prctl: propagate has_child_subreaper flag to every descendant
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
d2921684
EB
30/* Maximum number of mounts in a mount namespace */
31unsigned int sysctl_mount_max __read_mostly = 100000;
32
0818bf27
AV
33static unsigned int m_hash_mask __read_mostly;
34static unsigned int m_hash_shift __read_mostly;
35static unsigned int mp_hash_mask __read_mostly;
36static unsigned int mp_hash_shift __read_mostly;
37
38static __initdata unsigned long mhash_entries;
39static int __init set_mhash_entries(char *str)
40{
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45}
46__setup("mhash_entries=", set_mhash_entries);
47
48static __initdata unsigned long mphash_entries;
49static int __init set_mphash_entries(char *str)
50{
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55}
56__setup("mphash_entries=", set_mphash_entries);
13f14b4d 57
c7999c36 58static u64 event;
73cd49ec 59static DEFINE_IDA(mnt_id_ida);
719f5d7f 60static DEFINE_IDA(mnt_group_ida);
99b7db7b 61static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
62static int mnt_id_start = 0;
63static int mnt_group_start = 1;
1da177e4 64
38129a13 65static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 66static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 67static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 68static DECLARE_RWSEM(namespace_sem);
1da177e4 69
f87fd4c2 70/* /sys/fs */
00d26666
GKH
71struct kobject *fs_kobj;
72EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 73
99b7db7b
NP
74/*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
48a066e7 82__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 83
38129a13 84static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 85{
b58fed8b
RP
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90}
91
92static inline struct hlist_head *mp_hash(struct dentry *dentry)
93{
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
97}
98
b105e270 99static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
100{
101 int res;
102
103retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 105 spin_lock(&mnt_id_lock);
15169fe7 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 107 if (!res)
15169fe7 108 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 109 spin_unlock(&mnt_id_lock);
73cd49ec
MS
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114}
115
b105e270 116static void mnt_free_id(struct mount *mnt)
73cd49ec 117{
15169fe7 118 int id = mnt->mnt_id;
99b7db7b 119 spin_lock(&mnt_id_lock);
f21f6220
AV
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
99b7db7b 123 spin_unlock(&mnt_id_lock);
73cd49ec
MS
124}
125
719f5d7f
MS
126/*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
4b8b21f4 131static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 132{
f21f6220
AV
133 int res;
134
719f5d7f
MS
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
f21f6220
AV
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
15169fe7 140 &mnt->mnt_group_id);
f21f6220 141 if (!res)
15169fe7 142 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
143
144 return res;
719f5d7f
MS
145}
146
147/*
148 * Release a peer group ID
149 */
4b8b21f4 150void mnt_release_group_id(struct mount *mnt)
719f5d7f 151{
15169fe7 152 int id = mnt->mnt_group_id;
f21f6220
AV
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
15169fe7 156 mnt->mnt_group_id = 0;
719f5d7f
MS
157}
158
b3e19d92
NP
159/*
160 * vfsmount lock must be held for read
161 */
83adc753 162static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
163{
164#ifdef CONFIG_SMP
68e8a9fe 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
166#else
167 preempt_disable();
68e8a9fe 168 mnt->mnt_count += n;
b3e19d92
NP
169 preempt_enable();
170#endif
171}
172
b3e19d92
NP
173/*
174 * vfsmount lock must be held for write
175 */
83adc753 176unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
177{
178#ifdef CONFIG_SMP
f03c6599 179 unsigned int count = 0;
b3e19d92
NP
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
68e8a9fe 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
184 }
185
186 return count;
187#else
68e8a9fe 188 return mnt->mnt_count;
b3e19d92
NP
189#endif
190}
191
87b95ce0
AV
192static void drop_mountpoint(struct fs_pin *p)
193{
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198}
199
b105e270 200static struct mount *alloc_vfsmnt(const char *name)
1da177e4 201{
c63181e6
AV
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
73cd49ec
MS
204 int err;
205
c63181e6 206 err = mnt_alloc_id(mnt);
88b38782
LZ
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
fcc139ae 211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 212 if (!mnt->mnt_devname)
88b38782 213 goto out_free_id;
73cd49ec
MS
214 }
215
b3e19d92 216#ifdef CONFIG_SMP
c63181e6
AV
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
b3e19d92
NP
219 goto out_free_devname;
220
c63181e6 221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 222#else
c63181e6
AV
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
b3e19d92
NP
225#endif
226
38129a13 227 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
236#ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 238#endif
87b95ce0 239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 240 }
c63181e6 241 return mnt;
88b38782 242
d3ef3d73 243#ifdef CONFIG_SMP
244out_free_devname:
fcc139ae 245 kfree_const(mnt->mnt_devname);
d3ef3d73 246#endif
88b38782 247out_free_id:
c63181e6 248 mnt_free_id(mnt);
88b38782 249out_free_cache:
c63181e6 250 kmem_cache_free(mnt_cache, mnt);
88b38782 251 return NULL;
1da177e4
LT
252}
253
3d733633
DH
254/*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262/*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273int __mnt_is_readonly(struct vfsmount *mnt)
274{
2e4b7fcd
DH
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
3d733633
DH
280}
281EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
83adc753 283static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 284{
285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers++;
d3ef3d73 289#endif
290}
3d733633 291
83adc753 292static inline void mnt_dec_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
68e8a9fe 295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 296#else
68e8a9fe 297 mnt->mnt_writers--;
d3ef3d73 298#endif
3d733633 299}
3d733633 300
83adc753 301static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 302{
d3ef3d73 303#ifdef CONFIG_SMP
304 unsigned int count = 0;
3d733633 305 int cpu;
3d733633
DH
306
307 for_each_possible_cpu(cpu) {
68e8a9fe 308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 309 }
3d733633 310
d3ef3d73 311 return count;
312#else
313 return mnt->mnt_writers;
314#endif
3d733633
DH
315}
316
4ed5e82f
MS
317static int mnt_is_readonly(struct vfsmount *mnt)
318{
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324}
325
8366025e 326/*
eb04c282
JK
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
8366025e
DH
331 */
332/**
eb04c282 333 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 334 * @m: the mount on which to take a write
8366025e 335 *
eb04c282
JK
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
8366025e 341 */
eb04c282 342int __mnt_want_write(struct vfsmount *m)
8366025e 343{
83adc753 344 struct mount *mnt = real_mount(m);
3d733633 345 int ret = 0;
3d733633 346
d3ef3d73 347 preempt_disable();
c6653a83 348 mnt_inc_writers(mnt);
d3ef3d73 349 /*
c6653a83 350 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
1e75529e 355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
4ed5e82f 363 if (mnt_is_readonly(m)) {
c6653a83 364 mnt_dec_writers(mnt);
3d733633 365 ret = -EROFS;
3d733633 366 }
d3ef3d73 367 preempt_enable();
eb04c282
JK
368
369 return ret;
370}
371
372/**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381int mnt_want_write(struct vfsmount *m)
382{
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
3d733633 389 return ret;
8366025e
DH
390}
391EXPORT_SYMBOL_GPL(mnt_want_write);
392
96029c4e 393/**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405int mnt_clone_write(struct vfsmount *mnt)
406{
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
83adc753 411 mnt_inc_writers(real_mount(mnt));
96029c4e 412 preempt_enable();
413 return 0;
414}
415EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417/**
eb04c282 418 * __mnt_want_write_file - get write access to a file's mount
96029c4e 419 * @file: the file who's mount on which to take a write
420 *
eb04c282 421 * This is like __mnt_want_write, but it takes a file and can
96029c4e 422 * do some optimisations if the file is open for write already
423 */
eb04c282 424int __mnt_want_write_file(struct file *file)
96029c4e 425{
83f936c7 426 if (!(file->f_mode & FMODE_WRITER))
eb04c282 427 return __mnt_want_write(file->f_path.mnt);
96029c4e 428 else
429 return mnt_clone_write(file->f_path.mnt);
430}
eb04c282
JK
431
432/**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439int mnt_want_write_file(struct file *file)
440{
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448}
96029c4e 449EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
8366025e 451/**
eb04c282 452 * __mnt_drop_write - give up write access to a mount
8366025e
DH
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
eb04c282 457 * __mnt_want_write() call above.
8366025e 458 */
eb04c282 459void __mnt_drop_write(struct vfsmount *mnt)
8366025e 460{
d3ef3d73 461 preempt_disable();
83adc753 462 mnt_dec_writers(real_mount(mnt));
d3ef3d73 463 preempt_enable();
8366025e 464}
eb04c282
JK
465
466/**
467 * mnt_drop_write - give up write access to a mount
468 * @mnt: the mount on which to give up write access
469 *
470 * Tells the low-level filesystem that we are done performing writes to it and
471 * also allows filesystem to be frozen again. Must be matched with
472 * mnt_want_write() call above.
473 */
474void mnt_drop_write(struct vfsmount *mnt)
475{
476 __mnt_drop_write(mnt);
477 sb_end_write(mnt->mnt_sb);
478}
8366025e
DH
479EXPORT_SYMBOL_GPL(mnt_drop_write);
480
eb04c282
JK
481void __mnt_drop_write_file(struct file *file)
482{
483 __mnt_drop_write(file->f_path.mnt);
484}
485
2a79f17e
AV
486void mnt_drop_write_file(struct file *file)
487{
488 mnt_drop_write(file->f_path.mnt);
489}
490EXPORT_SYMBOL(mnt_drop_write_file);
491
83adc753 492static int mnt_make_readonly(struct mount *mnt)
8366025e 493{
3d733633
DH
494 int ret = 0;
495
719ea2fb 496 lock_mount_hash();
83adc753 497 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 498 /*
d3ef3d73 499 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
500 * should be visible before we do.
3d733633 501 */
d3ef3d73 502 smp_mb();
503
3d733633 504 /*
d3ef3d73 505 * With writers on hold, if this value is zero, then there are
506 * definitely no active writers (although held writers may subsequently
507 * increment the count, they'll have to wait, and decrement it after
508 * seeing MNT_READONLY).
509 *
510 * It is OK to have counter incremented on one CPU and decremented on
511 * another: the sum will add up correctly. The danger would be when we
512 * sum up each counter, if we read a counter before it is incremented,
513 * but then read another CPU's count which it has been subsequently
514 * decremented from -- we would see more decrements than we should.
515 * MNT_WRITE_HOLD protects against this scenario, because
516 * mnt_want_write first increments count, then smp_mb, then spins on
517 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
518 * we're counting up here.
3d733633 519 */
c6653a83 520 if (mnt_get_writers(mnt) > 0)
d3ef3d73 521 ret = -EBUSY;
522 else
83adc753 523 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 524 /*
525 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
526 * that become unheld will see MNT_READONLY.
527 */
528 smp_wmb();
83adc753 529 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 530 unlock_mount_hash();
3d733633 531 return ret;
8366025e 532}
8366025e 533
83adc753 534static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 535{
719ea2fb 536 lock_mount_hash();
83adc753 537 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 538 unlock_mount_hash();
2e4b7fcd
DH
539}
540
4ed5e82f
MS
541int sb_prepare_remount_readonly(struct super_block *sb)
542{
543 struct mount *mnt;
544 int err = 0;
545
8e8b8796
MS
546 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
547 if (atomic_long_read(&sb->s_remove_count))
548 return -EBUSY;
549
719ea2fb 550 lock_mount_hash();
4ed5e82f
MS
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
553 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
554 smp_mb();
555 if (mnt_get_writers(mnt) > 0) {
556 err = -EBUSY;
557 break;
558 }
559 }
560 }
8e8b8796
MS
561 if (!err && atomic_long_read(&sb->s_remove_count))
562 err = -EBUSY;
563
4ed5e82f
MS
564 if (!err) {
565 sb->s_readonly_remount = 1;
566 smp_wmb();
567 }
568 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
569 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
570 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
571 }
719ea2fb 572 unlock_mount_hash();
4ed5e82f
MS
573
574 return err;
575}
576
b105e270 577static void free_vfsmnt(struct mount *mnt)
1da177e4 578{
fcc139ae 579 kfree_const(mnt->mnt_devname);
d3ef3d73 580#ifdef CONFIG_SMP
68e8a9fe 581 free_percpu(mnt->mnt_pcp);
d3ef3d73 582#endif
b105e270 583 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
584}
585
8ffcb32e
DH
586static void delayed_free_vfsmnt(struct rcu_head *head)
587{
588 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
589}
590
48a066e7 591/* call under rcu_read_lock */
294d71ff 592int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
593{
594 struct mount *mnt;
595 if (read_seqretry(&mount_lock, seq))
294d71ff 596 return 1;
48a066e7 597 if (bastard == NULL)
294d71ff 598 return 0;
48a066e7
AV
599 mnt = real_mount(bastard);
600 mnt_add_count(mnt, 1);
601 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 602 return 0;
48a066e7
AV
603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 mnt_add_count(mnt, -1);
294d71ff
AV
605 return 1;
606 }
607 return -1;
608}
609
610/* call under rcu_read_lock */
611bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
612{
613 int res = __legitimize_mnt(bastard, seq);
614 if (likely(!res))
615 return true;
616 if (unlikely(res < 0)) {
617 rcu_read_unlock();
618 mntput(bastard);
619 rcu_read_lock();
48a066e7 620 }
48a066e7
AV
621 return false;
622}
623
1da177e4 624/*
474279dc 625 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 626 * call under rcu_read_lock()
1da177e4 627 */
474279dc 628struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 629{
38129a13 630 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
631 struct mount *p;
632
38129a13 633 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
634 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
635 return p;
636 return NULL;
637}
638
639/*
640 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 641 * mount_lock must be held.
474279dc
AV
642 */
643struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
644{
411a938b
EB
645 struct mount *p, *res = NULL;
646 p = __lookup_mnt(mnt, dentry);
38129a13
AV
647 if (!p)
648 goto out;
411a938b
EB
649 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
650 res = p;
38129a13 651 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
652 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
653 break;
411a938b
EB
654 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
655 res = p;
1d6a32ac 656 }
38129a13 657out:
1d6a32ac 658 return res;
1da177e4
LT
659}
660
a05964f3 661/*
f015f126
DH
662 * lookup_mnt - Return the first child mount mounted at path
663 *
664 * "First" means first mounted chronologically. If you create the
665 * following mounts:
666 *
667 * mount /dev/sda1 /mnt
668 * mount /dev/sda2 /mnt
669 * mount /dev/sda3 /mnt
670 *
671 * Then lookup_mnt() on the base /mnt dentry in the root mount will
672 * return successively the root dentry and vfsmount of /dev/sda1, then
673 * /dev/sda2, then /dev/sda3, then NULL.
674 *
675 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 676 */
ca71cf71 677struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 678{
c7105365 679 struct mount *child_mnt;
48a066e7
AV
680 struct vfsmount *m;
681 unsigned seq;
99b7db7b 682
48a066e7
AV
683 rcu_read_lock();
684 do {
685 seq = read_seqbegin(&mount_lock);
686 child_mnt = __lookup_mnt(path->mnt, path->dentry);
687 m = child_mnt ? &child_mnt->mnt : NULL;
688 } while (!legitimize_mnt(m, seq));
689 rcu_read_unlock();
690 return m;
a05964f3
RP
691}
692
7af1364f
EB
693/*
694 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
695 * current mount namespace.
696 *
697 * The common case is dentries are not mountpoints at all and that
698 * test is handled inline. For the slow case when we are actually
699 * dealing with a mountpoint of some kind, walk through all of the
700 * mounts in the current mount namespace and test to see if the dentry
701 * is a mountpoint.
702 *
703 * The mount_hashtable is not usable in the context because we
704 * need to identify all mounts that may be in the current mount
705 * namespace not just a mount that happens to have some specified
706 * parent mount.
707 */
708bool __is_local_mountpoint(struct dentry *dentry)
709{
710 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
711 struct mount *mnt;
712 bool is_covered = false;
713
714 if (!d_mountpoint(dentry))
715 goto out;
716
717 down_read(&namespace_sem);
718 list_for_each_entry(mnt, &ns->list, mnt_list) {
719 is_covered = (mnt->mnt_mountpoint == dentry);
720 if (is_covered)
721 break;
722 }
723 up_read(&namespace_sem);
724out:
725 return is_covered;
726}
727
e2dfa935 728static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 729{
0818bf27 730 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
731 struct mountpoint *mp;
732
0818bf27 733 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
734 if (mp->m_dentry == dentry) {
735 /* might be worth a WARN_ON() */
736 if (d_unlinked(dentry))
737 return ERR_PTR(-ENOENT);
738 mp->m_count++;
739 return mp;
740 }
741 }
e2dfa935
EB
742 return NULL;
743}
744
3895dbf8 745static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 746{
3895dbf8 747 struct mountpoint *mp, *new = NULL;
e2dfa935 748 int ret;
84d17192 749
3895dbf8
EB
750 if (d_mountpoint(dentry)) {
751mountpoint:
752 read_seqlock_excl(&mount_lock);
753 mp = lookup_mountpoint(dentry);
754 read_sequnlock_excl(&mount_lock);
755 if (mp)
756 goto done;
757 }
758
759 if (!new)
760 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
761 if (!new)
84d17192
AV
762 return ERR_PTR(-ENOMEM);
763
3895dbf8
EB
764
765 /* Exactly one processes may set d_mounted */
eed81007 766 ret = d_set_mounted(dentry);
eed81007 767
3895dbf8
EB
768 /* Someone else set d_mounted? */
769 if (ret == -EBUSY)
770 goto mountpoint;
771
772 /* The dentry is not available as a mountpoint? */
773 mp = ERR_PTR(ret);
774 if (ret)
775 goto done;
776
777 /* Add the new mountpoint to the hash table */
778 read_seqlock_excl(&mount_lock);
779 new->m_dentry = dentry;
780 new->m_count = 1;
781 hlist_add_head(&new->m_hash, mp_hash(dentry));
782 INIT_HLIST_HEAD(&new->m_list);
783 read_sequnlock_excl(&mount_lock);
784
785 mp = new;
786 new = NULL;
787done:
788 kfree(new);
84d17192
AV
789 return mp;
790}
791
792static void put_mountpoint(struct mountpoint *mp)
793{
794 if (!--mp->m_count) {
795 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 796 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
797 spin_lock(&dentry->d_lock);
798 dentry->d_flags &= ~DCACHE_MOUNTED;
799 spin_unlock(&dentry->d_lock);
0818bf27 800 hlist_del(&mp->m_hash);
84d17192
AV
801 kfree(mp);
802 }
803}
804
143c8c91 805static inline int check_mnt(struct mount *mnt)
1da177e4 806{
6b3286ed 807 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
808}
809
99b7db7b
NP
810/*
811 * vfsmount lock must be held for write
812 */
6b3286ed 813static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
814{
815 if (ns) {
816 ns->event = ++event;
817 wake_up_interruptible(&ns->poll);
818 }
819}
820
99b7db7b
NP
821/*
822 * vfsmount lock must be held for write
823 */
6b3286ed 824static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
825{
826 if (ns && ns->event != event) {
827 ns->event = event;
828 wake_up_interruptible(&ns->poll);
829 }
830}
831
99b7db7b
NP
832/*
833 * vfsmount lock must be held for write
834 */
7bdb11de 835static void unhash_mnt(struct mount *mnt)
419148da 836{
0714a533 837 mnt->mnt_parent = mnt;
a73324da 838 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 839 list_del_init(&mnt->mnt_child);
38129a13 840 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 841 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
842 put_mountpoint(mnt->mnt_mp);
843 mnt->mnt_mp = NULL;
1da177e4
LT
844}
845
7bdb11de
EB
846/*
847 * vfsmount lock must be held for write
848 */
849static void detach_mnt(struct mount *mnt, struct path *old_path)
850{
851 old_path->dentry = mnt->mnt_mountpoint;
852 old_path->mnt = &mnt->mnt_parent->mnt;
853 unhash_mnt(mnt);
854}
855
6a46c573
EB
856/*
857 * vfsmount lock must be held for write
858 */
859static void umount_mnt(struct mount *mnt)
860{
861 /* old mountpoint will be dropped when we can do that */
862 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
863 unhash_mnt(mnt);
864}
865
99b7db7b
NP
866/*
867 * vfsmount lock must be held for write
868 */
84d17192
AV
869void mnt_set_mountpoint(struct mount *mnt,
870 struct mountpoint *mp,
44d964d6 871 struct mount *child_mnt)
b90fa9ae 872{
84d17192 873 mp->m_count++;
3a2393d7 874 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 875 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 876 child_mnt->mnt_parent = mnt;
84d17192 877 child_mnt->mnt_mp = mp;
0a5eb7c8 878 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
879}
880
99b7db7b
NP
881/*
882 * vfsmount lock must be held for write
883 */
84d17192
AV
884static void attach_mnt(struct mount *mnt,
885 struct mount *parent,
886 struct mountpoint *mp)
1da177e4 887{
84d17192 888 mnt_set_mountpoint(parent, mp, mnt);
38129a13 889 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 890 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
891}
892
12a5b529
AV
893static void attach_shadowed(struct mount *mnt,
894 struct mount *parent,
895 struct mount *shadows)
896{
897 if (shadows) {
f6f99332 898 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
899 list_add(&mnt->mnt_child, &shadows->mnt_child);
900 } else {
901 hlist_add_head_rcu(&mnt->mnt_hash,
902 m_hash(&parent->mnt, mnt->mnt_mountpoint));
903 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
904 }
905}
906
b90fa9ae 907/*
99b7db7b 908 * vfsmount lock must be held for write
b90fa9ae 909 */
1d6a32ac 910static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 911{
0714a533 912 struct mount *parent = mnt->mnt_parent;
83adc753 913 struct mount *m;
b90fa9ae 914 LIST_HEAD(head);
143c8c91 915 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 916
0714a533 917 BUG_ON(parent == mnt);
b90fa9ae 918
1a4eeaf2 919 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 920 list_for_each_entry(m, &head, mnt_list)
143c8c91 921 m->mnt_ns = n;
f03c6599 922
b90fa9ae
RP
923 list_splice(&head, n->list.prev);
924
d2921684
EB
925 n->mounts += n->pending_mounts;
926 n->pending_mounts = 0;
927
12a5b529 928 attach_shadowed(mnt, parent, shadows);
6b3286ed 929 touch_mnt_namespace(n);
1da177e4
LT
930}
931
909b0a88 932static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 933{
6b41d536
AV
934 struct list_head *next = p->mnt_mounts.next;
935 if (next == &p->mnt_mounts) {
1da177e4 936 while (1) {
909b0a88 937 if (p == root)
1da177e4 938 return NULL;
6b41d536
AV
939 next = p->mnt_child.next;
940 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 941 break;
0714a533 942 p = p->mnt_parent;
1da177e4
LT
943 }
944 }
6b41d536 945 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
946}
947
315fc83e 948static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 949{
6b41d536
AV
950 struct list_head *prev = p->mnt_mounts.prev;
951 while (prev != &p->mnt_mounts) {
952 p = list_entry(prev, struct mount, mnt_child);
953 prev = p->mnt_mounts.prev;
9676f0c6
RP
954 }
955 return p;
956}
957
9d412a43
AV
958struct vfsmount *
959vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
960{
b105e270 961 struct mount *mnt;
9d412a43
AV
962 struct dentry *root;
963
964 if (!type)
965 return ERR_PTR(-ENODEV);
966
967 mnt = alloc_vfsmnt(name);
968 if (!mnt)
969 return ERR_PTR(-ENOMEM);
970
971 if (flags & MS_KERNMOUNT)
b105e270 972 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
973
974 root = mount_fs(type, flags, name, data);
975 if (IS_ERR(root)) {
8ffcb32e 976 mnt_free_id(mnt);
9d412a43
AV
977 free_vfsmnt(mnt);
978 return ERR_CAST(root);
979 }
980
b105e270
AV
981 mnt->mnt.mnt_root = root;
982 mnt->mnt.mnt_sb = root->d_sb;
a73324da 983 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 984 mnt->mnt_parent = mnt;
719ea2fb 985 lock_mount_hash();
39f7c4db 986 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 987 unlock_mount_hash();
b105e270 988 return &mnt->mnt;
9d412a43
AV
989}
990EXPORT_SYMBOL_GPL(vfs_kern_mount);
991
93faccbb
EB
992struct vfsmount *
993vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
994 const char *name, void *data)
995{
996 /* Until it is worked out how to pass the user namespace
997 * through from the parent mount to the submount don't support
998 * unprivileged mounts with submounts.
999 */
1000 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1001 return ERR_PTR(-EPERM);
1002
1003 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1004}
1005EXPORT_SYMBOL_GPL(vfs_submount);
1006
87129cc0 1007static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1008 int flag)
1da177e4 1009{
87129cc0 1010 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1011 struct mount *mnt;
1012 int err;
1da177e4 1013
be34d1a3
DH
1014 mnt = alloc_vfsmnt(old->mnt_devname);
1015 if (!mnt)
1016 return ERR_PTR(-ENOMEM);
719f5d7f 1017
7a472ef4 1018 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1019 mnt->mnt_group_id = 0; /* not a peer of original */
1020 else
1021 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1022
be34d1a3
DH
1023 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1024 err = mnt_alloc_group_id(mnt);
1025 if (err)
1026 goto out_free;
1da177e4 1027 }
be34d1a3 1028
f2ebb3a9 1029 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 1030 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1031 if (flag & CL_UNPRIVILEGED) {
1032 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1033
1034 if (mnt->mnt.mnt_flags & MNT_READONLY)
1035 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1036
1037 if (mnt->mnt.mnt_flags & MNT_NODEV)
1038 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1039
1040 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1041 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1042
1043 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1044 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1045 }
132c94e3 1046
5ff9d8a6 1047 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1048 if ((flag & CL_UNPRIVILEGED) &&
1049 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1050 mnt->mnt.mnt_flags |= MNT_LOCKED;
1051
be34d1a3
DH
1052 atomic_inc(&sb->s_active);
1053 mnt->mnt.mnt_sb = sb;
1054 mnt->mnt.mnt_root = dget(root);
1055 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1056 mnt->mnt_parent = mnt;
719ea2fb 1057 lock_mount_hash();
be34d1a3 1058 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1059 unlock_mount_hash();
be34d1a3 1060
7a472ef4
EB
1061 if ((flag & CL_SLAVE) ||
1062 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1063 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1064 mnt->mnt_master = old;
1065 CLEAR_MNT_SHARED(mnt);
1066 } else if (!(flag & CL_PRIVATE)) {
1067 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1068 list_add(&mnt->mnt_share, &old->mnt_share);
1069 if (IS_MNT_SLAVE(old))
1070 list_add(&mnt->mnt_slave, &old->mnt_slave);
1071 mnt->mnt_master = old->mnt_master;
5235d448
AV
1072 } else {
1073 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1074 }
1075 if (flag & CL_MAKE_SHARED)
1076 set_mnt_shared(mnt);
1077
1078 /* stick the duplicate mount on the same expiry list
1079 * as the original if that was on one */
1080 if (flag & CL_EXPIRE) {
1081 if (!list_empty(&old->mnt_expire))
1082 list_add(&mnt->mnt_expire, &old->mnt_expire);
1083 }
1084
cb338d06 1085 return mnt;
719f5d7f
MS
1086
1087 out_free:
8ffcb32e 1088 mnt_free_id(mnt);
719f5d7f 1089 free_vfsmnt(mnt);
be34d1a3 1090 return ERR_PTR(err);
1da177e4
LT
1091}
1092
9ea459e1
AV
1093static void cleanup_mnt(struct mount *mnt)
1094{
1095 /*
1096 * This probably indicates that somebody messed
1097 * up a mnt_want/drop_write() pair. If this
1098 * happens, the filesystem was probably unable
1099 * to make r/w->r/o transitions.
1100 */
1101 /*
1102 * The locking used to deal with mnt_count decrement provides barriers,
1103 * so mnt_get_writers() below is safe.
1104 */
1105 WARN_ON(mnt_get_writers(mnt));
1106 if (unlikely(mnt->mnt_pins.first))
1107 mnt_pin_kill(mnt);
1108 fsnotify_vfsmount_delete(&mnt->mnt);
1109 dput(mnt->mnt.mnt_root);
1110 deactivate_super(mnt->mnt.mnt_sb);
1111 mnt_free_id(mnt);
1112 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1113}
1114
1115static void __cleanup_mnt(struct rcu_head *head)
1116{
1117 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1118}
1119
1120static LLIST_HEAD(delayed_mntput_list);
1121static void delayed_mntput(struct work_struct *unused)
1122{
1123 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1124 struct llist_node *next;
1125
1126 for (; node; node = next) {
1127 next = llist_next(node);
1128 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1129 }
1130}
1131static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1132
900148dc 1133static void mntput_no_expire(struct mount *mnt)
b3e19d92 1134{
48a066e7
AV
1135 rcu_read_lock();
1136 mnt_add_count(mnt, -1);
1137 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1138 rcu_read_unlock();
f03c6599 1139 return;
b3e19d92 1140 }
719ea2fb 1141 lock_mount_hash();
b3e19d92 1142 if (mnt_get_count(mnt)) {
48a066e7 1143 rcu_read_unlock();
719ea2fb 1144 unlock_mount_hash();
99b7db7b
NP
1145 return;
1146 }
48a066e7
AV
1147 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1148 rcu_read_unlock();
1149 unlock_mount_hash();
1150 return;
1151 }
1152 mnt->mnt.mnt_flags |= MNT_DOOMED;
1153 rcu_read_unlock();
962830df 1154
39f7c4db 1155 list_del(&mnt->mnt_instance);
ce07d891
EB
1156
1157 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1158 struct mount *p, *tmp;
1159 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1160 umount_mnt(p);
1161 }
1162 }
719ea2fb 1163 unlock_mount_hash();
649a795a 1164
9ea459e1
AV
1165 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1166 struct task_struct *task = current;
1167 if (likely(!(task->flags & PF_KTHREAD))) {
1168 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1169 if (!task_work_add(task, &mnt->mnt_rcu, true))
1170 return;
1171 }
1172 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1173 schedule_delayed_work(&delayed_mntput_work, 1);
1174 return;
1175 }
1176 cleanup_mnt(mnt);
b3e19d92 1177}
b3e19d92
NP
1178
1179void mntput(struct vfsmount *mnt)
1180{
1181 if (mnt) {
863d684f 1182 struct mount *m = real_mount(mnt);
b3e19d92 1183 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1184 if (unlikely(m->mnt_expiry_mark))
1185 m->mnt_expiry_mark = 0;
1186 mntput_no_expire(m);
b3e19d92
NP
1187 }
1188}
1189EXPORT_SYMBOL(mntput);
1190
1191struct vfsmount *mntget(struct vfsmount *mnt)
1192{
1193 if (mnt)
83adc753 1194 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1195 return mnt;
1196}
1197EXPORT_SYMBOL(mntget);
1198
c6609c0a
IK
1199/* path_is_mountpoint() - Check if path is a mount in the current
1200 * namespace.
1201 *
1202 * d_mountpoint() can only be used reliably to establish if a dentry is
1203 * not mounted in any namespace and that common case is handled inline.
1204 * d_mountpoint() isn't aware of the possibility there may be multiple
1205 * mounts using a given dentry in a different namespace. This function
1206 * checks if the passed in path is a mountpoint rather than the dentry
1207 * alone.
1208 */
1209bool path_is_mountpoint(const struct path *path)
1210{
1211 unsigned seq;
1212 bool res;
1213
1214 if (!d_mountpoint(path->dentry))
1215 return false;
1216
1217 rcu_read_lock();
1218 do {
1219 seq = read_seqbegin(&mount_lock);
1220 res = __path_is_mountpoint(path);
1221 } while (read_seqretry(&mount_lock, seq));
1222 rcu_read_unlock();
1223
1224 return res;
1225}
1226EXPORT_SYMBOL(path_is_mountpoint);
1227
ca71cf71 1228struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1229{
3064c356
AV
1230 struct mount *p;
1231 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1232 if (IS_ERR(p))
1233 return ERR_CAST(p);
1234 p->mnt.mnt_flags |= MNT_INTERNAL;
1235 return &p->mnt;
7b7b1ace 1236}
1da177e4 1237
b3b304a2
MS
1238static inline void mangle(struct seq_file *m, const char *s)
1239{
1240 seq_escape(m, s, " \t\n\\");
1241}
1242
1243/*
1244 * Simple .show_options callback for filesystems which don't want to
1245 * implement more complex mount option showing.
1246 *
1247 * See also save_mount_options().
1248 */
34c80b1d 1249int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1250{
2a32cebd
AV
1251 const char *options;
1252
1253 rcu_read_lock();
34c80b1d 1254 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1255
1256 if (options != NULL && options[0]) {
1257 seq_putc(m, ',');
1258 mangle(m, options);
1259 }
2a32cebd 1260 rcu_read_unlock();
b3b304a2
MS
1261
1262 return 0;
1263}
1264EXPORT_SYMBOL(generic_show_options);
1265
1266/*
1267 * If filesystem uses generic_show_options(), this function should be
1268 * called from the fill_super() callback.
1269 *
1270 * The .remount_fs callback usually needs to be handled in a special
1271 * way, to make sure, that previous options are not overwritten if the
1272 * remount fails.
1273 *
1274 * Also note, that if the filesystem's .remount_fs function doesn't
1275 * reset all options to their default value, but changes only newly
1276 * given options, then the displayed options will not reflect reality
1277 * any more.
1278 */
1279void save_mount_options(struct super_block *sb, char *options)
1280{
2a32cebd
AV
1281 BUG_ON(sb->s_options);
1282 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1283}
1284EXPORT_SYMBOL(save_mount_options);
1285
2a32cebd
AV
1286void replace_mount_options(struct super_block *sb, char *options)
1287{
1288 char *old = sb->s_options;
1289 rcu_assign_pointer(sb->s_options, options);
1290 if (old) {
1291 synchronize_rcu();
1292 kfree(old);
1293 }
1294}
1295EXPORT_SYMBOL(replace_mount_options);
1296
a1a2c409 1297#ifdef CONFIG_PROC_FS
0226f492 1298/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1299static void *m_start(struct seq_file *m, loff_t *pos)
1300{
ede1bf0d 1301 struct proc_mounts *p = m->private;
1da177e4 1302
390c6843 1303 down_read(&namespace_sem);
c7999c36
AV
1304 if (p->cached_event == p->ns->event) {
1305 void *v = p->cached_mount;
1306 if (*pos == p->cached_index)
1307 return v;
1308 if (*pos == p->cached_index + 1) {
1309 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1310 return p->cached_mount = v;
1311 }
1312 }
1313
1314 p->cached_event = p->ns->event;
1315 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1316 p->cached_index = *pos;
1317 return p->cached_mount;
1da177e4
LT
1318}
1319
1320static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1321{
ede1bf0d 1322 struct proc_mounts *p = m->private;
b0765fb8 1323
c7999c36
AV
1324 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1325 p->cached_index = *pos;
1326 return p->cached_mount;
1da177e4
LT
1327}
1328
1329static void m_stop(struct seq_file *m, void *v)
1330{
390c6843 1331 up_read(&namespace_sem);
1da177e4
LT
1332}
1333
0226f492 1334static int m_show(struct seq_file *m, void *v)
2d4d4864 1335{
ede1bf0d 1336 struct proc_mounts *p = m->private;
1a4eeaf2 1337 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1338 return p->show(m, &r->mnt);
1da177e4
LT
1339}
1340
a1a2c409 1341const struct seq_operations mounts_op = {
1da177e4
LT
1342 .start = m_start,
1343 .next = m_next,
1344 .stop = m_stop,
0226f492 1345 .show = m_show,
b4629fe2 1346};
a1a2c409 1347#endif /* CONFIG_PROC_FS */
b4629fe2 1348
1da177e4
LT
1349/**
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1352 *
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1355 * busy.
1356 */
909b0a88 1357int may_umount_tree(struct vfsmount *m)
1da177e4 1358{
909b0a88 1359 struct mount *mnt = real_mount(m);
36341f64
RP
1360 int actual_refs = 0;
1361 int minimum_refs = 0;
315fc83e 1362 struct mount *p;
909b0a88 1363 BUG_ON(!m);
1da177e4 1364
b3e19d92 1365 /* write lock needed for mnt_get_count */
719ea2fb 1366 lock_mount_hash();
909b0a88 1367 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1368 actual_refs += mnt_get_count(p);
1da177e4 1369 minimum_refs += 2;
1da177e4 1370 }
719ea2fb 1371 unlock_mount_hash();
1da177e4
LT
1372
1373 if (actual_refs > minimum_refs)
e3474a8e 1374 return 0;
1da177e4 1375
e3474a8e 1376 return 1;
1da177e4
LT
1377}
1378
1379EXPORT_SYMBOL(may_umount_tree);
1380
1381/**
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1384 *
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1389 *
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1393 */
1394int may_umount(struct vfsmount *mnt)
1395{
e3474a8e 1396 int ret = 1;
8ad08d8a 1397 down_read(&namespace_sem);
719ea2fb 1398 lock_mount_hash();
1ab59738 1399 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1400 ret = 0;
719ea2fb 1401 unlock_mount_hash();
8ad08d8a 1402 up_read(&namespace_sem);
a05964f3 1403 return ret;
1da177e4
LT
1404}
1405
1406EXPORT_SYMBOL(may_umount);
1407
38129a13 1408static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1409
97216be0 1410static void namespace_unlock(void)
70fbcdf4 1411{
a3b3c562 1412 struct hlist_head head;
97216be0 1413
a3b3c562 1414 hlist_move_list(&unmounted, &head);
97216be0 1415
97216be0
AV
1416 up_write(&namespace_sem);
1417
a3b3c562
EB
1418 if (likely(hlist_empty(&head)))
1419 return;
1420
48a066e7
AV
1421 synchronize_rcu();
1422
87b95ce0 1423 group_pin_kill(&head);
70fbcdf4
RP
1424}
1425
97216be0 1426static inline void namespace_lock(void)
e3197d83 1427{
97216be0 1428 down_write(&namespace_sem);
e3197d83
AV
1429}
1430
e819f152
EB
1431enum umount_tree_flags {
1432 UMOUNT_SYNC = 1,
1433 UMOUNT_PROPAGATE = 2,
e0c9c0af 1434 UMOUNT_CONNECTED = 4,
e819f152 1435};
f2d0a123
EB
1436
1437static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1438{
1439 /* Leaving mounts connected is only valid for lazy umounts */
1440 if (how & UMOUNT_SYNC)
1441 return true;
1442
1443 /* A mount without a parent has nothing to be connected to */
1444 if (!mnt_has_parent(mnt))
1445 return true;
1446
1447 /* Because the reference counting rules change when mounts are
1448 * unmounted and connected, umounted mounts may not be
1449 * connected to mounted mounts.
1450 */
1451 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1452 return true;
1453
1454 /* Has it been requested that the mount remain connected? */
1455 if (how & UMOUNT_CONNECTED)
1456 return false;
1457
1458 /* Is the mount locked such that it needs to remain connected? */
1459 if (IS_MNT_LOCKED(mnt))
1460 return false;
1461
1462 /* By default disconnect the mount */
1463 return true;
1464}
1465
99b7db7b 1466/*
48a066e7 1467 * mount_lock must be held
99b7db7b
NP
1468 * namespace_sem must be held for write
1469 */
e819f152 1470static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1471{
c003b26f 1472 LIST_HEAD(tmp_list);
315fc83e 1473 struct mount *p;
1da177e4 1474
5d88457e
EB
1475 if (how & UMOUNT_PROPAGATE)
1476 propagate_mount_unlock(mnt);
1477
c003b26f 1478 /* Gather the mounts to umount */
590ce4bc
EB
1479 for (p = mnt; p; p = next_mnt(p, mnt)) {
1480 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1481 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1482 }
1da177e4 1483
411a938b 1484 /* Hide the mounts from mnt_mounts */
c003b26f 1485 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1486 list_del_init(&p->mnt_child);
c003b26f 1487 }
88b368f2 1488
c003b26f 1489 /* Add propogated mounts to the tmp_list */
e819f152 1490 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1491 propagate_umount(&tmp_list);
a05964f3 1492
c003b26f 1493 while (!list_empty(&tmp_list)) {
d2921684 1494 struct mnt_namespace *ns;
ce07d891 1495 bool disconnect;
c003b26f 1496 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1497 list_del_init(&p->mnt_expire);
1a4eeaf2 1498 list_del_init(&p->mnt_list);
d2921684
EB
1499 ns = p->mnt_ns;
1500 if (ns) {
1501 ns->mounts--;
1502 __touch_mnt_namespace(ns);
1503 }
143c8c91 1504 p->mnt_ns = NULL;
e819f152 1505 if (how & UMOUNT_SYNC)
48a066e7 1506 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1507
f2d0a123 1508 disconnect = disconnect_mount(p, how);
ce07d891
EB
1509
1510 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1511 disconnect ? &unmounted : NULL);
676da58d 1512 if (mnt_has_parent(p)) {
81b6b061 1513 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1514 if (!disconnect) {
1515 /* Don't forget about p */
1516 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1517 } else {
1518 umount_mnt(p);
1519 }
7c4b93d8 1520 }
0f0afb1d 1521 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1522 }
1523}
1524
b54b9be7 1525static void shrink_submounts(struct mount *mnt);
c35038be 1526
1ab59738 1527static int do_umount(struct mount *mnt, int flags)
1da177e4 1528{
1ab59738 1529 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1530 int retval;
1531
1ab59738 1532 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1533 if (retval)
1534 return retval;
1535
1536 /*
1537 * Allow userspace to request a mountpoint be expired rather than
1538 * unmounting unconditionally. Unmount only happens if:
1539 * (1) the mark is already set (the mark is cleared by mntput())
1540 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1541 */
1542 if (flags & MNT_EXPIRE) {
1ab59738 1543 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1544 flags & (MNT_FORCE | MNT_DETACH))
1545 return -EINVAL;
1546
b3e19d92
NP
1547 /*
1548 * probably don't strictly need the lock here if we examined
1549 * all race cases, but it's a slowpath.
1550 */
719ea2fb 1551 lock_mount_hash();
83adc753 1552 if (mnt_get_count(mnt) != 2) {
719ea2fb 1553 unlock_mount_hash();
1da177e4 1554 return -EBUSY;
b3e19d92 1555 }
719ea2fb 1556 unlock_mount_hash();
1da177e4 1557
863d684f 1558 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1559 return -EAGAIN;
1560 }
1561
1562 /*
1563 * If we may have to abort operations to get out of this
1564 * mount, and they will themselves hold resources we must
1565 * allow the fs to do things. In the Unix tradition of
1566 * 'Gee thats tricky lets do it in userspace' the umount_begin
1567 * might fail to complete on the first run through as other tasks
1568 * must return, and the like. Thats for the mount program to worry
1569 * about for the moment.
1570 */
1571
42faad99 1572 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1573 sb->s_op->umount_begin(sb);
42faad99 1574 }
1da177e4
LT
1575
1576 /*
1577 * No sense to grab the lock for this test, but test itself looks
1578 * somewhat bogus. Suggestions for better replacement?
1579 * Ho-hum... In principle, we might treat that as umount + switch
1580 * to rootfs. GC would eventually take care of the old vfsmount.
1581 * Actually it makes sense, especially if rootfs would contain a
1582 * /reboot - static binary that would close all descriptors and
1583 * call reboot(9). Then init(8) could umount root and exec /reboot.
1584 */
1ab59738 1585 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1586 /*
1587 * Special case for "unmounting" root ...
1588 * we just try to remount it readonly.
1589 */
a1480dcc
AL
1590 if (!capable(CAP_SYS_ADMIN))
1591 return -EPERM;
1da177e4 1592 down_write(&sb->s_umount);
4aa98cf7 1593 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1594 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1595 up_write(&sb->s_umount);
1596 return retval;
1597 }
1598
97216be0 1599 namespace_lock();
719ea2fb 1600 lock_mount_hash();
5addc5dd 1601 event++;
1da177e4 1602
48a066e7 1603 if (flags & MNT_DETACH) {
1a4eeaf2 1604 if (!list_empty(&mnt->mnt_list))
e819f152 1605 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1606 retval = 0;
48a066e7
AV
1607 } else {
1608 shrink_submounts(mnt);
1609 retval = -EBUSY;
1610 if (!propagate_mount_busy(mnt, 2)) {
1611 if (!list_empty(&mnt->mnt_list))
e819f152 1612 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1613 retval = 0;
1614 }
1da177e4 1615 }
719ea2fb 1616 unlock_mount_hash();
e3197d83 1617 namespace_unlock();
1da177e4
LT
1618 return retval;
1619}
1620
80b5dce8
EB
1621/*
1622 * __detach_mounts - lazily unmount all mounts on the specified dentry
1623 *
1624 * During unlink, rmdir, and d_drop it is possible to loose the path
1625 * to an existing mountpoint, and wind up leaking the mount.
1626 * detach_mounts allows lazily unmounting those mounts instead of
1627 * leaking them.
1628 *
1629 * The caller may hold dentry->d_inode->i_mutex.
1630 */
1631void __detach_mounts(struct dentry *dentry)
1632{
1633 struct mountpoint *mp;
1634 struct mount *mnt;
1635
1636 namespace_lock();
3895dbf8 1637 lock_mount_hash();
80b5dce8 1638 mp = lookup_mountpoint(dentry);
f53e5797 1639 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1640 goto out_unlock;
1641
e06b933e 1642 event++;
80b5dce8
EB
1643 while (!hlist_empty(&mp->m_list)) {
1644 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1645 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1646 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1647 umount_mnt(mnt);
ce07d891 1648 }
e0c9c0af 1649 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1650 }
80b5dce8
EB
1651 put_mountpoint(mp);
1652out_unlock:
3895dbf8 1653 unlock_mount_hash();
80b5dce8
EB
1654 namespace_unlock();
1655}
1656
9b40bc90
AV
1657/*
1658 * Is the caller allowed to modify his namespace?
1659 */
1660static inline bool may_mount(void)
1661{
1662 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1663}
1664
9e8925b6
JL
1665static inline bool may_mandlock(void)
1666{
1667#ifndef CONFIG_MANDATORY_FILE_LOCKING
1668 return false;
1669#endif
95ace754 1670 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1671}
1672
1da177e4
LT
1673/*
1674 * Now umount can handle mount points as well as block devices.
1675 * This is important for filesystems which use unnamed block devices.
1676 *
1677 * We now support a flag for forced unmount like the other 'big iron'
1678 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1679 */
1680
bdc480e3 1681SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1682{
2d8f3038 1683 struct path path;
900148dc 1684 struct mount *mnt;
1da177e4 1685 int retval;
db1f05bb 1686 int lookup_flags = 0;
1da177e4 1687
db1f05bb
MS
1688 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1689 return -EINVAL;
1690
9b40bc90
AV
1691 if (!may_mount())
1692 return -EPERM;
1693
db1f05bb
MS
1694 if (!(flags & UMOUNT_NOFOLLOW))
1695 lookup_flags |= LOOKUP_FOLLOW;
1696
197df04c 1697 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1698 if (retval)
1699 goto out;
900148dc 1700 mnt = real_mount(path.mnt);
1da177e4 1701 retval = -EINVAL;
2d8f3038 1702 if (path.dentry != path.mnt->mnt_root)
1da177e4 1703 goto dput_and_out;
143c8c91 1704 if (!check_mnt(mnt))
1da177e4 1705 goto dput_and_out;
5ff9d8a6
EB
1706 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1707 goto dput_and_out;
b2f5d4dc
EB
1708 retval = -EPERM;
1709 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1710 goto dput_and_out;
1da177e4 1711
900148dc 1712 retval = do_umount(mnt, flags);
1da177e4 1713dput_and_out:
429731b1 1714 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1715 dput(path.dentry);
900148dc 1716 mntput_no_expire(mnt);
1da177e4
LT
1717out:
1718 return retval;
1719}
1720
1721#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1722
1723/*
b58fed8b 1724 * The 2.0 compatible umount. No flags.
1da177e4 1725 */
bdc480e3 1726SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1727{
b58fed8b 1728 return sys_umount(name, 0);
1da177e4
LT
1729}
1730
1731#endif
1732
4ce5d2b1 1733static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1734{
4ce5d2b1 1735 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1736 return dentry->d_op == &ns_dentry_operations &&
1737 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1738}
1739
58be2825
AV
1740struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1741{
1742 return container_of(ns, struct mnt_namespace, ns);
1743}
1744
4ce5d2b1
EB
1745static bool mnt_ns_loop(struct dentry *dentry)
1746{
1747 /* Could bind mounting the mount namespace inode cause a
1748 * mount namespace loop?
1749 */
1750 struct mnt_namespace *mnt_ns;
1751 if (!is_mnt_ns_file(dentry))
1752 return false;
1753
f77c8014 1754 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1755 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1756}
1757
87129cc0 1758struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1759 int flag)
1da177e4 1760{
84d17192 1761 struct mount *res, *p, *q, *r, *parent;
1da177e4 1762
4ce5d2b1
EB
1763 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1764 return ERR_PTR(-EINVAL);
1765
1766 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1767 return ERR_PTR(-EINVAL);
9676f0c6 1768
36341f64 1769 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1770 if (IS_ERR(q))
1771 return q;
1772
a73324da 1773 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1774
1775 p = mnt;
6b41d536 1776 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1777 struct mount *s;
7ec02ef1 1778 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1779 continue;
1780
909b0a88 1781 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1782 struct mount *t = NULL;
4ce5d2b1
EB
1783 if (!(flag & CL_COPY_UNBINDABLE) &&
1784 IS_MNT_UNBINDABLE(s)) {
1785 s = skip_mnt_tree(s);
1786 continue;
1787 }
1788 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1789 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1790 s = skip_mnt_tree(s);
1791 continue;
1792 }
0714a533
AV
1793 while (p != s->mnt_parent) {
1794 p = p->mnt_parent;
1795 q = q->mnt_parent;
1da177e4 1796 }
87129cc0 1797 p = s;
84d17192 1798 parent = q;
87129cc0 1799 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1800 if (IS_ERR(q))
1801 goto out;
719ea2fb 1802 lock_mount_hash();
1a4eeaf2 1803 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1804 mnt_set_mountpoint(parent, p->mnt_mp, q);
1805 if (!list_empty(&parent->mnt_mounts)) {
1806 t = list_last_entry(&parent->mnt_mounts,
1807 struct mount, mnt_child);
1808 if (t->mnt_mp != p->mnt_mp)
1809 t = NULL;
1810 }
1811 attach_shadowed(q, parent, t);
719ea2fb 1812 unlock_mount_hash();
1da177e4
LT
1813 }
1814 }
1815 return res;
be34d1a3 1816out:
1da177e4 1817 if (res) {
719ea2fb 1818 lock_mount_hash();
e819f152 1819 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1820 unlock_mount_hash();
1da177e4 1821 }
be34d1a3 1822 return q;
1da177e4
LT
1823}
1824
be34d1a3
DH
1825/* Caller should check returned pointer for errors */
1826
ca71cf71 1827struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1828{
cb338d06 1829 struct mount *tree;
97216be0 1830 namespace_lock();
cd4a4017
EB
1831 if (!check_mnt(real_mount(path->mnt)))
1832 tree = ERR_PTR(-EINVAL);
1833 else
1834 tree = copy_tree(real_mount(path->mnt), path->dentry,
1835 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1836 namespace_unlock();
be34d1a3 1837 if (IS_ERR(tree))
52e220d3 1838 return ERR_CAST(tree);
be34d1a3 1839 return &tree->mnt;
8aec0809
AV
1840}
1841
1842void drop_collected_mounts(struct vfsmount *mnt)
1843{
97216be0 1844 namespace_lock();
719ea2fb 1845 lock_mount_hash();
e819f152 1846 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1847 unlock_mount_hash();
3ab6abee 1848 namespace_unlock();
8aec0809
AV
1849}
1850
c771d683
MS
1851/**
1852 * clone_private_mount - create a private clone of a path
1853 *
1854 * This creates a new vfsmount, which will be the clone of @path. The new will
1855 * not be attached anywhere in the namespace and will be private (i.e. changes
1856 * to the originating mount won't be propagated into this).
1857 *
1858 * Release with mntput().
1859 */
ca71cf71 1860struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1861{
1862 struct mount *old_mnt = real_mount(path->mnt);
1863 struct mount *new_mnt;
1864
1865 if (IS_MNT_UNBINDABLE(old_mnt))
1866 return ERR_PTR(-EINVAL);
1867
c771d683 1868 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1869 if (IS_ERR(new_mnt))
1870 return ERR_CAST(new_mnt);
1871
1872 return &new_mnt->mnt;
1873}
1874EXPORT_SYMBOL_GPL(clone_private_mount);
1875
1f707137
AV
1876int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1877 struct vfsmount *root)
1878{
1a4eeaf2 1879 struct mount *mnt;
1f707137
AV
1880 int res = f(root, arg);
1881 if (res)
1882 return res;
1a4eeaf2
AV
1883 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1884 res = f(&mnt->mnt, arg);
1f707137
AV
1885 if (res)
1886 return res;
1887 }
1888 return 0;
1889}
1890
4b8b21f4 1891static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1892{
315fc83e 1893 struct mount *p;
719f5d7f 1894
909b0a88 1895 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1896 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1897 mnt_release_group_id(p);
719f5d7f
MS
1898 }
1899}
1900
4b8b21f4 1901static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1902{
315fc83e 1903 struct mount *p;
719f5d7f 1904
909b0a88 1905 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1906 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1907 int err = mnt_alloc_group_id(p);
719f5d7f 1908 if (err) {
4b8b21f4 1909 cleanup_group_ids(mnt, p);
719f5d7f
MS
1910 return err;
1911 }
1912 }
1913 }
1914
1915 return 0;
1916}
1917
d2921684
EB
1918int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1919{
1920 unsigned int max = READ_ONCE(sysctl_mount_max);
1921 unsigned int mounts = 0, old, pending, sum;
1922 struct mount *p;
1923
1924 for (p = mnt; p; p = next_mnt(p, mnt))
1925 mounts++;
1926
1927 old = ns->mounts;
1928 pending = ns->pending_mounts;
1929 sum = old + pending;
1930 if ((old > sum) ||
1931 (pending > sum) ||
1932 (max < sum) ||
1933 (mounts > (max - sum)))
1934 return -ENOSPC;
1935
1936 ns->pending_mounts = pending + mounts;
1937 return 0;
1938}
1939
b90fa9ae
RP
1940/*
1941 * @source_mnt : mount tree to be attached
21444403
RP
1942 * @nd : place the mount tree @source_mnt is attached
1943 * @parent_nd : if non-null, detach the source_mnt from its parent and
1944 * store the parent mount and mountpoint dentry.
1945 * (done when source_mnt is moved)
b90fa9ae
RP
1946 *
1947 * NOTE: in the table below explains the semantics when a source mount
1948 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1949 * ---------------------------------------------------------------------------
1950 * | BIND MOUNT OPERATION |
1951 * |**************************************************************************
1952 * | source-->| shared | private | slave | unbindable |
1953 * | dest | | | | |
1954 * | | | | | | |
1955 * | v | | | | |
1956 * |**************************************************************************
1957 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1958 * | | | | | |
1959 * |non-shared| shared (+) | private | slave (*) | invalid |
1960 * ***************************************************************************
b90fa9ae
RP
1961 * A bind operation clones the source mount and mounts the clone on the
1962 * destination mount.
1963 *
1964 * (++) the cloned mount is propagated to all the mounts in the propagation
1965 * tree of the destination mount and the cloned mount is added to
1966 * the peer group of the source mount.
1967 * (+) the cloned mount is created under the destination mount and is marked
1968 * as shared. The cloned mount is added to the peer group of the source
1969 * mount.
5afe0022
RP
1970 * (+++) the mount is propagated to all the mounts in the propagation tree
1971 * of the destination mount and the cloned mount is made slave
1972 * of the same master as that of the source mount. The cloned mount
1973 * is marked as 'shared and slave'.
1974 * (*) the cloned mount is made a slave of the same master as that of the
1975 * source mount.
1976 *
9676f0c6
RP
1977 * ---------------------------------------------------------------------------
1978 * | MOVE MOUNT OPERATION |
1979 * |**************************************************************************
1980 * | source-->| shared | private | slave | unbindable |
1981 * | dest | | | | |
1982 * | | | | | | |
1983 * | v | | | | |
1984 * |**************************************************************************
1985 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1986 * | | | | | |
1987 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1988 * ***************************************************************************
5afe0022
RP
1989 *
1990 * (+) the mount is moved to the destination. And is then propagated to
1991 * all the mounts in the propagation tree of the destination mount.
21444403 1992 * (+*) the mount is moved to the destination.
5afe0022
RP
1993 * (+++) the mount is moved to the destination and is then propagated to
1994 * all the mounts belonging to the destination mount's propagation tree.
1995 * the mount is marked as 'shared and slave'.
1996 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1997 *
1998 * if the source mount is a tree, the operations explained above is
1999 * applied to each mount in the tree.
2000 * Must be called without spinlocks held, since this function can sleep
2001 * in allocations.
2002 */
0fb54e50 2003static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2004 struct mount *dest_mnt,
2005 struct mountpoint *dest_mp,
2006 struct path *parent_path)
b90fa9ae 2007{
38129a13 2008 HLIST_HEAD(tree_list);
d2921684 2009 struct mnt_namespace *ns = dest_mnt->mnt_ns;
315fc83e 2010 struct mount *child, *p;
38129a13 2011 struct hlist_node *n;
719f5d7f 2012 int err;
b90fa9ae 2013
d2921684
EB
2014 /* Is there space to add these mounts to the mount namespace? */
2015 if (!parent_path) {
2016 err = count_mounts(ns, source_mnt);
2017 if (err)
2018 goto out;
2019 }
2020
fc7be130 2021 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2022 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2023 if (err)
2024 goto out;
0b1b901b 2025 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2026 lock_mount_hash();
0b1b901b
AV
2027 if (err)
2028 goto out_cleanup_ids;
909b0a88 2029 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2030 set_mnt_shared(p);
0b1b901b
AV
2031 } else {
2032 lock_mount_hash();
b90fa9ae 2033 }
1a390689 2034 if (parent_path) {
0fb54e50 2035 detach_mnt(source_mnt, parent_path);
84d17192 2036 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2037 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2038 } else {
84d17192 2039 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 2040 commit_tree(source_mnt, NULL);
21444403 2041 }
b90fa9ae 2042
38129a13 2043 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2044 struct mount *q;
38129a13 2045 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
2046 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2047 child->mnt_mountpoint);
2048 commit_tree(child, q);
b90fa9ae 2049 }
719ea2fb 2050 unlock_mount_hash();
99b7db7b 2051
b90fa9ae 2052 return 0;
719f5d7f
MS
2053
2054 out_cleanup_ids:
f2ebb3a9
AV
2055 while (!hlist_empty(&tree_list)) {
2056 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2057 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2058 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2059 }
2060 unlock_mount_hash();
0b1b901b 2061 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2062 out:
d2921684 2063 ns->pending_mounts = 0;
719f5d7f 2064 return err;
b90fa9ae
RP
2065}
2066
84d17192 2067static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2068{
2069 struct vfsmount *mnt;
84d17192 2070 struct dentry *dentry = path->dentry;
b12cea91 2071retry:
5955102c 2072 inode_lock(dentry->d_inode);
84d17192 2073 if (unlikely(cant_mount(dentry))) {
5955102c 2074 inode_unlock(dentry->d_inode);
84d17192 2075 return ERR_PTR(-ENOENT);
b12cea91 2076 }
97216be0 2077 namespace_lock();
b12cea91 2078 mnt = lookup_mnt(path);
84d17192 2079 if (likely(!mnt)) {
3895dbf8 2080 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2081 if (IS_ERR(mp)) {
97216be0 2082 namespace_unlock();
5955102c 2083 inode_unlock(dentry->d_inode);
84d17192
AV
2084 return mp;
2085 }
2086 return mp;
2087 }
97216be0 2088 namespace_unlock();
5955102c 2089 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2090 path_put(path);
2091 path->mnt = mnt;
84d17192 2092 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2093 goto retry;
2094}
2095
84d17192 2096static void unlock_mount(struct mountpoint *where)
b12cea91 2097{
84d17192 2098 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2099
2100 read_seqlock_excl(&mount_lock);
84d17192 2101 put_mountpoint(where);
3895dbf8
EB
2102 read_sequnlock_excl(&mount_lock);
2103
328e6d90 2104 namespace_unlock();
5955102c 2105 inode_unlock(dentry->d_inode);
b12cea91
AV
2106}
2107
84d17192 2108static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2109{
95bc5f25 2110 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2111 return -EINVAL;
2112
e36cb0b8
DH
2113 if (d_is_dir(mp->m_dentry) !=
2114 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2115 return -ENOTDIR;
2116
84d17192 2117 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2118}
2119
7a2e8a8f
VA
2120/*
2121 * Sanity check the flags to change_mnt_propagation.
2122 */
2123
2124static int flags_to_propagation_type(int flags)
2125{
7c6e984d 2126 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2127
2128 /* Fail if any non-propagation flags are set */
2129 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2130 return 0;
2131 /* Only one propagation flag should be set */
2132 if (!is_power_of_2(type))
2133 return 0;
2134 return type;
2135}
2136
07b20889
RP
2137/*
2138 * recursively change the type of the mountpoint.
2139 */
0a0d8a46 2140static int do_change_type(struct path *path, int flag)
07b20889 2141{
315fc83e 2142 struct mount *m;
4b8b21f4 2143 struct mount *mnt = real_mount(path->mnt);
07b20889 2144 int recurse = flag & MS_REC;
7a2e8a8f 2145 int type;
719f5d7f 2146 int err = 0;
07b20889 2147
2d92ab3c 2148 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2149 return -EINVAL;
2150
7a2e8a8f
VA
2151 type = flags_to_propagation_type(flag);
2152 if (!type)
2153 return -EINVAL;
2154
97216be0 2155 namespace_lock();
719f5d7f
MS
2156 if (type == MS_SHARED) {
2157 err = invent_group_ids(mnt, recurse);
2158 if (err)
2159 goto out_unlock;
2160 }
2161
719ea2fb 2162 lock_mount_hash();
909b0a88 2163 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2164 change_mnt_propagation(m, type);
719ea2fb 2165 unlock_mount_hash();
719f5d7f
MS
2166
2167 out_unlock:
97216be0 2168 namespace_unlock();
719f5d7f 2169 return err;
07b20889
RP
2170}
2171
5ff9d8a6
EB
2172static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2173{
2174 struct mount *child;
2175 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2176 if (!is_subdir(child->mnt_mountpoint, dentry))
2177 continue;
2178
2179 if (child->mnt.mnt_flags & MNT_LOCKED)
2180 return true;
2181 }
2182 return false;
2183}
2184
1da177e4
LT
2185/*
2186 * do loopback mount.
2187 */
808d4e3c 2188static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2189 int recurse)
1da177e4 2190{
2d92ab3c 2191 struct path old_path;
84d17192
AV
2192 struct mount *mnt = NULL, *old, *parent;
2193 struct mountpoint *mp;
57eccb83 2194 int err;
1da177e4
LT
2195 if (!old_name || !*old_name)
2196 return -EINVAL;
815d405c 2197 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2198 if (err)
2199 return err;
2200
8823c079 2201 err = -EINVAL;
4ce5d2b1 2202 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2203 goto out;
2204
84d17192
AV
2205 mp = lock_mount(path);
2206 err = PTR_ERR(mp);
2207 if (IS_ERR(mp))
b12cea91
AV
2208 goto out;
2209
87129cc0 2210 old = real_mount(old_path.mnt);
84d17192 2211 parent = real_mount(path->mnt);
87129cc0 2212
1da177e4 2213 err = -EINVAL;
fc7be130 2214 if (IS_MNT_UNBINDABLE(old))
b12cea91 2215 goto out2;
9676f0c6 2216
e149ed2b
AV
2217 if (!check_mnt(parent))
2218 goto out2;
2219
2220 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2221 goto out2;
1da177e4 2222
5ff9d8a6
EB
2223 if (!recurse && has_locked_children(old, old_path.dentry))
2224 goto out2;
2225
ccd48bc7 2226 if (recurse)
4ce5d2b1 2227 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2228 else
87129cc0 2229 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2230
be34d1a3
DH
2231 if (IS_ERR(mnt)) {
2232 err = PTR_ERR(mnt);
e9c5d8a5 2233 goto out2;
be34d1a3 2234 }
ccd48bc7 2235
5ff9d8a6
EB
2236 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2237
84d17192 2238 err = graft_tree(mnt, parent, mp);
ccd48bc7 2239 if (err) {
719ea2fb 2240 lock_mount_hash();
e819f152 2241 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2242 unlock_mount_hash();
5b83d2c5 2243 }
b12cea91 2244out2:
84d17192 2245 unlock_mount(mp);
ccd48bc7 2246out:
2d92ab3c 2247 path_put(&old_path);
1da177e4
LT
2248 return err;
2249}
2250
2e4b7fcd
DH
2251static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2252{
2253 int error = 0;
2254 int readonly_request = 0;
2255
2256 if (ms_flags & MS_RDONLY)
2257 readonly_request = 1;
2258 if (readonly_request == __mnt_is_readonly(mnt))
2259 return 0;
2260
2261 if (readonly_request)
83adc753 2262 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2263 else
83adc753 2264 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2265 return error;
2266}
2267
1da177e4
LT
2268/*
2269 * change filesystem flags. dir should be a physical root of filesystem.
2270 * If you've mounted a non-root directory somewhere and want to do remount
2271 * on it - tough luck.
2272 */
0a0d8a46 2273static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2274 void *data)
2275{
2276 int err;
2d92ab3c 2277 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2278 struct mount *mnt = real_mount(path->mnt);
1da177e4 2279
143c8c91 2280 if (!check_mnt(mnt))
1da177e4
LT
2281 return -EINVAL;
2282
2d92ab3c 2283 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2284 return -EINVAL;
2285
07b64558
EB
2286 /* Don't allow changing of locked mnt flags.
2287 *
2288 * No locks need to be held here while testing the various
2289 * MNT_LOCK flags because those flags can never be cleared
2290 * once they are set.
2291 */
2292 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2293 !(mnt_flags & MNT_READONLY)) {
2294 return -EPERM;
2295 }
9566d674
EB
2296 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2297 !(mnt_flags & MNT_NODEV)) {
67690f93 2298 return -EPERM;
9566d674
EB
2299 }
2300 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2301 !(mnt_flags & MNT_NOSUID)) {
2302 return -EPERM;
2303 }
2304 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2305 !(mnt_flags & MNT_NOEXEC)) {
2306 return -EPERM;
2307 }
2308 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2309 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2310 return -EPERM;
2311 }
2312
ff36fe2c
EP
2313 err = security_sb_remount(sb, data);
2314 if (err)
2315 return err;
2316
1da177e4 2317 down_write(&sb->s_umount);
2e4b7fcd 2318 if (flags & MS_BIND)
2d92ab3c 2319 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2320 else if (!capable(CAP_SYS_ADMIN))
2321 err = -EPERM;
4aa98cf7 2322 else
2e4b7fcd 2323 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2324 if (!err) {
719ea2fb 2325 lock_mount_hash();
a6138db8 2326 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2327 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2328 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2329 unlock_mount_hash();
0e55a7cc 2330 }
6339dab8 2331 up_write(&sb->s_umount);
1da177e4
LT
2332 return err;
2333}
2334
cbbe362c 2335static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2336{
315fc83e 2337 struct mount *p;
909b0a88 2338 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2339 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2340 return 1;
2341 }
2342 return 0;
2343}
2344
808d4e3c 2345static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2346{
2d92ab3c 2347 struct path old_path, parent_path;
676da58d 2348 struct mount *p;
0fb54e50 2349 struct mount *old;
84d17192 2350 struct mountpoint *mp;
57eccb83 2351 int err;
1da177e4
LT
2352 if (!old_name || !*old_name)
2353 return -EINVAL;
2d92ab3c 2354 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2355 if (err)
2356 return err;
2357
84d17192
AV
2358 mp = lock_mount(path);
2359 err = PTR_ERR(mp);
2360 if (IS_ERR(mp))
cc53ce53
DH
2361 goto out;
2362
143c8c91 2363 old = real_mount(old_path.mnt);
fc7be130 2364 p = real_mount(path->mnt);
143c8c91 2365
1da177e4 2366 err = -EINVAL;
fc7be130 2367 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2368 goto out1;
2369
5ff9d8a6
EB
2370 if (old->mnt.mnt_flags & MNT_LOCKED)
2371 goto out1;
2372
1da177e4 2373 err = -EINVAL;
2d92ab3c 2374 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2375 goto out1;
1da177e4 2376
676da58d 2377 if (!mnt_has_parent(old))
21444403 2378 goto out1;
1da177e4 2379
e36cb0b8
DH
2380 if (d_is_dir(path->dentry) !=
2381 d_is_dir(old_path.dentry))
21444403
RP
2382 goto out1;
2383 /*
2384 * Don't move a mount residing in a shared parent.
2385 */
fc7be130 2386 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2387 goto out1;
9676f0c6
RP
2388 /*
2389 * Don't move a mount tree containing unbindable mounts to a destination
2390 * mount which is shared.
2391 */
fc7be130 2392 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2393 goto out1;
1da177e4 2394 err = -ELOOP;
fc7be130 2395 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2396 if (p == old)
21444403 2397 goto out1;
1da177e4 2398
84d17192 2399 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2400 if (err)
21444403 2401 goto out1;
1da177e4
LT
2402
2403 /* if the mount is moved, it should no longer be expire
2404 * automatically */
6776db3d 2405 list_del_init(&old->mnt_expire);
1da177e4 2406out1:
84d17192 2407 unlock_mount(mp);
1da177e4 2408out:
1da177e4 2409 if (!err)
1a390689 2410 path_put(&parent_path);
2d92ab3c 2411 path_put(&old_path);
1da177e4
LT
2412 return err;
2413}
2414
9d412a43
AV
2415static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2416{
2417 int err;
2418 const char *subtype = strchr(fstype, '.');
2419 if (subtype) {
2420 subtype++;
2421 err = -EINVAL;
2422 if (!subtype[0])
2423 goto err;
2424 } else
2425 subtype = "";
2426
2427 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2428 err = -ENOMEM;
2429 if (!mnt->mnt_sb->s_subtype)
2430 goto err;
2431 return mnt;
2432
2433 err:
2434 mntput(mnt);
2435 return ERR_PTR(err);
2436}
2437
9d412a43
AV
2438/*
2439 * add a mount into a namespace's mount tree
2440 */
95bc5f25 2441static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2442{
84d17192
AV
2443 struct mountpoint *mp;
2444 struct mount *parent;
9d412a43
AV
2445 int err;
2446
f2ebb3a9 2447 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2448
84d17192
AV
2449 mp = lock_mount(path);
2450 if (IS_ERR(mp))
2451 return PTR_ERR(mp);
9d412a43 2452
84d17192 2453 parent = real_mount(path->mnt);
9d412a43 2454 err = -EINVAL;
84d17192 2455 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2456 /* that's acceptable only for automounts done in private ns */
2457 if (!(mnt_flags & MNT_SHRINKABLE))
2458 goto unlock;
2459 /* ... and for those we'd better have mountpoint still alive */
84d17192 2460 if (!parent->mnt_ns)
156cacb1
AV
2461 goto unlock;
2462 }
9d412a43
AV
2463
2464 /* Refuse the same filesystem on the same mount point */
2465 err = -EBUSY;
95bc5f25 2466 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2467 path->mnt->mnt_root == path->dentry)
2468 goto unlock;
2469
2470 err = -EINVAL;
e36cb0b8 2471 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2472 goto unlock;
2473
95bc5f25 2474 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2475 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2476
2477unlock:
84d17192 2478 unlock_mount(mp);
9d412a43
AV
2479 return err;
2480}
b1e75df4 2481
8654df4e 2482static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2483
1da177e4
LT
2484/*
2485 * create a new mount for userspace and request it to be added into the
2486 * namespace's tree
2487 */
0c55cfc4 2488static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2489 int mnt_flags, const char *name, void *data)
1da177e4 2490{
0c55cfc4 2491 struct file_system_type *type;
1da177e4 2492 struct vfsmount *mnt;
15f9a3f3 2493 int err;
1da177e4 2494
0c55cfc4 2495 if (!fstype)
1da177e4
LT
2496 return -EINVAL;
2497
0c55cfc4
EB
2498 type = get_fs_type(fstype);
2499 if (!type)
2500 return -ENODEV;
2501
0c55cfc4
EB
2502 mnt = vfs_kern_mount(type, flags, name, data);
2503 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2504 !mnt->mnt_sb->s_subtype)
2505 mnt = fs_set_subtype(mnt, fstype);
2506
2507 put_filesystem(type);
1da177e4
LT
2508 if (IS_ERR(mnt))
2509 return PTR_ERR(mnt);
2510
8654df4e
EB
2511 if (mount_too_revealing(mnt, &mnt_flags)) {
2512 mntput(mnt);
2513 return -EPERM;
2514 }
2515
95bc5f25 2516 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2517 if (err)
2518 mntput(mnt);
2519 return err;
1da177e4
LT
2520}
2521
19a167af
AV
2522int finish_automount(struct vfsmount *m, struct path *path)
2523{
6776db3d 2524 struct mount *mnt = real_mount(m);
19a167af
AV
2525 int err;
2526 /* The new mount record should have at least 2 refs to prevent it being
2527 * expired before we get a chance to add it
2528 */
6776db3d 2529 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2530
2531 if (m->mnt_sb == path->mnt->mnt_sb &&
2532 m->mnt_root == path->dentry) {
b1e75df4
AV
2533 err = -ELOOP;
2534 goto fail;
19a167af
AV
2535 }
2536
95bc5f25 2537 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2538 if (!err)
2539 return 0;
2540fail:
2541 /* remove m from any expiration list it may be on */
6776db3d 2542 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2543 namespace_lock();
6776db3d 2544 list_del_init(&mnt->mnt_expire);
97216be0 2545 namespace_unlock();
19a167af 2546 }
b1e75df4
AV
2547 mntput(m);
2548 mntput(m);
19a167af
AV
2549 return err;
2550}
2551
ea5b778a
DH
2552/**
2553 * mnt_set_expiry - Put a mount on an expiration list
2554 * @mnt: The mount to list.
2555 * @expiry_list: The list to add the mount to.
2556 */
2557void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2558{
97216be0 2559 namespace_lock();
ea5b778a 2560
6776db3d 2561 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2562
97216be0 2563 namespace_unlock();
ea5b778a
DH
2564}
2565EXPORT_SYMBOL(mnt_set_expiry);
2566
1da177e4
LT
2567/*
2568 * process a list of expirable mountpoints with the intent of discarding any
2569 * mountpoints that aren't in use and haven't been touched since last we came
2570 * here
2571 */
2572void mark_mounts_for_expiry(struct list_head *mounts)
2573{
761d5c38 2574 struct mount *mnt, *next;
1da177e4
LT
2575 LIST_HEAD(graveyard);
2576
2577 if (list_empty(mounts))
2578 return;
2579
97216be0 2580 namespace_lock();
719ea2fb 2581 lock_mount_hash();
1da177e4
LT
2582
2583 /* extract from the expiration list every vfsmount that matches the
2584 * following criteria:
2585 * - only referenced by its parent vfsmount
2586 * - still marked for expiry (marked on the last call here; marks are
2587 * cleared by mntput())
2588 */
6776db3d 2589 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2590 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2591 propagate_mount_busy(mnt, 1))
1da177e4 2592 continue;
6776db3d 2593 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2594 }
bcc5c7d2 2595 while (!list_empty(&graveyard)) {
6776db3d 2596 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2597 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2598 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2599 }
719ea2fb 2600 unlock_mount_hash();
3ab6abee 2601 namespace_unlock();
5528f911
TM
2602}
2603
2604EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2605
2606/*
2607 * Ripoff of 'select_parent()'
2608 *
2609 * search the list of submounts for a given mountpoint, and move any
2610 * shrinkable submounts to the 'graveyard' list.
2611 */
692afc31 2612static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2613{
692afc31 2614 struct mount *this_parent = parent;
5528f911
TM
2615 struct list_head *next;
2616 int found = 0;
2617
2618repeat:
6b41d536 2619 next = this_parent->mnt_mounts.next;
5528f911 2620resume:
6b41d536 2621 while (next != &this_parent->mnt_mounts) {
5528f911 2622 struct list_head *tmp = next;
6b41d536 2623 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2624
2625 next = tmp->next;
692afc31 2626 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2627 continue;
5528f911
TM
2628 /*
2629 * Descend a level if the d_mounts list is non-empty.
2630 */
6b41d536 2631 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2632 this_parent = mnt;
2633 goto repeat;
2634 }
1da177e4 2635
1ab59738 2636 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2637 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2638 found++;
2639 }
1da177e4 2640 }
5528f911
TM
2641 /*
2642 * All done at this level ... ascend and resume the search
2643 */
2644 if (this_parent != parent) {
6b41d536 2645 next = this_parent->mnt_child.next;
0714a533 2646 this_parent = this_parent->mnt_parent;
5528f911
TM
2647 goto resume;
2648 }
2649 return found;
2650}
2651
2652/*
2653 * process a list of expirable mountpoints with the intent of discarding any
2654 * submounts of a specific parent mountpoint
99b7db7b 2655 *
48a066e7 2656 * mount_lock must be held for write
5528f911 2657 */
b54b9be7 2658static void shrink_submounts(struct mount *mnt)
5528f911
TM
2659{
2660 LIST_HEAD(graveyard);
761d5c38 2661 struct mount *m;
5528f911 2662
5528f911 2663 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2664 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2665 while (!list_empty(&graveyard)) {
761d5c38 2666 m = list_first_entry(&graveyard, struct mount,
6776db3d 2667 mnt_expire);
143c8c91 2668 touch_mnt_namespace(m->mnt_ns);
e819f152 2669 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2670 }
2671 }
1da177e4
LT
2672}
2673
1da177e4
LT
2674/*
2675 * Some copy_from_user() implementations do not return the exact number of
2676 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2677 * Note that this function differs from copy_from_user() in that it will oops
2678 * on bad values of `to', rather than returning a short copy.
2679 */
b58fed8b
RP
2680static long exact_copy_from_user(void *to, const void __user * from,
2681 unsigned long n)
1da177e4
LT
2682{
2683 char *t = to;
2684 const char __user *f = from;
2685 char c;
2686
2687 if (!access_ok(VERIFY_READ, from, n))
2688 return n;
2689
2690 while (n) {
2691 if (__get_user(c, f)) {
2692 memset(t, 0, n);
2693 break;
2694 }
2695 *t++ = c;
2696 f++;
2697 n--;
2698 }
2699 return n;
2700}
2701
b40ef869 2702void *copy_mount_options(const void __user * data)
1da177e4
LT
2703{
2704 int i;
1da177e4 2705 unsigned long size;
b40ef869 2706 char *copy;
b58fed8b 2707
1da177e4 2708 if (!data)
b40ef869 2709 return NULL;
1da177e4 2710
b40ef869
AV
2711 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2712 if (!copy)
2713 return ERR_PTR(-ENOMEM);
1da177e4
LT
2714
2715 /* We only care that *some* data at the address the user
2716 * gave us is valid. Just in case, we'll zero
2717 * the remainder of the page.
2718 */
2719 /* copy_from_user cannot cross TASK_SIZE ! */
2720 size = TASK_SIZE - (unsigned long)data;
2721 if (size > PAGE_SIZE)
2722 size = PAGE_SIZE;
2723
b40ef869 2724 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2725 if (!i) {
b40ef869
AV
2726 kfree(copy);
2727 return ERR_PTR(-EFAULT);
1da177e4
LT
2728 }
2729 if (i != PAGE_SIZE)
b40ef869
AV
2730 memset(copy + i, 0, PAGE_SIZE - i);
2731 return copy;
1da177e4
LT
2732}
2733
b8850d1f 2734char *copy_mount_string(const void __user *data)
eca6f534 2735{
b8850d1f 2736 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2737}
2738
1da177e4
LT
2739/*
2740 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2741 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2742 *
2743 * data is a (void *) that can point to any structure up to
2744 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2745 * information (or be NULL).
2746 *
2747 * Pre-0.97 versions of mount() didn't have a flags word.
2748 * When the flags word was introduced its top half was required
2749 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2750 * Therefore, if this magic number is present, it carries no information
2751 * and must be discarded.
2752 */
5e6123f3 2753long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2754 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2755{
2d92ab3c 2756 struct path path;
1da177e4
LT
2757 int retval = 0;
2758 int mnt_flags = 0;
2759
2760 /* Discard magic */
2761 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2762 flags &= ~MS_MGC_MSK;
2763
2764 /* Basic sanity checks */
1da177e4
LT
2765 if (data_page)
2766 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2767
a27ab9f2 2768 /* ... and get the mountpoint */
5e6123f3 2769 retval = user_path(dir_name, &path);
a27ab9f2
TH
2770 if (retval)
2771 return retval;
2772
2773 retval = security_sb_mount(dev_name, &path,
2774 type_page, flags, data_page);
0d5cadb8
AV
2775 if (!retval && !may_mount())
2776 retval = -EPERM;
9e8925b6
JL
2777 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2778 retval = -EPERM;
a27ab9f2
TH
2779 if (retval)
2780 goto dput_out;
2781
613cbe3d
AK
2782 /* Default to relatime unless overriden */
2783 if (!(flags & MS_NOATIME))
2784 mnt_flags |= MNT_RELATIME;
0a1c01c9 2785
1da177e4
LT
2786 /* Separate the per-mountpoint flags */
2787 if (flags & MS_NOSUID)
2788 mnt_flags |= MNT_NOSUID;
2789 if (flags & MS_NODEV)
2790 mnt_flags |= MNT_NODEV;
2791 if (flags & MS_NOEXEC)
2792 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2793 if (flags & MS_NOATIME)
2794 mnt_flags |= MNT_NOATIME;
2795 if (flags & MS_NODIRATIME)
2796 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2797 if (flags & MS_STRICTATIME)
2798 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2799 if (flags & MS_RDONLY)
2800 mnt_flags |= MNT_READONLY;
fc33a7bb 2801
ffbc6f0e
EB
2802 /* The default atime for remount is preservation */
2803 if ((flags & MS_REMOUNT) &&
2804 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2805 MS_STRICTATIME)) == 0)) {
2806 mnt_flags &= ~MNT_ATIME_MASK;
2807 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2808 }
2809
7a4dec53 2810 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57 2811 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
93faccbb 2812 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
1da177e4 2813
1da177e4 2814 if (flags & MS_REMOUNT)
2d92ab3c 2815 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2816 data_page);
2817 else if (flags & MS_BIND)
2d92ab3c 2818 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2819 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2820 retval = do_change_type(&path, flags);
1da177e4 2821 else if (flags & MS_MOVE)
2d92ab3c 2822 retval = do_move_mount(&path, dev_name);
1da177e4 2823 else
2d92ab3c 2824 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2825 dev_name, data_page);
2826dput_out:
2d92ab3c 2827 path_put(&path);
1da177e4
LT
2828 return retval;
2829}
2830
537f7ccb
EB
2831static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2832{
2833 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2834}
2835
2836static void dec_mnt_namespaces(struct ucounts *ucounts)
2837{
2838 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2839}
2840
771b1371
EB
2841static void free_mnt_ns(struct mnt_namespace *ns)
2842{
6344c433 2843 ns_free_inum(&ns->ns);
537f7ccb 2844 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2845 put_user_ns(ns->user_ns);
2846 kfree(ns);
2847}
2848
8823c079
EB
2849/*
2850 * Assign a sequence number so we can detect when we attempt to bind
2851 * mount a reference to an older mount namespace into the current
2852 * mount namespace, preventing reference counting loops. A 64bit
2853 * number incrementing at 10Ghz will take 12,427 years to wrap which
2854 * is effectively never, so we can ignore the possibility.
2855 */
2856static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2857
771b1371 2858static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2859{
2860 struct mnt_namespace *new_ns;
537f7ccb 2861 struct ucounts *ucounts;
98f842e6 2862 int ret;
cf8d2c11 2863
537f7ccb
EB
2864 ucounts = inc_mnt_namespaces(user_ns);
2865 if (!ucounts)
df75e774 2866 return ERR_PTR(-ENOSPC);
537f7ccb 2867
cf8d2c11 2868 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2869 if (!new_ns) {
2870 dec_mnt_namespaces(ucounts);
cf8d2c11 2871 return ERR_PTR(-ENOMEM);
537f7ccb 2872 }
6344c433 2873 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2874 if (ret) {
2875 kfree(new_ns);
537f7ccb 2876 dec_mnt_namespaces(ucounts);
98f842e6
EB
2877 return ERR_PTR(ret);
2878 }
33c42940 2879 new_ns->ns.ops = &mntns_operations;
8823c079 2880 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2881 atomic_set(&new_ns->count, 1);
2882 new_ns->root = NULL;
2883 INIT_LIST_HEAD(&new_ns->list);
2884 init_waitqueue_head(&new_ns->poll);
2885 new_ns->event = 0;
771b1371 2886 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2887 new_ns->ucounts = ucounts;
d2921684
EB
2888 new_ns->mounts = 0;
2889 new_ns->pending_mounts = 0;
cf8d2c11
TM
2890 return new_ns;
2891}
2892
0766f788 2893__latent_entropy
9559f689
AV
2894struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2895 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2896{
6b3286ed 2897 struct mnt_namespace *new_ns;
7f2da1e7 2898 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2899 struct mount *p, *q;
9559f689 2900 struct mount *old;
cb338d06 2901 struct mount *new;
7a472ef4 2902 int copy_flags;
1da177e4 2903
9559f689
AV
2904 BUG_ON(!ns);
2905
2906 if (likely(!(flags & CLONE_NEWNS))) {
2907 get_mnt_ns(ns);
2908 return ns;
2909 }
2910
2911 old = ns->root;
2912
771b1371 2913 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2914 if (IS_ERR(new_ns))
2915 return new_ns;
1da177e4 2916
97216be0 2917 namespace_lock();
1da177e4 2918 /* First pass: copy the tree topology */
4ce5d2b1 2919 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2920 if (user_ns != ns->user_ns)
132c94e3 2921 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2922 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2923 if (IS_ERR(new)) {
328e6d90 2924 namespace_unlock();
771b1371 2925 free_mnt_ns(new_ns);
be34d1a3 2926 return ERR_CAST(new);
1da177e4 2927 }
be08d6d2 2928 new_ns->root = new;
1a4eeaf2 2929 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2930
2931 /*
2932 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2933 * as belonging to new namespace. We have already acquired a private
2934 * fs_struct, so tsk->fs->lock is not needed.
2935 */
909b0a88 2936 p = old;
cb338d06 2937 q = new;
1da177e4 2938 while (p) {
143c8c91 2939 q->mnt_ns = new_ns;
d2921684 2940 new_ns->mounts++;
9559f689
AV
2941 if (new_fs) {
2942 if (&p->mnt == new_fs->root.mnt) {
2943 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2944 rootmnt = &p->mnt;
1da177e4 2945 }
9559f689
AV
2946 if (&p->mnt == new_fs->pwd.mnt) {
2947 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2948 pwdmnt = &p->mnt;
1da177e4 2949 }
1da177e4 2950 }
909b0a88
AV
2951 p = next_mnt(p, old);
2952 q = next_mnt(q, new);
4ce5d2b1
EB
2953 if (!q)
2954 break;
2955 while (p->mnt.mnt_root != q->mnt.mnt_root)
2956 p = next_mnt(p, old);
1da177e4 2957 }
328e6d90 2958 namespace_unlock();
1da177e4 2959
1da177e4 2960 if (rootmnt)
f03c6599 2961 mntput(rootmnt);
1da177e4 2962 if (pwdmnt)
f03c6599 2963 mntput(pwdmnt);
1da177e4 2964
741a2951 2965 return new_ns;
1da177e4
LT
2966}
2967
cf8d2c11
TM
2968/**
2969 * create_mnt_ns - creates a private namespace and adds a root filesystem
2970 * @mnt: pointer to the new root filesystem mountpoint
2971 */
1a4eeaf2 2972static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2973{
771b1371 2974 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2975 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2976 struct mount *mnt = real_mount(m);
2977 mnt->mnt_ns = new_ns;
be08d6d2 2978 new_ns->root = mnt;
d2921684 2979 new_ns->mounts++;
b1983cd8 2980 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2981 } else {
1a4eeaf2 2982 mntput(m);
cf8d2c11
TM
2983 }
2984 return new_ns;
2985}
cf8d2c11 2986
ea441d11
AV
2987struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2988{
2989 struct mnt_namespace *ns;
d31da0f0 2990 struct super_block *s;
ea441d11
AV
2991 struct path path;
2992 int err;
2993
2994 ns = create_mnt_ns(mnt);
2995 if (IS_ERR(ns))
2996 return ERR_CAST(ns);
2997
2998 err = vfs_path_lookup(mnt->mnt_root, mnt,
2999 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3000
3001 put_mnt_ns(ns);
3002
3003 if (err)
3004 return ERR_PTR(err);
3005
3006 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3007 s = path.mnt->mnt_sb;
3008 atomic_inc(&s->s_active);
ea441d11
AV
3009 mntput(path.mnt);
3010 /* lock the sucker */
d31da0f0 3011 down_write(&s->s_umount);
ea441d11
AV
3012 /* ... and return the root of (sub)tree on it */
3013 return path.dentry;
3014}
3015EXPORT_SYMBOL(mount_subtree);
3016
bdc480e3
HC
3017SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3018 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3019{
eca6f534
VN
3020 int ret;
3021 char *kernel_type;
eca6f534 3022 char *kernel_dev;
b40ef869 3023 void *options;
1da177e4 3024
b8850d1f
TG
3025 kernel_type = copy_mount_string(type);
3026 ret = PTR_ERR(kernel_type);
3027 if (IS_ERR(kernel_type))
eca6f534 3028 goto out_type;
1da177e4 3029
b8850d1f
TG
3030 kernel_dev = copy_mount_string(dev_name);
3031 ret = PTR_ERR(kernel_dev);
3032 if (IS_ERR(kernel_dev))
eca6f534 3033 goto out_dev;
1da177e4 3034
b40ef869
AV
3035 options = copy_mount_options(data);
3036 ret = PTR_ERR(options);
3037 if (IS_ERR(options))
eca6f534 3038 goto out_data;
1da177e4 3039
b40ef869 3040 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3041
b40ef869 3042 kfree(options);
eca6f534
VN
3043out_data:
3044 kfree(kernel_dev);
3045out_dev:
eca6f534
VN
3046 kfree(kernel_type);
3047out_type:
3048 return ret;
1da177e4
LT
3049}
3050
afac7cba
AV
3051/*
3052 * Return true if path is reachable from root
3053 *
48a066e7 3054 * namespace_sem or mount_lock is held
afac7cba 3055 */
643822b4 3056bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3057 const struct path *root)
3058{
643822b4 3059 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3060 dentry = mnt->mnt_mountpoint;
0714a533 3061 mnt = mnt->mnt_parent;
afac7cba 3062 }
643822b4 3063 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3064}
3065
640eb7e7 3066bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3067{
25ab4c9b 3068 bool res;
48a066e7 3069 read_seqlock_excl(&mount_lock);
643822b4 3070 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3071 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3072 return res;
3073}
3074EXPORT_SYMBOL(path_is_under);
3075
1da177e4
LT
3076/*
3077 * pivot_root Semantics:
3078 * Moves the root file system of the current process to the directory put_old,
3079 * makes new_root as the new root file system of the current process, and sets
3080 * root/cwd of all processes which had them on the current root to new_root.
3081 *
3082 * Restrictions:
3083 * The new_root and put_old must be directories, and must not be on the
3084 * same file system as the current process root. The put_old must be
3085 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3086 * pointed to by put_old must yield the same directory as new_root. No other
3087 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3088 *
4a0d11fa
NB
3089 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3090 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3091 * in this situation.
3092 *
1da177e4
LT
3093 * Notes:
3094 * - we don't move root/cwd if they are not at the root (reason: if something
3095 * cared enough to change them, it's probably wrong to force them elsewhere)
3096 * - it's okay to pick a root that isn't the root of a file system, e.g.
3097 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3098 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3099 * first.
3100 */
3480b257
HC
3101SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3102 const char __user *, put_old)
1da177e4 3103{
2d8f3038 3104 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3105 struct mount *new_mnt, *root_mnt, *old_mnt;
3106 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3107 int error;
3108
9b40bc90 3109 if (!may_mount())
1da177e4
LT
3110 return -EPERM;
3111
2d8f3038 3112 error = user_path_dir(new_root, &new);
1da177e4
LT
3113 if (error)
3114 goto out0;
1da177e4 3115
2d8f3038 3116 error = user_path_dir(put_old, &old);
1da177e4
LT
3117 if (error)
3118 goto out1;
3119
2d8f3038 3120 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3121 if (error)
3122 goto out2;
1da177e4 3123
f7ad3c6b 3124 get_fs_root(current->fs, &root);
84d17192
AV
3125 old_mp = lock_mount(&old);
3126 error = PTR_ERR(old_mp);
3127 if (IS_ERR(old_mp))
b12cea91
AV
3128 goto out3;
3129
1da177e4 3130 error = -EINVAL;
419148da
AV
3131 new_mnt = real_mount(new.mnt);
3132 root_mnt = real_mount(root.mnt);
84d17192
AV
3133 old_mnt = real_mount(old.mnt);
3134 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3135 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3136 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3137 goto out4;
143c8c91 3138 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3139 goto out4;
5ff9d8a6
EB
3140 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3141 goto out4;
1da177e4 3142 error = -ENOENT;
f3da392e 3143 if (d_unlinked(new.dentry))
b12cea91 3144 goto out4;
1da177e4 3145 error = -EBUSY;
84d17192 3146 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3147 goto out4; /* loop, on the same file system */
1da177e4 3148 error = -EINVAL;
8c3ee42e 3149 if (root.mnt->mnt_root != root.dentry)
b12cea91 3150 goto out4; /* not a mountpoint */
676da58d 3151 if (!mnt_has_parent(root_mnt))
b12cea91 3152 goto out4; /* not attached */
84d17192 3153 root_mp = root_mnt->mnt_mp;
2d8f3038 3154 if (new.mnt->mnt_root != new.dentry)
b12cea91 3155 goto out4; /* not a mountpoint */
676da58d 3156 if (!mnt_has_parent(new_mnt))
b12cea91 3157 goto out4; /* not attached */
4ac91378 3158 /* make sure we can reach put_old from new_root */
84d17192 3159 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3160 goto out4;
0d082601
EB
3161 /* make certain new is below the root */
3162 if (!is_path_reachable(new_mnt, new.dentry, &root))
3163 goto out4;
84d17192 3164 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3165 lock_mount_hash();
419148da
AV
3166 detach_mnt(new_mnt, &parent_path);
3167 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3168 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3169 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3170 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3171 }
4ac91378 3172 /* mount old root on put_old */
84d17192 3173 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3174 /* mount new_root on / */
84d17192 3175 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3176 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3177 /* A moved mount should not expire automatically */
3178 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3179 put_mountpoint(root_mp);
719ea2fb 3180 unlock_mount_hash();
2d8f3038 3181 chroot_fs_refs(&root, &new);
1da177e4 3182 error = 0;
b12cea91 3183out4:
84d17192 3184 unlock_mount(old_mp);
b12cea91
AV
3185 if (!error) {
3186 path_put(&root_parent);
3187 path_put(&parent_path);
3188 }
3189out3:
8c3ee42e 3190 path_put(&root);
b12cea91 3191out2:
2d8f3038 3192 path_put(&old);
1da177e4 3193out1:
2d8f3038 3194 path_put(&new);
1da177e4 3195out0:
1da177e4 3196 return error;
1da177e4
LT
3197}
3198
3199static void __init init_mount_tree(void)
3200{
3201 struct vfsmount *mnt;
6b3286ed 3202 struct mnt_namespace *ns;
ac748a09 3203 struct path root;
0c55cfc4 3204 struct file_system_type *type;
1da177e4 3205
0c55cfc4
EB
3206 type = get_fs_type("rootfs");
3207 if (!type)
3208 panic("Can't find rootfs type");
3209 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3210 put_filesystem(type);
1da177e4
LT
3211 if (IS_ERR(mnt))
3212 panic("Can't create rootfs");
b3e19d92 3213
3b22edc5
TM
3214 ns = create_mnt_ns(mnt);
3215 if (IS_ERR(ns))
1da177e4 3216 panic("Can't allocate initial namespace");
6b3286ed
KK
3217
3218 init_task.nsproxy->mnt_ns = ns;
3219 get_mnt_ns(ns);
3220
be08d6d2
AV
3221 root.mnt = mnt;
3222 root.dentry = mnt->mnt_root;
da362b09 3223 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3224
3225 set_fs_pwd(current->fs, &root);
3226 set_fs_root(current->fs, &root);
1da177e4
LT
3227}
3228
74bf17cf 3229void __init mnt_init(void)
1da177e4 3230{
13f14b4d 3231 unsigned u;
15a67dd8 3232 int err;
1da177e4 3233
7d6fec45 3234 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3235 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3236
0818bf27 3237 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3238 sizeof(struct hlist_head),
0818bf27
AV
3239 mhash_entries, 19,
3240 0,
3241 &m_hash_shift, &m_hash_mask, 0, 0);
3242 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3243 sizeof(struct hlist_head),
3244 mphash_entries, 19,
3245 0,
3246 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3247
84d17192 3248 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3249 panic("Failed to allocate mount hash table\n");
3250
0818bf27 3251 for (u = 0; u <= m_hash_mask; u++)
38129a13 3252 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3253 for (u = 0; u <= mp_hash_mask; u++)
3254 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3255
4b93dc9b
TH
3256 kernfs_init();
3257
15a67dd8
RD
3258 err = sysfs_init();
3259 if (err)
3260 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3261 __func__, err);
00d26666
GKH
3262 fs_kobj = kobject_create_and_add("fs", NULL);
3263 if (!fs_kobj)
8e24eea7 3264 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3265 init_rootfs();
3266 init_mount_tree();
3267}
3268
616511d0 3269void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3270{
d498b25a 3271 if (!atomic_dec_and_test(&ns->count))
616511d0 3272 return;
7b00ed6f 3273 drop_collected_mounts(&ns->root->mnt);
771b1371 3274 free_mnt_ns(ns);
1da177e4 3275}
9d412a43
AV
3276
3277struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3278{
423e0ab0
TC
3279 struct vfsmount *mnt;
3280 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3281 if (!IS_ERR(mnt)) {
3282 /*
3283 * it is a longterm mount, don't release mnt until
3284 * we unmount before file sys is unregistered
3285 */
f7a99c5b 3286 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3287 }
3288 return mnt;
9d412a43
AV
3289}
3290EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3291
3292void kern_unmount(struct vfsmount *mnt)
3293{
3294 /* release long term mount so mount point can be released */
3295 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3296 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3297 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3298 mntput(mnt);
3299 }
3300}
3301EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3302
3303bool our_mnt(struct vfsmount *mnt)
3304{
143c8c91 3305 return check_mnt(real_mount(mnt));
02125a82 3306}
8823c079 3307
3151527e
EB
3308bool current_chrooted(void)
3309{
3310 /* Does the current process have a non-standard root */
3311 struct path ns_root;
3312 struct path fs_root;
3313 bool chrooted;
3314
3315 /* Find the namespace root */
3316 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3317 ns_root.dentry = ns_root.mnt->mnt_root;
3318 path_get(&ns_root);
3319 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3320 ;
3321
3322 get_fs_root(current->fs, &fs_root);
3323
3324 chrooted = !path_equal(&fs_root, &ns_root);
3325
3326 path_put(&fs_root);
3327 path_put(&ns_root);
3328
3329 return chrooted;
3330}
3331
8654df4e
EB
3332static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3333 int *new_mnt_flags)
87a8ebd6 3334{
8c6cf9cc 3335 int new_flags = *new_mnt_flags;
87a8ebd6 3336 struct mount *mnt;
e51db735 3337 bool visible = false;
87a8ebd6 3338
44bb4385 3339 down_read(&namespace_sem);
87a8ebd6 3340 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3341 struct mount *child;
77b1a97d
EB
3342 int mnt_flags;
3343
8654df4e 3344 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3345 continue;
3346
7e96c1b0
EB
3347 /* This mount is not fully visible if it's root directory
3348 * is not the root directory of the filesystem.
3349 */
3350 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3351 continue;
3352
a1935c17 3353 /* A local view of the mount flags */
77b1a97d 3354 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3355
695e9df0
EB
3356 /* Don't miss readonly hidden in the superblock flags */
3357 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3358 mnt_flags |= MNT_LOCK_READONLY;
3359
8c6cf9cc
EB
3360 /* Verify the mount flags are equal to or more permissive
3361 * than the proposed new mount.
3362 */
77b1a97d 3363 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3364 !(new_flags & MNT_READONLY))
3365 continue;
77b1a97d
EB
3366 if ((mnt_flags & MNT_LOCK_ATIME) &&
3367 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3368 continue;
3369
ceeb0e5d
EB
3370 /* This mount is not fully visible if there are any
3371 * locked child mounts that cover anything except for
3372 * empty directories.
e51db735
EB
3373 */
3374 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3375 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3376 /* Only worry about locked mounts */
d71ed6c9 3377 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3378 continue;
7236c85e
EB
3379 /* Is the directory permanetly empty? */
3380 if (!is_empty_dir_inode(inode))
e51db735 3381 goto next;
87a8ebd6 3382 }
8c6cf9cc 3383 /* Preserve the locked attributes */
77b1a97d 3384 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3385 MNT_LOCK_ATIME);
e51db735
EB
3386 visible = true;
3387 goto found;
3388 next: ;
87a8ebd6 3389 }
e51db735 3390found:
44bb4385 3391 up_read(&namespace_sem);
e51db735 3392 return visible;
87a8ebd6
EB
3393}
3394
8654df4e
EB
3395static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3396{
a1935c17 3397 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3398 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3399 unsigned long s_iflags;
3400
3401 if (ns->user_ns == &init_user_ns)
3402 return false;
3403
3404 /* Can this filesystem be too revealing? */
3405 s_iflags = mnt->mnt_sb->s_iflags;
3406 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3407 return false;
3408
a1935c17
EB
3409 if ((s_iflags & required_iflags) != required_iflags) {
3410 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3411 required_iflags);
3412 return true;
3413 }
3414
8654df4e
EB
3415 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3416}
3417
380cf5ba
AL
3418bool mnt_may_suid(struct vfsmount *mnt)
3419{
3420 /*
3421 * Foreign mounts (accessed via fchdir or through /proc
3422 * symlinks) are always treated as if they are nosuid. This
3423 * prevents namespaces from trusting potentially unsafe
3424 * suid/sgid bits, file caps, or security labels that originate
3425 * in other namespaces.
3426 */
3427 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3428 current_in_userns(mnt->mnt_sb->s_user_ns);
3429}
3430
64964528 3431static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3432{
58be2825 3433 struct ns_common *ns = NULL;
8823c079
EB
3434 struct nsproxy *nsproxy;
3435
728dba3a
EB
3436 task_lock(task);
3437 nsproxy = task->nsproxy;
8823c079 3438 if (nsproxy) {
58be2825
AV
3439 ns = &nsproxy->mnt_ns->ns;
3440 get_mnt_ns(to_mnt_ns(ns));
8823c079 3441 }
728dba3a 3442 task_unlock(task);
8823c079
EB
3443
3444 return ns;
3445}
3446
64964528 3447static void mntns_put(struct ns_common *ns)
8823c079 3448{
58be2825 3449 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3450}
3451
64964528 3452static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3453{
3454 struct fs_struct *fs = current->fs;
58be2825 3455 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3456 struct path root;
3457
0c55cfc4 3458 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3459 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3460 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3461 return -EPERM;
8823c079
EB
3462
3463 if (fs->users != 1)
3464 return -EINVAL;
3465
3466 get_mnt_ns(mnt_ns);
3467 put_mnt_ns(nsproxy->mnt_ns);
3468 nsproxy->mnt_ns = mnt_ns;
3469
3470 /* Find the root */
3471 root.mnt = &mnt_ns->root->mnt;
3472 root.dentry = mnt_ns->root->mnt.mnt_root;
3473 path_get(&root);
3474 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3475 ;
3476
3477 /* Update the pwd and root */
3478 set_fs_pwd(fs, &root);
3479 set_fs_root(fs, &root);
3480
3481 path_put(&root);
3482 return 0;
3483}
3484
bcac25a5
AV
3485static struct user_namespace *mntns_owner(struct ns_common *ns)
3486{
3487 return to_mnt_ns(ns)->user_ns;
3488}
3489
8823c079
EB
3490const struct proc_ns_operations mntns_operations = {
3491 .name = "mnt",
3492 .type = CLONE_NEWNS,
3493 .get = mntns_get,
3494 .put = mntns_put,
3495 .install = mntns_install,
bcac25a5 3496 .owner = mntns_owner,
8823c079 3497};