM;
1618
db1f05bb
MS
1619 if (!(flags & UMOUNT_NOFOLLOW))
1620 lookup_flags |= LOOKUP_FOLLOW;
1621
197df04c 1622 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1623 if (retval)
1624 goto out;
900148dc 1625 mnt = real_mount(path.mnt);
1da177e4 1626 retval = -EINVAL;
2d8f3038 1627 if (path.dentry != path.mnt->mnt_root)
1da177e4 1628 goto dput_and_out;
143c8c91 1629 if (!check_mnt(mnt))
1da177e4 1630 goto dput_and_out;
25d202ed 1631 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1632 goto dput_and_out;
b2f5d4dc
EB
1633 retval = -EPERM;
1634 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1635 goto dput_and_out;
1da177e4 1636
900148dc 1637 retval = do_umount(mnt, flags);
1da177e4 1638dput_and_out:
429731b1 1639 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1640 dput(path.dentry);
900148dc 1641 mntput_no_expire(mnt);
1da177e4
LT
1642out:
1643 return retval;
1644}
1645
3a18ef5c
DB
1646SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1647{
1648 return ksys_umount(name, flags);
1649}
1650
1da177e4
LT
1651#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1652
1653/*
b58fed8b 1654 * The 2.0 compatible umount. No flags.
1da177e4 1655 */
bdc480e3 1656SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1657{
3a18ef5c 1658 return ksys_umount(name, 0);
1da177e4
LT
1659}
1660
1661#endif
1662
4ce5d2b1 1663static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1664{
4ce5d2b1 1665 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1666 return dentry->d_op == &ns_dentry_operations &&
1667 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1668}
1669
58be2825
AV
1670struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1671{
1672 return container_of(ns, struct mnt_namespace, ns);
1673}
1674
4ce5d2b1
EB
1675static bool mnt_ns_loop(struct dentry *dentry)
1676{
1677 /* Could bind mounting the mount namespace inode cause a
1678 * mount namespace loop?
1679 */
1680 struct mnt_namespace *mnt_ns;
1681 if (!is_mnt_ns_file(dentry))
1682 return false;
1683
f77c8014 1684 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1685 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1686}
1687
87129cc0 1688struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1689 int flag)
1da177e4 1690{
84d17192 1691 struct mount *res, *p, *q, *r, *parent;
1da177e4 1692
4ce5d2b1
EB
1693 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1694 return ERR_PTR(-EINVAL);
1695
1696 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1697 return ERR_PTR(-EINVAL);
9676f0c6 1698
36341f64 1699 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1700 if (IS_ERR(q))
1701 return q;
1702
a73324da 1703 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1704
1705 p = mnt;
6b41d536 1706 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1707 struct mount *s;
7ec02ef1 1708 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1709 continue;
1710
909b0a88 1711 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1712 if (!(flag & CL_COPY_UNBINDABLE) &&
1713 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1714 if (s->mnt.mnt_flags & MNT_LOCKED) {
1715 /* Both unbindable and locked. */
1716 q = ERR_PTR(-EPERM);
1717 goto out;
1718 } else {
1719 s = skip_mnt_tree(s);
1720 continue;
1721 }
4ce5d2b1
EB
1722 }
1723 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1724 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1725 s = skip_mnt_tree(s);
1726 continue;
1727 }
0714a533
AV
1728 while (p != s->mnt_parent) {
1729 p = p->mnt_parent;
1730 q = q->mnt_parent;
1da177e4 1731 }
87129cc0 1732 p = s;
84d17192 1733 parent = q;
87129cc0 1734 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1735 if (IS_ERR(q))
1736 goto out;
719ea2fb 1737 lock_mount_hash();
1a4eeaf2 1738 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1739 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1740 unlock_mount_hash();
1da177e4
LT
1741 }
1742 }
1743 return res;
be34d1a3 1744out:
1da177e4 1745 if (res) {
719ea2fb 1746 lock_mount_hash();
e819f152 1747 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1748 unlock_mount_hash();
1da177e4 1749 }
be34d1a3 1750 return q;
1da177e4
LT
1751}
1752
be34d1a3
DH
1753/* Caller should check returned pointer for errors */
1754
ca71cf71 1755struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1756{
cb338d06 1757 struct mount *tree;
97216be0 1758 namespace_lock();
cd4a4017
EB
1759 if (!check_mnt(real_mount(path->mnt)))
1760 tree = ERR_PTR(-EINVAL);
1761 else
1762 tree = copy_tree(real_mount(path->mnt), path->dentry,
1763 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1764 namespace_unlock();
be34d1a3 1765 if (IS_ERR(tree))
52e220d3 1766 return ERR_CAST(tree);
be34d1a3 1767 return &tree->mnt;
8aec0809
AV
1768}
1769
1770void drop_collected_mounts(struct vfsmount *mnt)
1771{
97216be0 1772 namespace_lock();
719ea2fb 1773 lock_mount_hash();
9c8e0a1b 1774 umount_tree(real_mount(mnt), 0);
719ea2fb 1775 unlock_mount_hash();
3ab6abee 1776 namespace_unlock();
8aec0809
AV
1777}
1778
c771d683
MS
1779/**
1780 * clone_private_mount - create a private clone of a path
1781 *
1782 * This creates a new vfsmount, which will be the clone of @path. The new will
1783 * not be attached anywhere in the namespace and will be private (i.e. changes
1784 * to the originating mount won't be propagated into this).
1785 *
1786 * Release with mntput().
1787 */
ca71cf71 1788struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1789{
1790 struct mount *old_mnt = real_mount(path->mnt);
1791 struct mount *new_mnt;
1792
1793 if (IS_MNT_UNBINDABLE(old_mnt))
1794 return ERR_PTR(-EINVAL);
1795
c771d683 1796 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1797 if (IS_ERR(new_mnt))
1798 return ERR_CAST(new_mnt);
1799
1800 return &new_mnt->mnt;
1801}
1802EXPORT_SYMBOL_GPL(clone_private_mount);
1803
1f707137
AV
1804int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1805 struct vfsmount *root)
1806{
1a4eeaf2 1807 struct mount *mnt;
1f707137
AV
1808 int res = f(root, arg);
1809 if (res)
1810 return res;
1a4eeaf2
AV
1811 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1812 res = f(&mnt->mnt, arg);
1f707137
AV
1813 if (res)
1814 return res;
1815 }
1816 return 0;
1817}
1818
3bd045cc
AV
1819static void lock_mnt_tree(struct mount *mnt)
1820{
1821 struct mount *p;
1822
1823 for (p = mnt; p; p = next_mnt(p, mnt)) {
1824 int flags = p->mnt.mnt_flags;
1825 /* Don't allow unprivileged users to change mount flags */
1826 flags |= MNT_LOCK_ATIME;
1827
1828 if (flags & MNT_READONLY)
1829 flags |= MNT_LOCK_READONLY;
1830
1831 if (flags & MNT_NODEV)
1832 flags |= MNT_LOCK_NODEV;
1833
1834 if (flags & MNT_NOSUID)
1835 flags |= MNT_LOCK_NOSUID;
1836
1837 if (flags & MNT_NOEXEC)
1838 flags |= MNT_LOCK_NOEXEC;
1839 /* Don't allow unprivileged users to reveal what is under a mount */
1840 if (list_empty(&p->mnt_expire))
1841 flags |= MNT_LOCKED;
1842 p->mnt.mnt_flags = flags;
1843 }
1844}
1845
4b8b21f4 1846static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1847{
315fc83e 1848 struct mount *p;
719f5d7f 1849
909b0a88 1850 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1851 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1852 mnt_release_group_id(p);
719f5d7f
MS
1853 }
1854}
1855
4b8b21f4 1856static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1857{
315fc83e 1858 struct mount *p;
719f5d7f 1859
909b0a88 1860 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1861 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1862 int err = mnt_alloc_group_id(p);
719f5d7f 1863 if (err) {
4b8b21f4 1864 cleanup_group_ids(mnt, p);
719f5d7f
MS
1865 return err;
1866 }
1867 }
1868 }
1869
1870 return 0;
1871}
1872
d2921684
EB
1873int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1874{
1875 unsigned int max = READ_ONCE(sysctl_mount_max);
1876 unsigned int mounts = 0, old, pending, sum;
1877 struct mount *p;
1878
1879 for (p = mnt; p; p = next_mnt(p, mnt))
1880 mounts++;
1881
1882 old = ns->mounts;
1883 pending = ns->pending_mounts;
1884 sum = old + pending;
1885 if ((old > sum) ||
1886 (pending > sum) ||
1887 (max < sum) ||
1888 (mounts > (max - sum)))
1889 return -ENOSPC;
1890
1891 ns->pending_mounts = pending + mounts;
1892 return 0;
1893}
1894
b90fa9ae
RP
1895/*
1896 * @source_mnt : mount tree to be attached
21444403
RP
1897 * @nd : place the mount tree @source_mnt is attached
1898 * @parent_nd : if non-null, detach the source_mnt from its parent and
1899 * store the parent mount and mountpoint dentry.
1900 * (done when source_mnt is moved)
b90fa9ae
RP
1901 *
1902 * NOTE: in the table below explains the semantics when a source mount
1903 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1904 * ---------------------------------------------------------------------------
1905 * | BIND MOUNT OPERATION |
1906 * |**************************************************************************
1907 * | source-->| shared | private | slave | unbindable |
1908 * | dest | | | | |
1909 * | | | | | | |
1910 * | v | | | | |
1911 * |**************************************************************************
1912 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1913 * | | | | | |
1914 * |non-shared| shared (+) | private | slave (*) | invalid |
1915 * ***************************************************************************
b90fa9ae
RP
1916 * A bind operation clones the source mount and mounts the clone on the
1917 * destination mount.
1918 *
1919 * (++) the cloned mount is propagated to all the mounts in the propagation
1920 * tree of the destination mount and the cloned mount is added to
1921 * the peer group of the source mount.
1922 * (+) the cloned mount is created under the destination mount and is marked
1923 * as shared. The cloned mount is added to the peer group of the source
1924 * mount.
5afe0022
RP
1925 * (+++) the mount is propagated to all the mounts in the propagation tree
1926 * of the destination mount and the cloned mount is made slave
1927 * of the same master as that of the source mount. The cloned mount
1928 * is marked as 'shared and slave'.
1929 * (*) the cloned mount is made a slave of the same master as that of the
1930 * source mount.
1931 *
9676f0c6
RP
1932 * ---------------------------------------------------------------------------
1933 * | MOVE MOUNT OPERATION |
1934 * |**************************************************************************
1935 * | source-->| shared | private | slave | unbindable |
1936 * | dest | | | | |
1937 * | | | | | | |
1938 * | v | | | | |
1939 * |**************************************************************************
1940 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1941 * | | | | | |
1942 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1943 * ***************************************************************************
5afe0022
RP
1944 *
1945 * (+) the mount is moved to the destination. And is then propagated to
1946 * all the mounts in the propagation tree of the destination mount.
21444403 1947 * (+*) the mount is moved to the destination.
5afe0022
RP
1948 * (+++) the mount is moved to the destination and is then propagated to
1949 * all the mounts belonging to the destination mount's propagation tree.
1950 * the mount is marked as 'shared and slave'.
1951 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1952 *
1953 * if the source mount is a tree, the operations explained above is
1954 * applied to each mount in the tree.
1955 * Must be called without spinlocks held, since this function can sleep
1956 * in allocations.
1957 */
0fb54e50 1958static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1959 struct mount *dest_mnt,
1960 struct mountpoint *dest_mp,
1961 struct path *parent_path)
b90fa9ae 1962{
3bd045cc 1963 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 1964 HLIST_HEAD(tree_list);
d2921684 1965 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 1966 struct mountpoint *smp;
315fc83e 1967 struct mount *child, *p;
38129a13 1968 struct hlist_node *n;
719f5d7f 1969 int err;
b90fa9ae 1970
1064f874
EB
1971 /* Preallocate a mountpoint in case the new mounts need
1972 * to be tucked under other mounts.
1973 */
1974 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1975 if (IS_ERR(smp))
1976 return PTR_ERR(smp);
1977
d2921684
EB
1978 /* Is there space to add these mounts to the mount namespace? */
1979 if (!parent_path) {
1980 err = count_mounts(ns, source_mnt);
1981 if (err)
1982 goto out;
1983 }
1984
fc7be130 1985 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1986 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1987 if (err)
1988 goto out;
0b1b901b 1989 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1990 lock_mount_hash();
0b1b901b
AV
1991 if (err)
1992 goto out_cleanup_ids;
909b0a88 1993 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1994 set_mnt_shared(p);
0b1b901b
AV
1995 } else {
1996 lock_mount_hash();
b90fa9ae 1997 }
1a390689 1998 if (parent_path) {
0fb54e50 1999 detach_mnt(source_mnt, parent_path);
84d17192 2000 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2001 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2002 } else {
84d17192 2003 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2004 commit_tree(source_mnt);
21444403 2005 }
b90fa9ae 2006
38129a13 2007 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2008 struct mount *q;
38129a13 2009 hlist_del_init(&child->mnt_hash);
1064f874
EB
2010 q = __lookup_mnt(&child->mnt_parent->mnt,
2011 child->mnt_mountpoint);
2012 if (q)
2013 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2014 /* Notice when we are propagating across user namespaces */
2015 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2016 lock_mnt_tree(child);
1064f874 2017 commit_tree(child);
b90fa9ae 2018 }
1064f874 2019 put_mountpoint(smp);
719ea2fb 2020 unlock_mount_hash();
99b7db7b 2021
b90fa9ae 2022 return 0;
719f5d7f
MS
2023
2024 out_cleanup_ids:
f2ebb3a9
AV
2025 while (!hlist_empty(&tree_list)) {
2026 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2027 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2028 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2029 }
2030 unlock_mount_hash();
0b1b901b 2031 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2032 out:
d2921684 2033 ns->pending_mounts = 0;
1064f874
EB
2034
2035 read_seqlock_excl(&mount_lock);
2036 put_mountpoint(smp);
2037 read_sequnlock_excl(&mount_lock);
2038
719f5d7f 2039 return err;
b90fa9ae
RP
2040}
2041
84d17192 2042static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2043{
2044 struct vfsmount *mnt;
84d17192 2045 struct dentry *dentry = path->dentry;
b12cea91 2046retry:
5955102c 2047 inode_lock(dentry->d_inode);
84d17192 2048 if (unlikely(cant_mount(dentry))) {
5955102c 2049 inode_unlock(dentry->d_inode);
84d17192 2050 return ERR_PTR(-ENOENT);
b12cea91 2051 }
97216be0 2052 namespace_lock();
b12cea91 2053 mnt = lookup_mnt(path);
84d17192 2054 if (likely(!mnt)) {
3895dbf8 2055 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2056 if (IS_ERR(mp)) {
97216be0 2057 namespace_unlock();
5955102c 2058 inode_unlock(dentry->d_inode);
84d17192
AV
2059 return mp;
2060 }
2061 return mp;
2062 }
97216be0 2063 namespace_unlock();
5955102c 2064 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2065 path_put(path);
2066 path->mnt = mnt;
84d17192 2067 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2068 goto retry;
2069}
2070
84d17192 2071static void unlock_mount(struct mountpoint *where)
b12cea91 2072{
84d17192 2073 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2074
2075 read_seqlock_excl(&mount_lock);
84d17192 2076 put_mountpoint(where);
3895dbf8
EB
2077 read_sequnlock_excl(&mount_lock);
2078
328e6d90 2079 namespace_unlock();
5955102c 2080 inode_unlock(dentry->d_inode);
b12cea91
AV
2081}
2082
84d17192 2083static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2084{
e462ec50 2085 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2086 return -EINVAL;
2087
e36cb0b8
DH
2088 if (d_is_dir(mp->m_dentry) !=
2089 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2090 return -ENOTDIR;
2091
84d17192 2092 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2093}
2094
7a2e8a8f
VA
2095/*
2096 * Sanity check the flags to change_mnt_propagation.
2097 */
2098
e462ec50 2099static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2100{
e462ec50 2101 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2102
2103 /* Fail if any non-propagation flags are set */
2104 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2105 return 0;
2106 /* Only one propagation flag should be set */
2107 if (!is_power_of_2(type))
2108 return 0;
2109 return type;
2110}
2111
07b20889
RP
2112/*
2113 * recursively change the type of the mountpoint.
2114 */
e462ec50 2115static int do_change_type(struct path *path, int ms_flags)
07b20889 2116{
315fc83e 2117 struct mount *m;
4b8b21f4 2118 struct mount *mnt = real_mount(path->mnt);
e462ec50 2119 int recurse = ms_flags & MS_REC;
7a2e8a8f 2120 int type;
719f5d7f 2121 int err = 0;
07b20889 2122
2d92ab3c 2123 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2124 return -EINVAL;
2125
e462ec50 2126 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2127 if (!type)
2128 return -EINVAL;
2129
97216be0 2130 namespace_lock();
719f5d7f
MS
2131 if (type == MS_SHARED) {
2132 err = invent_group_ids(mnt, recurse);
2133 if (err)
2134 goto out_unlock;
2135 }
2136
719ea2fb 2137 lock_mount_hash();
909b0a88 2138 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2139 change_mnt_propagation(m, type);
719ea2fb 2140 unlock_mount_hash();
719f5d7f
MS
2141
2142 out_unlock:
97216be0 2143 namespace_unlock();
719f5d7f 2144 return err;
07b20889
RP
2145}
2146
5ff9d8a6
EB
2147static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2148{
2149 struct mount *child;
2150 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2151 if (!is_subdir(child->mnt_mountpoint, dentry))
2152 continue;
2153
2154 if (child->mnt.mnt_flags & MNT_LOCKED)
2155 return true;
2156 }
2157 return false;
2158}
2159
1da177e4
LT
2160/*
2161 * do loopback mount.
2162 */
808d4e3c 2163static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2164 int recurse)
1da177e4 2165{
2d92ab3c 2166 struct path old_path;
84d17192
AV
2167 struct mount *mnt = NULL, *old, *parent;
2168 struct mountpoint *mp;
57eccb83 2169 int err;
1da177e4
LT
2170 if (!old_name || !*old_name)
2171 return -EINVAL;
815d405c 2172 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2173 if (err)
2174 return err;
2175
8823c079 2176 err = -EINVAL;
4ce5d2b1 2177 if (mnt_ns_loop(old_path.dentry))
dd111b31 2178 goto out;
8823c079 2179
84d17192
AV
2180 mp = lock_mount(path);
2181 err = PTR_ERR(mp);
2182 if (IS_ERR(mp))
b12cea91
AV
2183 goto out;
2184
87129cc0 2185 old = real_mount(old_path.mnt);
84d17192 2186 parent = real_mount(path->mnt);
87129cc0 2187
1da177e4 2188 err = -EINVAL;
fc7be130 2189 if (IS_MNT_UNBINDABLE(old))
b12cea91 2190 goto out2;
9676f0c6 2191
e149ed2b
AV
2192 if (!check_mnt(parent))
2193 goto out2;
2194
2195 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2196 goto out2;
1da177e4 2197
5ff9d8a6
EB
2198 if (!recurse && has_locked_children(old, old_path.dentry))
2199 goto out2;
2200
ccd48bc7 2201 if (recurse)
4ce5d2b1 2202 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2203 else
87129cc0 2204 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2205
be34d1a3
DH
2206 if (IS_ERR(mnt)) {
2207 err = PTR_ERR(mnt);
e9c5d8a5 2208 goto out2;
be34d1a3 2209 }
ccd48bc7 2210
5ff9d8a6
EB
2211 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2212
84d17192 2213 err = graft_tree(mnt, parent, mp);
ccd48bc7 2214 if (err) {
719ea2fb 2215 lock_mount_hash();
e819f152 2216 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2217 unlock_mount_hash();
5b83d2c5 2218 }
b12cea91 2219out2:
84d17192 2220 unlock_mount(mp);
ccd48bc7 2221out:
2d92ab3c 2222 path_put(&old_path);
1da177e4
LT
2223 return err;
2224}
2225
43f5e655
DH
2226/*
2227 * Don't allow locked mount flags to be cleared.
2228 *
2229 * No locks need to be held here while testing the various MNT_LOCK
2230 * flags because those flags can never be cleared once they are set.
2231 */
2232static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2233{
43f5e655
DH
2234 unsigned int fl = mnt->mnt.mnt_flags;
2235
2236 if ((fl & MNT_LOCK_READONLY) &&
2237 !(mnt_flags & MNT_READONLY))
2238 return false;
2239
2240 if ((fl & MNT_LOCK_NODEV) &&
2241 !(mnt_flags & MNT_NODEV))
2242 return false;
2243
2244 if ((fl & MNT_LOCK_NOSUID) &&
2245 !(mnt_flags & MNT_NOSUID))
2246 return false;
2247
2248 if ((fl & MNT_LOCK_NOEXEC) &&
2249 !(mnt_flags & MNT_NOEXEC))
2250 return false;
2251
2252 if ((fl & MNT_LOCK_ATIME) &&
2253 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2254 return false;
2e4b7fcd 2255
43f5e655
DH
2256 return true;
2257}
2258
2259static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2260{
43f5e655 2261 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2262
43f5e655 2263 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2264 return 0;
2265
2266 if (readonly_request)
43f5e655
DH
2267 return mnt_make_readonly(mnt);
2268
2269 return __mnt_unmake_readonly(mnt);
2270}
2271
2272/*
2273 * Update the user-settable attributes on a mount. The caller must hold
2274 * sb->s_umount for writing.
2275 */
2276static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2277{
2278 lock_mount_hash();
2279 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2280 mnt->mnt.mnt_flags = mnt_flags;
2281 touch_mnt_namespace(mnt->mnt_ns);
2282 unlock_mount_hash();
2283}
2284
2285/*
2286 * Handle reconfiguration of the mountpoint only without alteration of the
2287 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2288 * to mount(2).
2289 */
2290static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2291{
2292 struct super_block *sb = path->mnt->mnt_sb;
2293 struct mount *mnt = real_mount(path->mnt);
2294 int ret;
2295
2296 if (!check_mnt(mnt))
2297 return -EINVAL;
2298
2299 if (path->dentry != mnt->mnt.mnt_root)
2300 return -EINVAL;
2301
2302 if (!can_change_locked_flags(mnt, mnt_flags))
2303 return -EPERM;
2304
2305 down_write(&sb->s_umount);
2306 ret = change_mount_ro_state(mnt, mnt_flags);
2307 if (ret == 0)
2308 set_mount_attributes(mnt, mnt_flags);
2309 up_write(&sb->s_umount);
2310 return ret;
2e4b7fcd
DH
2311}
2312
1da177e4
LT
2313/*
2314 * change filesystem flags. dir should be a physical root of filesystem.
2315 * If you've mounted a non-root directory somewhere and want to do remount
2316 * on it - tough luck.
2317 */
e462ec50
DH
2318static int do_remount(struct path *path, int ms_flags, int sb_flags,
2319 int mnt_flags, void *data)
1da177e4
LT
2320{
2321 int err;
2d92ab3c 2322 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2323 struct mount *mnt = real_mount(path->mnt);
204cc0cc 2324 void *sec_opts = NULL;
1da177e4 2325
143c8c91 2326 if (!check_mnt(mnt))
1da177e4
LT
2327 return -EINVAL;
2328
2d92ab3c 2329 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2330 return -EINVAL;
2331
43f5e655 2332 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2333 return -EPERM;
9566d674 2334
c039bc3c 2335 if (data && !(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)) {
204cc0cc 2336 err = security_sb_eat_lsm_opts(data, &sec_opts);
c039bc3c
AV
2337 if (err)
2338 return err;
2339 }
204cc0cc
AV
2340 err = security_sb_remount(sb, sec_opts);
2341 security_free_mnt_opts(&sec_opts);
ff36fe2c
EP
2342 if (err)
2343 return err;
2344
1da177e4 2345 down_write(&sb->s_umount);
43f5e655
DH
2346 err = -EPERM;
2347 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
e462ec50 2348 err = do_remount_sb(sb, sb_flags, data, 0);
43f5e655
DH
2349 if (!err)
2350 set_mount_attributes(mnt, mnt_flags);
0e55a7cc 2351 }
6339dab8 2352 up_write(&sb->s_umount);
1da177e4
LT
2353 return err;
2354}
2355
cbbe362c 2356static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2357{
315fc83e 2358 struct mount *p;
909b0a88 2359 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2360 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2361 return 1;
2362 }
2363 return 0;
2364}
2365
808d4e3c 2366static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2367{
2d92ab3c 2368 struct path old_path, parent_path;
676da58d 2369 struct mount *p;
0fb54e50 2370 struct mount *old;
84d17192 2371 struct mountpoint *mp;
57eccb83 2372 int err;
1da177e4
LT
2373 if (!old_name || !*old_name)
2374 return -EINVAL;
2d92ab3c 2375 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2376 if (err)
2377 return err;
2378
84d17192
AV
2379 mp = lock_mount(path);
2380 err = PTR_ERR(mp);
2381 if (IS_ERR(mp))
cc53ce53
DH
2382 goto out;
2383
143c8c91 2384 old = real_mount(old_path.mnt);
fc7be130 2385 p = real_mount(path->mnt);
143c8c91 2386
1da177e4 2387 err = -EINVAL;
fc7be130 2388 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2389 goto out1;
2390
5ff9d8a6
EB
2391 if (old->mnt.mnt_flags & MNT_LOCKED)
2392 goto out1;
2393
1da177e4 2394 err = -EINVAL;
2d92ab3c 2395 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2396 goto out1;
1da177e4 2397
676da58d 2398 if (!mnt_has_parent(old))
21444403 2399 goto out1;
1da177e4 2400
e36cb0b8
DH
2401 if (d_is_dir(path->dentry) !=
2402 d_is_dir(old_path.dentry))
21444403
RP
2403 goto out1;
2404 /*
2405 * Don't move a mount residing in a shared parent.
2406 */
fc7be130 2407 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2408 goto out1;
9676f0c6
RP
2409 /*
2410 * Don't move a mount tree containing unbindable mounts to a destination
2411 * mount which is shared.
2412 */
fc7be130 2413 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2414 goto out1;
1da177e4 2415 err = -ELOOP;
fc7be130 2416 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2417 if (p == old)
21444403 2418 goto out1;
1da177e4 2419
84d17192 2420 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2421 if (err)
21444403 2422 goto out1;
1da177e4
LT
2423
2424 /* if the mount is moved, it should no longer be expire
2425 * automatically */
6776db3d 2426 list_del_init(&old->mnt_expire);
1da177e4 2427out1:
84d17192 2428 unlock_mount(mp);
1da177e4 2429out:
1da177e4 2430 if (!err)
1a390689 2431 path_put(&parent_path);
2d92ab3c 2432 path_put(&old_path);
1da177e4
LT
2433 return err;
2434}
2435
9d412a43
AV
2436static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2437{
2438 int err;
2439 const char *subtype = strchr(fstype, '.');
2440 if (subtype) {
2441 subtype++;
2442 err = -EINVAL;
2443 if (!subtype[0])
2444 goto err;
2445 } else
2446 subtype = "";
2447
2448 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2449 err = -ENOMEM;
2450 if (!mnt->mnt_sb->s_subtype)
2451 goto err;
2452 return mnt;
2453
2454 err:
2455 mntput(mnt);
2456 return ERR_PTR(err);
2457}
2458
9d412a43
AV
2459/*
2460 * add a mount into a namespace's mount tree
2461 */
95bc5f25 2462static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2463{
84d17192
AV
2464 struct mountpoint *mp;
2465 struct mount *parent;
9d412a43
AV
2466 int err;
2467
f2ebb3a9 2468 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2469
84d17192
AV
2470 mp = lock_mount(path);
2471 if (IS_ERR(mp))
2472 return PTR_ERR(mp);
9d412a43 2473
84d17192 2474 parent = real_mount(path->mnt);
9d412a43 2475 err = -EINVAL;
84d17192 2476 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2477 /* that's acceptable only for automounts done in private ns */
2478 if (!(mnt_flags & MNT_SHRINKABLE))
2479 goto unlock;
2480 /* ... and for those we'd better have mountpoint still alive */
84d17192 2481 if (!parent->mnt_ns)
156cacb1
AV
2482 goto unlock;
2483 }
9d412a43
AV
2484
2485 /* Refuse the same filesystem on the same mount point */
2486 err = -EBUSY;
95bc5f25 2487 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2488 path->mnt->mnt_root == path->dentry)
2489 goto unlock;
2490
2491 err = -EINVAL;
e36cb0b8 2492 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2493 goto unlock;
2494
95bc5f25 2495 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2496 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2497
2498unlock:
84d17192 2499 unlock_mount(mp);
9d412a43
AV
2500 return err;
2501}
b1e75df4 2502
8654df4e 2503static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2504
1da177e4
LT
2505/*
2506 * create a new mount for userspace and request it to be added into the
2507 * namespace's tree
2508 */
e462ec50 2509static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2510 int mnt_flags, const char *name, void *data)
1da177e4 2511{
0c55cfc4 2512 struct file_system_type *type;
1da177e4 2513 struct vfsmount *mnt;
15f9a3f3 2514 int err;
1da177e4 2515
0c55cfc4 2516 if (!fstype)
1da177e4
LT
2517 return -EINVAL;
2518
0c55cfc4
EB
2519 type = get_fs_type(fstype);
2520 if (!type)
2521 return -ENODEV;
2522
e462ec50 2523 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2524 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2525 !mnt->mnt_sb->s_subtype)
2526 mnt = fs_set_subtype(mnt, fstype);
2527
2528 put_filesystem(type);
1da177e4
LT
2529 if (IS_ERR(mnt))
2530 return PTR_ERR(mnt);
2531
8654df4e
EB
2532 if (mount_too_revealing(mnt, &mnt_flags)) {
2533 mntput(mnt);
2534 return -EPERM;
2535 }
2536
95bc5f25 2537 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2538 if (err)
2539 mntput(mnt);
2540 return err;
1da177e4
LT
2541}
2542
19a167af
AV
2543int finish_automount(struct vfsmount *m, struct path *path)
2544{
6776db3d 2545 struct mount *mnt = real_mount(m);
19a167af
AV
2546 int err;
2547 /* The new mount record should have at least 2 refs to prevent it being
2548 * expired before we get a chance to add it
2549 */
6776db3d 2550 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2551
2552 if (m->mnt_sb == path->mnt->mnt_sb &&
2553 m->mnt_root == path->dentry) {
b1e75df4
AV
2554 err = -ELOOP;
2555 goto fail;
19a167af
AV
2556 }
2557
95bc5f25 2558 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2559 if (!err)
2560 return 0;
2561fail:
2562 /* remove m from any expiration list it may be on */
6776db3d 2563 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2564 namespace_lock();
6776db3d 2565 list_del_init(&mnt->mnt_expire);
97216be0 2566 namespace_unlock();
19a167af 2567 }
b1e75df4
AV
2568 mntput(m);
2569 mntput(m);
19a167af
AV
2570 return err;
2571}
2572
ea5b778a
DH
2573/**
2574 * mnt_set_expiry - Put a mount on an expiration list
2575 * @mnt: The mount to list.
2576 * @expiry_list: The list to add the mount to.
2577 */
2578void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2579{
97216be0 2580 namespace_lock();
ea5b778a 2581
6776db3d 2582 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2583
97216be0 2584 namespace_unlock();
ea5b778a
DH
2585}
2586EXPORT_SYMBOL(mnt_set_expiry);
2587
1da177e4
LT
2588/*
2589 * process a list of expirable mountpoints with the intent of discarding any
2590 * mountpoints that aren't in use and haven't been touched since last we came
2591 * here
2592 */
2593void mark_mounts_for_expiry(struct list_head *mounts)
2594{
761d5c38 2595 struct mount *mnt, *next;
1da177e4
LT
2596 LIST_HEAD(graveyard);
2597
2598 if (list_empty(mounts))
2599 return;
2600
97216be0 2601 namespace_lock();
719ea2fb 2602 lock_mount_hash();
1da177e4
LT
2603
2604 /* extract from the expiration list every vfsmount that matches the
2605 * following criteria:
2606 * - only referenced by its parent vfsmount
2607 * - still marked for expiry (marked on the last call here; marks are
2608 * cleared by mntput())
2609 */
6776db3d 2610 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2611 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2612 propagate_mount_busy(mnt, 1))
1da177e4 2613 continue;
6776db3d 2614 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2615 }
bcc5c7d2 2616 while (!list_empty(&graveyard)) {
6776db3d 2617 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2618 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2619 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2620 }
719ea2fb 2621 unlock_mount_hash();
3ab6abee 2622 namespace_unlock();
5528f911
TM
2623}
2624
2625EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2626
2627/*
2628 * Ripoff of 'select_parent()'
2629 *
2630 * search the list of submounts for a given mountpoint, and move any
2631 * shrinkable submounts to the 'graveyard' list.
2632 */
692afc31 2633static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2634{
692afc31 2635 struct mount *this_parent = parent;
5528f911
TM
2636 struct list_head *next;
2637 int found = 0;
2638
2639repeat:
6b41d536 2640 next = this_parent->mnt_mounts.next;
5528f911 2641resume:
6b41d536 2642 while (next != &this_parent->mnt_mounts) {
5528f911 2643 struct list_head *tmp = next;
6b41d536 2644 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2645
2646 next = tmp->next;
692afc31 2647 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2648 continue;
5528f911
TM
2649 /*
2650 * Descend a level if the d_mounts list is non-empty.
2651 */
6b41d536 2652 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2653 this_parent = mnt;
2654 goto repeat;
2655 }
1da177e4 2656
1ab59738 2657 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2658 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2659 found++;
2660 }
1da177e4 2661 }
5528f911
TM
2662 /*
2663 * All done at this level ... ascend and resume the search
2664 */
2665 if (this_parent != parent) {
6b41d536 2666 next = this_parent->mnt_child.next;
0714a533 2667 this_parent = this_parent->mnt_parent;
5528f911
TM
2668 goto resume;
2669 }
2670 return found;
2671}
2672
2673/*
2674 * process a list of expirable mountpoints with the intent of discarding any
2675 * submounts of a specific parent mountpoint
99b7db7b 2676 *
48a066e7 2677 * mount_lock must be held for write
5528f911 2678 */
b54b9be7 2679static void shrink_submounts(struct mount *mnt)
5528f911
TM
2680{
2681 LIST_HEAD(graveyard);
761d5c38 2682 struct mount *m;
5528f911 2683
5528f911 2684 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2685 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2686 while (!list_empty(&graveyard)) {
761d5c38 2687 m = list_first_entry(&graveyard, struct mount,
6776db3d 2688 mnt_expire);
143c8c91 2689 touch_mnt_namespace(m->mnt_ns);
e819f152 2690 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2691 }
2692 }
1da177e4
LT
2693}
2694
1da177e4
LT
2695/*
2696 * Some copy_from_user() implementations do not return the exact number of
2697 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2698 * Note that this function differs from copy_from_user() in that it will oops
2699 * on bad values of `to', rather than returning a short copy.
2700 */
b58fed8b
RP
2701static long exact_copy_from_user(void *to, const void __user * from,
2702 unsigned long n)
1da177e4
LT
2703{
2704 char *t = to;
2705 const char __user *f = from;
2706 char c;
2707
96d4f267 2708 if (!access_ok(from, n))
1da177e4
LT
2709 return n;
2710
9da3f2b7 2711 current->kernel_uaccess_faults_ok++;
1da177e4
LT
2712 while (n) {
2713 if (__get_user(c, f)) {
2714 memset(t, 0, n);
2715 break;
2716 }
2717 *t++ = c;
2718 f++;
2719 n--;
2720 }
9da3f2b7 2721 current->kernel_uaccess_faults_ok--;
1da177e4
LT
2722 return n;
2723}
2724
b40ef869 2725void *copy_mount_options(const void __user * data)
1da177e4
LT
2726{
2727 int i;
1da177e4 2728 unsigned long size;
b40ef869 2729 char *copy;
b58fed8b 2730
1da177e4 2731 if (!data)
b40ef869 2732 return NULL;
1da177e4 2733
b40ef869
AV
2734 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2735 if (!copy)
2736 return ERR_PTR(-ENOMEM);
1da177e4
LT
2737
2738 /* We only care that *some* data at the address the user
2739 * gave us is valid. Just in case, we'll zero
2740 * the remainder of the page.
2741 */
2742 /* copy_from_user cannot cross TASK_SIZE ! */
2743 size = TASK_SIZE - (unsigned long)data;
2744 if (size > PAGE_SIZE)
2745 size = PAGE_SIZE;
2746
b40ef869 2747 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2748 if (!i) {
b40ef869
AV
2749 kfree(copy);
2750 return ERR_PTR(-EFAULT);
1da177e4
LT
2751 }
2752 if (i != PAGE_SIZE)
b40ef869
AV
2753 memset(copy + i, 0, PAGE_SIZE - i);
2754 return copy;
1da177e4
LT
2755}
2756
b8850d1f 2757char *copy_mount_string(const void __user *data)
eca6f534 2758{
b8850d1f 2759 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2760}
2761
1da177e4
LT
2762/*
2763 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2764 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2765 *
2766 * data is a (void *) that can point to any structure up to
2767 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2768 * information (or be NULL).
2769 *
2770 * Pre-0.97 versions of mount() didn't have a flags word.
2771 * When the flags word was introduced its top half was required
2772 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2773 * Therefore, if this magic number is present, it carries no information
2774 * and must be discarded.
2775 */
5e6123f3 2776long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2777 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2778{
2d92ab3c 2779 struct path path;
e462ec50 2780 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2781 int retval = 0;
1da177e4
LT
2782
2783 /* Discard magic */
2784 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2785 flags &= ~MS_MGC_MSK;
2786
2787 /* Basic sanity checks */
1da177e4
LT
2788 if (data_page)
2789 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2790
e462ec50
DH
2791 if (flags & MS_NOUSER)
2792 return -EINVAL;
2793
a27ab9f2 2794 /* ... and get the mountpoint */
5e6123f3 2795 retval = user_path(dir_name, &path);
a27ab9f2
TH
2796 if (retval)
2797 return retval;
2798
2799 retval = security_sb_mount(dev_name, &path,
2800 type_page, flags, data_page);
0d5cadb8
AV
2801 if (!retval && !may_mount())
2802 retval = -EPERM;
e462ec50 2803 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2804 retval = -EPERM;
a27ab9f2
TH
2805 if (retval)
2806 goto dput_out;
2807
613cbe3d
AK
2808 /* Default to relatime unless overriden */
2809 if (!(flags & MS_NOATIME))
2810 mnt_flags |= MNT_RELATIME;
0a1c01c9 2811
1da177e4
LT
2812 /* Separate the per-mountpoint flags */
2813 if (flags & MS_NOSUID)
2814 mnt_flags |= MNT_NOSUID;
2815 if (flags & MS_NODEV)
2816 mnt_flags |= MNT_NODEV;
2817 if (flags & MS_NOEXEC)
2818 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2819 if (flags & MS_NOATIME)
2820 mnt_flags |= MNT_NOATIME;
2821 if (flags & MS_NODIRATIME)
2822 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2823 if (flags & MS_STRICTATIME)
2824 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 2825 if (flags & MS_RDONLY)
2e4b7fcd 2826 mnt_flags |= MNT_READONLY;
fc33a7bb 2827
ffbc6f0e
EB
2828 /* The default atime for remount is preservation */
2829 if ((flags & MS_REMOUNT) &&
2830 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2831 MS_STRICTATIME)) == 0)) {
2832 mnt_flags &= ~MNT_ATIME_MASK;
2833 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2834 }
2835
e462ec50
DH
2836 sb_flags = flags & (SB_RDONLY |
2837 SB_SYNCHRONOUS |
2838 SB_MANDLOCK |
2839 SB_DIRSYNC |
2840 SB_SILENT |
917086ff 2841 SB_POSIXACL |
d7ee9469 2842 SB_LAZYTIME |
917086ff 2843 SB_I_VERSION);
1da177e4 2844
43f5e655
DH
2845 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2846 retval = do_reconfigure_mnt(&path, mnt_flags);
2847 else if (flags & MS_REMOUNT)
e462ec50 2848 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2849 data_page);
2850 else if (flags & MS_BIND)
2d92ab3c 2851 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2852 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2853 retval = do_change_type(&path, flags);
1da177e4 2854 else if (flags & MS_MOVE)
2d92ab3c 2855 retval = do_move_mount(&path, dev_name);
1da177e4 2856 else
e462ec50 2857 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2858 dev_name, data_page);
2859dput_out:
2d92ab3c 2860 path_put(&path);
1da177e4
LT
2861 return retval;
2862}
2863
537f7ccb
EB
2864static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2865{
2866 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2867}
2868
2869static void dec_mnt_namespaces(struct ucounts *ucounts)
2870{
2871 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2872}
2873
771b1371
EB
2874static void free_mnt_ns(struct mnt_namespace *ns)
2875{
74e83122
AV
2876 if (!is_anon_ns(ns))
2877 ns_free_inum(&ns->ns);
537f7ccb 2878 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2879 put_user_ns(ns->user_ns);
2880 kfree(ns);
2881}
2882
8823c079
EB
2883/*
2884 * Assign a sequence number so we can detect when we attempt to bind
2885 * mount a reference to an older mount namespace into the current
2886 * mount namespace, preventing reference counting loops. A 64bit
2887 * number incrementing at 10Ghz will take 12,427 years to wrap which
2888 * is effectively never, so we can ignore the possibility.
2889 */
2890static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2891
74e83122 2892static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
2893{
2894 struct mnt_namespace *new_ns;
537f7ccb 2895 struct ucounts *ucounts;
98f842e6 2896 int ret;
cf8d2c11 2897
537f7ccb
EB
2898 ucounts = inc_mnt_namespaces(user_ns);
2899 if (!ucounts)
df75e774 2900 return ERR_PTR(-ENOSPC);
537f7ccb 2901
74e83122 2902 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2903 if (!new_ns) {
2904 dec_mnt_namespaces(ucounts);
cf8d2c11 2905 return ERR_PTR(-ENOMEM);
537f7ccb 2906 }
74e83122
AV
2907 if (!anon) {
2908 ret = ns_alloc_inum(&new_ns->ns);
2909 if (ret) {
2910 kfree(new_ns);
2911 dec_mnt_namespaces(ucounts);
2912 return ERR_PTR(ret);
2913 }
98f842e6 2914 }
33c42940 2915 new_ns->ns.ops = &mntns_operations;
74e83122
AV
2916 if (!anon)
2917 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 2918 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
2919 INIT_LIST_HEAD(&new_ns->list);
2920 init_waitqueue_head(&new_ns->poll);
771b1371 2921 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2922 new_ns->ucounts = ucounts;
cf8d2c11
TM
2923 return new_ns;
2924}
2925
0766f788 2926__latent_entropy
9559f689
AV
2927struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2928 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2929{
6b3286ed 2930 struct mnt_namespace *new_ns;
7f2da1e7 2931 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2932 struct mount *p, *q;
9559f689 2933 struct mount *old;
cb338d06 2934 struct mount *new;
7a472ef4 2935 int copy_flags;
1da177e4 2936
9559f689
AV
2937 BUG_ON(!ns);
2938
2939 if (likely(!(flags & CLONE_NEWNS))) {
2940 get_mnt_ns(ns);
2941 return ns;
2942 }
2943
2944 old = ns->root;
2945
74e83122 2946 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
2947 if (IS_ERR(new_ns))
2948 return new_ns;
1da177e4 2949
97216be0 2950 namespace_lock();
1da177e4 2951 /* First pass: copy the tree topology */
4ce5d2b1 2952 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2953 if (user_ns != ns->user_ns)
3bd045cc 2954 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 2955 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2956 if (IS_ERR(new)) {
328e6d90 2957 namespace_unlock();
771b1371 2958 free_mnt_ns(new_ns);
be34d1a3 2959 return ERR_CAST(new);
1da177e4 2960 }
3bd045cc
AV
2961 if (user_ns != ns->user_ns) {
2962 lock_mount_hash();
2963 lock_mnt_tree(new);
2964 unlock_mount_hash();
2965 }
be08d6d2 2966 new_ns->root = new;
1a4eeaf2 2967 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2968
2969 /*
2970 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2971 * as belonging to new namespace. We have already acquired a private
2972 * fs_struct, so tsk->fs->lock is not needed.
2973 */
909b0a88 2974 p = old;
cb338d06 2975 q = new;
1da177e4 2976 while (p) {
143c8c91 2977 q->mnt_ns = new_ns;
d2921684 2978 new_ns->mounts++;
9559f689
AV
2979 if (new_fs) {
2980 if (&p->mnt == new_fs->root.mnt) {
2981 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2982 rootmnt = &p->mnt;
1da177e4 2983 }
9559f689
AV
2984 if (&p->mnt == new_fs->pwd.mnt) {
2985 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2986 pwdmnt = &p->mnt;
1da177e4 2987 }
1da177e4 2988 }
909b0a88
AV
2989 p = next_mnt(p, old);
2990 q = next_mnt(q, new);
4ce5d2b1
EB
2991 if (!q)
2992 break;
2993 while (p->mnt.mnt_root != q->mnt.mnt_root)
2994 p = next_mnt(p, old);
1da177e4 2995 }
328e6d90 2996 namespace_unlock();
1da177e4 2997
1da177e4 2998 if (rootmnt)
f03c6599 2999 mntput(rootmnt);
1da177e4 3000 if (pwdmnt)
f03c6599 3001 mntput(pwdmnt);
1da177e4 3002
741a2951 3003 return new_ns;
1da177e4
LT
3004}
3005
74e83122 3006struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3007{
74e83122 3008 struct mount *mnt = real_mount(m);
ea441d11 3009 struct mnt_namespace *ns;
d31da0f0 3010 struct super_block *s;
ea441d11
AV
3011 struct path path;
3012 int err;
3013
74e83122
AV
3014 ns = alloc_mnt_ns(&init_user_ns, true);
3015 if (IS_ERR(ns)) {
3016 mntput(m);
ea441d11 3017 return ERR_CAST(ns);
74e83122
AV
3018 }
3019 mnt->mnt_ns = ns;
3020 ns->root = mnt;
3021 ns->mounts++;
3022 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3023
74e83122 3024 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3025 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3026
3027 put_mnt_ns(ns);
3028
3029 if (err)
3030 return ERR_PTR(err);
3031
3032 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3033 s = path.mnt->mnt_sb;
3034 atomic_inc(&s->s_active);
ea441d11
AV
3035 mntput(path.mnt);
3036 /* lock the sucker */
d31da0f0 3037 down_write(&s->s_umount);
ea441d11
AV
3038 /* ... and return the root of (sub)tree on it */
3039 return path.dentry;
3040}
3041EXPORT_SYMBOL(mount_subtree);
3042
312db1aa
DB
3043int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3044 unsigned long flags, void __user *data)
1da177e4 3045{
eca6f534
VN
3046 int ret;
3047 char *kernel_type;
eca6f534 3048 char *kernel_dev;
b40ef869 3049 void *options;
1da177e4 3050
b8850d1f
TG
3051 kernel_type = copy_mount_string(type);
3052 ret = PTR_ERR(kernel_type);
3053 if (IS_ERR(kernel_type))
eca6f534 3054 goto out_type;
1da177e4 3055
b8850d1f
TG
3056 kernel_dev = copy_mount_string(dev_name);
3057 ret = PTR_ERR(kernel_dev);
3058 if (IS_ERR(kernel_dev))
eca6f534 3059 goto out_dev;
1da177e4 3060
b40ef869
AV
3061 options = copy_mount_options(data);
3062 ret = PTR_ERR(options);
3063 if (IS_ERR(options))
eca6f534 3064 goto out_data;
1da177e4 3065
b40ef869 3066 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3067
b40ef869 3068 kfree(options);
eca6f534
VN
3069out_data:
3070 kfree(kernel_dev);
3071out_dev:
eca6f534
VN
3072 kfree(kernel_type);
3073out_type:
3074 return ret;
1da177e4
LT
3075}
3076
312db1aa
DB
3077SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3078 char __user *, type, unsigned long, flags, void __user *, data)
3079{
3080 return ksys_mount(dev_name, dir_name, type, flags, data);
3081}
3082
afac7cba
AV
3083/*
3084 * Return true if path is reachable from root
3085 *
48a066e7 3086 * namespace_sem or mount_lock is held
afac7cba 3087 */
643822b4 3088bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3089 const struct path *root)
3090{
643822b4 3091 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3092 dentry = mnt->mnt_mountpoint;
0714a533 3093 mnt = mnt->mnt_parent;
afac7cba 3094 }
643822b4 3095 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3096}
3097
640eb7e7 3098bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3099{
25ab4c9b 3100 bool res;
48a066e7 3101 read_seqlock_excl(&mount_lock);
643822b4 3102 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3103 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3104 return res;
3105}
3106EXPORT_SYMBOL(path_is_under);
3107
1da177e4
LT
3108/*
3109 * pivot_root Semantics:
3110 * Moves the root file system of the current process to the directory put_old,
3111 * makes new_root as the new root file system of the current process, and sets
3112 * root/cwd of all processes which had them on the current root to new_root.
3113 *
3114 * Restrictions:
3115 * The new_root and put_old must be directories, and must not be on the
3116 * same file system as the current process root. The put_old must be
3117 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3118 * pointed to by put_old must yield the same directory as new_root. No other
3119 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3120 *
4a0d11fa
NB
3121 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3122 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3123 * in this situation.
3124 *
1da177e4
LT
3125 * Notes:
3126 * - we don't move root/cwd if they are not at the root (reason: if something
3127 * cared enough to change them, it's probably wrong to force them elsewhere)
3128 * - it's okay to pick a root that isn't the root of a file system, e.g.
3129 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3130 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3131 * first.
3132 */
3480b257
HC
3133SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3134 const char __user *, put_old)
1da177e4 3135{
2d8f3038 3136 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3137 struct mount *new_mnt, *root_mnt, *old_mnt;
3138 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3139 int error;
3140
9b40bc90 3141 if (!may_mount())
1da177e4
LT
3142 return -EPERM;
3143
2d8f3038 3144 error = user_path_dir(new_root, &new);
1da177e4
LT
3145 if (error)
3146 goto out0;
1da177e4 3147
2d8f3038 3148 error = user_path_dir(put_old, &old);
1da177e4
LT
3149 if (error)
3150 goto out1;
3151
2d8f3038 3152 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3153 if (error)
3154 goto out2;
1da177e4 3155
f7ad3c6b 3156 get_fs_root(current->fs, &root);
84d17192
AV
3157 old_mp = lock_mount(&old);
3158 error = PTR_ERR(old_mp);
3159 if (IS_ERR(old_mp))
b12cea91
AV
3160 goto out3;
3161
1da177e4 3162 error = -EINVAL;
419148da
AV
3163 new_mnt = real_mount(new.mnt);
3164 root_mnt = real_mount(root.mnt);
84d17192
AV
3165 old_mnt = real_mount(old.mnt);
3166 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3167 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3168 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3169 goto out4;
143c8c91 3170 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3171 goto out4;
5ff9d8a6
EB
3172 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3173 goto out4;
1da177e4 3174 error = -ENOENT;
f3da392e 3175 if (d_unlinked(new.dentry))
b12cea91 3176 goto out4;
1da177e4 3177 error = -EBUSY;
84d17192 3178 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3179 goto out4; /* loop, on the same file system */
1da177e4 3180 error = -EINVAL;
8c3ee42e 3181 if (root.mnt->mnt_root != root.dentry)
b12cea91 3182 goto out4; /* not a mountpoint */
676da58d 3183 if (!mnt_has_parent(root_mnt))
b12cea91 3184 goto out4; /* not attached */
84d17192 3185 root_mp = root_mnt->mnt_mp;
2d8f3038 3186 if (new.mnt->mnt_root != new.dentry)
b12cea91 3187 goto out4; /* not a mountpoint */
676da58d 3188 if (!mnt_has_parent(new_mnt))
b12cea91 3189 goto out4; /* not attached */
4ac91378 3190 /* make sure we can reach put_old from new_root */
84d17192 3191 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3192 goto out4;
0d082601
EB
3193 /* make certain new is below the root */
3194 if (!is_path_reachable(new_mnt, new.dentry, &root))
3195 goto out4;
84d17192 3196 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3197 lock_mount_hash();
419148da
AV
3198 detach_mnt(new_mnt, &parent_path);
3199 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3200 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3201 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3202 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3203 }
4ac91378 3204 /* mount old root on put_old */
84d17192 3205 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3206 /* mount new_root on / */
84d17192 3207 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3208 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3209 /* A moved mount should not expire automatically */
3210 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3211 put_mountpoint(root_mp);
719ea2fb 3212 unlock_mount_hash();
2d8f3038 3213 chroot_fs_refs(&root, &new);
1da177e4 3214 error = 0;
b12cea91 3215out4:
84d17192 3216 unlock_mount(old_mp);
b12cea91
AV
3217 if (!error) {
3218 path_put(&root_parent);
3219 path_put(&parent_path);
3220 }
3221out3:
8c3ee42e 3222 path_put(&root);
b12cea91 3223out2:
2d8f3038 3224 path_put(&old);
1da177e4 3225out1:
2d8f3038 3226 path_put(&new);
1da177e4 3227out0:
1da177e4 3228 return error;
1da177e4
LT
3229}
3230
3231static void __init init_mount_tree(void)
3232{
3233 struct vfsmount *mnt;
74e83122 3234 struct mount *m;
6b3286ed 3235 struct mnt_namespace *ns;
ac748a09 3236 struct path root;
0c55cfc4 3237 struct file_system_type *type;
1da177e4 3238
0c55cfc4
EB
3239 type = get_fs_type("rootfs");
3240 if (!type)
3241 panic("Can't find rootfs type");
3242 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3243 put_filesystem(type);
1da177e4
LT
3244 if (IS_ERR(mnt))
3245 panic("Can't create rootfs");
b3e19d92 3246
74e83122 3247 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3248 if (IS_ERR(ns))
1da177e4 3249 panic("Can't allocate initial namespace");
74e83122
AV
3250 m = real_mount(mnt);
3251 m->mnt_ns = ns;
3252 ns->root = m;
3253 ns->mounts = 1;
3254 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3255 init_task.nsproxy->mnt_ns = ns;
3256 get_mnt_ns(ns);
3257
be08d6d2
AV
3258 root.mnt = mnt;
3259 root.dentry = mnt->mnt_root;
da362b09 3260 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3261
3262 set_fs_pwd(current->fs, &root);
3263 set_fs_root(current->fs, &root);
1da177e4
LT
3264}
3265
74bf17cf 3266void __init mnt_init(void)
1da177e4 3267{
15a67dd8 3268 int err;
1da177e4 3269
7d6fec45 3270 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3271 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3272
0818bf27 3273 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3274 sizeof(struct hlist_head),
0818bf27 3275 mhash_entries, 19,
3d375d78 3276 HASH_ZERO,
0818bf27
AV
3277 &m_hash_shift, &m_hash_mask, 0, 0);
3278 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3279 sizeof(struct hlist_head),
3280 mphash_entries, 19,
3d375d78 3281 HASH_ZERO,
0818bf27 3282 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3283
84d17192 3284 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3285 panic("Failed to allocate mount hash table\n");
3286
4b93dc9b
TH
3287 kernfs_init();
3288
15a67dd8
RD
3289 err = sysfs_init();
3290 if (err)
3291 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3292 __func__, err);
00d26666
GKH
3293 fs_kobj = kobject_create_and_add("fs", NULL);
3294 if (!fs_kobj)
8e24eea7 3295 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3296 init_rootfs();
3297 init_mount_tree();
3298}
3299
616511d0 3300void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3301{
d498b25a 3302 if (!atomic_dec_and_test(&ns->count))
616511d0 3303 return;
7b00ed6f 3304 drop_collected_mounts(&ns->root->mnt);
771b1371 3305 free_mnt_ns(ns);
1da177e4 3306}
9d412a43
AV
3307
3308struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3309{
423e0ab0 3310 struct vfsmount *mnt;
e462ec50 3311 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3312 if (!IS_ERR(mnt)) {
3313 /*
3314 * it is a longterm mount, don't release mnt until
3315 * we unmount before file sys is unregistered
3316 */
f7a99c5b 3317 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3318 }
3319 return mnt;
9d412a43
AV
3320}
3321EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3322
3323void kern_unmount(struct vfsmount *mnt)
3324{
3325 /* release long term mount so mount point can be released */
3326 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3327 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3328 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3329 mntput(mnt);
3330 }
3331}
3332EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3333
3334bool our_mnt(struct vfsmount *mnt)
3335{
143c8c91 3336 return check_mnt(real_mount(mnt));
02125a82 3337}
8823c079 3338
3151527e
EB
3339bool current_chrooted(void)
3340{
3341 /* Does the current process have a non-standard root */
3342 struct path ns_root;
3343 struct path fs_root;
3344 bool chrooted;
3345
3346 /* Find the namespace root */
3347 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3348 ns_root.dentry = ns_root.mnt->mnt_root;
3349 path_get(&ns_root);
3350 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3351 ;
3352
3353 get_fs_root(current->fs, &fs_root);
3354
3355 chrooted = !path_equal(&fs_root, &ns_root);
3356
3357 path_put(&fs_root);
3358 path_put(&ns_root);
3359
3360 return chrooted;
3361}
3362
8654df4e
EB
3363static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3364 int *new_mnt_flags)
87a8ebd6 3365{
8c6cf9cc 3366 int new_flags = *new_mnt_flags;
87a8ebd6 3367 struct mount *mnt;
e51db735 3368 bool visible = false;
87a8ebd6 3369
44bb4385 3370 down_read(&namespace_sem);
87a8ebd6 3371 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3372 struct mount *child;
77b1a97d
EB
3373 int mnt_flags;
3374
8654df4e 3375 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3376 continue;
3377
7e96c1b0
EB
3378 /* This mount is not fully visible if it's root directory
3379 * is not the root directory of the filesystem.
3380 */
3381 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3382 continue;
3383
a1935c17 3384 /* A local view of the mount flags */
77b1a97d 3385 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3386
695e9df0 3387 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3388 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3389 mnt_flags |= MNT_LOCK_READONLY;
3390
8c6cf9cc
EB
3391 /* Verify the mount flags are equal to or more permissive
3392 * than the proposed new mount.
3393 */
77b1a97d 3394 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3395 !(new_flags & MNT_READONLY))
3396 continue;
77b1a97d
EB
3397 if ((mnt_flags & MNT_LOCK_ATIME) &&
3398 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3399 continue;
3400
ceeb0e5d
EB
3401 /* This mount is not fully visible if there are any
3402 * locked child mounts that cover anything except for
3403 * empty directories.
e51db735
EB
3404 */
3405 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3406 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3407 /* Only worry about locked mounts */
d71ed6c9 3408 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3409 continue;
7236c85e
EB
3410 /* Is the directory permanetly empty? */
3411 if (!is_empty_dir_inode(inode))
e51db735 3412 goto next;
87a8ebd6 3413 }
8c6cf9cc 3414 /* Preserve the locked attributes */
77b1a97d 3415 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3416 MNT_LOCK_ATIME);
e51db735
EB
3417 visible = true;
3418 goto found;
3419 next: ;
87a8ebd6 3420 }
e51db735 3421found:
44bb4385 3422 up_read(&namespace_sem);
e51db735 3423 return visible;
87a8ebd6
EB
3424}
3425
8654df4e
EB
3426static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3427{
a1935c17 3428 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3429 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3430 unsigned long s_iflags;
3431
3432 if (ns->user_ns == &init_user_ns)
3433 return false;
3434
3435 /* Can this filesystem be too revealing? */
3436 s_iflags = mnt->mnt_sb->s_iflags;
3437 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3438 return false;
3439
a1935c17
EB
3440 if ((s_iflags & required_iflags) != required_iflags) {
3441 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3442 required_iflags);
3443 return true;
3444 }
3445
8654df4e
EB
3446 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3447}
3448
380cf5ba
AL
3449bool mnt_may_suid(struct vfsmount *mnt)
3450{
3451 /*
3452 * Foreign mounts (accessed via fchdir or through /proc
3453 * symlinks) are always treated as if they are nosuid. This
3454 * prevents namespaces from trusting potentially unsafe
3455 * suid/sgid bits, file caps, or security labels that originate
3456 * in other namespaces.
3457 */
3458 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3459 current_in_userns(mnt->mnt_sb->s_user_ns);
3460}
3461
64964528 3462static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3463{
58be2825 3464 struct ns_common *ns = NULL;
8823c079
EB
3465 struct nsproxy *nsproxy;
3466
728dba3a
EB
3467 task_lock(task);
3468 nsproxy = task->nsproxy;
8823c079 3469 if (nsproxy) {
58be2825
AV
3470 ns = &nsproxy->mnt_ns->ns;
3471 get_mnt_ns(to_mnt_ns(ns));
8823c079 3472 }
728dba3a 3473 task_unlock(task);
8823c079
EB
3474
3475 return ns;
3476}
3477
64964528 3478static void mntns_put(struct ns_common *ns)
8823c079 3479{
58be2825 3480 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3481}
3482
64964528 3483static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3484{
3485 struct fs_struct *fs = current->fs;
4f757f3c 3486 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3487 struct path root;
4f757f3c 3488 int err;
8823c079 3489
0c55cfc4 3490 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3491 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3492 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3493 return -EPERM;
8823c079 3494
74e83122
AV
3495 if (is_anon_ns(mnt_ns))
3496 return -EINVAL;
3497
8823c079
EB
3498 if (fs->users != 1)
3499 return -EINVAL;
3500
3501 get_mnt_ns(mnt_ns);
4f757f3c 3502 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3503 nsproxy->mnt_ns = mnt_ns;
3504
3505 /* Find the root */
4f757f3c
AV
3506 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3507 "/", LOOKUP_DOWN, &root);
3508 if (err) {
3509 /* revert to old namespace */
3510 nsproxy->mnt_ns = old_mnt_ns;
3511 put_mnt_ns(mnt_ns);
3512 return err;
3513 }
8823c079 3514
4068367c
AV
3515 put_mnt_ns(old_mnt_ns);
3516
8823c079
EB
3517 /* Update the pwd and root */
3518 set_fs_pwd(fs, &root);
3519 set_fs_root(fs, &root);
3520
3521 path_put(&root);
3522 return 0;
3523}
3524
bcac25a5
AV
3525static struct user_namespace *mntns_owner(struct ns_common *ns)
3526{
3527 return to_mnt_ns(ns)->user_ns;
3528}
3529
8823c079
EB
3530const struct proc_ns_operations mntns_operations = {
3531 .name = "mnt",
3532 .type = CLONE_NEWNS,
3533 .get = mntns_get,
3534 .put = mntns_put,
3535 .install = mntns_install,
bcac25a5 3536 .owner = mntns_owner,
8823c079 3537};