mn10300: kmap_atomic() returns void *, not unsigned long...
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
228#ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 230#endif
1da177e4 231 }
c63181e6 232 return mnt;
88b38782 233
d3ef3d73 234#ifdef CONFIG_SMP
235out_free_devname:
c63181e6 236 kfree(mnt->mnt_devname);
d3ef3d73 237#endif
88b38782 238out_free_id:
c63181e6 239 mnt_free_id(mnt);
88b38782 240out_free_cache:
c63181e6 241 kmem_cache_free(mnt_cache, mnt);
88b38782 242 return NULL;
1da177e4
LT
243}
244
3d733633
DH
245/*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253/*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264int __mnt_is_readonly(struct vfsmount *mnt)
265{
2e4b7fcd
DH
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
3d733633
DH
271}
272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
83adc753 274static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 275{
276#ifdef CONFIG_SMP
68e8a9fe 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 278#else
68e8a9fe 279 mnt->mnt_writers++;
d3ef3d73 280#endif
281}
3d733633 282
83adc753 283static inline void mnt_dec_writers(struct mount *mnt)
3d733633 284{
d3ef3d73 285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers--;
d3ef3d73 289#endif
3d733633 290}
3d733633 291
83adc753 292static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
295 unsigned int count = 0;
3d733633 296 int cpu;
3d733633
DH
297
298 for_each_possible_cpu(cpu) {
68e8a9fe 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 300 }
3d733633 301
d3ef3d73 302 return count;
303#else
304 return mnt->mnt_writers;
305#endif
3d733633
DH
306}
307
4ed5e82f
MS
308static int mnt_is_readonly(struct vfsmount *mnt)
309{
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315}
316
8366025e 317/*
eb04c282
JK
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
8366025e
DH
322 */
323/**
eb04c282 324 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 325 * @m: the mount on which to take a write
8366025e 326 *
eb04c282
JK
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
8366025e 332 */
eb04c282 333int __mnt_want_write(struct vfsmount *m)
8366025e 334{
83adc753 335 struct mount *mnt = real_mount(m);
3d733633 336 int ret = 0;
3d733633 337
d3ef3d73 338 preempt_disable();
c6653a83 339 mnt_inc_writers(mnt);
d3ef3d73 340 /*
c6653a83 341 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
1e75529e 346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
4ed5e82f 354 if (mnt_is_readonly(m)) {
c6653a83 355 mnt_dec_writers(mnt);
3d733633 356 ret = -EROFS;
3d733633 357 }
d3ef3d73 358 preempt_enable();
eb04c282
JK
359
360 return ret;
361}
362
363/**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372int mnt_want_write(struct vfsmount *m)
373{
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
3d733633 380 return ret;
8366025e
DH
381}
382EXPORT_SYMBOL_GPL(mnt_want_write);
383
96029c4e 384/**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396int mnt_clone_write(struct vfsmount *mnt)
397{
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
83adc753 402 mnt_inc_writers(real_mount(mnt));
96029c4e 403 preempt_enable();
404 return 0;
405}
406EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408/**
eb04c282 409 * __mnt_want_write_file - get write access to a file's mount
96029c4e 410 * @file: the file who's mount on which to take a write
411 *
eb04c282 412 * This is like __mnt_want_write, but it takes a file and can
96029c4e 413 * do some optimisations if the file is open for write already
414 */
eb04c282 415int __mnt_want_write_file(struct file *file)
96029c4e 416{
83f936c7 417 if (!(file->f_mode & FMODE_WRITER))
eb04c282 418 return __mnt_want_write(file->f_path.mnt);
96029c4e 419 else
420 return mnt_clone_write(file->f_path.mnt);
421}
eb04c282
JK
422
423/**
424 * mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
430int mnt_want_write_file(struct file *file)
431{
432 int ret;
433
434 sb_start_write(file->f_path.mnt->mnt_sb);
435 ret = __mnt_want_write_file(file);
436 if (ret)
437 sb_end_write(file->f_path.mnt->mnt_sb);
438 return ret;
439}
96029c4e 440EXPORT_SYMBOL_GPL(mnt_want_write_file);
441
8366025e 442/**
eb04c282 443 * __mnt_drop_write - give up write access to a mount
8366025e
DH
444 * @mnt: the mount on which to give up write access
445 *
446 * Tells the low-level filesystem that we are done
447 * performing writes to it. Must be matched with
eb04c282 448 * __mnt_want_write() call above.
8366025e 449 */
eb04c282 450void __mnt_drop_write(struct vfsmount *mnt)
8366025e 451{
d3ef3d73 452 preempt_disable();
83adc753 453 mnt_dec_writers(real_mount(mnt));
d3ef3d73 454 preempt_enable();
8366025e 455}
eb04c282
JK
456
457/**
458 * mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done performing writes to it and
462 * also allows filesystem to be frozen again. Must be matched with
463 * mnt_want_write() call above.
464 */
465void mnt_drop_write(struct vfsmount *mnt)
466{
467 __mnt_drop_write(mnt);
468 sb_end_write(mnt->mnt_sb);
469}
8366025e
DH
470EXPORT_SYMBOL_GPL(mnt_drop_write);
471
eb04c282
JK
472void __mnt_drop_write_file(struct file *file)
473{
474 __mnt_drop_write(file->f_path.mnt);
475}
476
2a79f17e
AV
477void mnt_drop_write_file(struct file *file)
478{
479 mnt_drop_write(file->f_path.mnt);
480}
481EXPORT_SYMBOL(mnt_drop_write_file);
482
83adc753 483static int mnt_make_readonly(struct mount *mnt)
8366025e 484{
3d733633
DH
485 int ret = 0;
486
719ea2fb 487 lock_mount_hash();
83adc753 488 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 489 /*
d3ef3d73 490 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
491 * should be visible before we do.
3d733633 492 */
d3ef3d73 493 smp_mb();
494
3d733633 495 /*
d3ef3d73 496 * With writers on hold, if this value is zero, then there are
497 * definitely no active writers (although held writers may subsequently
498 * increment the count, they'll have to wait, and decrement it after
499 * seeing MNT_READONLY).
500 *
501 * It is OK to have counter incremented on one CPU and decremented on
502 * another: the sum will add up correctly. The danger would be when we
503 * sum up each counter, if we read a counter before it is incremented,
504 * but then read another CPU's count which it has been subsequently
505 * decremented from -- we would see more decrements than we should.
506 * MNT_WRITE_HOLD protects against this scenario, because
507 * mnt_want_write first increments count, then smp_mb, then spins on
508 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
509 * we're counting up here.
3d733633 510 */
c6653a83 511 if (mnt_get_writers(mnt) > 0)
d3ef3d73 512 ret = -EBUSY;
513 else
83adc753 514 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 515 /*
516 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
517 * that become unheld will see MNT_READONLY.
518 */
519 smp_wmb();
83adc753 520 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 521 unlock_mount_hash();
3d733633 522 return ret;
8366025e 523}
8366025e 524
83adc753 525static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 526{
719ea2fb 527 lock_mount_hash();
83adc753 528 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 529 unlock_mount_hash();
2e4b7fcd
DH
530}
531
4ed5e82f
MS
532int sb_prepare_remount_readonly(struct super_block *sb)
533{
534 struct mount *mnt;
535 int err = 0;
536
8e8b8796
MS
537 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
538 if (atomic_long_read(&sb->s_remove_count))
539 return -EBUSY;
540
719ea2fb 541 lock_mount_hash();
4ed5e82f
MS
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
544 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
545 smp_mb();
546 if (mnt_get_writers(mnt) > 0) {
547 err = -EBUSY;
548 break;
549 }
550 }
551 }
8e8b8796
MS
552 if (!err && atomic_long_read(&sb->s_remove_count))
553 err = -EBUSY;
554
4ed5e82f
MS
555 if (!err) {
556 sb->s_readonly_remount = 1;
557 smp_wmb();
558 }
559 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
560 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
561 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
562 }
719ea2fb 563 unlock_mount_hash();
4ed5e82f
MS
564
565 return err;
566}
567
b105e270 568static void free_vfsmnt(struct mount *mnt)
1da177e4 569{
52ba1621 570 kfree(mnt->mnt_devname);
73cd49ec 571 mnt_free_id(mnt);
d3ef3d73 572#ifdef CONFIG_SMP
68e8a9fe 573 free_percpu(mnt->mnt_pcp);
d3ef3d73 574#endif
b105e270 575 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
576}
577
48a066e7
AV
578/* call under rcu_read_lock */
579bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
580{
581 struct mount *mnt;
582 if (read_seqretry(&mount_lock, seq))
583 return false;
584 if (bastard == NULL)
585 return true;
586 mnt = real_mount(bastard);
587 mnt_add_count(mnt, 1);
588 if (likely(!read_seqretry(&mount_lock, seq)))
589 return true;
590 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
591 mnt_add_count(mnt, -1);
592 return false;
593 }
594 rcu_read_unlock();
595 mntput(bastard);
596 rcu_read_lock();
597 return false;
598}
599
1da177e4 600/*
474279dc 601 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 602 * call under rcu_read_lock()
1da177e4 603 */
474279dc 604struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 605{
38129a13 606 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
607 struct mount *p;
608
38129a13 609 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
610 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
611 return p;
612 return NULL;
613}
614
615/*
616 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 617 * mount_lock must be held.
474279dc
AV
618 */
619struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
620{
38129a13
AV
621 struct mount *p, *res;
622 res = p = __lookup_mnt(mnt, dentry);
623 if (!p)
624 goto out;
625 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
626 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
627 break;
628 res = p;
629 }
38129a13 630out:
1d6a32ac 631 return res;
1da177e4
LT
632}
633
a05964f3 634/*
f015f126
DH
635 * lookup_mnt - Return the first child mount mounted at path
636 *
637 * "First" means first mounted chronologically. If you create the
638 * following mounts:
639 *
640 * mount /dev/sda1 /mnt
641 * mount /dev/sda2 /mnt
642 * mount /dev/sda3 /mnt
643 *
644 * Then lookup_mnt() on the base /mnt dentry in the root mount will
645 * return successively the root dentry and vfsmount of /dev/sda1, then
646 * /dev/sda2, then /dev/sda3, then NULL.
647 *
648 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 649 */
1c755af4 650struct vfsmount *lookup_mnt(struct path *path)
a05964f3 651{
c7105365 652 struct mount *child_mnt;
48a066e7
AV
653 struct vfsmount *m;
654 unsigned seq;
99b7db7b 655
48a066e7
AV
656 rcu_read_lock();
657 do {
658 seq = read_seqbegin(&mount_lock);
659 child_mnt = __lookup_mnt(path->mnt, path->dentry);
660 m = child_mnt ? &child_mnt->mnt : NULL;
661 } while (!legitimize_mnt(m, seq));
662 rcu_read_unlock();
663 return m;
a05964f3
RP
664}
665
84d17192
AV
666static struct mountpoint *new_mountpoint(struct dentry *dentry)
667{
0818bf27 668 struct hlist_head *chain = mp_hash(dentry);
84d17192 669 struct mountpoint *mp;
eed81007 670 int ret;
84d17192 671
0818bf27 672 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
673 if (mp->m_dentry == dentry) {
674 /* might be worth a WARN_ON() */
675 if (d_unlinked(dentry))
676 return ERR_PTR(-ENOENT);
677 mp->m_count++;
678 return mp;
679 }
680 }
681
682 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
683 if (!mp)
684 return ERR_PTR(-ENOMEM);
685
eed81007
MS
686 ret = d_set_mounted(dentry);
687 if (ret) {
84d17192 688 kfree(mp);
eed81007 689 return ERR_PTR(ret);
84d17192 690 }
eed81007 691
84d17192
AV
692 mp->m_dentry = dentry;
693 mp->m_count = 1;
0818bf27 694 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
695 return mp;
696}
697
698static void put_mountpoint(struct mountpoint *mp)
699{
700 if (!--mp->m_count) {
701 struct dentry *dentry = mp->m_dentry;
702 spin_lock(&dentry->d_lock);
703 dentry->d_flags &= ~DCACHE_MOUNTED;
704 spin_unlock(&dentry->d_lock);
0818bf27 705 hlist_del(&mp->m_hash);
84d17192
AV
706 kfree(mp);
707 }
708}
709
143c8c91 710static inline int check_mnt(struct mount *mnt)
1da177e4 711{
6b3286ed 712 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
713}
714
99b7db7b
NP
715/*
716 * vfsmount lock must be held for write
717 */
6b3286ed 718static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
719{
720 if (ns) {
721 ns->event = ++event;
722 wake_up_interruptible(&ns->poll);
723 }
724}
725
99b7db7b
NP
726/*
727 * vfsmount lock must be held for write
728 */
6b3286ed 729static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
730{
731 if (ns && ns->event != event) {
732 ns->event = event;
733 wake_up_interruptible(&ns->poll);
734 }
735}
736
99b7db7b
NP
737/*
738 * vfsmount lock must be held for write
739 */
419148da
AV
740static void detach_mnt(struct mount *mnt, struct path *old_path)
741{
a73324da 742 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
743 old_path->mnt = &mnt->mnt_parent->mnt;
744 mnt->mnt_parent = mnt;
a73324da 745 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 746 list_del_init(&mnt->mnt_child);
38129a13 747 hlist_del_init_rcu(&mnt->mnt_hash);
84d17192
AV
748 put_mountpoint(mnt->mnt_mp);
749 mnt->mnt_mp = NULL;
1da177e4
LT
750}
751
99b7db7b
NP
752/*
753 * vfsmount lock must be held for write
754 */
84d17192
AV
755void mnt_set_mountpoint(struct mount *mnt,
756 struct mountpoint *mp,
44d964d6 757 struct mount *child_mnt)
b90fa9ae 758{
84d17192 759 mp->m_count++;
3a2393d7 760 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 761 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 762 child_mnt->mnt_parent = mnt;
84d17192 763 child_mnt->mnt_mp = mp;
b90fa9ae
RP
764}
765
99b7db7b
NP
766/*
767 * vfsmount lock must be held for write
768 */
84d17192
AV
769static void attach_mnt(struct mount *mnt,
770 struct mount *parent,
771 struct mountpoint *mp)
1da177e4 772{
84d17192 773 mnt_set_mountpoint(parent, mp, mnt);
38129a13 774 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 775 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
776}
777
778/*
99b7db7b 779 * vfsmount lock must be held for write
b90fa9ae 780 */
1d6a32ac 781static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 782{
0714a533 783 struct mount *parent = mnt->mnt_parent;
83adc753 784 struct mount *m;
b90fa9ae 785 LIST_HEAD(head);
143c8c91 786 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 787
0714a533 788 BUG_ON(parent == mnt);
b90fa9ae 789
1a4eeaf2 790 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 791 list_for_each_entry(m, &head, mnt_list)
143c8c91 792 m->mnt_ns = n;
f03c6599 793
b90fa9ae
RP
794 list_splice(&head, n->list.prev);
795
1d6a32ac 796 if (shadows)
38129a13 797 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
1d6a32ac 798 else
38129a13 799 hlist_add_head_rcu(&mnt->mnt_hash,
0818bf27 800 m_hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 801 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 802 touch_mnt_namespace(n);
1da177e4
LT
803}
804
909b0a88 805static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 806{
6b41d536
AV
807 struct list_head *next = p->mnt_mounts.next;
808 if (next == &p->mnt_mounts) {
1da177e4 809 while (1) {
909b0a88 810 if (p == root)
1da177e4 811 return NULL;
6b41d536
AV
812 next = p->mnt_child.next;
813 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 814 break;
0714a533 815 p = p->mnt_parent;
1da177e4
LT
816 }
817 }
6b41d536 818 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
819}
820
315fc83e 821static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 822{
6b41d536
AV
823 struct list_head *prev = p->mnt_mounts.prev;
824 while (prev != &p->mnt_mounts) {
825 p = list_entry(prev, struct mount, mnt_child);
826 prev = p->mnt_mounts.prev;
9676f0c6
RP
827 }
828 return p;
829}
830
9d412a43
AV
831struct vfsmount *
832vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
833{
b105e270 834 struct mount *mnt;
9d412a43
AV
835 struct dentry *root;
836
837 if (!type)
838 return ERR_PTR(-ENODEV);
839
840 mnt = alloc_vfsmnt(name);
841 if (!mnt)
842 return ERR_PTR(-ENOMEM);
843
844 if (flags & MS_KERNMOUNT)
b105e270 845 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
846
847 root = mount_fs(type, flags, name, data);
848 if (IS_ERR(root)) {
849 free_vfsmnt(mnt);
850 return ERR_CAST(root);
851 }
852
b105e270
AV
853 mnt->mnt.mnt_root = root;
854 mnt->mnt.mnt_sb = root->d_sb;
a73324da 855 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 856 mnt->mnt_parent = mnt;
719ea2fb 857 lock_mount_hash();
39f7c4db 858 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 859 unlock_mount_hash();
b105e270 860 return &mnt->mnt;
9d412a43
AV
861}
862EXPORT_SYMBOL_GPL(vfs_kern_mount);
863
87129cc0 864static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 865 int flag)
1da177e4 866{
87129cc0 867 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
868 struct mount *mnt;
869 int err;
1da177e4 870
be34d1a3
DH
871 mnt = alloc_vfsmnt(old->mnt_devname);
872 if (!mnt)
873 return ERR_PTR(-ENOMEM);
719f5d7f 874
7a472ef4 875 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
876 mnt->mnt_group_id = 0; /* not a peer of original */
877 else
878 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 879
be34d1a3
DH
880 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
881 err = mnt_alloc_group_id(mnt);
882 if (err)
883 goto out_free;
1da177e4 884 }
be34d1a3 885
f2ebb3a9 886 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3
EB
887 /* Don't allow unprivileged users to change mount flags */
888 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
889 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
890
5ff9d8a6
EB
891 /* Don't allow unprivileged users to reveal what is under a mount */
892 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
893 mnt->mnt.mnt_flags |= MNT_LOCKED;
894
be34d1a3
DH
895 atomic_inc(&sb->s_active);
896 mnt->mnt.mnt_sb = sb;
897 mnt->mnt.mnt_root = dget(root);
898 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
899 mnt->mnt_parent = mnt;
719ea2fb 900 lock_mount_hash();
be34d1a3 901 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 902 unlock_mount_hash();
be34d1a3 903
7a472ef4
EB
904 if ((flag & CL_SLAVE) ||
905 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
906 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
907 mnt->mnt_master = old;
908 CLEAR_MNT_SHARED(mnt);
909 } else if (!(flag & CL_PRIVATE)) {
910 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
911 list_add(&mnt->mnt_share, &old->mnt_share);
912 if (IS_MNT_SLAVE(old))
913 list_add(&mnt->mnt_slave, &old->mnt_slave);
914 mnt->mnt_master = old->mnt_master;
915 }
916 if (flag & CL_MAKE_SHARED)
917 set_mnt_shared(mnt);
918
919 /* stick the duplicate mount on the same expiry list
920 * as the original if that was on one */
921 if (flag & CL_EXPIRE) {
922 if (!list_empty(&old->mnt_expire))
923 list_add(&mnt->mnt_expire, &old->mnt_expire);
924 }
925
cb338d06 926 return mnt;
719f5d7f
MS
927
928 out_free:
929 free_vfsmnt(mnt);
be34d1a3 930 return ERR_PTR(err);
1da177e4
LT
931}
932
48a066e7
AV
933static void delayed_free(struct rcu_head *head)
934{
935 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
936 kfree(mnt->mnt_devname);
937#ifdef CONFIG_SMP
938 free_percpu(mnt->mnt_pcp);
939#endif
940 kmem_cache_free(mnt_cache, mnt);
941}
942
900148dc 943static void mntput_no_expire(struct mount *mnt)
b3e19d92 944{
b3e19d92 945put_again:
48a066e7
AV
946 rcu_read_lock();
947 mnt_add_count(mnt, -1);
948 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
949 rcu_read_unlock();
f03c6599 950 return;
b3e19d92 951 }
719ea2fb 952 lock_mount_hash();
b3e19d92 953 if (mnt_get_count(mnt)) {
48a066e7 954 rcu_read_unlock();
719ea2fb 955 unlock_mount_hash();
99b7db7b
NP
956 return;
957 }
863d684f
AV
958 if (unlikely(mnt->mnt_pinned)) {
959 mnt_add_count(mnt, mnt->mnt_pinned + 1);
960 mnt->mnt_pinned = 0;
48a066e7 961 rcu_read_unlock();
719ea2fb 962 unlock_mount_hash();
900148dc 963 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 964 goto put_again;
7b7b1ace 965 }
48a066e7
AV
966 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
967 rcu_read_unlock();
968 unlock_mount_hash();
969 return;
970 }
971 mnt->mnt.mnt_flags |= MNT_DOOMED;
972 rcu_read_unlock();
962830df 973
39f7c4db 974 list_del(&mnt->mnt_instance);
719ea2fb 975 unlock_mount_hash();
649a795a
AV
976
977 /*
978 * This probably indicates that somebody messed
979 * up a mnt_want/drop_write() pair. If this
980 * happens, the filesystem was probably unable
981 * to make r/w->r/o transitions.
982 */
983 /*
984 * The locking used to deal with mnt_count decrement provides barriers,
985 * so mnt_get_writers() below is safe.
986 */
987 WARN_ON(mnt_get_writers(mnt));
988 fsnotify_vfsmount_delete(&mnt->mnt);
989 dput(mnt->mnt.mnt_root);
990 deactivate_super(mnt->mnt.mnt_sb);
48a066e7
AV
991 mnt_free_id(mnt);
992 call_rcu(&mnt->mnt_rcu, delayed_free);
b3e19d92 993}
b3e19d92
NP
994
995void mntput(struct vfsmount *mnt)
996{
997 if (mnt) {
863d684f 998 struct mount *m = real_mount(mnt);
b3e19d92 999 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1000 if (unlikely(m->mnt_expiry_mark))
1001 m->mnt_expiry_mark = 0;
1002 mntput_no_expire(m);
b3e19d92
NP
1003 }
1004}
1005EXPORT_SYMBOL(mntput);
1006
1007struct vfsmount *mntget(struct vfsmount *mnt)
1008{
1009 if (mnt)
83adc753 1010 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1011 return mnt;
1012}
1013EXPORT_SYMBOL(mntget);
1014
7b7b1ace
AV
1015void mnt_pin(struct vfsmount *mnt)
1016{
719ea2fb 1017 lock_mount_hash();
863d684f 1018 real_mount(mnt)->mnt_pinned++;
719ea2fb 1019 unlock_mount_hash();
7b7b1ace 1020}
7b7b1ace
AV
1021EXPORT_SYMBOL(mnt_pin);
1022
863d684f 1023void mnt_unpin(struct vfsmount *m)
7b7b1ace 1024{
863d684f 1025 struct mount *mnt = real_mount(m);
719ea2fb 1026 lock_mount_hash();
7b7b1ace 1027 if (mnt->mnt_pinned) {
863d684f 1028 mnt_add_count(mnt, 1);
7b7b1ace
AV
1029 mnt->mnt_pinned--;
1030 }
719ea2fb 1031 unlock_mount_hash();
7b7b1ace 1032}
7b7b1ace 1033EXPORT_SYMBOL(mnt_unpin);
1da177e4 1034
b3b304a2
MS
1035static inline void mangle(struct seq_file *m, const char *s)
1036{
1037 seq_escape(m, s, " \t\n\\");
1038}
1039
1040/*
1041 * Simple .show_options callback for filesystems which don't want to
1042 * implement more complex mount option showing.
1043 *
1044 * See also save_mount_options().
1045 */
34c80b1d 1046int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1047{
2a32cebd
AV
1048 const char *options;
1049
1050 rcu_read_lock();
34c80b1d 1051 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1052
1053 if (options != NULL && options[0]) {
1054 seq_putc(m, ',');
1055 mangle(m, options);
1056 }
2a32cebd 1057 rcu_read_unlock();
b3b304a2
MS
1058
1059 return 0;
1060}
1061EXPORT_SYMBOL(generic_show_options);
1062
1063/*
1064 * If filesystem uses generic_show_options(), this function should be
1065 * called from the fill_super() callback.
1066 *
1067 * The .remount_fs callback usually needs to be handled in a special
1068 * way, to make sure, that previous options are not overwritten if the
1069 * remount fails.
1070 *
1071 * Also note, that if the filesystem's .remount_fs function doesn't
1072 * reset all options to their default value, but changes only newly
1073 * given options, then the displayed options will not reflect reality
1074 * any more.
1075 */
1076void save_mount_options(struct super_block *sb, char *options)
1077{
2a32cebd
AV
1078 BUG_ON(sb->s_options);
1079 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1080}
1081EXPORT_SYMBOL(save_mount_options);
1082
2a32cebd
AV
1083void replace_mount_options(struct super_block *sb, char *options)
1084{
1085 char *old = sb->s_options;
1086 rcu_assign_pointer(sb->s_options, options);
1087 if (old) {
1088 synchronize_rcu();
1089 kfree(old);
1090 }
1091}
1092EXPORT_SYMBOL(replace_mount_options);
1093
a1a2c409 1094#ifdef CONFIG_PROC_FS
0226f492 1095/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1096static void *m_start(struct seq_file *m, loff_t *pos)
1097{
6ce6e24e 1098 struct proc_mounts *p = proc_mounts(m);
1da177e4 1099
390c6843 1100 down_read(&namespace_sem);
c7999c36
AV
1101 if (p->cached_event == p->ns->event) {
1102 void *v = p->cached_mount;
1103 if (*pos == p->cached_index)
1104 return v;
1105 if (*pos == p->cached_index + 1) {
1106 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1107 return p->cached_mount = v;
1108 }
1109 }
1110
1111 p->cached_event = p->ns->event;
1112 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1113 p->cached_index = *pos;
1114 return p->cached_mount;
1da177e4
LT
1115}
1116
1117static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1118{
6ce6e24e 1119 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1120
c7999c36
AV
1121 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1122 p->cached_index = *pos;
1123 return p->cached_mount;
1da177e4
LT
1124}
1125
1126static void m_stop(struct seq_file *m, void *v)
1127{
390c6843 1128 up_read(&namespace_sem);
1da177e4
LT
1129}
1130
0226f492 1131static int m_show(struct seq_file *m, void *v)
2d4d4864 1132{
6ce6e24e 1133 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1134 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1135 return p->show(m, &r->mnt);
1da177e4
LT
1136}
1137
a1a2c409 1138const struct seq_operations mounts_op = {
1da177e4
LT
1139 .start = m_start,
1140 .next = m_next,
1141 .stop = m_stop,
0226f492 1142 .show = m_show,
b4629fe2 1143};
a1a2c409 1144#endif /* CONFIG_PROC_FS */
b4629fe2 1145
1da177e4
LT
1146/**
1147 * may_umount_tree - check if a mount tree is busy
1148 * @mnt: root of mount tree
1149 *
1150 * This is called to check if a tree of mounts has any
1151 * open files, pwds, chroots or sub mounts that are
1152 * busy.
1153 */
909b0a88 1154int may_umount_tree(struct vfsmount *m)
1da177e4 1155{
909b0a88 1156 struct mount *mnt = real_mount(m);
36341f64
RP
1157 int actual_refs = 0;
1158 int minimum_refs = 0;
315fc83e 1159 struct mount *p;
909b0a88 1160 BUG_ON(!m);
1da177e4 1161
b3e19d92 1162 /* write lock needed for mnt_get_count */
719ea2fb 1163 lock_mount_hash();
909b0a88 1164 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1165 actual_refs += mnt_get_count(p);
1da177e4 1166 minimum_refs += 2;
1da177e4 1167 }
719ea2fb 1168 unlock_mount_hash();
1da177e4
LT
1169
1170 if (actual_refs > minimum_refs)
e3474a8e 1171 return 0;
1da177e4 1172
e3474a8e 1173 return 1;
1da177e4
LT
1174}
1175
1176EXPORT_SYMBOL(may_umount_tree);
1177
1178/**
1179 * may_umount - check if a mount point is busy
1180 * @mnt: root of mount
1181 *
1182 * This is called to check if a mount point has any
1183 * open files, pwds, chroots or sub mounts. If the
1184 * mount has sub mounts this will return busy
1185 * regardless of whether the sub mounts are busy.
1186 *
1187 * Doesn't take quota and stuff into account. IOW, in some cases it will
1188 * give false negatives. The main reason why it's here is that we need
1189 * a non-destructive way to look for easily umountable filesystems.
1190 */
1191int may_umount(struct vfsmount *mnt)
1192{
e3474a8e 1193 int ret = 1;
8ad08d8a 1194 down_read(&namespace_sem);
719ea2fb 1195 lock_mount_hash();
1ab59738 1196 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1197 ret = 0;
719ea2fb 1198 unlock_mount_hash();
8ad08d8a 1199 up_read(&namespace_sem);
a05964f3 1200 return ret;
1da177e4
LT
1201}
1202
1203EXPORT_SYMBOL(may_umount);
1204
38129a13 1205static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1206
97216be0 1207static void namespace_unlock(void)
70fbcdf4 1208{
d5e50f74 1209 struct mount *mnt;
38129a13 1210 struct hlist_head head = unmounted;
97216be0 1211
38129a13 1212 if (likely(hlist_empty(&head))) {
97216be0
AV
1213 up_write(&namespace_sem);
1214 return;
1215 }
1216
38129a13
AV
1217 head.first->pprev = &head.first;
1218 INIT_HLIST_HEAD(&unmounted);
1219
97216be0
AV
1220 up_write(&namespace_sem);
1221
48a066e7
AV
1222 synchronize_rcu();
1223
38129a13
AV
1224 while (!hlist_empty(&head)) {
1225 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1226 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1227 if (mnt->mnt_ex_mountpoint.mnt)
1228 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1229 mntput(&mnt->mnt);
70fbcdf4
RP
1230 }
1231}
1232
97216be0 1233static inline void namespace_lock(void)
e3197d83 1234{
97216be0 1235 down_write(&namespace_sem);
e3197d83
AV
1236}
1237
99b7db7b 1238/*
48a066e7 1239 * mount_lock must be held
99b7db7b 1240 * namespace_sem must be held for write
48a066e7
AV
1241 * how = 0 => just this tree, don't propagate
1242 * how = 1 => propagate; we know that nobody else has reference to any victims
1243 * how = 2 => lazy umount
99b7db7b 1244 */
48a066e7 1245void umount_tree(struct mount *mnt, int how)
1da177e4 1246{
38129a13 1247 HLIST_HEAD(tmp_list);
315fc83e 1248 struct mount *p;
38129a13 1249 struct mount *last = NULL;
1da177e4 1250
38129a13
AV
1251 for (p = mnt; p; p = next_mnt(p, mnt)) {
1252 hlist_del_init_rcu(&p->mnt_hash);
1253 hlist_add_head(&p->mnt_hash, &tmp_list);
1254 }
1da177e4 1255
48a066e7 1256 if (how)
7b8a53fd 1257 propagate_umount(&tmp_list);
a05964f3 1258
38129a13 1259 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1260 list_del_init(&p->mnt_expire);
1a4eeaf2 1261 list_del_init(&p->mnt_list);
143c8c91
AV
1262 __touch_mnt_namespace(p->mnt_ns);
1263 p->mnt_ns = NULL;
48a066e7
AV
1264 if (how < 2)
1265 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
6b41d536 1266 list_del_init(&p->mnt_child);
676da58d 1267 if (mnt_has_parent(p)) {
84d17192 1268 put_mountpoint(p->mnt_mp);
aba809cf
AV
1269 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1270 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1271 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1272 p->mnt_mountpoint = p->mnt.mnt_root;
1273 p->mnt_parent = p;
84d17192 1274 p->mnt_mp = NULL;
7c4b93d8 1275 }
0f0afb1d 1276 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1277 last = p;
1278 }
1279 if (last) {
1280 last->mnt_hash.next = unmounted.first;
1281 unmounted.first = tmp_list.first;
1282 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1283 }
1284}
1285
b54b9be7 1286static void shrink_submounts(struct mount *mnt);
c35038be 1287
1ab59738 1288static int do_umount(struct mount *mnt, int flags)
1da177e4 1289{
1ab59738 1290 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1291 int retval;
1292
1ab59738 1293 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1294 if (retval)
1295 return retval;
1296
1297 /*
1298 * Allow userspace to request a mountpoint be expired rather than
1299 * unmounting unconditionally. Unmount only happens if:
1300 * (1) the mark is already set (the mark is cleared by mntput())
1301 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1302 */
1303 if (flags & MNT_EXPIRE) {
1ab59738 1304 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1305 flags & (MNT_FORCE | MNT_DETACH))
1306 return -EINVAL;
1307
b3e19d92
NP
1308 /*
1309 * probably don't strictly need the lock here if we examined
1310 * all race cases, but it's a slowpath.
1311 */
719ea2fb 1312 lock_mount_hash();
83adc753 1313 if (mnt_get_count(mnt) != 2) {
719ea2fb 1314 unlock_mount_hash();
1da177e4 1315 return -EBUSY;
b3e19d92 1316 }
719ea2fb 1317 unlock_mount_hash();
1da177e4 1318
863d684f 1319 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1320 return -EAGAIN;
1321 }
1322
1323 /*
1324 * If we may have to abort operations to get out of this
1325 * mount, and they will themselves hold resources we must
1326 * allow the fs to do things. In the Unix tradition of
1327 * 'Gee thats tricky lets do it in userspace' the umount_begin
1328 * might fail to complete on the first run through as other tasks
1329 * must return, and the like. Thats for the mount program to worry
1330 * about for the moment.
1331 */
1332
42faad99 1333 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1334 sb->s_op->umount_begin(sb);
42faad99 1335 }
1da177e4
LT
1336
1337 /*
1338 * No sense to grab the lock for this test, but test itself looks
1339 * somewhat bogus. Suggestions for better replacement?
1340 * Ho-hum... In principle, we might treat that as umount + switch
1341 * to rootfs. GC would eventually take care of the old vfsmount.
1342 * Actually it makes sense, especially if rootfs would contain a
1343 * /reboot - static binary that would close all descriptors and
1344 * call reboot(9). Then init(8) could umount root and exec /reboot.
1345 */
1ab59738 1346 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1347 /*
1348 * Special case for "unmounting" root ...
1349 * we just try to remount it readonly.
1350 */
1351 down_write(&sb->s_umount);
4aa98cf7 1352 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1353 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1354 up_write(&sb->s_umount);
1355 return retval;
1356 }
1357
97216be0 1358 namespace_lock();
719ea2fb 1359 lock_mount_hash();
5addc5dd 1360 event++;
1da177e4 1361
48a066e7 1362 if (flags & MNT_DETACH) {
1a4eeaf2 1363 if (!list_empty(&mnt->mnt_list))
48a066e7 1364 umount_tree(mnt, 2);
1da177e4 1365 retval = 0;
48a066e7
AV
1366 } else {
1367 shrink_submounts(mnt);
1368 retval = -EBUSY;
1369 if (!propagate_mount_busy(mnt, 2)) {
1370 if (!list_empty(&mnt->mnt_list))
1371 umount_tree(mnt, 1);
1372 retval = 0;
1373 }
1da177e4 1374 }
719ea2fb 1375 unlock_mount_hash();
e3197d83 1376 namespace_unlock();
1da177e4
LT
1377 return retval;
1378}
1379
9b40bc90
AV
1380/*
1381 * Is the caller allowed to modify his namespace?
1382 */
1383static inline bool may_mount(void)
1384{
1385 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1386}
1387
1da177e4
LT
1388/*
1389 * Now umount can handle mount points as well as block devices.
1390 * This is important for filesystems which use unnamed block devices.
1391 *
1392 * We now support a flag for forced unmount like the other 'big iron'
1393 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1394 */
1395
bdc480e3 1396SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1397{
2d8f3038 1398 struct path path;
900148dc 1399 struct mount *mnt;
1da177e4 1400 int retval;
db1f05bb 1401 int lookup_flags = 0;
1da177e4 1402
db1f05bb
MS
1403 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1404 return -EINVAL;
1405
9b40bc90
AV
1406 if (!may_mount())
1407 return -EPERM;
1408
db1f05bb
MS
1409 if (!(flags & UMOUNT_NOFOLLOW))
1410 lookup_flags |= LOOKUP_FOLLOW;
1411
197df04c 1412 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1413 if (retval)
1414 goto out;
900148dc 1415 mnt = real_mount(path.mnt);
1da177e4 1416 retval = -EINVAL;
2d8f3038 1417 if (path.dentry != path.mnt->mnt_root)
1da177e4 1418 goto dput_and_out;
143c8c91 1419 if (!check_mnt(mnt))
1da177e4 1420 goto dput_and_out;
5ff9d8a6
EB
1421 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1422 goto dput_and_out;
1da177e4 1423
900148dc 1424 retval = do_umount(mnt, flags);
1da177e4 1425dput_and_out:
429731b1 1426 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1427 dput(path.dentry);
900148dc 1428 mntput_no_expire(mnt);
1da177e4
LT
1429out:
1430 return retval;
1431}
1432
1433#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1434
1435/*
b58fed8b 1436 * The 2.0 compatible umount. No flags.
1da177e4 1437 */
bdc480e3 1438SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1439{
b58fed8b 1440 return sys_umount(name, 0);
1da177e4
LT
1441}
1442
1443#endif
1444
4ce5d2b1 1445static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1446{
4ce5d2b1
EB
1447 /* Is this a proxy for a mount namespace? */
1448 struct inode *inode = dentry->d_inode;
0bb80f24 1449 struct proc_ns *ei;
8823c079
EB
1450
1451 if (!proc_ns_inode(inode))
1452 return false;
1453
0bb80f24 1454 ei = get_proc_ns(inode);
8823c079
EB
1455 if (ei->ns_ops != &mntns_operations)
1456 return false;
1457
4ce5d2b1
EB
1458 return true;
1459}
1460
1461static bool mnt_ns_loop(struct dentry *dentry)
1462{
1463 /* Could bind mounting the mount namespace inode cause a
1464 * mount namespace loop?
1465 */
1466 struct mnt_namespace *mnt_ns;
1467 if (!is_mnt_ns_file(dentry))
1468 return false;
1469
1470 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1471 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1472}
1473
87129cc0 1474struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1475 int flag)
1da177e4 1476{
84d17192 1477 struct mount *res, *p, *q, *r, *parent;
1da177e4 1478
4ce5d2b1
EB
1479 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1480 return ERR_PTR(-EINVAL);
1481
1482 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1483 return ERR_PTR(-EINVAL);
9676f0c6 1484
36341f64 1485 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1486 if (IS_ERR(q))
1487 return q;
1488
5ff9d8a6 1489 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1490 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1491
1492 p = mnt;
6b41d536 1493 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1494 struct mount *s;
7ec02ef1 1495 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1496 continue;
1497
909b0a88 1498 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1499 if (!(flag & CL_COPY_UNBINDABLE) &&
1500 IS_MNT_UNBINDABLE(s)) {
1501 s = skip_mnt_tree(s);
1502 continue;
1503 }
1504 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1505 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1506 s = skip_mnt_tree(s);
1507 continue;
1508 }
0714a533
AV
1509 while (p != s->mnt_parent) {
1510 p = p->mnt_parent;
1511 q = q->mnt_parent;
1da177e4 1512 }
87129cc0 1513 p = s;
84d17192 1514 parent = q;
87129cc0 1515 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1516 if (IS_ERR(q))
1517 goto out;
719ea2fb 1518 lock_mount_hash();
1a4eeaf2 1519 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1520 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1521 unlock_mount_hash();
1da177e4
LT
1522 }
1523 }
1524 return res;
be34d1a3 1525out:
1da177e4 1526 if (res) {
719ea2fb 1527 lock_mount_hash();
328e6d90 1528 umount_tree(res, 0);
719ea2fb 1529 unlock_mount_hash();
1da177e4 1530 }
be34d1a3 1531 return q;
1da177e4
LT
1532}
1533
be34d1a3
DH
1534/* Caller should check returned pointer for errors */
1535
589ff870 1536struct vfsmount *collect_mounts(struct path *path)
8aec0809 1537{
cb338d06 1538 struct mount *tree;
97216be0 1539 namespace_lock();
87129cc0
AV
1540 tree = copy_tree(real_mount(path->mnt), path->dentry,
1541 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1542 namespace_unlock();
be34d1a3 1543 if (IS_ERR(tree))
52e220d3 1544 return ERR_CAST(tree);
be34d1a3 1545 return &tree->mnt;
8aec0809
AV
1546}
1547
1548void drop_collected_mounts(struct vfsmount *mnt)
1549{
97216be0 1550 namespace_lock();
719ea2fb 1551 lock_mount_hash();
328e6d90 1552 umount_tree(real_mount(mnt), 0);
719ea2fb 1553 unlock_mount_hash();
3ab6abee 1554 namespace_unlock();
8aec0809
AV
1555}
1556
1f707137
AV
1557int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1558 struct vfsmount *root)
1559{
1a4eeaf2 1560 struct mount *mnt;
1f707137
AV
1561 int res = f(root, arg);
1562 if (res)
1563 return res;
1a4eeaf2
AV
1564 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1565 res = f(&mnt->mnt, arg);
1f707137
AV
1566 if (res)
1567 return res;
1568 }
1569 return 0;
1570}
1571
4b8b21f4 1572static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1573{
315fc83e 1574 struct mount *p;
719f5d7f 1575
909b0a88 1576 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1577 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1578 mnt_release_group_id(p);
719f5d7f
MS
1579 }
1580}
1581
4b8b21f4 1582static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1583{
315fc83e 1584 struct mount *p;
719f5d7f 1585
909b0a88 1586 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1587 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1588 int err = mnt_alloc_group_id(p);
719f5d7f 1589 if (err) {
4b8b21f4 1590 cleanup_group_ids(mnt, p);
719f5d7f
MS
1591 return err;
1592 }
1593 }
1594 }
1595
1596 return 0;
1597}
1598
b90fa9ae
RP
1599/*
1600 * @source_mnt : mount tree to be attached
21444403
RP
1601 * @nd : place the mount tree @source_mnt is attached
1602 * @parent_nd : if non-null, detach the source_mnt from its parent and
1603 * store the parent mount and mountpoint dentry.
1604 * (done when source_mnt is moved)
b90fa9ae
RP
1605 *
1606 * NOTE: in the table below explains the semantics when a source mount
1607 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1608 * ---------------------------------------------------------------------------
1609 * | BIND MOUNT OPERATION |
1610 * |**************************************************************************
1611 * | source-->| shared | private | slave | unbindable |
1612 * | dest | | | | |
1613 * | | | | | | |
1614 * | v | | | | |
1615 * |**************************************************************************
1616 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1617 * | | | | | |
1618 * |non-shared| shared (+) | private | slave (*) | invalid |
1619 * ***************************************************************************
b90fa9ae
RP
1620 * A bind operation clones the source mount and mounts the clone on the
1621 * destination mount.
1622 *
1623 * (++) the cloned mount is propagated to all the mounts in the propagation
1624 * tree of the destination mount and the cloned mount is added to
1625 * the peer group of the source mount.
1626 * (+) the cloned mount is created under the destination mount and is marked
1627 * as shared. The cloned mount is added to the peer group of the source
1628 * mount.
5afe0022
RP
1629 * (+++) the mount is propagated to all the mounts in the propagation tree
1630 * of the destination mount and the cloned mount is made slave
1631 * of the same master as that of the source mount. The cloned mount
1632 * is marked as 'shared and slave'.
1633 * (*) the cloned mount is made a slave of the same master as that of the
1634 * source mount.
1635 *
9676f0c6
RP
1636 * ---------------------------------------------------------------------------
1637 * | MOVE MOUNT OPERATION |
1638 * |**************************************************************************
1639 * | source-->| shared | private | slave | unbindable |
1640 * | dest | | | | |
1641 * | | | | | | |
1642 * | v | | | | |
1643 * |**************************************************************************
1644 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1645 * | | | | | |
1646 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1647 * ***************************************************************************
5afe0022
RP
1648 *
1649 * (+) the mount is moved to the destination. And is then propagated to
1650 * all the mounts in the propagation tree of the destination mount.
21444403 1651 * (+*) the mount is moved to the destination.
5afe0022
RP
1652 * (+++) the mount is moved to the destination and is then propagated to
1653 * all the mounts belonging to the destination mount's propagation tree.
1654 * the mount is marked as 'shared and slave'.
1655 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1656 *
1657 * if the source mount is a tree, the operations explained above is
1658 * applied to each mount in the tree.
1659 * Must be called without spinlocks held, since this function can sleep
1660 * in allocations.
1661 */
0fb54e50 1662static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1663 struct mount *dest_mnt,
1664 struct mountpoint *dest_mp,
1665 struct path *parent_path)
b90fa9ae 1666{
38129a13 1667 HLIST_HEAD(tree_list);
315fc83e 1668 struct mount *child, *p;
38129a13 1669 struct hlist_node *n;
719f5d7f 1670 int err;
b90fa9ae 1671
fc7be130 1672 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1673 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1674 if (err)
1675 goto out;
0b1b901b 1676 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1677 lock_mount_hash();
0b1b901b
AV
1678 if (err)
1679 goto out_cleanup_ids;
909b0a88 1680 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1681 set_mnt_shared(p);
0b1b901b
AV
1682 } else {
1683 lock_mount_hash();
b90fa9ae 1684 }
1a390689 1685 if (parent_path) {
0fb54e50 1686 detach_mnt(source_mnt, parent_path);
84d17192 1687 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1688 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1689 } else {
84d17192 1690 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1691 commit_tree(source_mnt, NULL);
21444403 1692 }
b90fa9ae 1693
38129a13 1694 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1695 struct mount *q;
38129a13 1696 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1697 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1698 child->mnt_mountpoint);
1699 commit_tree(child, q);
b90fa9ae 1700 }
719ea2fb 1701 unlock_mount_hash();
99b7db7b 1702
b90fa9ae 1703 return 0;
719f5d7f
MS
1704
1705 out_cleanup_ids:
f2ebb3a9
AV
1706 while (!hlist_empty(&tree_list)) {
1707 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1708 umount_tree(child, 0);
1709 }
1710 unlock_mount_hash();
0b1b901b 1711 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1712 out:
1713 return err;
b90fa9ae
RP
1714}
1715
84d17192 1716static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1717{
1718 struct vfsmount *mnt;
84d17192 1719 struct dentry *dentry = path->dentry;
b12cea91 1720retry:
84d17192
AV
1721 mutex_lock(&dentry->d_inode->i_mutex);
1722 if (unlikely(cant_mount(dentry))) {
1723 mutex_unlock(&dentry->d_inode->i_mutex);
1724 return ERR_PTR(-ENOENT);
b12cea91 1725 }
97216be0 1726 namespace_lock();
b12cea91 1727 mnt = lookup_mnt(path);
84d17192
AV
1728 if (likely(!mnt)) {
1729 struct mountpoint *mp = new_mountpoint(dentry);
1730 if (IS_ERR(mp)) {
97216be0 1731 namespace_unlock();
84d17192
AV
1732 mutex_unlock(&dentry->d_inode->i_mutex);
1733 return mp;
1734 }
1735 return mp;
1736 }
97216be0 1737 namespace_unlock();
b12cea91
AV
1738 mutex_unlock(&path->dentry->d_inode->i_mutex);
1739 path_put(path);
1740 path->mnt = mnt;
84d17192 1741 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1742 goto retry;
1743}
1744
84d17192 1745static void unlock_mount(struct mountpoint *where)
b12cea91 1746{
84d17192
AV
1747 struct dentry *dentry = where->m_dentry;
1748 put_mountpoint(where);
328e6d90 1749 namespace_unlock();
84d17192 1750 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1751}
1752
84d17192 1753static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1754{
95bc5f25 1755 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1756 return -EINVAL;
1757
84d17192 1758 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1759 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1760 return -ENOTDIR;
1761
84d17192 1762 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1763}
1764
7a2e8a8f
VA
1765/*
1766 * Sanity check the flags to change_mnt_propagation.
1767 */
1768
1769static int flags_to_propagation_type(int flags)
1770{
7c6e984d 1771 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1772
1773 /* Fail if any non-propagation flags are set */
1774 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1775 return 0;
1776 /* Only one propagation flag should be set */
1777 if (!is_power_of_2(type))
1778 return 0;
1779 return type;
1780}
1781
07b20889
RP
1782/*
1783 * recursively change the type of the mountpoint.
1784 */
0a0d8a46 1785static int do_change_type(struct path *path, int flag)
07b20889 1786{
315fc83e 1787 struct mount *m;
4b8b21f4 1788 struct mount *mnt = real_mount(path->mnt);
07b20889 1789 int recurse = flag & MS_REC;
7a2e8a8f 1790 int type;
719f5d7f 1791 int err = 0;
07b20889 1792
2d92ab3c 1793 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1794 return -EINVAL;
1795
7a2e8a8f
VA
1796 type = flags_to_propagation_type(flag);
1797 if (!type)
1798 return -EINVAL;
1799
97216be0 1800 namespace_lock();
719f5d7f
MS
1801 if (type == MS_SHARED) {
1802 err = invent_group_ids(mnt, recurse);
1803 if (err)
1804 goto out_unlock;
1805 }
1806
719ea2fb 1807 lock_mount_hash();
909b0a88 1808 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1809 change_mnt_propagation(m, type);
719ea2fb 1810 unlock_mount_hash();
719f5d7f
MS
1811
1812 out_unlock:
97216be0 1813 namespace_unlock();
719f5d7f 1814 return err;
07b20889
RP
1815}
1816
5ff9d8a6
EB
1817static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1818{
1819 struct mount *child;
1820 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1821 if (!is_subdir(child->mnt_mountpoint, dentry))
1822 continue;
1823
1824 if (child->mnt.mnt_flags & MNT_LOCKED)
1825 return true;
1826 }
1827 return false;
1828}
1829
1da177e4
LT
1830/*
1831 * do loopback mount.
1832 */
808d4e3c 1833static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1834 int recurse)
1da177e4 1835{
2d92ab3c 1836 struct path old_path;
84d17192
AV
1837 struct mount *mnt = NULL, *old, *parent;
1838 struct mountpoint *mp;
57eccb83 1839 int err;
1da177e4
LT
1840 if (!old_name || !*old_name)
1841 return -EINVAL;
815d405c 1842 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1843 if (err)
1844 return err;
1845
8823c079 1846 err = -EINVAL;
4ce5d2b1 1847 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1848 goto out;
1849
84d17192
AV
1850 mp = lock_mount(path);
1851 err = PTR_ERR(mp);
1852 if (IS_ERR(mp))
b12cea91
AV
1853 goto out;
1854
87129cc0 1855 old = real_mount(old_path.mnt);
84d17192 1856 parent = real_mount(path->mnt);
87129cc0 1857
1da177e4 1858 err = -EINVAL;
fc7be130 1859 if (IS_MNT_UNBINDABLE(old))
b12cea91 1860 goto out2;
9676f0c6 1861
84d17192 1862 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1863 goto out2;
1da177e4 1864
5ff9d8a6
EB
1865 if (!recurse && has_locked_children(old, old_path.dentry))
1866 goto out2;
1867
ccd48bc7 1868 if (recurse)
4ce5d2b1 1869 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1870 else
87129cc0 1871 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1872
be34d1a3
DH
1873 if (IS_ERR(mnt)) {
1874 err = PTR_ERR(mnt);
e9c5d8a5 1875 goto out2;
be34d1a3 1876 }
ccd48bc7 1877
5ff9d8a6
EB
1878 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1879
84d17192 1880 err = graft_tree(mnt, parent, mp);
ccd48bc7 1881 if (err) {
719ea2fb 1882 lock_mount_hash();
328e6d90 1883 umount_tree(mnt, 0);
719ea2fb 1884 unlock_mount_hash();
5b83d2c5 1885 }
b12cea91 1886out2:
84d17192 1887 unlock_mount(mp);
ccd48bc7 1888out:
2d92ab3c 1889 path_put(&old_path);
1da177e4
LT
1890 return err;
1891}
1892
2e4b7fcd
DH
1893static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1894{
1895 int error = 0;
1896 int readonly_request = 0;
1897
1898 if (ms_flags & MS_RDONLY)
1899 readonly_request = 1;
1900 if (readonly_request == __mnt_is_readonly(mnt))
1901 return 0;
1902
90563b19
EB
1903 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1904 return -EPERM;
1905
2e4b7fcd 1906 if (readonly_request)
83adc753 1907 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1908 else
83adc753 1909 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1910 return error;
1911}
1912
1da177e4
LT
1913/*
1914 * change filesystem flags. dir should be a physical root of filesystem.
1915 * If you've mounted a non-root directory somewhere and want to do remount
1916 * on it - tough luck.
1917 */
0a0d8a46 1918static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1919 void *data)
1920{
1921 int err;
2d92ab3c 1922 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1923 struct mount *mnt = real_mount(path->mnt);
1da177e4 1924
143c8c91 1925 if (!check_mnt(mnt))
1da177e4
LT
1926 return -EINVAL;
1927
2d92ab3c 1928 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1929 return -EINVAL;
1930
ff36fe2c
EP
1931 err = security_sb_remount(sb, data);
1932 if (err)
1933 return err;
1934
1da177e4 1935 down_write(&sb->s_umount);
2e4b7fcd 1936 if (flags & MS_BIND)
2d92ab3c 1937 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1938 else if (!capable(CAP_SYS_ADMIN))
1939 err = -EPERM;
4aa98cf7 1940 else
2e4b7fcd 1941 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1942 if (!err) {
719ea2fb 1943 lock_mount_hash();
143c8c91
AV
1944 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1945 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1946 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1947 unlock_mount_hash();
0e55a7cc 1948 }
6339dab8 1949 up_write(&sb->s_umount);
1da177e4
LT
1950 return err;
1951}
1952
cbbe362c 1953static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1954{
315fc83e 1955 struct mount *p;
909b0a88 1956 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1957 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1958 return 1;
1959 }
1960 return 0;
1961}
1962
808d4e3c 1963static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1964{
2d92ab3c 1965 struct path old_path, parent_path;
676da58d 1966 struct mount *p;
0fb54e50 1967 struct mount *old;
84d17192 1968 struct mountpoint *mp;
57eccb83 1969 int err;
1da177e4
LT
1970 if (!old_name || !*old_name)
1971 return -EINVAL;
2d92ab3c 1972 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1973 if (err)
1974 return err;
1975
84d17192
AV
1976 mp = lock_mount(path);
1977 err = PTR_ERR(mp);
1978 if (IS_ERR(mp))
cc53ce53
DH
1979 goto out;
1980
143c8c91 1981 old = real_mount(old_path.mnt);
fc7be130 1982 p = real_mount(path->mnt);
143c8c91 1983
1da177e4 1984 err = -EINVAL;
fc7be130 1985 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1986 goto out1;
1987
5ff9d8a6
EB
1988 if (old->mnt.mnt_flags & MNT_LOCKED)
1989 goto out1;
1990
1da177e4 1991 err = -EINVAL;
2d92ab3c 1992 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1993 goto out1;
1da177e4 1994
676da58d 1995 if (!mnt_has_parent(old))
21444403 1996 goto out1;
1da177e4 1997
2d92ab3c
AV
1998 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1999 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2000 goto out1;
2001 /*
2002 * Don't move a mount residing in a shared parent.
2003 */
fc7be130 2004 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2005 goto out1;
9676f0c6
RP
2006 /*
2007 * Don't move a mount tree containing unbindable mounts to a destination
2008 * mount which is shared.
2009 */
fc7be130 2010 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2011 goto out1;
1da177e4 2012 err = -ELOOP;
fc7be130 2013 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2014 if (p == old)
21444403 2015 goto out1;
1da177e4 2016
84d17192 2017 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2018 if (err)
21444403 2019 goto out1;
1da177e4
LT
2020
2021 /* if the mount is moved, it should no longer be expire
2022 * automatically */
6776db3d 2023 list_del_init(&old->mnt_expire);
1da177e4 2024out1:
84d17192 2025 unlock_mount(mp);
1da177e4 2026out:
1da177e4 2027 if (!err)
1a390689 2028 path_put(&parent_path);
2d92ab3c 2029 path_put(&old_path);
1da177e4
LT
2030 return err;
2031}
2032
9d412a43
AV
2033static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2034{
2035 int err;
2036 const char *subtype = strchr(fstype, '.');
2037 if (subtype) {
2038 subtype++;
2039 err = -EINVAL;
2040 if (!subtype[0])
2041 goto err;
2042 } else
2043 subtype = "";
2044
2045 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2046 err = -ENOMEM;
2047 if (!mnt->mnt_sb->s_subtype)
2048 goto err;
2049 return mnt;
2050
2051 err:
2052 mntput(mnt);
2053 return ERR_PTR(err);
2054}
2055
9d412a43
AV
2056/*
2057 * add a mount into a namespace's mount tree
2058 */
95bc5f25 2059static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2060{
84d17192
AV
2061 struct mountpoint *mp;
2062 struct mount *parent;
9d412a43
AV
2063 int err;
2064
f2ebb3a9 2065 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2066
84d17192
AV
2067 mp = lock_mount(path);
2068 if (IS_ERR(mp))
2069 return PTR_ERR(mp);
9d412a43 2070
84d17192 2071 parent = real_mount(path->mnt);
9d412a43 2072 err = -EINVAL;
84d17192 2073 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2074 /* that's acceptable only for automounts done in private ns */
2075 if (!(mnt_flags & MNT_SHRINKABLE))
2076 goto unlock;
2077 /* ... and for those we'd better have mountpoint still alive */
84d17192 2078 if (!parent->mnt_ns)
156cacb1
AV
2079 goto unlock;
2080 }
9d412a43
AV
2081
2082 /* Refuse the same filesystem on the same mount point */
2083 err = -EBUSY;
95bc5f25 2084 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2085 path->mnt->mnt_root == path->dentry)
2086 goto unlock;
2087
2088 err = -EINVAL;
95bc5f25 2089 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2090 goto unlock;
2091
95bc5f25 2092 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2093 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2094
2095unlock:
84d17192 2096 unlock_mount(mp);
9d412a43
AV
2097 return err;
2098}
b1e75df4 2099
1da177e4
LT
2100/*
2101 * create a new mount for userspace and request it to be added into the
2102 * namespace's tree
2103 */
0c55cfc4 2104static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2105 int mnt_flags, const char *name, void *data)
1da177e4 2106{
0c55cfc4 2107 struct file_system_type *type;
9b40bc90 2108 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2109 struct vfsmount *mnt;
15f9a3f3 2110 int err;
1da177e4 2111
0c55cfc4 2112 if (!fstype)
1da177e4
LT
2113 return -EINVAL;
2114
0c55cfc4
EB
2115 type = get_fs_type(fstype);
2116 if (!type)
2117 return -ENODEV;
2118
2119 if (user_ns != &init_user_ns) {
2120 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2121 put_filesystem(type);
2122 return -EPERM;
2123 }
2124 /* Only in special cases allow devices from mounts
2125 * created outside the initial user namespace.
2126 */
2127 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2128 flags |= MS_NODEV;
2129 mnt_flags |= MNT_NODEV;
2130 }
2131 }
2132
2133 mnt = vfs_kern_mount(type, flags, name, data);
2134 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2135 !mnt->mnt_sb->s_subtype)
2136 mnt = fs_set_subtype(mnt, fstype);
2137
2138 put_filesystem(type);
1da177e4
LT
2139 if (IS_ERR(mnt))
2140 return PTR_ERR(mnt);
2141
95bc5f25 2142 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2143 if (err)
2144 mntput(mnt);
2145 return err;
1da177e4
LT
2146}
2147
19a167af
AV
2148int finish_automount(struct vfsmount *m, struct path *path)
2149{
6776db3d 2150 struct mount *mnt = real_mount(m);
19a167af
AV
2151 int err;
2152 /* The new mount record should have at least 2 refs to prevent it being
2153 * expired before we get a chance to add it
2154 */
6776db3d 2155 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2156
2157 if (m->mnt_sb == path->mnt->mnt_sb &&
2158 m->mnt_root == path->dentry) {
b1e75df4
AV
2159 err = -ELOOP;
2160 goto fail;
19a167af
AV
2161 }
2162
95bc5f25 2163 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2164 if (!err)
2165 return 0;
2166fail:
2167 /* remove m from any expiration list it may be on */
6776db3d 2168 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2169 namespace_lock();
6776db3d 2170 list_del_init(&mnt->mnt_expire);
97216be0 2171 namespace_unlock();
19a167af 2172 }
b1e75df4
AV
2173 mntput(m);
2174 mntput(m);
19a167af
AV
2175 return err;
2176}
2177
ea5b778a
DH
2178/**
2179 * mnt_set_expiry - Put a mount on an expiration list
2180 * @mnt: The mount to list.
2181 * @expiry_list: The list to add the mount to.
2182 */
2183void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2184{
97216be0 2185 namespace_lock();
ea5b778a 2186
6776db3d 2187 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2188
97216be0 2189 namespace_unlock();
ea5b778a
DH
2190}
2191EXPORT_SYMBOL(mnt_set_expiry);
2192
1da177e4
LT
2193/*
2194 * process a list of expirable mountpoints with the intent of discarding any
2195 * mountpoints that aren't in use and haven't been touched since last we came
2196 * here
2197 */
2198void mark_mounts_for_expiry(struct list_head *mounts)
2199{
761d5c38 2200 struct mount *mnt, *next;
1da177e4
LT
2201 LIST_HEAD(graveyard);
2202
2203 if (list_empty(mounts))
2204 return;
2205
97216be0 2206 namespace_lock();
719ea2fb 2207 lock_mount_hash();
1da177e4
LT
2208
2209 /* extract from the expiration list every vfsmount that matches the
2210 * following criteria:
2211 * - only referenced by its parent vfsmount
2212 * - still marked for expiry (marked on the last call here; marks are
2213 * cleared by mntput())
2214 */
6776db3d 2215 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2216 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2217 propagate_mount_busy(mnt, 1))
1da177e4 2218 continue;
6776db3d 2219 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2220 }
bcc5c7d2 2221 while (!list_empty(&graveyard)) {
6776db3d 2222 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2223 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2224 umount_tree(mnt, 1);
bcc5c7d2 2225 }
719ea2fb 2226 unlock_mount_hash();
3ab6abee 2227 namespace_unlock();
5528f911
TM
2228}
2229
2230EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2231
2232/*
2233 * Ripoff of 'select_parent()'
2234 *
2235 * search the list of submounts for a given mountpoint, and move any
2236 * shrinkable submounts to the 'graveyard' list.
2237 */
692afc31 2238static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2239{
692afc31 2240 struct mount *this_parent = parent;
5528f911
TM
2241 struct list_head *next;
2242 int found = 0;
2243
2244repeat:
6b41d536 2245 next = this_parent->mnt_mounts.next;
5528f911 2246resume:
6b41d536 2247 while (next != &this_parent->mnt_mounts) {
5528f911 2248 struct list_head *tmp = next;
6b41d536 2249 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2250
2251 next = tmp->next;
692afc31 2252 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2253 continue;
5528f911
TM
2254 /*
2255 * Descend a level if the d_mounts list is non-empty.
2256 */
6b41d536 2257 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2258 this_parent = mnt;
2259 goto repeat;
2260 }
1da177e4 2261
1ab59738 2262 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2263 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2264 found++;
2265 }
1da177e4 2266 }
5528f911
TM
2267 /*
2268 * All done at this level ... ascend and resume the search
2269 */
2270 if (this_parent != parent) {
6b41d536 2271 next = this_parent->mnt_child.next;
0714a533 2272 this_parent = this_parent->mnt_parent;
5528f911
TM
2273 goto resume;
2274 }
2275 return found;
2276}
2277
2278/*
2279 * process a list of expirable mountpoints with the intent of discarding any
2280 * submounts of a specific parent mountpoint
99b7db7b 2281 *
48a066e7 2282 * mount_lock must be held for write
5528f911 2283 */
b54b9be7 2284static void shrink_submounts(struct mount *mnt)
5528f911
TM
2285{
2286 LIST_HEAD(graveyard);
761d5c38 2287 struct mount *m;
5528f911 2288
5528f911 2289 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2290 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2291 while (!list_empty(&graveyard)) {
761d5c38 2292 m = list_first_entry(&graveyard, struct mount,
6776db3d 2293 mnt_expire);
143c8c91 2294 touch_mnt_namespace(m->mnt_ns);
328e6d90 2295 umount_tree(m, 1);
bcc5c7d2
AV
2296 }
2297 }
1da177e4
LT
2298}
2299
1da177e4
LT
2300/*
2301 * Some copy_from_user() implementations do not return the exact number of
2302 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2303 * Note that this function differs from copy_from_user() in that it will oops
2304 * on bad values of `to', rather than returning a short copy.
2305 */
b58fed8b
RP
2306static long exact_copy_from_user(void *to, const void __user * from,
2307 unsigned long n)
1da177e4
LT
2308{
2309 char *t = to;
2310 const char __user *f = from;
2311 char c;
2312
2313 if (!access_ok(VERIFY_READ, from, n))
2314 return n;
2315
2316 while (n) {
2317 if (__get_user(c, f)) {
2318 memset(t, 0, n);
2319 break;
2320 }
2321 *t++ = c;
2322 f++;
2323 n--;
2324 }
2325 return n;
2326}
2327
b58fed8b 2328int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2329{
2330 int i;
2331 unsigned long page;
2332 unsigned long size;
b58fed8b 2333
1da177e4
LT
2334 *where = 0;
2335 if (!data)
2336 return 0;
2337
2338 if (!(page = __get_free_page(GFP_KERNEL)))
2339 return -ENOMEM;
2340
2341 /* We only care that *some* data at the address the user
2342 * gave us is valid. Just in case, we'll zero
2343 * the remainder of the page.
2344 */
2345 /* copy_from_user cannot cross TASK_SIZE ! */
2346 size = TASK_SIZE - (unsigned long)data;
2347 if (size > PAGE_SIZE)
2348 size = PAGE_SIZE;
2349
2350 i = size - exact_copy_from_user((void *)page, data, size);
2351 if (!i) {
b58fed8b 2352 free_page(page);
1da177e4
LT
2353 return -EFAULT;
2354 }
2355 if (i != PAGE_SIZE)
2356 memset((char *)page + i, 0, PAGE_SIZE - i);
2357 *where = page;
2358 return 0;
2359}
2360
eca6f534
VN
2361int copy_mount_string(const void __user *data, char **where)
2362{
2363 char *tmp;
2364
2365 if (!data) {
2366 *where = NULL;
2367 return 0;
2368 }
2369
2370 tmp = strndup_user(data, PAGE_SIZE);
2371 if (IS_ERR(tmp))
2372 return PTR_ERR(tmp);
2373
2374 *where = tmp;
2375 return 0;
2376}
2377
1da177e4
LT
2378/*
2379 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2380 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2381 *
2382 * data is a (void *) that can point to any structure up to
2383 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2384 * information (or be NULL).
2385 *
2386 * Pre-0.97 versions of mount() didn't have a flags word.
2387 * When the flags word was introduced its top half was required
2388 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2389 * Therefore, if this magic number is present, it carries no information
2390 * and must be discarded.
2391 */
808d4e3c
AV
2392long do_mount(const char *dev_name, const char *dir_name,
2393 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2394{
2d92ab3c 2395 struct path path;
1da177e4
LT
2396 int retval = 0;
2397 int mnt_flags = 0;
2398
2399 /* Discard magic */
2400 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2401 flags &= ~MS_MGC_MSK;
2402
2403 /* Basic sanity checks */
2404
2405 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2406 return -EINVAL;
1da177e4
LT
2407
2408 if (data_page)
2409 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2410
a27ab9f2
TH
2411 /* ... and get the mountpoint */
2412 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2413 if (retval)
2414 return retval;
2415
2416 retval = security_sb_mount(dev_name, &path,
2417 type_page, flags, data_page);
0d5cadb8
AV
2418 if (!retval && !may_mount())
2419 retval = -EPERM;
a27ab9f2
TH
2420 if (retval)
2421 goto dput_out;
2422
613cbe3d
AK
2423 /* Default to relatime unless overriden */
2424 if (!(flags & MS_NOATIME))
2425 mnt_flags |= MNT_RELATIME;
0a1c01c9 2426
1da177e4
LT
2427 /* Separate the per-mountpoint flags */
2428 if (flags & MS_NOSUID)
2429 mnt_flags |= MNT_NOSUID;
2430 if (flags & MS_NODEV)
2431 mnt_flags |= MNT_NODEV;
2432 if (flags & MS_NOEXEC)
2433 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2434 if (flags & MS_NOATIME)
2435 mnt_flags |= MNT_NOATIME;
2436 if (flags & MS_NODIRATIME)
2437 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2438 if (flags & MS_STRICTATIME)
2439 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2440 if (flags & MS_RDONLY)
2441 mnt_flags |= MNT_READONLY;
fc33a7bb 2442
7a4dec53 2443 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2444 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2445 MS_STRICTATIME);
1da177e4 2446
1da177e4 2447 if (flags & MS_REMOUNT)
2d92ab3c 2448 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2449 data_page);
2450 else if (flags & MS_BIND)
2d92ab3c 2451 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2452 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2453 retval = do_change_type(&path, flags);
1da177e4 2454 else if (flags & MS_MOVE)
2d92ab3c 2455 retval = do_move_mount(&path, dev_name);
1da177e4 2456 else
2d92ab3c 2457 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2458 dev_name, data_page);
2459dput_out:
2d92ab3c 2460 path_put(&path);
1da177e4
LT
2461 return retval;
2462}
2463
771b1371
EB
2464static void free_mnt_ns(struct mnt_namespace *ns)
2465{
98f842e6 2466 proc_free_inum(ns->proc_inum);
771b1371
EB
2467 put_user_ns(ns->user_ns);
2468 kfree(ns);
2469}
2470
8823c079
EB
2471/*
2472 * Assign a sequence number so we can detect when we attempt to bind
2473 * mount a reference to an older mount namespace into the current
2474 * mount namespace, preventing reference counting loops. A 64bit
2475 * number incrementing at 10Ghz will take 12,427 years to wrap which
2476 * is effectively never, so we can ignore the possibility.
2477 */
2478static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2479
771b1371 2480static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2481{
2482 struct mnt_namespace *new_ns;
98f842e6 2483 int ret;
cf8d2c11
TM
2484
2485 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2486 if (!new_ns)
2487 return ERR_PTR(-ENOMEM);
98f842e6
EB
2488 ret = proc_alloc_inum(&new_ns->proc_inum);
2489 if (ret) {
2490 kfree(new_ns);
2491 return ERR_PTR(ret);
2492 }
8823c079 2493 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2494 atomic_set(&new_ns->count, 1);
2495 new_ns->root = NULL;
2496 INIT_LIST_HEAD(&new_ns->list);
2497 init_waitqueue_head(&new_ns->poll);
2498 new_ns->event = 0;
771b1371 2499 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2500 return new_ns;
2501}
2502
9559f689
AV
2503struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2504 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2505{
6b3286ed 2506 struct mnt_namespace *new_ns;
7f2da1e7 2507 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2508 struct mount *p, *q;
9559f689 2509 struct mount *old;
cb338d06 2510 struct mount *new;
7a472ef4 2511 int copy_flags;
1da177e4 2512
9559f689
AV
2513 BUG_ON(!ns);
2514
2515 if (likely(!(flags & CLONE_NEWNS))) {
2516 get_mnt_ns(ns);
2517 return ns;
2518 }
2519
2520 old = ns->root;
2521
771b1371 2522 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2523 if (IS_ERR(new_ns))
2524 return new_ns;
1da177e4 2525
97216be0 2526 namespace_lock();
1da177e4 2527 /* First pass: copy the tree topology */
4ce5d2b1 2528 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2529 if (user_ns != ns->user_ns)
132c94e3 2530 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2531 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2532 if (IS_ERR(new)) {
328e6d90 2533 namespace_unlock();
771b1371 2534 free_mnt_ns(new_ns);
be34d1a3 2535 return ERR_CAST(new);
1da177e4 2536 }
be08d6d2 2537 new_ns->root = new;
1a4eeaf2 2538 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2539
2540 /*
2541 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2542 * as belonging to new namespace. We have already acquired a private
2543 * fs_struct, so tsk->fs->lock is not needed.
2544 */
909b0a88 2545 p = old;
cb338d06 2546 q = new;
1da177e4 2547 while (p) {
143c8c91 2548 q->mnt_ns = new_ns;
9559f689
AV
2549 if (new_fs) {
2550 if (&p->mnt == new_fs->root.mnt) {
2551 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2552 rootmnt = &p->mnt;
1da177e4 2553 }
9559f689
AV
2554 if (&p->mnt == new_fs->pwd.mnt) {
2555 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2556 pwdmnt = &p->mnt;
1da177e4 2557 }
1da177e4 2558 }
909b0a88
AV
2559 p = next_mnt(p, old);
2560 q = next_mnt(q, new);
4ce5d2b1
EB
2561 if (!q)
2562 break;
2563 while (p->mnt.mnt_root != q->mnt.mnt_root)
2564 p = next_mnt(p, old);
1da177e4 2565 }
328e6d90 2566 namespace_unlock();
1da177e4 2567
1da177e4 2568 if (rootmnt)
f03c6599 2569 mntput(rootmnt);
1da177e4 2570 if (pwdmnt)
f03c6599 2571 mntput(pwdmnt);
1da177e4 2572
741a2951 2573 return new_ns;
1da177e4
LT
2574}
2575
cf8d2c11
TM
2576/**
2577 * create_mnt_ns - creates a private namespace and adds a root filesystem
2578 * @mnt: pointer to the new root filesystem mountpoint
2579 */
1a4eeaf2 2580static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2581{
771b1371 2582 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2583 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2584 struct mount *mnt = real_mount(m);
2585 mnt->mnt_ns = new_ns;
be08d6d2 2586 new_ns->root = mnt;
b1983cd8 2587 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2588 } else {
1a4eeaf2 2589 mntput(m);
cf8d2c11
TM
2590 }
2591 return new_ns;
2592}
cf8d2c11 2593
ea441d11
AV
2594struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2595{
2596 struct mnt_namespace *ns;
d31da0f0 2597 struct super_block *s;
ea441d11
AV
2598 struct path path;
2599 int err;
2600
2601 ns = create_mnt_ns(mnt);
2602 if (IS_ERR(ns))
2603 return ERR_CAST(ns);
2604
2605 err = vfs_path_lookup(mnt->mnt_root, mnt,
2606 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2607
2608 put_mnt_ns(ns);
2609
2610 if (err)
2611 return ERR_PTR(err);
2612
2613 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2614 s = path.mnt->mnt_sb;
2615 atomic_inc(&s->s_active);
ea441d11
AV
2616 mntput(path.mnt);
2617 /* lock the sucker */
d31da0f0 2618 down_write(&s->s_umount);
ea441d11
AV
2619 /* ... and return the root of (sub)tree on it */
2620 return path.dentry;
2621}
2622EXPORT_SYMBOL(mount_subtree);
2623
bdc480e3
HC
2624SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2625 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2626{
eca6f534
VN
2627 int ret;
2628 char *kernel_type;
91a27b2a 2629 struct filename *kernel_dir;
eca6f534 2630 char *kernel_dev;
1da177e4 2631 unsigned long data_page;
1da177e4 2632
eca6f534
VN
2633 ret = copy_mount_string(type, &kernel_type);
2634 if (ret < 0)
2635 goto out_type;
1da177e4 2636
eca6f534
VN
2637 kernel_dir = getname(dir_name);
2638 if (IS_ERR(kernel_dir)) {
2639 ret = PTR_ERR(kernel_dir);
2640 goto out_dir;
2641 }
1da177e4 2642
eca6f534
VN
2643 ret = copy_mount_string(dev_name, &kernel_dev);
2644 if (ret < 0)
2645 goto out_dev;
1da177e4 2646
eca6f534
VN
2647 ret = copy_mount_options(data, &data_page);
2648 if (ret < 0)
2649 goto out_data;
1da177e4 2650
91a27b2a 2651 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2652 (void *) data_page);
1da177e4 2653
eca6f534
VN
2654 free_page(data_page);
2655out_data:
2656 kfree(kernel_dev);
2657out_dev:
2658 putname(kernel_dir);
2659out_dir:
2660 kfree(kernel_type);
2661out_type:
2662 return ret;
1da177e4
LT
2663}
2664
afac7cba
AV
2665/*
2666 * Return true if path is reachable from root
2667 *
48a066e7 2668 * namespace_sem or mount_lock is held
afac7cba 2669 */
643822b4 2670bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2671 const struct path *root)
2672{
643822b4 2673 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2674 dentry = mnt->mnt_mountpoint;
0714a533 2675 mnt = mnt->mnt_parent;
afac7cba 2676 }
643822b4 2677 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2678}
2679
2680int path_is_under(struct path *path1, struct path *path2)
2681{
2682 int res;
48a066e7 2683 read_seqlock_excl(&mount_lock);
643822b4 2684 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2685 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2686 return res;
2687}
2688EXPORT_SYMBOL(path_is_under);
2689
1da177e4
LT
2690/*
2691 * pivot_root Semantics:
2692 * Moves the root file system of the current process to the directory put_old,
2693 * makes new_root as the new root file system of the current process, and sets
2694 * root/cwd of all processes which had them on the current root to new_root.
2695 *
2696 * Restrictions:
2697 * The new_root and put_old must be directories, and must not be on the
2698 * same file system as the current process root. The put_old must be
2699 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2700 * pointed to by put_old must yield the same directory as new_root. No other
2701 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2702 *
4a0d11fa
NB
2703 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2704 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2705 * in this situation.
2706 *
1da177e4
LT
2707 * Notes:
2708 * - we don't move root/cwd if they are not at the root (reason: if something
2709 * cared enough to change them, it's probably wrong to force them elsewhere)
2710 * - it's okay to pick a root that isn't the root of a file system, e.g.
2711 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2712 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2713 * first.
2714 */
3480b257
HC
2715SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2716 const char __user *, put_old)
1da177e4 2717{
2d8f3038 2718 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2719 struct mount *new_mnt, *root_mnt, *old_mnt;
2720 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2721 int error;
2722
9b40bc90 2723 if (!may_mount())
1da177e4
LT
2724 return -EPERM;
2725
2d8f3038 2726 error = user_path_dir(new_root, &new);
1da177e4
LT
2727 if (error)
2728 goto out0;
1da177e4 2729
2d8f3038 2730 error = user_path_dir(put_old, &old);
1da177e4
LT
2731 if (error)
2732 goto out1;
2733
2d8f3038 2734 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2735 if (error)
2736 goto out2;
1da177e4 2737
f7ad3c6b 2738 get_fs_root(current->fs, &root);
84d17192
AV
2739 old_mp = lock_mount(&old);
2740 error = PTR_ERR(old_mp);
2741 if (IS_ERR(old_mp))
b12cea91
AV
2742 goto out3;
2743
1da177e4 2744 error = -EINVAL;
419148da
AV
2745 new_mnt = real_mount(new.mnt);
2746 root_mnt = real_mount(root.mnt);
84d17192
AV
2747 old_mnt = real_mount(old.mnt);
2748 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2749 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2750 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2751 goto out4;
143c8c91 2752 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2753 goto out4;
5ff9d8a6
EB
2754 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2755 goto out4;
1da177e4 2756 error = -ENOENT;
f3da392e 2757 if (d_unlinked(new.dentry))
b12cea91 2758 goto out4;
1da177e4 2759 error = -EBUSY;
84d17192 2760 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2761 goto out4; /* loop, on the same file system */
1da177e4 2762 error = -EINVAL;
8c3ee42e 2763 if (root.mnt->mnt_root != root.dentry)
b12cea91 2764 goto out4; /* not a mountpoint */
676da58d 2765 if (!mnt_has_parent(root_mnt))
b12cea91 2766 goto out4; /* not attached */
84d17192 2767 root_mp = root_mnt->mnt_mp;
2d8f3038 2768 if (new.mnt->mnt_root != new.dentry)
b12cea91 2769 goto out4; /* not a mountpoint */
676da58d 2770 if (!mnt_has_parent(new_mnt))
b12cea91 2771 goto out4; /* not attached */
4ac91378 2772 /* make sure we can reach put_old from new_root */
84d17192 2773 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2774 goto out4;
84d17192 2775 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2776 lock_mount_hash();
419148da
AV
2777 detach_mnt(new_mnt, &parent_path);
2778 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2779 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2780 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2781 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2782 }
4ac91378 2783 /* mount old root on put_old */
84d17192 2784 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2785 /* mount new_root on / */
84d17192 2786 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2787 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2788 unlock_mount_hash();
2d8f3038 2789 chroot_fs_refs(&root, &new);
84d17192 2790 put_mountpoint(root_mp);
1da177e4 2791 error = 0;
b12cea91 2792out4:
84d17192 2793 unlock_mount(old_mp);
b12cea91
AV
2794 if (!error) {
2795 path_put(&root_parent);
2796 path_put(&parent_path);
2797 }
2798out3:
8c3ee42e 2799 path_put(&root);
b12cea91 2800out2:
2d8f3038 2801 path_put(&old);
1da177e4 2802out1:
2d8f3038 2803 path_put(&new);
1da177e4 2804out0:
1da177e4 2805 return error;
1da177e4
LT
2806}
2807
2808static void __init init_mount_tree(void)
2809{
2810 struct vfsmount *mnt;
6b3286ed 2811 struct mnt_namespace *ns;
ac748a09 2812 struct path root;
0c55cfc4 2813 struct file_system_type *type;
1da177e4 2814
0c55cfc4
EB
2815 type = get_fs_type("rootfs");
2816 if (!type)
2817 panic("Can't find rootfs type");
2818 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2819 put_filesystem(type);
1da177e4
LT
2820 if (IS_ERR(mnt))
2821 panic("Can't create rootfs");
b3e19d92 2822
3b22edc5
TM
2823 ns = create_mnt_ns(mnt);
2824 if (IS_ERR(ns))
1da177e4 2825 panic("Can't allocate initial namespace");
6b3286ed
KK
2826
2827 init_task.nsproxy->mnt_ns = ns;
2828 get_mnt_ns(ns);
2829
be08d6d2
AV
2830 root.mnt = mnt;
2831 root.dentry = mnt->mnt_root;
ac748a09
JB
2832
2833 set_fs_pwd(current->fs, &root);
2834 set_fs_root(current->fs, &root);
1da177e4
LT
2835}
2836
74bf17cf 2837void __init mnt_init(void)
1da177e4 2838{
13f14b4d 2839 unsigned u;
15a67dd8 2840 int err;
1da177e4 2841
7d6fec45 2842 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2843 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2844
0818bf27 2845 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2846 sizeof(struct hlist_head),
0818bf27
AV
2847 mhash_entries, 19,
2848 0,
2849 &m_hash_shift, &m_hash_mask, 0, 0);
2850 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2851 sizeof(struct hlist_head),
2852 mphash_entries, 19,
2853 0,
2854 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2855
84d17192 2856 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2857 panic("Failed to allocate mount hash table\n");
2858
0818bf27 2859 for (u = 0; u <= m_hash_mask; u++)
38129a13 2860 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2861 for (u = 0; u <= mp_hash_mask; u++)
2862 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2863
4b93dc9b
TH
2864 kernfs_init();
2865
15a67dd8
RD
2866 err = sysfs_init();
2867 if (err)
2868 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2869 __func__, err);
00d26666
GKH
2870 fs_kobj = kobject_create_and_add("fs", NULL);
2871 if (!fs_kobj)
8e24eea7 2872 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2873 init_rootfs();
2874 init_mount_tree();
2875}
2876
616511d0 2877void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2878{
d498b25a 2879 if (!atomic_dec_and_test(&ns->count))
616511d0 2880 return;
7b00ed6f 2881 drop_collected_mounts(&ns->root->mnt);
771b1371 2882 free_mnt_ns(ns);
1da177e4 2883}
9d412a43
AV
2884
2885struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2886{
423e0ab0
TC
2887 struct vfsmount *mnt;
2888 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2889 if (!IS_ERR(mnt)) {
2890 /*
2891 * it is a longterm mount, don't release mnt until
2892 * we unmount before file sys is unregistered
2893 */
f7a99c5b 2894 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2895 }
2896 return mnt;
9d412a43
AV
2897}
2898EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2899
2900void kern_unmount(struct vfsmount *mnt)
2901{
2902 /* release long term mount so mount point can be released */
2903 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2904 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2905 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2906 mntput(mnt);
2907 }
2908}
2909EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2910
2911bool our_mnt(struct vfsmount *mnt)
2912{
143c8c91 2913 return check_mnt(real_mount(mnt));
02125a82 2914}
8823c079 2915
3151527e
EB
2916bool current_chrooted(void)
2917{
2918 /* Does the current process have a non-standard root */
2919 struct path ns_root;
2920 struct path fs_root;
2921 bool chrooted;
2922
2923 /* Find the namespace root */
2924 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2925 ns_root.dentry = ns_root.mnt->mnt_root;
2926 path_get(&ns_root);
2927 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2928 ;
2929
2930 get_fs_root(current->fs, &fs_root);
2931
2932 chrooted = !path_equal(&fs_root, &ns_root);
2933
2934 path_put(&fs_root);
2935 path_put(&ns_root);
2936
2937 return chrooted;
2938}
2939
e51db735 2940bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2941{
2942 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2943 struct mount *mnt;
e51db735 2944 bool visible = false;
87a8ebd6 2945
e51db735
EB
2946 if (unlikely(!ns))
2947 return false;
2948
44bb4385 2949 down_read(&namespace_sem);
87a8ebd6 2950 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2951 struct mount *child;
2952 if (mnt->mnt.mnt_sb->s_type != type)
2953 continue;
2954
2955 /* This mount is not fully visible if there are any child mounts
2956 * that cover anything except for empty directories.
2957 */
2958 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2959 struct inode *inode = child->mnt_mountpoint->d_inode;
2960 if (!S_ISDIR(inode->i_mode))
2961 goto next;
41301ae7 2962 if (inode->i_nlink > 2)
e51db735 2963 goto next;
87a8ebd6 2964 }
e51db735
EB
2965 visible = true;
2966 goto found;
2967 next: ;
87a8ebd6 2968 }
e51db735 2969found:
44bb4385 2970 up_read(&namespace_sem);
e51db735 2971 return visible;
87a8ebd6
EB
2972}
2973
8823c079
EB
2974static void *mntns_get(struct task_struct *task)
2975{
2976 struct mnt_namespace *ns = NULL;
2977 struct nsproxy *nsproxy;
2978
2979 rcu_read_lock();
2980 nsproxy = task_nsproxy(task);
2981 if (nsproxy) {
2982 ns = nsproxy->mnt_ns;
2983 get_mnt_ns(ns);
2984 }
2985 rcu_read_unlock();
2986
2987 return ns;
2988}
2989
2990static void mntns_put(void *ns)
2991{
2992 put_mnt_ns(ns);
2993}
2994
2995static int mntns_install(struct nsproxy *nsproxy, void *ns)
2996{
2997 struct fs_struct *fs = current->fs;
2998 struct mnt_namespace *mnt_ns = ns;
2999 struct path root;
3000
0c55cfc4 3001 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3002 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3003 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3004 return -EPERM;
8823c079
EB
3005
3006 if (fs->users != 1)
3007 return -EINVAL;
3008
3009 get_mnt_ns(mnt_ns);
3010 put_mnt_ns(nsproxy->mnt_ns);
3011 nsproxy->mnt_ns = mnt_ns;
3012
3013 /* Find the root */
3014 root.mnt = &mnt_ns->root->mnt;
3015 root.dentry = mnt_ns->root->mnt.mnt_root;
3016 path_get(&root);
3017 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3018 ;
3019
3020 /* Update the pwd and root */
3021 set_fs_pwd(fs, &root);
3022 set_fs_root(fs, &root);
3023
3024 path_put(&root);
3025 return 0;
3026}
3027
98f842e6
EB
3028static unsigned int mntns_inum(void *ns)
3029{
3030 struct mnt_namespace *mnt_ns = ns;
3031 return mnt_ns->proc_inum;
3032}
3033
8823c079
EB
3034const struct proc_ns_operations mntns_operations = {
3035 .name = "mnt",
3036 .type = CLONE_NEWNS,
3037 .get = mntns_get,
3038 .put = mntns_put,
3039 .install = mntns_install,
98f842e6 3040 .inum = mntns_inum,
8823c079 3041};