get rid of detach_mnt()
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
9164bb4a 32
07b20889 33#include "pnode.h"
948730b0 34#include "internal.h"
1da177e4 35
d2921684
EB
36/* Maximum number of mounts in a mount namespace */
37unsigned int sysctl_mount_max __read_mostly = 100000;
38
0818bf27
AV
39static unsigned int m_hash_mask __read_mostly;
40static unsigned int m_hash_shift __read_mostly;
41static unsigned int mp_hash_mask __read_mostly;
42static unsigned int mp_hash_shift __read_mostly;
43
44static __initdata unsigned long mhash_entries;
45static int __init set_mhash_entries(char *str)
46{
47 if (!str)
48 return 0;
49 mhash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51}
52__setup("mhash_entries=", set_mhash_entries);
53
54static __initdata unsigned long mphash_entries;
55static int __init set_mphash_entries(char *str)
56{
57 if (!str)
58 return 0;
59 mphash_entries = simple_strtoul(str, &str, 0);
60 return 1;
61}
62__setup("mphash_entries=", set_mphash_entries);
13f14b4d 63
c7999c36 64static u64 event;
73cd49ec 65static DEFINE_IDA(mnt_id_ida);
719f5d7f 66static DEFINE_IDA(mnt_group_ida);
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
72static HLIST_HEAD(unmounted); /* protected by namespace_sem */
73static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 74
f87fd4c2 75/* /sys/fs */
00d26666
GKH
76struct kobject *fs_kobj;
77EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 78
99b7db7b
NP
79/*
80 * vfsmount lock may be taken for read to prevent changes to the
81 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * up the tree.
83 *
84 * It should be taken for write in all cases where the vfsmount
85 * tree or hash is modified or when a vfsmount structure is modified.
86 */
48a066e7 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 88
38129a13 89static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 90{
b58fed8b
RP
91 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
92 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
93 tmp = tmp + (tmp >> m_hash_shift);
94 return &mount_hashtable[tmp & m_hash_mask];
95}
96
97static inline struct hlist_head *mp_hash(struct dentry *dentry)
98{
99 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
100 tmp = tmp + (tmp >> mp_hash_shift);
101 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
102}
103
b105e270 104static int mnt_alloc_id(struct mount *mnt)
73cd49ec 105{
169b480e
MW
106 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
107
108 if (res < 0)
109 return res;
110 mnt->mnt_id = res;
111 return 0;
73cd49ec
MS
112}
113
b105e270 114static void mnt_free_id(struct mount *mnt)
73cd49ec 115{
169b480e 116 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
117}
118
719f5d7f
MS
119/*
120 * Allocate a new peer group ID
719f5d7f 121 */
4b8b21f4 122static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 123{
169b480e 124 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 125
169b480e
MW
126 if (res < 0)
127 return res;
128 mnt->mnt_group_id = res;
129 return 0;
719f5d7f
MS
130}
131
132/*
133 * Release a peer group ID
134 */
4b8b21f4 135void mnt_release_group_id(struct mount *mnt)
719f5d7f 136{
169b480e 137 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 138 mnt->mnt_group_id = 0;
719f5d7f
MS
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
83adc753 144static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
145{
146#ifdef CONFIG_SMP
68e8a9fe 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
148#else
149 preempt_disable();
68e8a9fe 150 mnt->mnt_count += n;
b3e19d92
NP
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
83adc753 158unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
68e8a9fe 165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
166 }
167
168 return count;
169#else
68e8a9fe 170 return mnt->mnt_count;
b3e19d92
NP
171#endif
172}
173
87b95ce0
AV
174static void drop_mountpoint(struct fs_pin *p)
175{
176 struct mount *m = container_of(p, struct mount, mnt_umount);
87b95ce0
AV
177 pin_remove(p);
178 mntput(&m->mnt);
179}
180
b105e270 181static struct mount *alloc_vfsmnt(const char *name)
1da177e4 182{
c63181e6
AV
183 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
184 if (mnt) {
73cd49ec
MS
185 int err;
186
c63181e6 187 err = mnt_alloc_id(mnt);
88b38782
LZ
188 if (err)
189 goto out_free_cache;
190
191 if (name) {
fcc139ae 192 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 193 if (!mnt->mnt_devname)
88b38782 194 goto out_free_id;
73cd49ec
MS
195 }
196
b3e19d92 197#ifdef CONFIG_SMP
c63181e6
AV
198 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
199 if (!mnt->mnt_pcp)
b3e19d92
NP
200 goto out_free_devname;
201
c63181e6 202 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 203#else
c63181e6
AV
204 mnt->mnt_count = 1;
205 mnt->mnt_writers = 0;
b3e19d92
NP
206#endif
207
38129a13 208 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
209 INIT_LIST_HEAD(&mnt->mnt_child);
210 INIT_LIST_HEAD(&mnt->mnt_mounts);
211 INIT_LIST_HEAD(&mnt->mnt_list);
212 INIT_LIST_HEAD(&mnt->mnt_expire);
213 INIT_LIST_HEAD(&mnt->mnt_share);
214 INIT_LIST_HEAD(&mnt->mnt_slave_list);
215 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 216 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 217 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 218 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 219 }
c63181e6 220 return mnt;
88b38782 221
d3ef3d73 222#ifdef CONFIG_SMP
223out_free_devname:
fcc139ae 224 kfree_const(mnt->mnt_devname);
d3ef3d73 225#endif
88b38782 226out_free_id:
c63181e6 227 mnt_free_id(mnt);
88b38782 228out_free_cache:
c63181e6 229 kmem_cache_free(mnt_cache, mnt);
88b38782 230 return NULL;
1da177e4
LT
231}
232
3d733633
DH
233/*
234 * Most r/o checks on a fs are for operations that take
235 * discrete amounts of time, like a write() or unlink().
236 * We must keep track of when those operations start
237 * (for permission checks) and when they end, so that
238 * we can determine when writes are able to occur to
239 * a filesystem.
240 */
241/*
242 * __mnt_is_readonly: check whether a mount is read-only
243 * @mnt: the mount to check for its write status
244 *
245 * This shouldn't be used directly ouside of the VFS.
246 * It does not guarantee that the filesystem will stay
247 * r/w, just that it is right *now*. This can not and
248 * should not be used in place of IS_RDONLY(inode).
249 * mnt_want/drop_write() will _keep_ the filesystem
250 * r/w.
251 */
43f5e655 252bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 253{
43f5e655 254 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
255}
256EXPORT_SYMBOL_GPL(__mnt_is_readonly);
257
83adc753 258static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 259{
260#ifdef CONFIG_SMP
68e8a9fe 261 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 262#else
68e8a9fe 263 mnt->mnt_writers++;
d3ef3d73 264#endif
265}
3d733633 266
83adc753 267static inline void mnt_dec_writers(struct mount *mnt)
3d733633 268{
d3ef3d73 269#ifdef CONFIG_SMP
68e8a9fe 270 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 271#else
68e8a9fe 272 mnt->mnt_writers--;
d3ef3d73 273#endif
3d733633 274}
3d733633 275
83adc753 276static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 277{
d3ef3d73 278#ifdef CONFIG_SMP
279 unsigned int count = 0;
3d733633 280 int cpu;
3d733633
DH
281
282 for_each_possible_cpu(cpu) {
68e8a9fe 283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 284 }
3d733633 285
d3ef3d73 286 return count;
287#else
288 return mnt->mnt_writers;
289#endif
3d733633
DH
290}
291
4ed5e82f
MS
292static int mnt_is_readonly(struct vfsmount *mnt)
293{
294 if (mnt->mnt_sb->s_readonly_remount)
295 return 1;
296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 smp_rmb();
298 return __mnt_is_readonly(mnt);
299}
300
8366025e 301/*
eb04c282
JK
302 * Most r/o & frozen checks on a fs are for operations that take discrete
303 * amounts of time, like a write() or unlink(). We must keep track of when
304 * those operations start (for permission checks) and when they end, so that we
305 * can determine when writes are able to occur to a filesystem.
8366025e
DH
306 */
307/**
eb04c282 308 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 309 * @m: the mount on which to take a write
8366025e 310 *
eb04c282
JK
311 * This tells the low-level filesystem that a write is about to be performed to
312 * it, and makes sure that writes are allowed (mnt it read-write) before
313 * returning success. This operation does not protect against filesystem being
314 * frozen. When the write operation is finished, __mnt_drop_write() must be
315 * called. This is effectively a refcount.
8366025e 316 */
eb04c282 317int __mnt_want_write(struct vfsmount *m)
8366025e 318{
83adc753 319 struct mount *mnt = real_mount(m);
3d733633 320 int ret = 0;
3d733633 321
d3ef3d73 322 preempt_disable();
c6653a83 323 mnt_inc_writers(mnt);
d3ef3d73 324 /*
c6653a83 325 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 * incremented count after it has set MNT_WRITE_HOLD.
328 */
329 smp_mb();
6aa7de05 330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 331 cpu_relax();
332 /*
333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 * be set to match its requirements. So we must not load that until
335 * MNT_WRITE_HOLD is cleared.
336 */
337 smp_rmb();
4ed5e82f 338 if (mnt_is_readonly(m)) {
c6653a83 339 mnt_dec_writers(mnt);
3d733633 340 ret = -EROFS;
3d733633 341 }
d3ef3d73 342 preempt_enable();
eb04c282
JK
343
344 return ret;
345}
346
347/**
348 * mnt_want_write - get write access to a mount
349 * @m: the mount on which to take a write
350 *
351 * This tells the low-level filesystem that a write is about to be performed to
352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
353 * is not frozen) before returning success. When the write operation is
354 * finished, mnt_drop_write() must be called. This is effectively a refcount.
355 */
356int mnt_want_write(struct vfsmount *m)
357{
358 int ret;
359
360 sb_start_write(m->mnt_sb);
361 ret = __mnt_want_write(m);
362 if (ret)
363 sb_end_write(m->mnt_sb);
3d733633 364 return ret;
8366025e
DH
365}
366EXPORT_SYMBOL_GPL(mnt_want_write);
367
96029c4e 368/**
369 * mnt_clone_write - get write access to a mount
370 * @mnt: the mount on which to take a write
371 *
372 * This is effectively like mnt_want_write, except
373 * it must only be used to take an extra write reference
374 * on a mountpoint that we already know has a write reference
375 * on it. This allows some optimisation.
376 *
377 * After finished, mnt_drop_write must be called as usual to
378 * drop the reference.
379 */
380int mnt_clone_write(struct vfsmount *mnt)
381{
382 /* superblock may be r/o */
383 if (__mnt_is_readonly(mnt))
384 return -EROFS;
385 preempt_disable();
83adc753 386 mnt_inc_writers(real_mount(mnt));
96029c4e 387 preempt_enable();
388 return 0;
389}
390EXPORT_SYMBOL_GPL(mnt_clone_write);
391
392/**
eb04c282 393 * __mnt_want_write_file - get write access to a file's mount
96029c4e 394 * @file: the file who's mount on which to take a write
395 *
eb04c282 396 * This is like __mnt_want_write, but it takes a file and can
96029c4e 397 * do some optimisations if the file is open for write already
398 */
eb04c282 399int __mnt_want_write_file(struct file *file)
96029c4e 400{
83f936c7 401 if (!(file->f_mode & FMODE_WRITER))
eb04c282 402 return __mnt_want_write(file->f_path.mnt);
96029c4e 403 else
404 return mnt_clone_write(file->f_path.mnt);
405}
eb04c282 406
7c6893e3
MS
407/**
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
7c6893e3
MS
413 */
414int mnt_want_write_file(struct file *file)
415{
416 int ret;
417
a6795a58 418 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
419 ret = __mnt_want_write_file(file);
420 if (ret)
a6795a58 421 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
422 return ret;
423}
96029c4e 424EXPORT_SYMBOL_GPL(mnt_want_write_file);
425
8366025e 426/**
eb04c282 427 * __mnt_drop_write - give up write access to a mount
8366025e
DH
428 * @mnt: the mount on which to give up write access
429 *
430 * Tells the low-level filesystem that we are done
431 * performing writes to it. Must be matched with
eb04c282 432 * __mnt_want_write() call above.
8366025e 433 */
eb04c282 434void __mnt_drop_write(struct vfsmount *mnt)
8366025e 435{
d3ef3d73 436 preempt_disable();
83adc753 437 mnt_dec_writers(real_mount(mnt));
d3ef3d73 438 preempt_enable();
8366025e 439}
eb04c282
JK
440
441/**
442 * mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done performing writes to it and
446 * also allows filesystem to be frozen again. Must be matched with
447 * mnt_want_write() call above.
448 */
449void mnt_drop_write(struct vfsmount *mnt)
450{
451 __mnt_drop_write(mnt);
452 sb_end_write(mnt->mnt_sb);
453}
8366025e
DH
454EXPORT_SYMBOL_GPL(mnt_drop_write);
455
eb04c282
JK
456void __mnt_drop_write_file(struct file *file)
457{
458 __mnt_drop_write(file->f_path.mnt);
459}
460
7c6893e3
MS
461void mnt_drop_write_file(struct file *file)
462{
a6795a58 463 __mnt_drop_write_file(file);
7c6893e3
MS
464 sb_end_write(file_inode(file)->i_sb);
465}
2a79f17e
AV
466EXPORT_SYMBOL(mnt_drop_write_file);
467
83adc753 468static int mnt_make_readonly(struct mount *mnt)
8366025e 469{
3d733633
DH
470 int ret = 0;
471
719ea2fb 472 lock_mount_hash();
83adc753 473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 474 /*
d3ef3d73 475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
3d733633 477 */
d3ef3d73 478 smp_mb();
479
3d733633 480 /*
d3ef3d73 481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
485 *
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
3d733633 495 */
c6653a83 496 if (mnt_get_writers(mnt) > 0)
d3ef3d73 497 ret = -EBUSY;
498 else
83adc753 499 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 500 /*
501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 * that become unheld will see MNT_READONLY.
503 */
504 smp_wmb();
83adc753 505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 506 unlock_mount_hash();
3d733633 507 return ret;
8366025e 508}
8366025e 509
43f5e655 510static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 511{
719ea2fb 512 lock_mount_hash();
83adc753 513 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 514 unlock_mount_hash();
43f5e655 515 return 0;
2e4b7fcd
DH
516}
517
4ed5e82f
MS
518int sb_prepare_remount_readonly(struct super_block *sb)
519{
520 struct mount *mnt;
521 int err = 0;
522
8e8b8796
MS
523 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
524 if (atomic_long_read(&sb->s_remove_count))
525 return -EBUSY;
526
719ea2fb 527 lock_mount_hash();
4ed5e82f
MS
528 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
529 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
530 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
531 smp_mb();
532 if (mnt_get_writers(mnt) > 0) {
533 err = -EBUSY;
534 break;
535 }
536 }
537 }
8e8b8796
MS
538 if (!err && atomic_long_read(&sb->s_remove_count))
539 err = -EBUSY;
540
4ed5e82f
MS
541 if (!err) {
542 sb->s_readonly_remount = 1;
543 smp_wmb();
544 }
545 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
546 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
547 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
548 }
719ea2fb 549 unlock_mount_hash();
4ed5e82f
MS
550
551 return err;
552}
553
b105e270 554static void free_vfsmnt(struct mount *mnt)
1da177e4 555{
fcc139ae 556 kfree_const(mnt->mnt_devname);
d3ef3d73 557#ifdef CONFIG_SMP
68e8a9fe 558 free_percpu(mnt->mnt_pcp);
d3ef3d73 559#endif
b105e270 560 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
561}
562
8ffcb32e
DH
563static void delayed_free_vfsmnt(struct rcu_head *head)
564{
565 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
566}
567
48a066e7 568/* call under rcu_read_lock */
294d71ff 569int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
570{
571 struct mount *mnt;
572 if (read_seqretry(&mount_lock, seq))
294d71ff 573 return 1;
48a066e7 574 if (bastard == NULL)
294d71ff 575 return 0;
48a066e7
AV
576 mnt = real_mount(bastard);
577 mnt_add_count(mnt, 1);
119e1ef8 578 smp_mb(); // see mntput_no_expire()
48a066e7 579 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 580 return 0;
48a066e7
AV
581 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
582 mnt_add_count(mnt, -1);
294d71ff
AV
583 return 1;
584 }
119e1ef8
AV
585 lock_mount_hash();
586 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
587 mnt_add_count(mnt, -1);
588 unlock_mount_hash();
589 return 1;
590 }
591 unlock_mount_hash();
592 /* caller will mntput() */
294d71ff
AV
593 return -1;
594}
595
596/* call under rcu_read_lock */
597bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598{
599 int res = __legitimize_mnt(bastard, seq);
600 if (likely(!res))
601 return true;
602 if (unlikely(res < 0)) {
603 rcu_read_unlock();
604 mntput(bastard);
605 rcu_read_lock();
48a066e7 606 }
48a066e7
AV
607 return false;
608}
609
1da177e4 610/*
474279dc 611 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 612 * call under rcu_read_lock()
1da177e4 613 */
474279dc 614struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 615{
38129a13 616 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
617 struct mount *p;
618
38129a13 619 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
620 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
621 return p;
622 return NULL;
623}
624
a05964f3 625/*
f015f126
DH
626 * lookup_mnt - Return the first child mount mounted at path
627 *
628 * "First" means first mounted chronologically. If you create the
629 * following mounts:
630 *
631 * mount /dev/sda1 /mnt
632 * mount /dev/sda2 /mnt
633 * mount /dev/sda3 /mnt
634 *
635 * Then lookup_mnt() on the base /mnt dentry in the root mount will
636 * return successively the root dentry and vfsmount of /dev/sda1, then
637 * /dev/sda2, then /dev/sda3, then NULL.
638 *
639 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 640 */
ca71cf71 641struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 642{
c7105365 643 struct mount *child_mnt;
48a066e7
AV
644 struct vfsmount *m;
645 unsigned seq;
99b7db7b 646
48a066e7
AV
647 rcu_read_lock();
648 do {
649 seq = read_seqbegin(&mount_lock);
650 child_mnt = __lookup_mnt(path->mnt, path->dentry);
651 m = child_mnt ? &child_mnt->mnt : NULL;
652 } while (!legitimize_mnt(m, seq));
653 rcu_read_unlock();
654 return m;
a05964f3
RP
655}
656
7af1364f
EB
657/*
658 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
659 * current mount namespace.
660 *
661 * The common case is dentries are not mountpoints at all and that
662 * test is handled inline. For the slow case when we are actually
663 * dealing with a mountpoint of some kind, walk through all of the
664 * mounts in the current mount namespace and test to see if the dentry
665 * is a mountpoint.
666 *
667 * The mount_hashtable is not usable in the context because we
668 * need to identify all mounts that may be in the current mount
669 * namespace not just a mount that happens to have some specified
670 * parent mount.
671 */
672bool __is_local_mountpoint(struct dentry *dentry)
673{
674 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
675 struct mount *mnt;
676 bool is_covered = false;
677
678 if (!d_mountpoint(dentry))
679 goto out;
680
681 down_read(&namespace_sem);
682 list_for_each_entry(mnt, &ns->list, mnt_list) {
683 is_covered = (mnt->mnt_mountpoint == dentry);
684 if (is_covered)
685 break;
686 }
687 up_read(&namespace_sem);
688out:
689 return is_covered;
690}
691
e2dfa935 692static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 693{
0818bf27 694 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
695 struct mountpoint *mp;
696
0818bf27 697 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 698 if (mp->m_dentry == dentry) {
84d17192
AV
699 mp->m_count++;
700 return mp;
701 }
702 }
e2dfa935
EB
703 return NULL;
704}
705
3895dbf8 706static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 707{
3895dbf8 708 struct mountpoint *mp, *new = NULL;
e2dfa935 709 int ret;
84d17192 710
3895dbf8 711 if (d_mountpoint(dentry)) {
1e9c75fb
BC
712 /* might be worth a WARN_ON() */
713 if (d_unlinked(dentry))
714 return ERR_PTR(-ENOENT);
3895dbf8
EB
715mountpoint:
716 read_seqlock_excl(&mount_lock);
717 mp = lookup_mountpoint(dentry);
718 read_sequnlock_excl(&mount_lock);
719 if (mp)
720 goto done;
721 }
722
723 if (!new)
724 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
725 if (!new)
84d17192
AV
726 return ERR_PTR(-ENOMEM);
727
3895dbf8
EB
728
729 /* Exactly one processes may set d_mounted */
eed81007 730 ret = d_set_mounted(dentry);
eed81007 731
3895dbf8
EB
732 /* Someone else set d_mounted? */
733 if (ret == -EBUSY)
734 goto mountpoint;
735
736 /* The dentry is not available as a mountpoint? */
737 mp = ERR_PTR(ret);
738 if (ret)
739 goto done;
740
741 /* Add the new mountpoint to the hash table */
742 read_seqlock_excl(&mount_lock);
4edbe133 743 new->m_dentry = dget(dentry);
3895dbf8
EB
744 new->m_count = 1;
745 hlist_add_head(&new->m_hash, mp_hash(dentry));
746 INIT_HLIST_HEAD(&new->m_list);
747 read_sequnlock_excl(&mount_lock);
748
749 mp = new;
750 new = NULL;
751done:
752 kfree(new);
84d17192
AV
753 return mp;
754}
755
4edbe133
AV
756/*
757 * vfsmount lock must be held. Additionally, the caller is responsible
758 * for serializing calls for given disposal list.
759 */
760static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
761{
762 if (!--mp->m_count) {
763 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 764 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
765 spin_lock(&dentry->d_lock);
766 dentry->d_flags &= ~DCACHE_MOUNTED;
767 spin_unlock(&dentry->d_lock);
4edbe133 768 dput_to_list(dentry, list);
0818bf27 769 hlist_del(&mp->m_hash);
84d17192
AV
770 kfree(mp);
771 }
772}
773
4edbe133
AV
774/* called with namespace_lock and vfsmount lock */
775static void put_mountpoint(struct mountpoint *mp)
776{
777 __put_mountpoint(mp, &ex_mountpoints);
778}
779
143c8c91 780static inline int check_mnt(struct mount *mnt)
1da177e4 781{
6b3286ed 782 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
783}
784
99b7db7b
NP
785/*
786 * vfsmount lock must be held for write
787 */
6b3286ed 788static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
789{
790 if (ns) {
791 ns->event = ++event;
792 wake_up_interruptible(&ns->poll);
793 }
794}
795
99b7db7b
NP
796/*
797 * vfsmount lock must be held for write
798 */
6b3286ed 799static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
800{
801 if (ns && ns->event != event) {
802 ns->event = event;
803 wake_up_interruptible(&ns->poll);
804 }
805}
806
99b7db7b
NP
807/*
808 * vfsmount lock must be held for write
809 */
e4e59906 810static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 811{
e4e59906 812 struct mountpoint *mp;
0714a533 813 mnt->mnt_parent = mnt;
a73324da 814 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 815 list_del_init(&mnt->mnt_child);
38129a13 816 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 817 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 818 mp = mnt->mnt_mp;
84d17192 819 mnt->mnt_mp = NULL;
e4e59906 820 return mp;
1da177e4
LT
821}
822
6a46c573
EB
823/*
824 * vfsmount lock must be held for write
825 */
826static void umount_mnt(struct mount *mnt)
827{
e4e59906 828 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
829}
830
99b7db7b
NP
831/*
832 * vfsmount lock must be held for write
833 */
84d17192
AV
834void mnt_set_mountpoint(struct mount *mnt,
835 struct mountpoint *mp,
44d964d6 836 struct mount *child_mnt)
b90fa9ae 837{
84d17192 838 mp->m_count++;
3a2393d7 839 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 840 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 841 child_mnt->mnt_parent = mnt;
84d17192 842 child_mnt->mnt_mp = mp;
0a5eb7c8 843 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
844}
845
1064f874
EB
846static void __attach_mnt(struct mount *mnt, struct mount *parent)
847{
848 hlist_add_head_rcu(&mnt->mnt_hash,
849 m_hash(&parent->mnt, mnt->mnt_mountpoint));
850 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
851}
852
99b7db7b
NP
853/*
854 * vfsmount lock must be held for write
855 */
84d17192
AV
856static void attach_mnt(struct mount *mnt,
857 struct mount *parent,
858 struct mountpoint *mp)
1da177e4 859{
84d17192 860 mnt_set_mountpoint(parent, mp, mnt);
1064f874 861 __attach_mnt(mnt, parent);
b90fa9ae
RP
862}
863
1064f874 864void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 865{
1064f874 866 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
867 struct mount *old_parent = mnt->mnt_parent;
868
869 list_del_init(&mnt->mnt_child);
870 hlist_del_init(&mnt->mnt_mp_list);
871 hlist_del_init_rcu(&mnt->mnt_hash);
872
873 attach_mnt(mnt, parent, mp);
874
875 put_mountpoint(old_mp);
1064f874 876 mnt_add_count(old_parent, -1);
12a5b529
AV
877}
878
b90fa9ae 879/*
99b7db7b 880 * vfsmount lock must be held for write
b90fa9ae 881 */
1064f874 882static void commit_tree(struct mount *mnt)
b90fa9ae 883{
0714a533 884 struct mount *parent = mnt->mnt_parent;
83adc753 885 struct mount *m;
b90fa9ae 886 LIST_HEAD(head);
143c8c91 887 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 888
0714a533 889 BUG_ON(parent == mnt);
b90fa9ae 890
1a4eeaf2 891 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 892 list_for_each_entry(m, &head, mnt_list)
143c8c91 893 m->mnt_ns = n;
f03c6599 894
b90fa9ae
RP
895 list_splice(&head, n->list.prev);
896
d2921684
EB
897 n->mounts += n->pending_mounts;
898 n->pending_mounts = 0;
899
1064f874 900 __attach_mnt(mnt, parent);
6b3286ed 901 touch_mnt_namespace(n);
1da177e4
LT
902}
903
909b0a88 904static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 905{
6b41d536
AV
906 struct list_head *next = p->mnt_mounts.next;
907 if (next == &p->mnt_mounts) {
1da177e4 908 while (1) {
909b0a88 909 if (p == root)
1da177e4 910 return NULL;
6b41d536
AV
911 next = p->mnt_child.next;
912 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 913 break;
0714a533 914 p = p->mnt_parent;
1da177e4
LT
915 }
916 }
6b41d536 917 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
918}
919
315fc83e 920static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 921{
6b41d536
AV
922 struct list_head *prev = p->mnt_mounts.prev;
923 while (prev != &p->mnt_mounts) {
924 p = list_entry(prev, struct mount, mnt_child);
925 prev = p->mnt_mounts.prev;
9676f0c6
RP
926 }
927 return p;
928}
929
8f291889
AV
930/**
931 * vfs_create_mount - Create a mount for a configured superblock
932 * @fc: The configuration context with the superblock attached
933 *
934 * Create a mount to an already configured superblock. If necessary, the
935 * caller should invoke vfs_get_tree() before calling this.
936 *
937 * Note that this does not attach the mount to anything.
938 */
939struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 940{
b105e270 941 struct mount *mnt;
9d412a43 942
8f291889
AV
943 if (!fc->root)
944 return ERR_PTR(-EINVAL);
9d412a43 945
8f291889 946 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
947 if (!mnt)
948 return ERR_PTR(-ENOMEM);
949
8f291889 950 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 951 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 952
8f291889
AV
953 atomic_inc(&fc->root->d_sb->s_active);
954 mnt->mnt.mnt_sb = fc->root->d_sb;
955 mnt->mnt.mnt_root = dget(fc->root);
956 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
957 mnt->mnt_parent = mnt;
9d412a43 958
719ea2fb 959 lock_mount_hash();
8f291889 960 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 961 unlock_mount_hash();
b105e270 962 return &mnt->mnt;
9d412a43 963}
8f291889
AV
964EXPORT_SYMBOL(vfs_create_mount);
965
966struct vfsmount *fc_mount(struct fs_context *fc)
967{
968 int err = vfs_get_tree(fc);
969 if (!err) {
970 up_write(&fc->root->d_sb->s_umount);
971 return vfs_create_mount(fc);
972 }
973 return ERR_PTR(err);
974}
975EXPORT_SYMBOL(fc_mount);
976
9bc61ab1
DH
977struct vfsmount *vfs_kern_mount(struct file_system_type *type,
978 int flags, const char *name,
979 void *data)
9d412a43 980{
9bc61ab1 981 struct fs_context *fc;
8f291889 982 struct vfsmount *mnt;
9bc61ab1 983 int ret = 0;
9d412a43
AV
984
985 if (!type)
3e1aeb00 986 return ERR_PTR(-EINVAL);
9d412a43 987
9bc61ab1
DH
988 fc = fs_context_for_mount(type, flags);
989 if (IS_ERR(fc))
990 return ERR_CAST(fc);
991
3e1aeb00
DH
992 if (name)
993 ret = vfs_parse_fs_string(fc, "source",
994 name, strlen(name));
9bc61ab1
DH
995 if (!ret)
996 ret = parse_monolithic_mount_data(fc, data);
997 if (!ret)
8f291889
AV
998 mnt = fc_mount(fc);
999 else
1000 mnt = ERR_PTR(ret);
9d412a43 1001
9bc61ab1 1002 put_fs_context(fc);
8f291889 1003 return mnt;
9d412a43
AV
1004}
1005EXPORT_SYMBOL_GPL(vfs_kern_mount);
1006
93faccbb
EB
1007struct vfsmount *
1008vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1009 const char *name, void *data)
1010{
1011 /* Until it is worked out how to pass the user namespace
1012 * through from the parent mount to the submount don't support
1013 * unprivileged mounts with submounts.
1014 */
1015 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1016 return ERR_PTR(-EPERM);
1017
e462ec50 1018 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1019}
1020EXPORT_SYMBOL_GPL(vfs_submount);
1021
87129cc0 1022static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1023 int flag)
1da177e4 1024{
87129cc0 1025 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1026 struct mount *mnt;
1027 int err;
1da177e4 1028
be34d1a3
DH
1029 mnt = alloc_vfsmnt(old->mnt_devname);
1030 if (!mnt)
1031 return ERR_PTR(-ENOMEM);
719f5d7f 1032
7a472ef4 1033 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1034 mnt->mnt_group_id = 0; /* not a peer of original */
1035 else
1036 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1037
be34d1a3
DH
1038 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1039 err = mnt_alloc_group_id(mnt);
1040 if (err)
1041 goto out_free;
1da177e4 1042 }
be34d1a3 1043
16a34adb
AV
1044 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1045 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1046
be34d1a3
DH
1047 atomic_inc(&sb->s_active);
1048 mnt->mnt.mnt_sb = sb;
1049 mnt->mnt.mnt_root = dget(root);
1050 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1051 mnt->mnt_parent = mnt;
719ea2fb 1052 lock_mount_hash();
be34d1a3 1053 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1054 unlock_mount_hash();
be34d1a3 1055
7a472ef4
EB
1056 if ((flag & CL_SLAVE) ||
1057 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1058 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1059 mnt->mnt_master = old;
1060 CLEAR_MNT_SHARED(mnt);
1061 } else if (!(flag & CL_PRIVATE)) {
1062 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1063 list_add(&mnt->mnt_share, &old->mnt_share);
1064 if (IS_MNT_SLAVE(old))
1065 list_add(&mnt->mnt_slave, &old->mnt_slave);
1066 mnt->mnt_master = old->mnt_master;
5235d448
AV
1067 } else {
1068 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1069 }
1070 if (flag & CL_MAKE_SHARED)
1071 set_mnt_shared(mnt);
1072
1073 /* stick the duplicate mount on the same expiry list
1074 * as the original if that was on one */
1075 if (flag & CL_EXPIRE) {
1076 if (!list_empty(&old->mnt_expire))
1077 list_add(&mnt->mnt_expire, &old->mnt_expire);
1078 }
1079
cb338d06 1080 return mnt;
719f5d7f
MS
1081
1082 out_free:
8ffcb32e 1083 mnt_free_id(mnt);
719f5d7f 1084 free_vfsmnt(mnt);
be34d1a3 1085 return ERR_PTR(err);
1da177e4
LT
1086}
1087
9ea459e1
AV
1088static void cleanup_mnt(struct mount *mnt)
1089{
1090 /*
1091 * This probably indicates that somebody messed
1092 * up a mnt_want/drop_write() pair. If this
1093 * happens, the filesystem was probably unable
1094 * to make r/w->r/o transitions.
1095 */
1096 /*
1097 * The locking used to deal with mnt_count decrement provides barriers,
1098 * so mnt_get_writers() below is safe.
1099 */
1100 WARN_ON(mnt_get_writers(mnt));
1101 if (unlikely(mnt->mnt_pins.first))
1102 mnt_pin_kill(mnt);
1103 fsnotify_vfsmount_delete(&mnt->mnt);
1104 dput(mnt->mnt.mnt_root);
1105 deactivate_super(mnt->mnt.mnt_sb);
1106 mnt_free_id(mnt);
1107 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1108}
1109
1110static void __cleanup_mnt(struct rcu_head *head)
1111{
1112 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1113}
1114
1115static LLIST_HEAD(delayed_mntput_list);
1116static void delayed_mntput(struct work_struct *unused)
1117{
1118 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1119 struct mount *m, *t;
9ea459e1 1120
29785735
BP
1121 llist_for_each_entry_safe(m, t, node, mnt_llist)
1122 cleanup_mnt(m);
9ea459e1
AV
1123}
1124static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1125
900148dc 1126static void mntput_no_expire(struct mount *mnt)
b3e19d92 1127{
4edbe133
AV
1128 LIST_HEAD(list);
1129
48a066e7 1130 rcu_read_lock();
9ea0a46c
AV
1131 if (likely(READ_ONCE(mnt->mnt_ns))) {
1132 /*
1133 * Since we don't do lock_mount_hash() here,
1134 * ->mnt_ns can change under us. However, if it's
1135 * non-NULL, then there's a reference that won't
1136 * be dropped until after an RCU delay done after
1137 * turning ->mnt_ns NULL. So if we observe it
1138 * non-NULL under rcu_read_lock(), the reference
1139 * we are dropping is not the final one.
1140 */
1141 mnt_add_count(mnt, -1);
48a066e7 1142 rcu_read_unlock();
f03c6599 1143 return;
b3e19d92 1144 }
719ea2fb 1145 lock_mount_hash();
119e1ef8
AV
1146 /*
1147 * make sure that if __legitimize_mnt() has not seen us grab
1148 * mount_lock, we'll see their refcount increment here.
1149 */
1150 smp_mb();
9ea0a46c 1151 mnt_add_count(mnt, -1);
b3e19d92 1152 if (mnt_get_count(mnt)) {
48a066e7 1153 rcu_read_unlock();
719ea2fb 1154 unlock_mount_hash();
99b7db7b
NP
1155 return;
1156 }
48a066e7
AV
1157 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1158 rcu_read_unlock();
1159 unlock_mount_hash();
1160 return;
1161 }
1162 mnt->mnt.mnt_flags |= MNT_DOOMED;
1163 rcu_read_unlock();
962830df 1164
39f7c4db 1165 list_del(&mnt->mnt_instance);
ce07d891
EB
1166
1167 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1168 struct mount *p, *tmp;
1169 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1170 __put_mountpoint(unhash_mnt(p), &list);
ce07d891
EB
1171 }
1172 }
719ea2fb 1173 unlock_mount_hash();
4edbe133 1174 shrink_dentry_list(&list);
649a795a 1175
9ea459e1
AV
1176 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1177 struct task_struct *task = current;
1178 if (likely(!(task->flags & PF_KTHREAD))) {
1179 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1180 if (!task_work_add(task, &mnt->mnt_rcu, true))
1181 return;
1182 }
1183 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1184 schedule_delayed_work(&delayed_mntput_work, 1);
1185 return;
1186 }
1187 cleanup_mnt(mnt);
b3e19d92 1188}
b3e19d92
NP
1189
1190void mntput(struct vfsmount *mnt)
1191{
1192 if (mnt) {
863d684f 1193 struct mount *m = real_mount(mnt);
b3e19d92 1194 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1195 if (unlikely(m->mnt_expiry_mark))
1196 m->mnt_expiry_mark = 0;
1197 mntput_no_expire(m);
b3e19d92
NP
1198 }
1199}
1200EXPORT_SYMBOL(mntput);
1201
1202struct vfsmount *mntget(struct vfsmount *mnt)
1203{
1204 if (mnt)
83adc753 1205 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1206 return mnt;
1207}
1208EXPORT_SYMBOL(mntget);
1209
c6609c0a
IK
1210/* path_is_mountpoint() - Check if path is a mount in the current
1211 * namespace.
1212 *
1213 * d_mountpoint() can only be used reliably to establish if a dentry is
1214 * not mounted in any namespace and that common case is handled inline.
1215 * d_mountpoint() isn't aware of the possibility there may be multiple
1216 * mounts using a given dentry in a different namespace. This function
1217 * checks if the passed in path is a mountpoint rather than the dentry
1218 * alone.
1219 */
1220bool path_is_mountpoint(const struct path *path)
1221{
1222 unsigned seq;
1223 bool res;
1224
1225 if (!d_mountpoint(path->dentry))
1226 return false;
1227
1228 rcu_read_lock();
1229 do {
1230 seq = read_seqbegin(&mount_lock);
1231 res = __path_is_mountpoint(path);
1232 } while (read_seqretry(&mount_lock, seq));
1233 rcu_read_unlock();
1234
1235 return res;
1236}
1237EXPORT_SYMBOL(path_is_mountpoint);
1238
ca71cf71 1239struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1240{
3064c356
AV
1241 struct mount *p;
1242 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1243 if (IS_ERR(p))
1244 return ERR_CAST(p);
1245 p->mnt.mnt_flags |= MNT_INTERNAL;
1246 return &p->mnt;
7b7b1ace 1247}
1da177e4 1248
a1a2c409 1249#ifdef CONFIG_PROC_FS
0226f492 1250/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1251static void *m_start(struct seq_file *m, loff_t *pos)
1252{
ede1bf0d 1253 struct proc_mounts *p = m->private;
1da177e4 1254
390c6843 1255 down_read(&namespace_sem);
c7999c36
AV
1256 if (p->cached_event == p->ns->event) {
1257 void *v = p->cached_mount;
1258 if (*pos == p->cached_index)
1259 return v;
1260 if (*pos == p->cached_index + 1) {
1261 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1262 return p->cached_mount = v;
1263 }
1264 }
1265
1266 p->cached_event = p->ns->event;
1267 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1268 p->cached_index = *pos;
1269 return p->cached_mount;
1da177e4
LT
1270}
1271
1272static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1273{
ede1bf0d 1274 struct proc_mounts *p = m->private;
b0765fb8 1275
c7999c36
AV
1276 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1277 p->cached_index = *pos;
1278 return p->cached_mount;
1da177e4
LT
1279}
1280
1281static void m_stop(struct seq_file *m, void *v)
1282{
390c6843 1283 up_read(&namespace_sem);
1da177e4
LT
1284}
1285
0226f492 1286static int m_show(struct seq_file *m, void *v)
2d4d4864 1287{
ede1bf0d 1288 struct proc_mounts *p = m->private;
1a4eeaf2 1289 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1290 return p->show(m, &r->mnt);
1da177e4
LT
1291}
1292
a1a2c409 1293const struct seq_operations mounts_op = {
1da177e4
LT
1294 .start = m_start,
1295 .next = m_next,
1296 .stop = m_stop,
0226f492 1297 .show = m_show,
b4629fe2 1298};
a1a2c409 1299#endif /* CONFIG_PROC_FS */
b4629fe2 1300
1da177e4
LT
1301/**
1302 * may_umount_tree - check if a mount tree is busy
1303 * @mnt: root of mount tree
1304 *
1305 * This is called to check if a tree of mounts has any
1306 * open files, pwds, chroots or sub mounts that are
1307 * busy.
1308 */
909b0a88 1309int may_umount_tree(struct vfsmount *m)
1da177e4 1310{
909b0a88 1311 struct mount *mnt = real_mount(m);
36341f64
RP
1312 int actual_refs = 0;
1313 int minimum_refs = 0;
315fc83e 1314 struct mount *p;
909b0a88 1315 BUG_ON(!m);
1da177e4 1316
b3e19d92 1317 /* write lock needed for mnt_get_count */
719ea2fb 1318 lock_mount_hash();
909b0a88 1319 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1320 actual_refs += mnt_get_count(p);
1da177e4 1321 minimum_refs += 2;
1da177e4 1322 }
719ea2fb 1323 unlock_mount_hash();
1da177e4
LT
1324
1325 if (actual_refs > minimum_refs)
e3474a8e 1326 return 0;
1da177e4 1327
e3474a8e 1328 return 1;
1da177e4
LT
1329}
1330
1331EXPORT_SYMBOL(may_umount_tree);
1332
1333/**
1334 * may_umount - check if a mount point is busy
1335 * @mnt: root of mount
1336 *
1337 * This is called to check if a mount point has any
1338 * open files, pwds, chroots or sub mounts. If the
1339 * mount has sub mounts this will return busy
1340 * regardless of whether the sub mounts are busy.
1341 *
1342 * Doesn't take quota and stuff into account. IOW, in some cases it will
1343 * give false negatives. The main reason why it's here is that we need
1344 * a non-destructive way to look for easily umountable filesystems.
1345 */
1346int may_umount(struct vfsmount *mnt)
1347{
e3474a8e 1348 int ret = 1;
8ad08d8a 1349 down_read(&namespace_sem);
719ea2fb 1350 lock_mount_hash();
1ab59738 1351 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1352 ret = 0;
719ea2fb 1353 unlock_mount_hash();
8ad08d8a 1354 up_read(&namespace_sem);
a05964f3 1355 return ret;
1da177e4
LT
1356}
1357
1358EXPORT_SYMBOL(may_umount);
1359
97216be0 1360static void namespace_unlock(void)
70fbcdf4 1361{
a3b3c562 1362 struct hlist_head head;
4edbe133 1363 LIST_HEAD(list);
97216be0 1364
a3b3c562 1365 hlist_move_list(&unmounted, &head);
4edbe133 1366 list_splice_init(&ex_mountpoints, &list);
97216be0 1367
97216be0
AV
1368 up_write(&namespace_sem);
1369
4edbe133
AV
1370 shrink_dentry_list(&list);
1371
a3b3c562
EB
1372 if (likely(hlist_empty(&head)))
1373 return;
1374
22cb7405 1375 synchronize_rcu_expedited();
48a066e7 1376
87b95ce0 1377 group_pin_kill(&head);
70fbcdf4
RP
1378}
1379
97216be0 1380static inline void namespace_lock(void)
e3197d83 1381{
97216be0 1382 down_write(&namespace_sem);
e3197d83
AV
1383}
1384
e819f152
EB
1385enum umount_tree_flags {
1386 UMOUNT_SYNC = 1,
1387 UMOUNT_PROPAGATE = 2,
e0c9c0af 1388 UMOUNT_CONNECTED = 4,
e819f152 1389};
f2d0a123
EB
1390
1391static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1392{
1393 /* Leaving mounts connected is only valid for lazy umounts */
1394 if (how & UMOUNT_SYNC)
1395 return true;
1396
1397 /* A mount without a parent has nothing to be connected to */
1398 if (!mnt_has_parent(mnt))
1399 return true;
1400
1401 /* Because the reference counting rules change when mounts are
1402 * unmounted and connected, umounted mounts may not be
1403 * connected to mounted mounts.
1404 */
1405 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1406 return true;
1407
1408 /* Has it been requested that the mount remain connected? */
1409 if (how & UMOUNT_CONNECTED)
1410 return false;
1411
1412 /* Is the mount locked such that it needs to remain connected? */
1413 if (IS_MNT_LOCKED(mnt))
1414 return false;
1415
1416 /* By default disconnect the mount */
1417 return true;
1418}
1419
99b7db7b 1420/*
48a066e7 1421 * mount_lock must be held
99b7db7b
NP
1422 * namespace_sem must be held for write
1423 */
e819f152 1424static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1425{
c003b26f 1426 LIST_HEAD(tmp_list);
315fc83e 1427 struct mount *p;
1da177e4 1428
5d88457e
EB
1429 if (how & UMOUNT_PROPAGATE)
1430 propagate_mount_unlock(mnt);
1431
c003b26f 1432 /* Gather the mounts to umount */
590ce4bc
EB
1433 for (p = mnt; p; p = next_mnt(p, mnt)) {
1434 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1435 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1436 }
1da177e4 1437
411a938b 1438 /* Hide the mounts from mnt_mounts */
c003b26f 1439 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1440 list_del_init(&p->mnt_child);
c003b26f 1441 }
88b368f2 1442
c003b26f 1443 /* Add propogated mounts to the tmp_list */
e819f152 1444 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1445 propagate_umount(&tmp_list);
a05964f3 1446
c003b26f 1447 while (!list_empty(&tmp_list)) {
d2921684 1448 struct mnt_namespace *ns;
ce07d891 1449 bool disconnect;
c003b26f 1450 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1451 list_del_init(&p->mnt_expire);
1a4eeaf2 1452 list_del_init(&p->mnt_list);
d2921684
EB
1453 ns = p->mnt_ns;
1454 if (ns) {
1455 ns->mounts--;
1456 __touch_mnt_namespace(ns);
1457 }
143c8c91 1458 p->mnt_ns = NULL;
e819f152 1459 if (how & UMOUNT_SYNC)
48a066e7 1460 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1461
f2d0a123 1462 disconnect = disconnect_mount(p, how);
ce07d891
EB
1463
1464 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1465 disconnect ? &unmounted : NULL);
676da58d 1466 if (mnt_has_parent(p)) {
81b6b061 1467 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1468 if (!disconnect) {
1469 /* Don't forget about p */
1470 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471 } else {
1472 umount_mnt(p);
1473 }
7c4b93d8 1474 }
0f0afb1d 1475 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1476 }
1477}
1478
b54b9be7 1479static void shrink_submounts(struct mount *mnt);
c35038be 1480
8d0347f6
DH
1481static int do_umount_root(struct super_block *sb)
1482{
1483 int ret = 0;
1484
1485 down_write(&sb->s_umount);
1486 if (!sb_rdonly(sb)) {
1487 struct fs_context *fc;
1488
1489 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1490 SB_RDONLY);
1491 if (IS_ERR(fc)) {
1492 ret = PTR_ERR(fc);
1493 } else {
1494 ret = parse_monolithic_mount_data(fc, NULL);
1495 if (!ret)
1496 ret = reconfigure_super(fc);
1497 put_fs_context(fc);
1498 }
1499 }
1500 up_write(&sb->s_umount);
1501 return ret;
1502}
1503
1ab59738 1504static int do_umount(struct mount *mnt, int flags)
1da177e4 1505{
1ab59738 1506 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1507 int retval;
1508
1ab59738 1509 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1510 if (retval)
1511 return retval;
1512
1513 /*
1514 * Allow userspace to request a mountpoint be expired rather than
1515 * unmounting unconditionally. Unmount only happens if:
1516 * (1) the mark is already set (the mark is cleared by mntput())
1517 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1518 */
1519 if (flags & MNT_EXPIRE) {
1ab59738 1520 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1521 flags & (MNT_FORCE | MNT_DETACH))
1522 return -EINVAL;
1523
b3e19d92
NP
1524 /*
1525 * probably don't strictly need the lock here if we examined
1526 * all race cases, but it's a slowpath.
1527 */
719ea2fb 1528 lock_mount_hash();
83adc753 1529 if (mnt_get_count(mnt) != 2) {
719ea2fb 1530 unlock_mount_hash();
1da177e4 1531 return -EBUSY;
b3e19d92 1532 }
719ea2fb 1533 unlock_mount_hash();
1da177e4 1534
863d684f 1535 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1536 return -EAGAIN;
1537 }
1538
1539 /*
1540 * If we may have to abort operations to get out of this
1541 * mount, and they will themselves hold resources we must
1542 * allow the fs to do things. In the Unix tradition of
1543 * 'Gee thats tricky lets do it in userspace' the umount_begin
1544 * might fail to complete on the first run through as other tasks
1545 * must return, and the like. Thats for the mount program to worry
1546 * about for the moment.
1547 */
1548
42faad99 1549 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1550 sb->s_op->umount_begin(sb);
42faad99 1551 }
1da177e4
LT
1552
1553 /*
1554 * No sense to grab the lock for this test, but test itself looks
1555 * somewhat bogus. Suggestions for better replacement?
1556 * Ho-hum... In principle, we might treat that as umount + switch
1557 * to rootfs. GC would eventually take care of the old vfsmount.
1558 * Actually it makes sense, especially if rootfs would contain a
1559 * /reboot - static binary that would close all descriptors and
1560 * call reboot(9). Then init(8) could umount root and exec /reboot.
1561 */
1ab59738 1562 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1563 /*
1564 * Special case for "unmounting" root ...
1565 * we just try to remount it readonly.
1566 */
bc6155d1 1567 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1568 return -EPERM;
8d0347f6 1569 return do_umount_root(sb);
1da177e4
LT
1570 }
1571
97216be0 1572 namespace_lock();
719ea2fb 1573 lock_mount_hash();
1da177e4 1574
25d202ed
EB
1575 /* Recheck MNT_LOCKED with the locks held */
1576 retval = -EINVAL;
1577 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1578 goto out;
1579
1580 event++;
48a066e7 1581 if (flags & MNT_DETACH) {
1a4eeaf2 1582 if (!list_empty(&mnt->mnt_list))
e819f152 1583 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1584 retval = 0;
48a066e7
AV
1585 } else {
1586 shrink_submounts(mnt);
1587 retval = -EBUSY;
1588 if (!propagate_mount_busy(mnt, 2)) {
1589 if (!list_empty(&mnt->mnt_list))
e819f152 1590 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1591 retval = 0;
1592 }
1da177e4 1593 }
25d202ed 1594out:
719ea2fb 1595 unlock_mount_hash();
e3197d83 1596 namespace_unlock();
1da177e4
LT
1597 return retval;
1598}
1599
80b5dce8
EB
1600/*
1601 * __detach_mounts - lazily unmount all mounts on the specified dentry
1602 *
1603 * During unlink, rmdir, and d_drop it is possible to loose the path
1604 * to an existing mountpoint, and wind up leaking the mount.
1605 * detach_mounts allows lazily unmounting those mounts instead of
1606 * leaking them.
1607 *
1608 * The caller may hold dentry->d_inode->i_mutex.
1609 */
1610void __detach_mounts(struct dentry *dentry)
1611{
1612 struct mountpoint *mp;
1613 struct mount *mnt;
1614
1615 namespace_lock();
3895dbf8 1616 lock_mount_hash();
80b5dce8 1617 mp = lookup_mountpoint(dentry);
adc9b5c0 1618 if (!mp)
80b5dce8
EB
1619 goto out_unlock;
1620
e06b933e 1621 event++;
80b5dce8
EB
1622 while (!hlist_empty(&mp->m_list)) {
1623 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1624 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1625 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1626 umount_mnt(mnt);
ce07d891 1627 }
e0c9c0af 1628 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1629 }
80b5dce8
EB
1630 put_mountpoint(mp);
1631out_unlock:
3895dbf8 1632 unlock_mount_hash();
80b5dce8
EB
1633 namespace_unlock();
1634}
1635
dd111b31 1636/*
9b40bc90
AV
1637 * Is the caller allowed to modify his namespace?
1638 */
1639static inline bool may_mount(void)
1640{
1641 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1642}
1643
9e8925b6
JL
1644static inline bool may_mandlock(void)
1645{
1646#ifndef CONFIG_MANDATORY_FILE_LOCKING
1647 return false;
1648#endif
95ace754 1649 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1650}
1651
1da177e4
LT
1652/*
1653 * Now umount can handle mount points as well as block devices.
1654 * This is important for filesystems which use unnamed block devices.
1655 *
1656 * We now support a flag for forced unmount like the other 'big iron'
1657 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1658 */
1659
3a18ef5c 1660int ksys_umount(char __user *name, int flags)
1da177e4 1661{
2d8f3038 1662 struct path path;
900148dc 1663 struct mount *mnt;
1da177e4 1664 int retval;
db1f05bb 1665 int lookup_flags = 0;
1da177e4 1666
db1f05bb
MS
1667 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1668 return -EINVAL;
1669
9b40bc90
AV
1670 if (!may_mount())
1671 return -EPERM;
1672
db1f05bb
MS
1673 if (!(flags & UMOUNT_NOFOLLOW))
1674 lookup_flags |= LOOKUP_FOLLOW;
1675
57d46577
RGB
1676 lookup_flags |= LOOKUP_NO_EVAL;
1677
197df04c 1678 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1679 if (retval)
1680 goto out;
900148dc 1681 mnt = real_mount(path.mnt);
1da177e4 1682 retval = -EINVAL;
2d8f3038 1683 if (path.dentry != path.mnt->mnt_root)
1da177e4 1684 goto dput_and_out;
143c8c91 1685 if (!check_mnt(mnt))
1da177e4 1686 goto dput_and_out;
25d202ed 1687 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1688 goto dput_and_out;
b2f5d4dc
EB
1689 retval = -EPERM;
1690 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1691 goto dput_and_out;
1da177e4 1692
900148dc 1693 retval = do_umount(mnt, flags);
1da177e4 1694dput_and_out:
429731b1 1695 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1696 dput(path.dentry);
900148dc 1697 mntput_no_expire(mnt);
1da177e4
LT
1698out:
1699 return retval;
1700}
1701
3a18ef5c
DB
1702SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1703{
1704 return ksys_umount(name, flags);
1705}
1706
1da177e4
LT
1707#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1708
1709/*
b58fed8b 1710 * The 2.0 compatible umount. No flags.
1da177e4 1711 */
bdc480e3 1712SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1713{
3a18ef5c 1714 return ksys_umount(name, 0);
1da177e4
LT
1715}
1716
1717#endif
1718
4ce5d2b1 1719static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1720{
4ce5d2b1 1721 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1722 return dentry->d_op == &ns_dentry_operations &&
1723 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1724}
1725
58be2825
AV
1726struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1727{
1728 return container_of(ns, struct mnt_namespace, ns);
1729}
1730
4ce5d2b1
EB
1731static bool mnt_ns_loop(struct dentry *dentry)
1732{
1733 /* Could bind mounting the mount namespace inode cause a
1734 * mount namespace loop?
1735 */
1736 struct mnt_namespace *mnt_ns;
1737 if (!is_mnt_ns_file(dentry))
1738 return false;
1739
f77c8014 1740 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1741 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1742}
1743
87129cc0 1744struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1745 int flag)
1da177e4 1746{
84d17192 1747 struct mount *res, *p, *q, *r, *parent;
1da177e4 1748
4ce5d2b1
EB
1749 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1750 return ERR_PTR(-EINVAL);
1751
1752 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1753 return ERR_PTR(-EINVAL);
9676f0c6 1754
36341f64 1755 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1756 if (IS_ERR(q))
1757 return q;
1758
a73324da 1759 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1760
1761 p = mnt;
6b41d536 1762 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1763 struct mount *s;
7ec02ef1 1764 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1765 continue;
1766
909b0a88 1767 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1768 if (!(flag & CL_COPY_UNBINDABLE) &&
1769 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1770 if (s->mnt.mnt_flags & MNT_LOCKED) {
1771 /* Both unbindable and locked. */
1772 q = ERR_PTR(-EPERM);
1773 goto out;
1774 } else {
1775 s = skip_mnt_tree(s);
1776 continue;
1777 }
4ce5d2b1
EB
1778 }
1779 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1780 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1781 s = skip_mnt_tree(s);
1782 continue;
1783 }
0714a533
AV
1784 while (p != s->mnt_parent) {
1785 p = p->mnt_parent;
1786 q = q->mnt_parent;
1da177e4 1787 }
87129cc0 1788 p = s;
84d17192 1789 parent = q;
87129cc0 1790 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1791 if (IS_ERR(q))
1792 goto out;
719ea2fb 1793 lock_mount_hash();
1a4eeaf2 1794 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1795 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1796 unlock_mount_hash();
1da177e4
LT
1797 }
1798 }
1799 return res;
be34d1a3 1800out:
1da177e4 1801 if (res) {
719ea2fb 1802 lock_mount_hash();
e819f152 1803 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1804 unlock_mount_hash();
1da177e4 1805 }
be34d1a3 1806 return q;
1da177e4
LT
1807}
1808
be34d1a3
DH
1809/* Caller should check returned pointer for errors */
1810
ca71cf71 1811struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1812{
cb338d06 1813 struct mount *tree;
97216be0 1814 namespace_lock();
cd4a4017
EB
1815 if (!check_mnt(real_mount(path->mnt)))
1816 tree = ERR_PTR(-EINVAL);
1817 else
1818 tree = copy_tree(real_mount(path->mnt), path->dentry,
1819 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1820 namespace_unlock();
be34d1a3 1821 if (IS_ERR(tree))
52e220d3 1822 return ERR_CAST(tree);
be34d1a3 1823 return &tree->mnt;
8aec0809
AV
1824}
1825
a07b2000
AV
1826static void free_mnt_ns(struct mnt_namespace *);
1827static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1828
1829void dissolve_on_fput(struct vfsmount *mnt)
1830{
1831 struct mnt_namespace *ns;
1832 namespace_lock();
1833 lock_mount_hash();
1834 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1835 if (ns) {
1836 if (is_anon_ns(ns))
1837 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1838 else
1839 ns = NULL;
1840 }
a07b2000
AV
1841 unlock_mount_hash();
1842 namespace_unlock();
44dfd84a
DH
1843 if (ns)
1844 free_mnt_ns(ns);
a07b2000
AV
1845}
1846
8aec0809
AV
1847void drop_collected_mounts(struct vfsmount *mnt)
1848{
97216be0 1849 namespace_lock();
719ea2fb 1850 lock_mount_hash();
9c8e0a1b 1851 umount_tree(real_mount(mnt), 0);
719ea2fb 1852 unlock_mount_hash();
3ab6abee 1853 namespace_unlock();
8aec0809
AV
1854}
1855
c771d683
MS
1856/**
1857 * clone_private_mount - create a private clone of a path
1858 *
1859 * This creates a new vfsmount, which will be the clone of @path. The new will
1860 * not be attached anywhere in the namespace and will be private (i.e. changes
1861 * to the originating mount won't be propagated into this).
1862 *
1863 * Release with mntput().
1864 */
ca71cf71 1865struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1866{
1867 struct mount *old_mnt = real_mount(path->mnt);
1868 struct mount *new_mnt;
1869
1870 if (IS_MNT_UNBINDABLE(old_mnt))
1871 return ERR_PTR(-EINVAL);
1872
c771d683 1873 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1874 if (IS_ERR(new_mnt))
1875 return ERR_CAST(new_mnt);
1876
1877 return &new_mnt->mnt;
1878}
1879EXPORT_SYMBOL_GPL(clone_private_mount);
1880
1f707137
AV
1881int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1882 struct vfsmount *root)
1883{
1a4eeaf2 1884 struct mount *mnt;
1f707137
AV
1885 int res = f(root, arg);
1886 if (res)
1887 return res;
1a4eeaf2
AV
1888 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1889 res = f(&mnt->mnt, arg);
1f707137
AV
1890 if (res)
1891 return res;
1892 }
1893 return 0;
1894}
1895
3bd045cc
AV
1896static void lock_mnt_tree(struct mount *mnt)
1897{
1898 struct mount *p;
1899
1900 for (p = mnt; p; p = next_mnt(p, mnt)) {
1901 int flags = p->mnt.mnt_flags;
1902 /* Don't allow unprivileged users to change mount flags */
1903 flags |= MNT_LOCK_ATIME;
1904
1905 if (flags & MNT_READONLY)
1906 flags |= MNT_LOCK_READONLY;
1907
1908 if (flags & MNT_NODEV)
1909 flags |= MNT_LOCK_NODEV;
1910
1911 if (flags & MNT_NOSUID)
1912 flags |= MNT_LOCK_NOSUID;
1913
1914 if (flags & MNT_NOEXEC)
1915 flags |= MNT_LOCK_NOEXEC;
1916 /* Don't allow unprivileged users to reveal what is under a mount */
1917 if (list_empty(&p->mnt_expire))
1918 flags |= MNT_LOCKED;
1919 p->mnt.mnt_flags = flags;
1920 }
1921}
1922
4b8b21f4 1923static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1924{
315fc83e 1925 struct mount *p;
719f5d7f 1926
909b0a88 1927 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1928 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1929 mnt_release_group_id(p);
719f5d7f
MS
1930 }
1931}
1932
4b8b21f4 1933static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1934{
315fc83e 1935 struct mount *p;
719f5d7f 1936
909b0a88 1937 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1938 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1939 int err = mnt_alloc_group_id(p);
719f5d7f 1940 if (err) {
4b8b21f4 1941 cleanup_group_ids(mnt, p);
719f5d7f
MS
1942 return err;
1943 }
1944 }
1945 }
1946
1947 return 0;
1948}
1949
d2921684
EB
1950int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1951{
1952 unsigned int max = READ_ONCE(sysctl_mount_max);
1953 unsigned int mounts = 0, old, pending, sum;
1954 struct mount *p;
1955
1956 for (p = mnt; p; p = next_mnt(p, mnt))
1957 mounts++;
1958
1959 old = ns->mounts;
1960 pending = ns->pending_mounts;
1961 sum = old + pending;
1962 if ((old > sum) ||
1963 (pending > sum) ||
1964 (max < sum) ||
1965 (mounts > (max - sum)))
1966 return -ENOSPC;
1967
1968 ns->pending_mounts = pending + mounts;
1969 return 0;
1970}
1971
b90fa9ae
RP
1972/*
1973 * @source_mnt : mount tree to be attached
21444403
RP
1974 * @nd : place the mount tree @source_mnt is attached
1975 * @parent_nd : if non-null, detach the source_mnt from its parent and
1976 * store the parent mount and mountpoint dentry.
1977 * (done when source_mnt is moved)
b90fa9ae
RP
1978 *
1979 * NOTE: in the table below explains the semantics when a source mount
1980 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1981 * ---------------------------------------------------------------------------
1982 * | BIND MOUNT OPERATION |
1983 * |**************************************************************************
1984 * | source-->| shared | private | slave | unbindable |
1985 * | dest | | | | |
1986 * | | | | | | |
1987 * | v | | | | |
1988 * |**************************************************************************
1989 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1990 * | | | | | |
1991 * |non-shared| shared (+) | private | slave (*) | invalid |
1992 * ***************************************************************************
b90fa9ae
RP
1993 * A bind operation clones the source mount and mounts the clone on the
1994 * destination mount.
1995 *
1996 * (++) the cloned mount is propagated to all the mounts in the propagation
1997 * tree of the destination mount and the cloned mount is added to
1998 * the peer group of the source mount.
1999 * (+) the cloned mount is created under the destination mount and is marked
2000 * as shared. The cloned mount is added to the peer group of the source
2001 * mount.
5afe0022
RP
2002 * (+++) the mount is propagated to all the mounts in the propagation tree
2003 * of the destination mount and the cloned mount is made slave
2004 * of the same master as that of the source mount. The cloned mount
2005 * is marked as 'shared and slave'.
2006 * (*) the cloned mount is made a slave of the same master as that of the
2007 * source mount.
2008 *
9676f0c6
RP
2009 * ---------------------------------------------------------------------------
2010 * | MOVE MOUNT OPERATION |
2011 * |**************************************************************************
2012 * | source-->| shared | private | slave | unbindable |
2013 * | dest | | | | |
2014 * | | | | | | |
2015 * | v | | | | |
2016 * |**************************************************************************
2017 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2018 * | | | | | |
2019 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2020 * ***************************************************************************
5afe0022
RP
2021 *
2022 * (+) the mount is moved to the destination. And is then propagated to
2023 * all the mounts in the propagation tree of the destination mount.
21444403 2024 * (+*) the mount is moved to the destination.
5afe0022
RP
2025 * (+++) the mount is moved to the destination and is then propagated to
2026 * all the mounts belonging to the destination mount's propagation tree.
2027 * the mount is marked as 'shared and slave'.
2028 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2029 *
2030 * if the source mount is a tree, the operations explained above is
2031 * applied to each mount in the tree.
2032 * Must be called without spinlocks held, since this function can sleep
2033 * in allocations.
2034 */
0fb54e50 2035static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2036 struct mount *dest_mnt,
2037 struct mountpoint *dest_mp,
2763d119 2038 bool moving)
b90fa9ae 2039{
3bd045cc 2040 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2041 HLIST_HEAD(tree_list);
d2921684 2042 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2043 struct mountpoint *smp;
315fc83e 2044 struct mount *child, *p;
38129a13 2045 struct hlist_node *n;
719f5d7f 2046 int err;
b90fa9ae 2047
1064f874
EB
2048 /* Preallocate a mountpoint in case the new mounts need
2049 * to be tucked under other mounts.
2050 */
2051 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2052 if (IS_ERR(smp))
2053 return PTR_ERR(smp);
2054
d2921684 2055 /* Is there space to add these mounts to the mount namespace? */
2763d119 2056 if (!moving) {
d2921684
EB
2057 err = count_mounts(ns, source_mnt);
2058 if (err)
2059 goto out;
2060 }
2061
fc7be130 2062 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2063 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2064 if (err)
2065 goto out;
0b1b901b 2066 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2067 lock_mount_hash();
0b1b901b
AV
2068 if (err)
2069 goto out_cleanup_ids;
909b0a88 2070 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2071 set_mnt_shared(p);
0b1b901b
AV
2072 } else {
2073 lock_mount_hash();
b90fa9ae 2074 }
2763d119
AV
2075 if (moving) {
2076 unhash_mnt(source_mnt);
84d17192 2077 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2078 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2079 } else {
44dfd84a
DH
2080 if (source_mnt->mnt_ns) {
2081 /* move from anon - the caller will destroy */
2082 list_del_init(&source_mnt->mnt_ns->list);
2083 }
84d17192 2084 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2085 commit_tree(source_mnt);
21444403 2086 }
b90fa9ae 2087
38129a13 2088 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2089 struct mount *q;
38129a13 2090 hlist_del_init(&child->mnt_hash);
1064f874
EB
2091 q = __lookup_mnt(&child->mnt_parent->mnt,
2092 child->mnt_mountpoint);
2093 if (q)
2094 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2095 /* Notice when we are propagating across user namespaces */
2096 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2097 lock_mnt_tree(child);
d728cf79 2098 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2099 commit_tree(child);
b90fa9ae 2100 }
1064f874 2101 put_mountpoint(smp);
719ea2fb 2102 unlock_mount_hash();
99b7db7b 2103
b90fa9ae 2104 return 0;
719f5d7f
MS
2105
2106 out_cleanup_ids:
f2ebb3a9
AV
2107 while (!hlist_empty(&tree_list)) {
2108 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2109 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2110 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2111 }
2112 unlock_mount_hash();
0b1b901b 2113 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2114 out:
d2921684 2115 ns->pending_mounts = 0;
1064f874
EB
2116
2117 read_seqlock_excl(&mount_lock);
2118 put_mountpoint(smp);
2119 read_sequnlock_excl(&mount_lock);
2120
719f5d7f 2121 return err;
b90fa9ae
RP
2122}
2123
84d17192 2124static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2125{
2126 struct vfsmount *mnt;
84d17192 2127 struct dentry *dentry = path->dentry;
b12cea91 2128retry:
5955102c 2129 inode_lock(dentry->d_inode);
84d17192 2130 if (unlikely(cant_mount(dentry))) {
5955102c 2131 inode_unlock(dentry->d_inode);
84d17192 2132 return ERR_PTR(-ENOENT);
b12cea91 2133 }
97216be0 2134 namespace_lock();
b12cea91 2135 mnt = lookup_mnt(path);
84d17192 2136 if (likely(!mnt)) {
3895dbf8 2137 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2138 if (IS_ERR(mp)) {
97216be0 2139 namespace_unlock();
5955102c 2140 inode_unlock(dentry->d_inode);
84d17192
AV
2141 return mp;
2142 }
2143 return mp;
2144 }
97216be0 2145 namespace_unlock();
5955102c 2146 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2147 path_put(path);
2148 path->mnt = mnt;
84d17192 2149 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2150 goto retry;
2151}
2152
84d17192 2153static void unlock_mount(struct mountpoint *where)
b12cea91 2154{
84d17192 2155 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2156
2157 read_seqlock_excl(&mount_lock);
84d17192 2158 put_mountpoint(where);
3895dbf8
EB
2159 read_sequnlock_excl(&mount_lock);
2160
328e6d90 2161 namespace_unlock();
5955102c 2162 inode_unlock(dentry->d_inode);
b12cea91
AV
2163}
2164
84d17192 2165static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2166{
e462ec50 2167 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2168 return -EINVAL;
2169
e36cb0b8
DH
2170 if (d_is_dir(mp->m_dentry) !=
2171 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2172 return -ENOTDIR;
2173
2763d119 2174 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2175}
2176
7a2e8a8f
VA
2177/*
2178 * Sanity check the flags to change_mnt_propagation.
2179 */
2180
e462ec50 2181static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2182{
e462ec50 2183 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2184
2185 /* Fail if any non-propagation flags are set */
2186 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2187 return 0;
2188 /* Only one propagation flag should be set */
2189 if (!is_power_of_2(type))
2190 return 0;
2191 return type;
2192}
2193
07b20889
RP
2194/*
2195 * recursively change the type of the mountpoint.
2196 */
e462ec50 2197static int do_change_type(struct path *path, int ms_flags)
07b20889 2198{
315fc83e 2199 struct mount *m;
4b8b21f4 2200 struct mount *mnt = real_mount(path->mnt);
e462ec50 2201 int recurse = ms_flags & MS_REC;
7a2e8a8f 2202 int type;
719f5d7f 2203 int err = 0;
07b20889 2204
2d92ab3c 2205 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2206 return -EINVAL;
2207
e462ec50 2208 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2209 if (!type)
2210 return -EINVAL;
2211
97216be0 2212 namespace_lock();
719f5d7f
MS
2213 if (type == MS_SHARED) {
2214 err = invent_group_ids(mnt, recurse);
2215 if (err)
2216 goto out_unlock;
2217 }
2218
719ea2fb 2219 lock_mount_hash();
909b0a88 2220 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2221 change_mnt_propagation(m, type);
719ea2fb 2222 unlock_mount_hash();
719f5d7f
MS
2223
2224 out_unlock:
97216be0 2225 namespace_unlock();
719f5d7f 2226 return err;
07b20889
RP
2227}
2228
5ff9d8a6
EB
2229static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2230{
2231 struct mount *child;
2232 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2233 if (!is_subdir(child->mnt_mountpoint, dentry))
2234 continue;
2235
2236 if (child->mnt.mnt_flags & MNT_LOCKED)
2237 return true;
2238 }
2239 return false;
2240}
2241
a07b2000
AV
2242static struct mount *__do_loopback(struct path *old_path, int recurse)
2243{
2244 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2245
2246 if (IS_MNT_UNBINDABLE(old))
2247 return mnt;
2248
2249 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2250 return mnt;
2251
2252 if (!recurse && has_locked_children(old, old_path->dentry))
2253 return mnt;
2254
2255 if (recurse)
2256 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2257 else
2258 mnt = clone_mnt(old, old_path->dentry, 0);
2259
2260 if (!IS_ERR(mnt))
2261 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2262
2263 return mnt;
2264}
2265
1da177e4
LT
2266/*
2267 * do loopback mount.
2268 */
808d4e3c 2269static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2270 int recurse)
1da177e4 2271{
2d92ab3c 2272 struct path old_path;
a07b2000 2273 struct mount *mnt = NULL, *parent;
84d17192 2274 struct mountpoint *mp;
57eccb83 2275 int err;
1da177e4
LT
2276 if (!old_name || !*old_name)
2277 return -EINVAL;
815d405c 2278 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2279 if (err)
2280 return err;
2281
8823c079 2282 err = -EINVAL;
4ce5d2b1 2283 if (mnt_ns_loop(old_path.dentry))
dd111b31 2284 goto out;
8823c079 2285
84d17192 2286 mp = lock_mount(path);
a07b2000
AV
2287 if (IS_ERR(mp)) {
2288 err = PTR_ERR(mp);
b12cea91 2289 goto out;
a07b2000 2290 }
b12cea91 2291
84d17192 2292 parent = real_mount(path->mnt);
e149ed2b
AV
2293 if (!check_mnt(parent))
2294 goto out2;
2295
a07b2000 2296 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2297 if (IS_ERR(mnt)) {
2298 err = PTR_ERR(mnt);
e9c5d8a5 2299 goto out2;
be34d1a3 2300 }
ccd48bc7 2301
84d17192 2302 err = graft_tree(mnt, parent, mp);
ccd48bc7 2303 if (err) {
719ea2fb 2304 lock_mount_hash();
e819f152 2305 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2306 unlock_mount_hash();
5b83d2c5 2307 }
b12cea91 2308out2:
84d17192 2309 unlock_mount(mp);
ccd48bc7 2310out:
2d92ab3c 2311 path_put(&old_path);
1da177e4
LT
2312 return err;
2313}
2314
a07b2000
AV
2315static struct file *open_detached_copy(struct path *path, bool recursive)
2316{
2317 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2318 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2319 struct mount *mnt, *p;
2320 struct file *file;
2321
2322 if (IS_ERR(ns))
2323 return ERR_CAST(ns);
2324
2325 namespace_lock();
2326 mnt = __do_loopback(path, recursive);
2327 if (IS_ERR(mnt)) {
2328 namespace_unlock();
2329 free_mnt_ns(ns);
2330 return ERR_CAST(mnt);
2331 }
2332
2333 lock_mount_hash();
2334 for (p = mnt; p; p = next_mnt(p, mnt)) {
2335 p->mnt_ns = ns;
2336 ns->mounts++;
2337 }
2338 ns->root = mnt;
2339 list_add_tail(&ns->list, &mnt->mnt_list);
2340 mntget(&mnt->mnt);
2341 unlock_mount_hash();
2342 namespace_unlock();
2343
2344 mntput(path->mnt);
2345 path->mnt = &mnt->mnt;
2346 file = dentry_open(path, O_PATH, current_cred());
2347 if (IS_ERR(file))
2348 dissolve_on_fput(path->mnt);
2349 else
2350 file->f_mode |= FMODE_NEED_UNMOUNT;
2351 return file;
2352}
2353
2354SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2355{
2356 struct file *file;
2357 struct path path;
2358 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2359 bool detached = flags & OPEN_TREE_CLONE;
2360 int error;
2361 int fd;
2362
2363 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2364
2365 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2366 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2367 OPEN_TREE_CLOEXEC))
2368 return -EINVAL;
2369
2370 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2371 return -EINVAL;
2372
2373 if (flags & AT_NO_AUTOMOUNT)
2374 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2375 if (flags & AT_SYMLINK_NOFOLLOW)
2376 lookup_flags &= ~LOOKUP_FOLLOW;
2377 if (flags & AT_EMPTY_PATH)
2378 lookup_flags |= LOOKUP_EMPTY;
2379
2380 if (detached && !may_mount())
2381 return -EPERM;
2382
2383 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2384 if (fd < 0)
2385 return fd;
2386
2387 error = user_path_at(dfd, filename, lookup_flags, &path);
2388 if (unlikely(error)) {
2389 file = ERR_PTR(error);
2390 } else {
2391 if (detached)
2392 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2393 else
2394 file = dentry_open(&path, O_PATH, current_cred());
2395 path_put(&path);
2396 }
2397 if (IS_ERR(file)) {
2398 put_unused_fd(fd);
2399 return PTR_ERR(file);
2400 }
2401 fd_install(fd, file);
2402 return fd;
2403}
2404
43f5e655
DH
2405/*
2406 * Don't allow locked mount flags to be cleared.
2407 *
2408 * No locks need to be held here while testing the various MNT_LOCK
2409 * flags because those flags can never be cleared once they are set.
2410 */
2411static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2412{
43f5e655
DH
2413 unsigned int fl = mnt->mnt.mnt_flags;
2414
2415 if ((fl & MNT_LOCK_READONLY) &&
2416 !(mnt_flags & MNT_READONLY))
2417 return false;
2418
2419 if ((fl & MNT_LOCK_NODEV) &&
2420 !(mnt_flags & MNT_NODEV))
2421 return false;
2422
2423 if ((fl & MNT_LOCK_NOSUID) &&
2424 !(mnt_flags & MNT_NOSUID))
2425 return false;
2426
2427 if ((fl & MNT_LOCK_NOEXEC) &&
2428 !(mnt_flags & MNT_NOEXEC))
2429 return false;
2430
2431 if ((fl & MNT_LOCK_ATIME) &&
2432 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2433 return false;
2e4b7fcd 2434
43f5e655
DH
2435 return true;
2436}
2437
2438static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2439{
43f5e655 2440 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2441
43f5e655 2442 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2443 return 0;
2444
2445 if (readonly_request)
43f5e655
DH
2446 return mnt_make_readonly(mnt);
2447
2448 return __mnt_unmake_readonly(mnt);
2449}
2450
2451/*
2452 * Update the user-settable attributes on a mount. The caller must hold
2453 * sb->s_umount for writing.
2454 */
2455static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2456{
2457 lock_mount_hash();
2458 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2459 mnt->mnt.mnt_flags = mnt_flags;
2460 touch_mnt_namespace(mnt->mnt_ns);
2461 unlock_mount_hash();
2462}
2463
2464/*
2465 * Handle reconfiguration of the mountpoint only without alteration of the
2466 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2467 * to mount(2).
2468 */
2469static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2470{
2471 struct super_block *sb = path->mnt->mnt_sb;
2472 struct mount *mnt = real_mount(path->mnt);
2473 int ret;
2474
2475 if (!check_mnt(mnt))
2476 return -EINVAL;
2477
2478 if (path->dentry != mnt->mnt.mnt_root)
2479 return -EINVAL;
2480
2481 if (!can_change_locked_flags(mnt, mnt_flags))
2482 return -EPERM;
2483
2484 down_write(&sb->s_umount);
2485 ret = change_mount_ro_state(mnt, mnt_flags);
2486 if (ret == 0)
2487 set_mount_attributes(mnt, mnt_flags);
2488 up_write(&sb->s_umount);
2489 return ret;
2e4b7fcd
DH
2490}
2491
1da177e4
LT
2492/*
2493 * change filesystem flags. dir should be a physical root of filesystem.
2494 * If you've mounted a non-root directory somewhere and want to do remount
2495 * on it - tough luck.
2496 */
e462ec50
DH
2497static int do_remount(struct path *path, int ms_flags, int sb_flags,
2498 int mnt_flags, void *data)
1da177e4
LT
2499{
2500 int err;
2d92ab3c 2501 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2502 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2503 struct fs_context *fc;
1da177e4 2504
143c8c91 2505 if (!check_mnt(mnt))
1da177e4
LT
2506 return -EINVAL;
2507
2d92ab3c 2508 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2509 return -EINVAL;
2510
43f5e655 2511 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2512 return -EPERM;
9566d674 2513
8d0347f6
DH
2514 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2515 if (IS_ERR(fc))
2516 return PTR_ERR(fc);
ff36fe2c 2517
8d0347f6
DH
2518 err = parse_monolithic_mount_data(fc, data);
2519 if (!err) {
2520 down_write(&sb->s_umount);
2521 err = -EPERM;
2522 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2523 err = reconfigure_super(fc);
2524 if (!err)
2525 set_mount_attributes(mnt, mnt_flags);
2526 }
2527 up_write(&sb->s_umount);
0e55a7cc 2528 }
8d0347f6 2529 put_fs_context(fc);
1da177e4
LT
2530 return err;
2531}
2532
cbbe362c 2533static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2534{
315fc83e 2535 struct mount *p;
909b0a88 2536 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2537 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2538 return 1;
2539 }
2540 return 0;
2541}
2542
44dfd84a
DH
2543/*
2544 * Check that there aren't references to earlier/same mount namespaces in the
2545 * specified subtree. Such references can act as pins for mount namespaces
2546 * that aren't checked by the mount-cycle checking code, thereby allowing
2547 * cycles to be made.
2548 */
2549static bool check_for_nsfs_mounts(struct mount *subtree)
2550{
2551 struct mount *p;
2552 bool ret = false;
2553
2554 lock_mount_hash();
2555 for (p = subtree; p; p = next_mnt(p, subtree))
2556 if (mnt_ns_loop(p->mnt.mnt_root))
2557 goto out;
2558
2559 ret = true;
2560out:
2561 unlock_mount_hash();
2562 return ret;
2563}
2564
2db154b3 2565static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2566{
44dfd84a 2567 struct mnt_namespace *ns;
676da58d 2568 struct mount *p;
0fb54e50 2569 struct mount *old;
2763d119
AV
2570 struct mount *parent;
2571 struct mountpoint *mp, *old_mp;
57eccb83 2572 int err;
44dfd84a 2573 bool attached;
1da177e4 2574
2db154b3 2575 mp = lock_mount(new_path);
84d17192 2576 if (IS_ERR(mp))
2db154b3 2577 return PTR_ERR(mp);
cc53ce53 2578
2db154b3
DH
2579 old = real_mount(old_path->mnt);
2580 p = real_mount(new_path->mnt);
2763d119 2581 parent = old->mnt_parent;
44dfd84a 2582 attached = mnt_has_parent(old);
2763d119 2583 old_mp = old->mnt_mp;
44dfd84a 2584 ns = old->mnt_ns;
143c8c91 2585
1da177e4 2586 err = -EINVAL;
44dfd84a
DH
2587 /* The mountpoint must be in our namespace. */
2588 if (!check_mnt(p))
2db154b3 2589 goto out;
1da177e4 2590
570d7a98
EB
2591 /* The thing moved must be mounted... */
2592 if (!is_mounted(&old->mnt))
44dfd84a
DH
2593 goto out;
2594
570d7a98
EB
2595 /* ... and either ours or the root of anon namespace */
2596 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2597 goto out;
5ff9d8a6 2598
2db154b3
DH
2599 if (old->mnt.mnt_flags & MNT_LOCKED)
2600 goto out;
1da177e4 2601
2db154b3
DH
2602 if (old_path->dentry != old_path->mnt->mnt_root)
2603 goto out;
1da177e4 2604
2db154b3
DH
2605 if (d_is_dir(new_path->dentry) !=
2606 d_is_dir(old_path->dentry))
2607 goto out;
21444403
RP
2608 /*
2609 * Don't move a mount residing in a shared parent.
2610 */
2763d119 2611 if (attached && IS_MNT_SHARED(parent))
2db154b3 2612 goto out;
9676f0c6
RP
2613 /*
2614 * Don't move a mount tree containing unbindable mounts to a destination
2615 * mount which is shared.
2616 */
fc7be130 2617 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2618 goto out;
1da177e4 2619 err = -ELOOP;
44dfd84a
DH
2620 if (!check_for_nsfs_mounts(old))
2621 goto out;
fc7be130 2622 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2623 if (p == old)
2db154b3 2624 goto out;
1da177e4 2625
2db154b3 2626 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2627 attached);
4ac91378 2628 if (err)
2db154b3 2629 goto out;
1da177e4
LT
2630
2631 /* if the mount is moved, it should no longer be expire
2632 * automatically */
6776db3d 2633 list_del_init(&old->mnt_expire);
2763d119
AV
2634 if (attached)
2635 put_mountpoint(old_mp);
1da177e4 2636out:
2db154b3 2637 unlock_mount(mp);
44dfd84a 2638 if (!err) {
2763d119
AV
2639 if (attached)
2640 mntput_no_expire(parent);
2641 else
44dfd84a
DH
2642 free_mnt_ns(ns);
2643 }
2db154b3
DH
2644 return err;
2645}
2646
2647static int do_move_mount_old(struct path *path, const char *old_name)
2648{
2649 struct path old_path;
2650 int err;
2651
2652 if (!old_name || !*old_name)
2653 return -EINVAL;
2654
2655 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2656 if (err)
2657 return err;
2658
2659 err = do_move_mount(&old_path, path);
2d92ab3c 2660 path_put(&old_path);
1da177e4
LT
2661 return err;
2662}
2663
9d412a43
AV
2664/*
2665 * add a mount into a namespace's mount tree
2666 */
95bc5f25 2667static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2668{
84d17192
AV
2669 struct mountpoint *mp;
2670 struct mount *parent;
9d412a43
AV
2671 int err;
2672
f2ebb3a9 2673 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2674
84d17192
AV
2675 mp = lock_mount(path);
2676 if (IS_ERR(mp))
2677 return PTR_ERR(mp);
9d412a43 2678
84d17192 2679 parent = real_mount(path->mnt);
9d412a43 2680 err = -EINVAL;
84d17192 2681 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2682 /* that's acceptable only for automounts done in private ns */
2683 if (!(mnt_flags & MNT_SHRINKABLE))
2684 goto unlock;
2685 /* ... and for those we'd better have mountpoint still alive */
84d17192 2686 if (!parent->mnt_ns)
156cacb1
AV
2687 goto unlock;
2688 }
9d412a43
AV
2689
2690 /* Refuse the same filesystem on the same mount point */
2691 err = -EBUSY;
95bc5f25 2692 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2693 path->mnt->mnt_root == path->dentry)
2694 goto unlock;
2695
2696 err = -EINVAL;
e36cb0b8 2697 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2698 goto unlock;
2699
95bc5f25 2700 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2701 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2702
2703unlock:
84d17192 2704 unlock_mount(mp);
9d412a43
AV
2705 return err;
2706}
b1e75df4 2707
132e4608
DH
2708static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2709
2710/*
2711 * Create a new mount using a superblock configuration and request it
2712 * be added to the namespace tree.
2713 */
2714static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2715 unsigned int mnt_flags)
2716{
2717 struct vfsmount *mnt;
2718 struct super_block *sb = fc->root->d_sb;
2719 int error;
2720
c9ce29ed
AV
2721 error = security_sb_kern_mount(sb);
2722 if (!error && mount_too_revealing(sb, &mnt_flags))
2723 error = -EPERM;
2724
2725 if (unlikely(error)) {
2726 fc_drop_locked(fc);
2727 return error;
132e4608
DH
2728 }
2729
2730 up_write(&sb->s_umount);
2731
2732 mnt = vfs_create_mount(fc);
2733 if (IS_ERR(mnt))
2734 return PTR_ERR(mnt);
2735
2736 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2737 if (error < 0)
2738 mntput(mnt);
2739 return error;
2740}
1b852bce 2741
1da177e4
LT
2742/*
2743 * create a new mount for userspace and request it to be added into the
2744 * namespace's tree
2745 */
e462ec50 2746static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2747 int mnt_flags, const char *name, void *data)
1da177e4 2748{
0c55cfc4 2749 struct file_system_type *type;
a0c9a8b8
AV
2750 struct fs_context *fc;
2751 const char *subtype = NULL;
2752 int err = 0;
1da177e4 2753
0c55cfc4 2754 if (!fstype)
1da177e4
LT
2755 return -EINVAL;
2756
0c55cfc4
EB
2757 type = get_fs_type(fstype);
2758 if (!type)
2759 return -ENODEV;
2760
a0c9a8b8
AV
2761 if (type->fs_flags & FS_HAS_SUBTYPE) {
2762 subtype = strchr(fstype, '.');
2763 if (subtype) {
2764 subtype++;
2765 if (!*subtype) {
2766 put_filesystem(type);
2767 return -EINVAL;
2768 }
2769 } else {
2770 subtype = "";
2771 }
2772 }
0c55cfc4 2773
a0c9a8b8 2774 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2775 put_filesystem(type);
a0c9a8b8
AV
2776 if (IS_ERR(fc))
2777 return PTR_ERR(fc);
2778
3e1aeb00
DH
2779 if (subtype)
2780 err = vfs_parse_fs_string(fc, "subtype",
2781 subtype, strlen(subtype));
2782 if (!err && name)
2783 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2784 if (!err)
2785 err = parse_monolithic_mount_data(fc, data);
2786 if (!err)
2787 err = vfs_get_tree(fc);
132e4608
DH
2788 if (!err)
2789 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2790
a0c9a8b8 2791 put_fs_context(fc);
15f9a3f3 2792 return err;
1da177e4
LT
2793}
2794
19a167af
AV
2795int finish_automount(struct vfsmount *m, struct path *path)
2796{
6776db3d 2797 struct mount *mnt = real_mount(m);
19a167af
AV
2798 int err;
2799 /* The new mount record should have at least 2 refs to prevent it being
2800 * expired before we get a chance to add it
2801 */
6776db3d 2802 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2803
2804 if (m->mnt_sb == path->mnt->mnt_sb &&
2805 m->mnt_root == path->dentry) {
b1e75df4
AV
2806 err = -ELOOP;
2807 goto fail;
19a167af
AV
2808 }
2809
95bc5f25 2810 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2811 if (!err)
2812 return 0;
2813fail:
2814 /* remove m from any expiration list it may be on */
6776db3d 2815 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2816 namespace_lock();
6776db3d 2817 list_del_init(&mnt->mnt_expire);
97216be0 2818 namespace_unlock();
19a167af 2819 }
b1e75df4
AV
2820 mntput(m);
2821 mntput(m);
19a167af
AV
2822 return err;
2823}
2824
ea5b778a
DH
2825/**
2826 * mnt_set_expiry - Put a mount on an expiration list
2827 * @mnt: The mount to list.
2828 * @expiry_list: The list to add the mount to.
2829 */
2830void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2831{
97216be0 2832 namespace_lock();
ea5b778a 2833
6776db3d 2834 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2835
97216be0 2836 namespace_unlock();
ea5b778a
DH
2837}
2838EXPORT_SYMBOL(mnt_set_expiry);
2839
1da177e4
LT
2840/*
2841 * process a list of expirable mountpoints with the intent of discarding any
2842 * mountpoints that aren't in use and haven't been touched since last we came
2843 * here
2844 */
2845void mark_mounts_for_expiry(struct list_head *mounts)
2846{
761d5c38 2847 struct mount *mnt, *next;
1da177e4
LT
2848 LIST_HEAD(graveyard);
2849
2850 if (list_empty(mounts))
2851 return;
2852
97216be0 2853 namespace_lock();
719ea2fb 2854 lock_mount_hash();
1da177e4
LT
2855
2856 /* extract from the expiration list every vfsmount that matches the
2857 * following criteria:
2858 * - only referenced by its parent vfsmount
2859 * - still marked for expiry (marked on the last call here; marks are
2860 * cleared by mntput())
2861 */
6776db3d 2862 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2863 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2864 propagate_mount_busy(mnt, 1))
1da177e4 2865 continue;
6776db3d 2866 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2867 }
bcc5c7d2 2868 while (!list_empty(&graveyard)) {
6776db3d 2869 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2870 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2871 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2872 }
719ea2fb 2873 unlock_mount_hash();
3ab6abee 2874 namespace_unlock();
5528f911
TM
2875}
2876
2877EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2878
2879/*
2880 * Ripoff of 'select_parent()'
2881 *
2882 * search the list of submounts for a given mountpoint, and move any
2883 * shrinkable submounts to the 'graveyard' list.
2884 */
692afc31 2885static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2886{
692afc31 2887 struct mount *this_parent = parent;
5528f911
TM
2888 struct list_head *next;
2889 int found = 0;
2890
2891repeat:
6b41d536 2892 next = this_parent->mnt_mounts.next;
5528f911 2893resume:
6b41d536 2894 while (next != &this_parent->mnt_mounts) {
5528f911 2895 struct list_head *tmp = next;
6b41d536 2896 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2897
2898 next = tmp->next;
692afc31 2899 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2900 continue;
5528f911
TM
2901 /*
2902 * Descend a level if the d_mounts list is non-empty.
2903 */
6b41d536 2904 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2905 this_parent = mnt;
2906 goto repeat;
2907 }
1da177e4 2908
1ab59738 2909 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2910 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2911 found++;
2912 }
1da177e4 2913 }
5528f911
TM
2914 /*
2915 * All done at this level ... ascend and resume the search
2916 */
2917 if (this_parent != parent) {
6b41d536 2918 next = this_parent->mnt_child.next;
0714a533 2919 this_parent = this_parent->mnt_parent;
5528f911
TM
2920 goto resume;
2921 }
2922 return found;
2923}
2924
2925/*
2926 * process a list of expirable mountpoints with the intent of discarding any
2927 * submounts of a specific parent mountpoint
99b7db7b 2928 *
48a066e7 2929 * mount_lock must be held for write
5528f911 2930 */
b54b9be7 2931static void shrink_submounts(struct mount *mnt)
5528f911
TM
2932{
2933 LIST_HEAD(graveyard);
761d5c38 2934 struct mount *m;
5528f911 2935
5528f911 2936 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2937 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2938 while (!list_empty(&graveyard)) {
761d5c38 2939 m = list_first_entry(&graveyard, struct mount,
6776db3d 2940 mnt_expire);
143c8c91 2941 touch_mnt_namespace(m->mnt_ns);
e819f152 2942 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2943 }
2944 }
1da177e4
LT
2945}
2946
1da177e4
LT
2947/*
2948 * Some copy_from_user() implementations do not return the exact number of
2949 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2950 * Note that this function differs from copy_from_user() in that it will oops
2951 * on bad values of `to', rather than returning a short copy.
2952 */
b58fed8b
RP
2953static long exact_copy_from_user(void *to, const void __user * from,
2954 unsigned long n)
1da177e4
LT
2955{
2956 char *t = to;
2957 const char __user *f = from;
2958 char c;
2959
96d4f267 2960 if (!access_ok(from, n))
1da177e4
LT
2961 return n;
2962
2963 while (n) {
2964 if (__get_user(c, f)) {
2965 memset(t, 0, n);
2966 break;
2967 }
2968 *t++ = c;
2969 f++;
2970 n--;
2971 }
2972 return n;
2973}
2974
b40ef869 2975void *copy_mount_options(const void __user * data)
1da177e4
LT
2976{
2977 int i;
1da177e4 2978 unsigned long size;
b40ef869 2979 char *copy;
b58fed8b 2980
1da177e4 2981 if (!data)
b40ef869 2982 return NULL;
1da177e4 2983
b40ef869
AV
2984 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2985 if (!copy)
2986 return ERR_PTR(-ENOMEM);
1da177e4
LT
2987
2988 /* We only care that *some* data at the address the user
2989 * gave us is valid. Just in case, we'll zero
2990 * the remainder of the page.
2991 */
2992 /* copy_from_user cannot cross TASK_SIZE ! */
2993 size = TASK_SIZE - (unsigned long)data;
2994 if (size > PAGE_SIZE)
2995 size = PAGE_SIZE;
2996
b40ef869 2997 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2998 if (!i) {
b40ef869
AV
2999 kfree(copy);
3000 return ERR_PTR(-EFAULT);
1da177e4
LT
3001 }
3002 if (i != PAGE_SIZE)
b40ef869
AV
3003 memset(copy + i, 0, PAGE_SIZE - i);
3004 return copy;
1da177e4
LT
3005}
3006
b8850d1f 3007char *copy_mount_string(const void __user *data)
eca6f534 3008{
fbdb4401 3009 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3010}
3011
1da177e4
LT
3012/*
3013 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3014 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3015 *
3016 * data is a (void *) that can point to any structure up to
3017 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3018 * information (or be NULL).
3019 *
3020 * Pre-0.97 versions of mount() didn't have a flags word.
3021 * When the flags word was introduced its top half was required
3022 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3023 * Therefore, if this magic number is present, it carries no information
3024 * and must be discarded.
3025 */
5e6123f3 3026long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3027 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3028{
2d92ab3c 3029 struct path path;
e462ec50 3030 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3031 int retval = 0;
1da177e4
LT
3032
3033 /* Discard magic */
3034 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3035 flags &= ~MS_MGC_MSK;
3036
3037 /* Basic sanity checks */
1da177e4
LT
3038 if (data_page)
3039 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3040
e462ec50
DH
3041 if (flags & MS_NOUSER)
3042 return -EINVAL;
3043
a27ab9f2 3044 /* ... and get the mountpoint */
5e6123f3 3045 retval = user_path(dir_name, &path);
a27ab9f2
TH
3046 if (retval)
3047 return retval;
3048
3049 retval = security_sb_mount(dev_name, &path,
3050 type_page, flags, data_page);
0d5cadb8
AV
3051 if (!retval && !may_mount())
3052 retval = -EPERM;
e462ec50 3053 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3054 retval = -EPERM;
a27ab9f2
TH
3055 if (retval)
3056 goto dput_out;
3057
613cbe3d
AK
3058 /* Default to relatime unless overriden */
3059 if (!(flags & MS_NOATIME))
3060 mnt_flags |= MNT_RELATIME;
0a1c01c9 3061
1da177e4
LT
3062 /* Separate the per-mountpoint flags */
3063 if (flags & MS_NOSUID)
3064 mnt_flags |= MNT_NOSUID;
3065 if (flags & MS_NODEV)
3066 mnt_flags |= MNT_NODEV;
3067 if (flags & MS_NOEXEC)
3068 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3069 if (flags & MS_NOATIME)
3070 mnt_flags |= MNT_NOATIME;
3071 if (flags & MS_NODIRATIME)
3072 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3073 if (flags & MS_STRICTATIME)
3074 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3075 if (flags & MS_RDONLY)
2e4b7fcd 3076 mnt_flags |= MNT_READONLY;
fc33a7bb 3077
ffbc6f0e
EB
3078 /* The default atime for remount is preservation */
3079 if ((flags & MS_REMOUNT) &&
3080 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3081 MS_STRICTATIME)) == 0)) {
3082 mnt_flags &= ~MNT_ATIME_MASK;
3083 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3084 }
3085
e462ec50
DH
3086 sb_flags = flags & (SB_RDONLY |
3087 SB_SYNCHRONOUS |
3088 SB_MANDLOCK |
3089 SB_DIRSYNC |
3090 SB_SILENT |
917086ff 3091 SB_POSIXACL |
d7ee9469 3092 SB_LAZYTIME |
917086ff 3093 SB_I_VERSION);
1da177e4 3094
43f5e655
DH
3095 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3096 retval = do_reconfigure_mnt(&path, mnt_flags);
3097 else if (flags & MS_REMOUNT)
e462ec50 3098 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3099 data_page);
3100 else if (flags & MS_BIND)
2d92ab3c 3101 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3102 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3103 retval = do_change_type(&path, flags);
1da177e4 3104 else if (flags & MS_MOVE)
2db154b3 3105 retval = do_move_mount_old(&path, dev_name);
1da177e4 3106 else
e462ec50 3107 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3108 dev_name, data_page);
3109dput_out:
2d92ab3c 3110 path_put(&path);
1da177e4
LT
3111 return retval;
3112}
3113
537f7ccb
EB
3114static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3115{
3116 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3117}
3118
3119static void dec_mnt_namespaces(struct ucounts *ucounts)
3120{
3121 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3122}
3123
771b1371
EB
3124static void free_mnt_ns(struct mnt_namespace *ns)
3125{
74e83122
AV
3126 if (!is_anon_ns(ns))
3127 ns_free_inum(&ns->ns);
537f7ccb 3128 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3129 put_user_ns(ns->user_ns);
3130 kfree(ns);
3131}
3132
8823c079
EB
3133/*
3134 * Assign a sequence number so we can detect when we attempt to bind
3135 * mount a reference to an older mount namespace into the current
3136 * mount namespace, preventing reference counting loops. A 64bit
3137 * number incrementing at 10Ghz will take 12,427 years to wrap which
3138 * is effectively never, so we can ignore the possibility.
3139 */
3140static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3141
74e83122 3142static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3143{
3144 struct mnt_namespace *new_ns;
537f7ccb 3145 struct ucounts *ucounts;
98f842e6 3146 int ret;
cf8d2c11 3147
537f7ccb
EB
3148 ucounts = inc_mnt_namespaces(user_ns);
3149 if (!ucounts)
df75e774 3150 return ERR_PTR(-ENOSPC);
537f7ccb 3151
74e83122 3152 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3153 if (!new_ns) {
3154 dec_mnt_namespaces(ucounts);
cf8d2c11 3155 return ERR_PTR(-ENOMEM);
537f7ccb 3156 }
74e83122
AV
3157 if (!anon) {
3158 ret = ns_alloc_inum(&new_ns->ns);
3159 if (ret) {
3160 kfree(new_ns);
3161 dec_mnt_namespaces(ucounts);
3162 return ERR_PTR(ret);
3163 }
98f842e6 3164 }
33c42940 3165 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3166 if (!anon)
3167 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3168 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3169 INIT_LIST_HEAD(&new_ns->list);
3170 init_waitqueue_head(&new_ns->poll);
771b1371 3171 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3172 new_ns->ucounts = ucounts;
cf8d2c11
TM
3173 return new_ns;
3174}
3175
0766f788 3176__latent_entropy
9559f689
AV
3177struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3178 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3179{
6b3286ed 3180 struct mnt_namespace *new_ns;
7f2da1e7 3181 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3182 struct mount *p, *q;
9559f689 3183 struct mount *old;
cb338d06 3184 struct mount *new;
7a472ef4 3185 int copy_flags;
1da177e4 3186
9559f689
AV
3187 BUG_ON(!ns);
3188
3189 if (likely(!(flags & CLONE_NEWNS))) {
3190 get_mnt_ns(ns);
3191 return ns;
3192 }
3193
3194 old = ns->root;
3195
74e83122 3196 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3197 if (IS_ERR(new_ns))
3198 return new_ns;
1da177e4 3199
97216be0 3200 namespace_lock();
1da177e4 3201 /* First pass: copy the tree topology */
4ce5d2b1 3202 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3203 if (user_ns != ns->user_ns)
3bd045cc 3204 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3205 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3206 if (IS_ERR(new)) {
328e6d90 3207 namespace_unlock();
771b1371 3208 free_mnt_ns(new_ns);
be34d1a3 3209 return ERR_CAST(new);
1da177e4 3210 }
3bd045cc
AV
3211 if (user_ns != ns->user_ns) {
3212 lock_mount_hash();
3213 lock_mnt_tree(new);
3214 unlock_mount_hash();
3215 }
be08d6d2 3216 new_ns->root = new;
1a4eeaf2 3217 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3218
3219 /*
3220 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3221 * as belonging to new namespace. We have already acquired a private
3222 * fs_struct, so tsk->fs->lock is not needed.
3223 */
909b0a88 3224 p = old;
cb338d06 3225 q = new;
1da177e4 3226 while (p) {
143c8c91 3227 q->mnt_ns = new_ns;
d2921684 3228 new_ns->mounts++;
9559f689
AV
3229 if (new_fs) {
3230 if (&p->mnt == new_fs->root.mnt) {
3231 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3232 rootmnt = &p->mnt;
1da177e4 3233 }
9559f689
AV
3234 if (&p->mnt == new_fs->pwd.mnt) {
3235 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3236 pwdmnt = &p->mnt;
1da177e4 3237 }
1da177e4 3238 }
909b0a88
AV
3239 p = next_mnt(p, old);
3240 q = next_mnt(q, new);
4ce5d2b1
EB
3241 if (!q)
3242 break;
3243 while (p->mnt.mnt_root != q->mnt.mnt_root)
3244 p = next_mnt(p, old);
1da177e4 3245 }
328e6d90 3246 namespace_unlock();
1da177e4 3247
1da177e4 3248 if (rootmnt)
f03c6599 3249 mntput(rootmnt);
1da177e4 3250 if (pwdmnt)
f03c6599 3251 mntput(pwdmnt);
1da177e4 3252
741a2951 3253 return new_ns;
1da177e4
LT
3254}
3255
74e83122 3256struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3257{
74e83122 3258 struct mount *mnt = real_mount(m);
ea441d11 3259 struct mnt_namespace *ns;
d31da0f0 3260 struct super_block *s;
ea441d11
AV
3261 struct path path;
3262 int err;
3263
74e83122
AV
3264 ns = alloc_mnt_ns(&init_user_ns, true);
3265 if (IS_ERR(ns)) {
3266 mntput(m);
ea441d11 3267 return ERR_CAST(ns);
74e83122
AV
3268 }
3269 mnt->mnt_ns = ns;
3270 ns->root = mnt;
3271 ns->mounts++;
3272 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3273
74e83122 3274 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3275 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3276
3277 put_mnt_ns(ns);
3278
3279 if (err)
3280 return ERR_PTR(err);
3281
3282 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3283 s = path.mnt->mnt_sb;
3284 atomic_inc(&s->s_active);
ea441d11
AV
3285 mntput(path.mnt);
3286 /* lock the sucker */
d31da0f0 3287 down_write(&s->s_umount);
ea441d11
AV
3288 /* ... and return the root of (sub)tree on it */
3289 return path.dentry;
3290}
3291EXPORT_SYMBOL(mount_subtree);
3292
312db1aa
DB
3293int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3294 unsigned long flags, void __user *data)
1da177e4 3295{
eca6f534
VN
3296 int ret;
3297 char *kernel_type;
eca6f534 3298 char *kernel_dev;
b40ef869 3299 void *options;
1da177e4 3300
b8850d1f
TG
3301 kernel_type = copy_mount_string(type);
3302 ret = PTR_ERR(kernel_type);
3303 if (IS_ERR(kernel_type))
eca6f534 3304 goto out_type;
1da177e4 3305
b8850d1f
TG
3306 kernel_dev = copy_mount_string(dev_name);
3307 ret = PTR_ERR(kernel_dev);
3308 if (IS_ERR(kernel_dev))
eca6f534 3309 goto out_dev;
1da177e4 3310
b40ef869
AV
3311 options = copy_mount_options(data);
3312 ret = PTR_ERR(options);
3313 if (IS_ERR(options))
eca6f534 3314 goto out_data;
1da177e4 3315
b40ef869 3316 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3317
b40ef869 3318 kfree(options);
eca6f534
VN
3319out_data:
3320 kfree(kernel_dev);
3321out_dev:
eca6f534
VN
3322 kfree(kernel_type);
3323out_type:
3324 return ret;
1da177e4
LT
3325}
3326
312db1aa
DB
3327SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3328 char __user *, type, unsigned long, flags, void __user *, data)
3329{
3330 return ksys_mount(dev_name, dir_name, type, flags, data);
3331}
3332
2db154b3 3333/*
93766fbd
DH
3334 * Create a kernel mount representation for a new, prepared superblock
3335 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3336 */
3337SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3338 unsigned int, attr_flags)
3339{
3340 struct mnt_namespace *ns;
3341 struct fs_context *fc;
3342 struct file *file;
3343 struct path newmount;
3344 struct mount *mnt;
3345 struct fd f;
3346 unsigned int mnt_flags = 0;
3347 long ret;
3348
3349 if (!may_mount())
3350 return -EPERM;
3351
3352 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3353 return -EINVAL;
3354
3355 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3356 MOUNT_ATTR_NOSUID |
3357 MOUNT_ATTR_NODEV |
3358 MOUNT_ATTR_NOEXEC |
3359 MOUNT_ATTR__ATIME |
3360 MOUNT_ATTR_NODIRATIME))
3361 return -EINVAL;
3362
3363 if (attr_flags & MOUNT_ATTR_RDONLY)
3364 mnt_flags |= MNT_READONLY;
3365 if (attr_flags & MOUNT_ATTR_NOSUID)
3366 mnt_flags |= MNT_NOSUID;
3367 if (attr_flags & MOUNT_ATTR_NODEV)
3368 mnt_flags |= MNT_NODEV;
3369 if (attr_flags & MOUNT_ATTR_NOEXEC)
3370 mnt_flags |= MNT_NOEXEC;
3371 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3372 mnt_flags |= MNT_NODIRATIME;
3373
3374 switch (attr_flags & MOUNT_ATTR__ATIME) {
3375 case MOUNT_ATTR_STRICTATIME:
3376 break;
3377 case MOUNT_ATTR_NOATIME:
3378 mnt_flags |= MNT_NOATIME;
3379 break;
3380 case MOUNT_ATTR_RELATIME:
3381 mnt_flags |= MNT_RELATIME;
3382 break;
3383 default:
3384 return -EINVAL;
3385 }
3386
3387 f = fdget(fs_fd);
3388 if (!f.file)
3389 return -EBADF;
3390
3391 ret = -EINVAL;
3392 if (f.file->f_op != &fscontext_fops)
3393 goto err_fsfd;
3394
3395 fc = f.file->private_data;
3396
3397 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3398 if (ret < 0)
3399 goto err_fsfd;
3400
3401 /* There must be a valid superblock or we can't mount it */
3402 ret = -EINVAL;
3403 if (!fc->root)
3404 goto err_unlock;
3405
3406 ret = -EPERM;
3407 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3408 pr_warn("VFS: Mount too revealing\n");
3409 goto err_unlock;
3410 }
3411
3412 ret = -EBUSY;
3413 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3414 goto err_unlock;
3415
3416 ret = -EPERM;
3417 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3418 goto err_unlock;
3419
3420 newmount.mnt = vfs_create_mount(fc);
3421 if (IS_ERR(newmount.mnt)) {
3422 ret = PTR_ERR(newmount.mnt);
3423 goto err_unlock;
3424 }
3425 newmount.dentry = dget(fc->root);
3426 newmount.mnt->mnt_flags = mnt_flags;
3427
3428 /* We've done the mount bit - now move the file context into more or
3429 * less the same state as if we'd done an fspick(). We don't want to
3430 * do any memory allocation or anything like that at this point as we
3431 * don't want to have to handle any errors incurred.
3432 */
3433 vfs_clean_context(fc);
3434
3435 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3436 if (IS_ERR(ns)) {
3437 ret = PTR_ERR(ns);
3438 goto err_path;
3439 }
3440 mnt = real_mount(newmount.mnt);
3441 mnt->mnt_ns = ns;
3442 ns->root = mnt;
3443 ns->mounts = 1;
3444 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3445 mntget(newmount.mnt);
93766fbd
DH
3446
3447 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3448 * it, not just simply put it.
3449 */
3450 file = dentry_open(&newmount, O_PATH, fc->cred);
3451 if (IS_ERR(file)) {
3452 dissolve_on_fput(newmount.mnt);
3453 ret = PTR_ERR(file);
3454 goto err_path;
3455 }
3456 file->f_mode |= FMODE_NEED_UNMOUNT;
3457
3458 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3459 if (ret >= 0)
3460 fd_install(ret, file);
3461 else
3462 fput(file);
3463
3464err_path:
3465 path_put(&newmount);
3466err_unlock:
3467 mutex_unlock(&fc->uapi_mutex);
3468err_fsfd:
3469 fdput(f);
3470 return ret;
3471}
3472
3473/*
3474 * Move a mount from one place to another. In combination with
3475 * fsopen()/fsmount() this is used to install a new mount and in combination
3476 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3477 * a mount subtree.
2db154b3
DH
3478 *
3479 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3480 */
3481SYSCALL_DEFINE5(move_mount,
3482 int, from_dfd, const char *, from_pathname,
3483 int, to_dfd, const char *, to_pathname,
3484 unsigned int, flags)
3485{
3486 struct path from_path, to_path;
3487 unsigned int lflags;
3488 int ret = 0;
3489
3490 if (!may_mount())
3491 return -EPERM;
3492
3493 if (flags & ~MOVE_MOUNT__MASK)
3494 return -EINVAL;
3495
3496 /* If someone gives a pathname, they aren't permitted to move
3497 * from an fd that requires unmount as we can't get at the flag
3498 * to clear it afterwards.
3499 */
3500 lflags = 0;
3501 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3502 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3503 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3504
3505 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3506 if (ret < 0)
3507 return ret;
3508
3509 lflags = 0;
3510 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3511 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3512 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3513
3514 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3515 if (ret < 0)
3516 goto out_from;
3517
3518 ret = security_move_mount(&from_path, &to_path);
3519 if (ret < 0)
3520 goto out_to;
3521
3522 ret = do_move_mount(&from_path, &to_path);
3523
3524out_to:
3525 path_put(&to_path);
3526out_from:
3527 path_put(&from_path);
3528 return ret;
3529}
3530
afac7cba
AV
3531/*
3532 * Return true if path is reachable from root
3533 *
48a066e7 3534 * namespace_sem or mount_lock is held
afac7cba 3535 */
643822b4 3536bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3537 const struct path *root)
3538{
643822b4 3539 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3540 dentry = mnt->mnt_mountpoint;
0714a533 3541 mnt = mnt->mnt_parent;
afac7cba 3542 }
643822b4 3543 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3544}
3545
640eb7e7 3546bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3547{
25ab4c9b 3548 bool res;
48a066e7 3549 read_seqlock_excl(&mount_lock);
643822b4 3550 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3551 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3552 return res;
3553}
3554EXPORT_SYMBOL(path_is_under);
3555
1da177e4
LT
3556/*
3557 * pivot_root Semantics:
3558 * Moves the root file system of the current process to the directory put_old,
3559 * makes new_root as the new root file system of the current process, and sets
3560 * root/cwd of all processes which had them on the current root to new_root.
3561 *
3562 * Restrictions:
3563 * The new_root and put_old must be directories, and must not be on the
3564 * same file system as the current process root. The put_old must be
3565 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3566 * pointed to by put_old must yield the same directory as new_root. No other
3567 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3568 *
4a0d11fa
NB
3569 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3570 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3571 * in this situation.
3572 *
1da177e4
LT
3573 * Notes:
3574 * - we don't move root/cwd if they are not at the root (reason: if something
3575 * cared enough to change them, it's probably wrong to force them elsewhere)
3576 * - it's okay to pick a root that isn't the root of a file system, e.g.
3577 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3578 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3579 * first.
3580 */
3480b257
HC
3581SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3582 const char __user *, put_old)
1da177e4 3583{
2763d119
AV
3584 struct path new, old, root;
3585 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3586 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3587 int error;
3588
9b40bc90 3589 if (!may_mount())
1da177e4
LT
3590 return -EPERM;
3591
2d8f3038 3592 error = user_path_dir(new_root, &new);
1da177e4
LT
3593 if (error)
3594 goto out0;
1da177e4 3595
2d8f3038 3596 error = user_path_dir(put_old, &old);
1da177e4
LT
3597 if (error)
3598 goto out1;
3599
2d8f3038 3600 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3601 if (error)
3602 goto out2;
1da177e4 3603
f7ad3c6b 3604 get_fs_root(current->fs, &root);
84d17192
AV
3605 old_mp = lock_mount(&old);
3606 error = PTR_ERR(old_mp);
3607 if (IS_ERR(old_mp))
b12cea91
AV
3608 goto out3;
3609
1da177e4 3610 error = -EINVAL;
419148da
AV
3611 new_mnt = real_mount(new.mnt);
3612 root_mnt = real_mount(root.mnt);
84d17192 3613 old_mnt = real_mount(old.mnt);
2763d119
AV
3614 ex_parent = new_mnt->mnt_parent;
3615 root_parent = root_mnt->mnt_parent;
84d17192 3616 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3617 IS_MNT_SHARED(ex_parent) ||
3618 IS_MNT_SHARED(root_parent))
b12cea91 3619 goto out4;
143c8c91 3620 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3621 goto out4;
5ff9d8a6
EB
3622 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3623 goto out4;
1da177e4 3624 error = -ENOENT;
f3da392e 3625 if (d_unlinked(new.dentry))
b12cea91 3626 goto out4;
1da177e4 3627 error = -EBUSY;
84d17192 3628 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3629 goto out4; /* loop, on the same file system */
1da177e4 3630 error = -EINVAL;
8c3ee42e 3631 if (root.mnt->mnt_root != root.dentry)
b12cea91 3632 goto out4; /* not a mountpoint */
676da58d 3633 if (!mnt_has_parent(root_mnt))
b12cea91 3634 goto out4; /* not attached */
2d8f3038 3635 if (new.mnt->mnt_root != new.dentry)
b12cea91 3636 goto out4; /* not a mountpoint */
676da58d 3637 if (!mnt_has_parent(new_mnt))
b12cea91 3638 goto out4; /* not attached */
4ac91378 3639 /* make sure we can reach put_old from new_root */
84d17192 3640 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3641 goto out4;
0d082601
EB
3642 /* make certain new is below the root */
3643 if (!is_path_reachable(new_mnt, new.dentry, &root))
3644 goto out4;
719ea2fb 3645 lock_mount_hash();
2763d119
AV
3646 umount_mnt(new_mnt);
3647 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3648 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3649 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3650 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3651 }
4ac91378 3652 /* mount old root on put_old */
84d17192 3653 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3654 /* mount new_root on / */
2763d119
AV
3655 attach_mnt(new_mnt, root_parent, root_mp);
3656 mnt_add_count(root_parent, -1);
6b3286ed 3657 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3658 /* A moved mount should not expire automatically */
3659 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3660 put_mountpoint(root_mp);
719ea2fb 3661 unlock_mount_hash();
2d8f3038 3662 chroot_fs_refs(&root, &new);
1da177e4 3663 error = 0;
b12cea91 3664out4:
84d17192 3665 unlock_mount(old_mp);
2763d119
AV
3666 if (!error)
3667 mntput_no_expire(ex_parent);
b12cea91 3668out3:
8c3ee42e 3669 path_put(&root);
b12cea91 3670out2:
2d8f3038 3671 path_put(&old);
1da177e4 3672out1:
2d8f3038 3673 path_put(&new);
1da177e4 3674out0:
1da177e4 3675 return error;
1da177e4
LT
3676}
3677
3678static void __init init_mount_tree(void)
3679{
3680 struct vfsmount *mnt;
74e83122 3681 struct mount *m;
6b3286ed 3682 struct mnt_namespace *ns;
ac748a09 3683 struct path root;
0c55cfc4 3684 struct file_system_type *type;
1da177e4 3685
0c55cfc4
EB
3686 type = get_fs_type("rootfs");
3687 if (!type)
3688 panic("Can't find rootfs type");
3689 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3690 put_filesystem(type);
1da177e4
LT
3691 if (IS_ERR(mnt))
3692 panic("Can't create rootfs");
b3e19d92 3693
74e83122 3694 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3695 if (IS_ERR(ns))
1da177e4 3696 panic("Can't allocate initial namespace");
74e83122
AV
3697 m = real_mount(mnt);
3698 m->mnt_ns = ns;
3699 ns->root = m;
3700 ns->mounts = 1;
3701 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3702 init_task.nsproxy->mnt_ns = ns;
3703 get_mnt_ns(ns);
3704
be08d6d2
AV
3705 root.mnt = mnt;
3706 root.dentry = mnt->mnt_root;
da362b09 3707 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3708
3709 set_fs_pwd(current->fs, &root);
3710 set_fs_root(current->fs, &root);
1da177e4
LT
3711}
3712
74bf17cf 3713void __init mnt_init(void)
1da177e4 3714{
15a67dd8 3715 int err;
1da177e4 3716
7d6fec45 3717 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3718 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3719
0818bf27 3720 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3721 sizeof(struct hlist_head),
0818bf27 3722 mhash_entries, 19,
3d375d78 3723 HASH_ZERO,
0818bf27
AV
3724 &m_hash_shift, &m_hash_mask, 0, 0);
3725 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3726 sizeof(struct hlist_head),
3727 mphash_entries, 19,
3d375d78 3728 HASH_ZERO,
0818bf27 3729 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3730
84d17192 3731 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3732 panic("Failed to allocate mount hash table\n");
3733
4b93dc9b
TH
3734 kernfs_init();
3735
15a67dd8
RD
3736 err = sysfs_init();
3737 if (err)
3738 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3739 __func__, err);
00d26666
GKH
3740 fs_kobj = kobject_create_and_add("fs", NULL);
3741 if (!fs_kobj)
8e24eea7 3742 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3743 init_rootfs();
3744 init_mount_tree();
3745}
3746
616511d0 3747void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3748{
d498b25a 3749 if (!atomic_dec_and_test(&ns->count))
616511d0 3750 return;
7b00ed6f 3751 drop_collected_mounts(&ns->root->mnt);
771b1371 3752 free_mnt_ns(ns);
1da177e4 3753}
9d412a43 3754
d911b458 3755struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3756{
423e0ab0 3757 struct vfsmount *mnt;
d911b458 3758 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3759 if (!IS_ERR(mnt)) {
3760 /*
3761 * it is a longterm mount, don't release mnt until
3762 * we unmount before file sys is unregistered
3763 */
f7a99c5b 3764 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3765 }
3766 return mnt;
9d412a43 3767}
d911b458 3768EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3769
3770void kern_unmount(struct vfsmount *mnt)
3771{
3772 /* release long term mount so mount point can be released */
3773 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3774 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3775 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3776 mntput(mnt);
3777 }
3778}
3779EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3780
3781bool our_mnt(struct vfsmount *mnt)
3782{
143c8c91 3783 return check_mnt(real_mount(mnt));
02125a82 3784}
8823c079 3785
3151527e
EB
3786bool current_chrooted(void)
3787{
3788 /* Does the current process have a non-standard root */
3789 struct path ns_root;
3790 struct path fs_root;
3791 bool chrooted;
3792
3793 /* Find the namespace root */
3794 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3795 ns_root.dentry = ns_root.mnt->mnt_root;
3796 path_get(&ns_root);
3797 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3798 ;
3799
3800 get_fs_root(current->fs, &fs_root);
3801
3802 chrooted = !path_equal(&fs_root, &ns_root);
3803
3804 path_put(&fs_root);
3805 path_put(&ns_root);
3806
3807 return chrooted;
3808}
3809
132e4608
DH
3810static bool mnt_already_visible(struct mnt_namespace *ns,
3811 const struct super_block *sb,
8654df4e 3812 int *new_mnt_flags)
87a8ebd6 3813{
8c6cf9cc 3814 int new_flags = *new_mnt_flags;
87a8ebd6 3815 struct mount *mnt;
e51db735 3816 bool visible = false;
87a8ebd6 3817
44bb4385 3818 down_read(&namespace_sem);
87a8ebd6 3819 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3820 struct mount *child;
77b1a97d
EB
3821 int mnt_flags;
3822
132e4608 3823 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3824 continue;
3825
7e96c1b0
EB
3826 /* This mount is not fully visible if it's root directory
3827 * is not the root directory of the filesystem.
3828 */
3829 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3830 continue;
3831
a1935c17 3832 /* A local view of the mount flags */
77b1a97d 3833 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3834
695e9df0 3835 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3836 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3837 mnt_flags |= MNT_LOCK_READONLY;
3838
8c6cf9cc
EB
3839 /* Verify the mount flags are equal to or more permissive
3840 * than the proposed new mount.
3841 */
77b1a97d 3842 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3843 !(new_flags & MNT_READONLY))
3844 continue;
77b1a97d
EB
3845 if ((mnt_flags & MNT_LOCK_ATIME) &&
3846 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3847 continue;
3848
ceeb0e5d
EB
3849 /* This mount is not fully visible if there are any
3850 * locked child mounts that cover anything except for
3851 * empty directories.
e51db735
EB
3852 */
3853 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3854 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3855 /* Only worry about locked mounts */
d71ed6c9 3856 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3857 continue;
7236c85e
EB
3858 /* Is the directory permanetly empty? */
3859 if (!is_empty_dir_inode(inode))
e51db735 3860 goto next;
87a8ebd6 3861 }
8c6cf9cc 3862 /* Preserve the locked attributes */
77b1a97d 3863 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3864 MNT_LOCK_ATIME);
e51db735
EB
3865 visible = true;
3866 goto found;
3867 next: ;
87a8ebd6 3868 }
e51db735 3869found:
44bb4385 3870 up_read(&namespace_sem);
e51db735 3871 return visible;
87a8ebd6
EB
3872}
3873
132e4608 3874static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3875{
a1935c17 3876 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3877 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3878 unsigned long s_iflags;
3879
3880 if (ns->user_ns == &init_user_ns)
3881 return false;
3882
3883 /* Can this filesystem be too revealing? */
132e4608 3884 s_iflags = sb->s_iflags;
8654df4e
EB
3885 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3886 return false;
3887
a1935c17
EB
3888 if ((s_iflags & required_iflags) != required_iflags) {
3889 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3890 required_iflags);
3891 return true;
3892 }
3893
132e4608 3894 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3895}
3896
380cf5ba
AL
3897bool mnt_may_suid(struct vfsmount *mnt)
3898{
3899 /*
3900 * Foreign mounts (accessed via fchdir or through /proc
3901 * symlinks) are always treated as if they are nosuid. This
3902 * prevents namespaces from trusting potentially unsafe
3903 * suid/sgid bits, file caps, or security labels that originate
3904 * in other namespaces.
3905 */
3906 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3907 current_in_userns(mnt->mnt_sb->s_user_ns);
3908}
3909
64964528 3910static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3911{
58be2825 3912 struct ns_common *ns = NULL;
8823c079
EB
3913 struct nsproxy *nsproxy;
3914
728dba3a
EB
3915 task_lock(task);
3916 nsproxy = task->nsproxy;
8823c079 3917 if (nsproxy) {
58be2825
AV
3918 ns = &nsproxy->mnt_ns->ns;
3919 get_mnt_ns(to_mnt_ns(ns));
8823c079 3920 }
728dba3a 3921 task_unlock(task);
8823c079
EB
3922
3923 return ns;
3924}
3925
64964528 3926static void mntns_put(struct ns_common *ns)
8823c079 3927{
58be2825 3928 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3929}
3930
64964528 3931static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3932{
3933 struct fs_struct *fs = current->fs;
4f757f3c 3934 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3935 struct path root;
4f757f3c 3936 int err;
8823c079 3937
0c55cfc4 3938 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3939 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3940 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3941 return -EPERM;
8823c079 3942
74e83122
AV
3943 if (is_anon_ns(mnt_ns))
3944 return -EINVAL;
3945
8823c079
EB
3946 if (fs->users != 1)
3947 return -EINVAL;
3948
3949 get_mnt_ns(mnt_ns);
4f757f3c 3950 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3951 nsproxy->mnt_ns = mnt_ns;
3952
3953 /* Find the root */
4f757f3c
AV
3954 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3955 "/", LOOKUP_DOWN, &root);
3956 if (err) {
3957 /* revert to old namespace */
3958 nsproxy->mnt_ns = old_mnt_ns;
3959 put_mnt_ns(mnt_ns);
3960 return err;
3961 }
8823c079 3962
4068367c
AV
3963 put_mnt_ns(old_mnt_ns);
3964
8823c079
EB
3965 /* Update the pwd and root */
3966 set_fs_pwd(fs, &root);
3967 set_fs_root(fs, &root);
3968
3969 path_put(&root);
3970 return 0;
3971}
3972
bcac25a5
AV
3973static struct user_namespace *mntns_owner(struct ns_common *ns)
3974{
3975 return to_mnt_ns(ns)->user_ns;
3976}
3977
8823c079
EB
3978const struct proc_ns_operations mntns_operations = {
3979 .name = "mnt",
3980 .type = CLONE_NEWNS,
3981 .get = mntns_get,
3982 .put = mntns_put,
3983 .install = mntns_install,
bcac25a5 3984 .owner = mntns_owner,
8823c079 3985};