Merge tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9caccd41 28#include <linux/proc_fs.h>
9ea459e1 29#include <linux/task_work.h>
9164bb4a 30#include <linux/sched/task.h>
e262e32d 31#include <uapi/linux/mount.h>
9bc61ab1 32#include <linux/fs_context.h>
037f11b4 33#include <linux/shmem_fs.h>
bd303368 34#include <linux/mnt_idmapping.h>
9164bb4a 35
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
d2921684 39/* Maximum number of mounts in a mount namespace */
ab171b95 40static unsigned int sysctl_mount_max __read_mostly = 100000;
d2921684 41
0818bf27
AV
42static unsigned int m_hash_mask __read_mostly;
43static unsigned int m_hash_shift __read_mostly;
44static unsigned int mp_hash_mask __read_mostly;
45static unsigned int mp_hash_shift __read_mostly;
46
47static __initdata unsigned long mhash_entries;
48static int __init set_mhash_entries(char *str)
49{
50 if (!str)
51 return 0;
52 mhash_entries = simple_strtoul(str, &str, 0);
53 return 1;
54}
55__setup("mhash_entries=", set_mhash_entries);
56
57static __initdata unsigned long mphash_entries;
58static int __init set_mphash_entries(char *str)
59{
60 if (!str)
61 return 0;
62 mphash_entries = simple_strtoul(str, &str, 0);
63 return 1;
64}
65__setup("mphash_entries=", set_mphash_entries);
13f14b4d 66
c7999c36 67static u64 event;
73cd49ec 68static DEFINE_IDA(mnt_id_ida);
719f5d7f 69static DEFINE_IDA(mnt_group_ida);
1da177e4 70
38129a13 71static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 72static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 73static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 74static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
75static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 77
2a186721
CB
78struct mount_kattr {
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
83 bool recurse;
9caccd41 84 struct user_namespace *mnt_userns;
256c8aed 85 struct mnt_idmap *mnt_idmap;
2a186721
CB
86};
87
f87fd4c2 88/* /sys/fs */
00d26666
GKH
89struct kobject *fs_kobj;
90EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 91
99b7db7b
NP
92/*
93 * vfsmount lock may be taken for read to prevent changes to the
94 * vfsmount hash, ie. during mountpoint lookups or walking back
95 * up the tree.
96 *
97 * It should be taken for write in all cases where the vfsmount
98 * tree or hash is modified or when a vfsmount structure is modified.
99 */
48a066e7 100__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 101
d033cb67
CB
102static inline void lock_mount_hash(void)
103{
104 write_seqlock(&mount_lock);
105}
106
107static inline void unlock_mount_hash(void)
108{
109 write_sequnlock(&mount_lock);
110}
111
38129a13 112static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 113{
b58fed8b
RP
114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
116 tmp = tmp + (tmp >> m_hash_shift);
117 return &mount_hashtable[tmp & m_hash_mask];
118}
119
120static inline struct hlist_head *mp_hash(struct dentry *dentry)
121{
122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 tmp = tmp + (tmp >> mp_hash_shift);
124 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
125}
126
b105e270 127static int mnt_alloc_id(struct mount *mnt)
73cd49ec 128{
169b480e
MW
129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130
131 if (res < 0)
132 return res;
133 mnt->mnt_id = res;
134 return 0;
73cd49ec
MS
135}
136
b105e270 137static void mnt_free_id(struct mount *mnt)
73cd49ec 138{
169b480e 139 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
140}
141
719f5d7f
MS
142/*
143 * Allocate a new peer group ID
719f5d7f 144 */
4b8b21f4 145static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 146{
169b480e 147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 148
169b480e
MW
149 if (res < 0)
150 return res;
151 mnt->mnt_group_id = res;
152 return 0;
719f5d7f
MS
153}
154
155/*
156 * Release a peer group ID
157 */
4b8b21f4 158void mnt_release_group_id(struct mount *mnt)
719f5d7f 159{
169b480e 160 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 161 mnt->mnt_group_id = 0;
719f5d7f
MS
162}
163
b3e19d92
NP
164/*
165 * vfsmount lock must be held for read
166 */
83adc753 167static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
168{
169#ifdef CONFIG_SMP
68e8a9fe 170 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
171#else
172 preempt_disable();
68e8a9fe 173 mnt->mnt_count += n;
b3e19d92
NP
174 preempt_enable();
175#endif
176}
177
b3e19d92
NP
178/*
179 * vfsmount lock must be held for write
180 */
edf7ddbf 181int mnt_get_count(struct mount *mnt)
b3e19d92
NP
182{
183#ifdef CONFIG_SMP
edf7ddbf 184 int count = 0;
b3e19d92
NP
185 int cpu;
186
187 for_each_possible_cpu(cpu) {
68e8a9fe 188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
189 }
190
191 return count;
192#else
68e8a9fe 193 return mnt->mnt_count;
b3e19d92
NP
194#endif
195}
196
b105e270 197static struct mount *alloc_vfsmnt(const char *name)
1da177e4 198{
c63181e6
AV
199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 if (mnt) {
73cd49ec
MS
201 int err;
202
c63181e6 203 err = mnt_alloc_id(mnt);
88b38782
LZ
204 if (err)
205 goto out_free_cache;
206
207 if (name) {
79f6540b
VA
208 mnt->mnt_devname = kstrdup_const(name,
209 GFP_KERNEL_ACCOUNT);
c63181e6 210 if (!mnt->mnt_devname)
88b38782 211 goto out_free_id;
73cd49ec
MS
212 }
213
b3e19d92 214#ifdef CONFIG_SMP
c63181e6
AV
215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 if (!mnt->mnt_pcp)
b3e19d92
NP
217 goto out_free_devname;
218
c63181e6 219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 220#else
c63181e6
AV
221 mnt->mnt_count = 1;
222 mnt->mnt_writers = 0;
b3e19d92
NP
223#endif
224
38129a13 225 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
226 INIT_LIST_HEAD(&mnt->mnt_child);
227 INIT_LIST_HEAD(&mnt->mnt_mounts);
228 INIT_LIST_HEAD(&mnt->mnt_list);
229 INIT_LIST_HEAD(&mnt->mnt_expire);
230 INIT_LIST_HEAD(&mnt->mnt_share);
231 INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 233 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 234 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
256c8aed 236 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
1da177e4 237 }
c63181e6 238 return mnt;
88b38782 239
d3ef3d73 240#ifdef CONFIG_SMP
241out_free_devname:
fcc139ae 242 kfree_const(mnt->mnt_devname);
d3ef3d73 243#endif
88b38782 244out_free_id:
c63181e6 245 mnt_free_id(mnt);
88b38782 246out_free_cache:
c63181e6 247 kmem_cache_free(mnt_cache, mnt);
88b38782 248 return NULL;
1da177e4
LT
249}
250
3d733633
DH
251/*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259/*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
43f5e655 270bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 271{
43f5e655 272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
273}
274EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275
83adc753 276static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 277{
278#ifdef CONFIG_SMP
68e8a9fe 279 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 280#else
68e8a9fe 281 mnt->mnt_writers++;
d3ef3d73 282#endif
283}
3d733633 284
83adc753 285static inline void mnt_dec_writers(struct mount *mnt)
3d733633 286{
d3ef3d73 287#ifdef CONFIG_SMP
68e8a9fe 288 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 289#else
68e8a9fe 290 mnt->mnt_writers--;
d3ef3d73 291#endif
3d733633 292}
3d733633 293
83adc753 294static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 295{
d3ef3d73 296#ifdef CONFIG_SMP
297 unsigned int count = 0;
3d733633 298 int cpu;
3d733633
DH
299
300 for_each_possible_cpu(cpu) {
68e8a9fe 301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 302 }
3d733633 303
d3ef3d73 304 return count;
305#else
306 return mnt->mnt_writers;
307#endif
3d733633
DH
308}
309
4ed5e82f
MS
310static int mnt_is_readonly(struct vfsmount *mnt)
311{
312 if (mnt->mnt_sb->s_readonly_remount)
313 return 1;
314 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 smp_rmb();
316 return __mnt_is_readonly(mnt);
317}
318
8366025e 319/*
eb04c282
JK
320 * Most r/o & frozen checks on a fs are for operations that take discrete
321 * amounts of time, like a write() or unlink(). We must keep track of when
322 * those operations start (for permission checks) and when they end, so that we
323 * can determine when writes are able to occur to a filesystem.
8366025e
DH
324 */
325/**
eb04c282 326 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 327 * @m: the mount on which to take a write
8366025e 328 *
eb04c282
JK
329 * This tells the low-level filesystem that a write is about to be performed to
330 * it, and makes sure that writes are allowed (mnt it read-write) before
331 * returning success. This operation does not protect against filesystem being
332 * frozen. When the write operation is finished, __mnt_drop_write() must be
333 * called. This is effectively a refcount.
8366025e 334 */
eb04c282 335int __mnt_want_write(struct vfsmount *m)
8366025e 336{
83adc753 337 struct mount *mnt = real_mount(m);
3d733633 338 int ret = 0;
3d733633 339
d3ef3d73 340 preempt_disable();
c6653a83 341 mnt_inc_writers(mnt);
d3ef3d73 342 /*
c6653a83 343 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 344 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 * incremented count after it has set MNT_WRITE_HOLD.
346 */
347 smp_mb();
0f8821da
SAS
348 might_lock(&mount_lock.lock);
349 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 cpu_relax();
352 } else {
353 /*
354 * This prevents priority inversion, if the task
355 * setting MNT_WRITE_HOLD got preempted on a remote
356 * CPU, and it prevents life lock if the task setting
357 * MNT_WRITE_HOLD has a lower priority and is bound to
358 * the same CPU as the task that is spinning here.
359 */
360 preempt_enable();
361 lock_mount_hash();
362 unlock_mount_hash();
363 preempt_disable();
364 }
365 }
d3ef3d73 366 /*
367 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 * be set to match its requirements. So we must not load that until
369 * MNT_WRITE_HOLD is cleared.
370 */
371 smp_rmb();
4ed5e82f 372 if (mnt_is_readonly(m)) {
c6653a83 373 mnt_dec_writers(mnt);
3d733633 374 ret = -EROFS;
3d733633 375 }
d3ef3d73 376 preempt_enable();
eb04c282
JK
377
378 return ret;
379}
380
381/**
382 * mnt_want_write - get write access to a mount
383 * @m: the mount on which to take a write
384 *
385 * This tells the low-level filesystem that a write is about to be performed to
386 * it, and makes sure that writes are allowed (mount is read-write, filesystem
387 * is not frozen) before returning success. When the write operation is
388 * finished, mnt_drop_write() must be called. This is effectively a refcount.
389 */
390int mnt_want_write(struct vfsmount *m)
391{
392 int ret;
393
394 sb_start_write(m->mnt_sb);
395 ret = __mnt_want_write(m);
396 if (ret)
397 sb_end_write(m->mnt_sb);
3d733633 398 return ret;
8366025e
DH
399}
400EXPORT_SYMBOL_GPL(mnt_want_write);
401
96029c4e 402/**
eb04c282 403 * __mnt_want_write_file - get write access to a file's mount
96029c4e 404 * @file: the file who's mount on which to take a write
405 *
14e43bf4
EB
406 * This is like __mnt_want_write, but if the file is already open for writing it
407 * skips incrementing mnt_writers (since the open file already has a reference)
408 * and instead only does the check for emergency r/o remounts. This must be
409 * paired with __mnt_drop_write_file.
96029c4e 410 */
eb04c282 411int __mnt_want_write_file(struct file *file)
96029c4e 412{
14e43bf4
EB
413 if (file->f_mode & FMODE_WRITER) {
414 /*
415 * Superblock may have become readonly while there are still
416 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 */
418 if (__mnt_is_readonly(file->f_path.mnt))
419 return -EROFS;
420 return 0;
421 }
422 return __mnt_want_write(file->f_path.mnt);
96029c4e 423}
eb04c282 424
7c6893e3
MS
425/**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
14e43bf4
EB
429 * This is like mnt_want_write, but if the file is already open for writing it
430 * skips incrementing mnt_writers (since the open file already has a reference)
431 * and instead only does the freeze protection and the check for emergency r/o
432 * remounts. This must be paired with mnt_drop_write_file.
7c6893e3
MS
433 */
434int mnt_want_write_file(struct file *file)
435{
436 int ret;
437
a6795a58 438 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
439 ret = __mnt_want_write_file(file);
440 if (ret)
a6795a58 441 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
442 return ret;
443}
96029c4e 444EXPORT_SYMBOL_GPL(mnt_want_write_file);
445
8366025e 446/**
eb04c282 447 * __mnt_drop_write - give up write access to a mount
8366025e
DH
448 * @mnt: the mount on which to give up write access
449 *
450 * Tells the low-level filesystem that we are done
451 * performing writes to it. Must be matched with
eb04c282 452 * __mnt_want_write() call above.
8366025e 453 */
eb04c282 454void __mnt_drop_write(struct vfsmount *mnt)
8366025e 455{
d3ef3d73 456 preempt_disable();
83adc753 457 mnt_dec_writers(real_mount(mnt));
d3ef3d73 458 preempt_enable();
8366025e 459}
eb04c282
JK
460
461/**
462 * mnt_drop_write - give up write access to a mount
463 * @mnt: the mount on which to give up write access
464 *
465 * Tells the low-level filesystem that we are done performing writes to it and
466 * also allows filesystem to be frozen again. Must be matched with
467 * mnt_want_write() call above.
468 */
469void mnt_drop_write(struct vfsmount *mnt)
470{
471 __mnt_drop_write(mnt);
472 sb_end_write(mnt->mnt_sb);
473}
8366025e
DH
474EXPORT_SYMBOL_GPL(mnt_drop_write);
475
eb04c282
JK
476void __mnt_drop_write_file(struct file *file)
477{
14e43bf4
EB
478 if (!(file->f_mode & FMODE_WRITER))
479 __mnt_drop_write(file->f_path.mnt);
eb04c282
JK
480}
481
7c6893e3
MS
482void mnt_drop_write_file(struct file *file)
483{
a6795a58 484 __mnt_drop_write_file(file);
7c6893e3
MS
485 sb_end_write(file_inode(file)->i_sb);
486}
2a79f17e
AV
487EXPORT_SYMBOL(mnt_drop_write_file);
488
538f4f02
CB
489/**
490 * mnt_hold_writers - prevent write access to the given mount
491 * @mnt: mnt to prevent write access to
492 *
493 * Prevents write access to @mnt if there are no active writers for @mnt.
494 * This function needs to be called and return successfully before changing
495 * properties of @mnt that need to remain stable for callers with write access
496 * to @mnt.
497 *
498 * After this functions has been called successfully callers must pair it with
499 * a call to mnt_unhold_writers() in order to stop preventing write access to
500 * @mnt.
501 *
502 * Context: This function expects lock_mount_hash() to be held serializing
503 * setting MNT_WRITE_HOLD.
504 * Return: On success 0 is returned.
505 * On error, -EBUSY is returned.
506 */
fbdc2f6c 507static inline int mnt_hold_writers(struct mount *mnt)
8366025e 508{
83adc753 509 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 510 /*
d3ef3d73 511 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 * should be visible before we do.
3d733633 513 */
d3ef3d73 514 smp_mb();
515
3d733633 516 /*
d3ef3d73 517 * With writers on hold, if this value is zero, then there are
518 * definitely no active writers (although held writers may subsequently
519 * increment the count, they'll have to wait, and decrement it after
520 * seeing MNT_READONLY).
521 *
522 * It is OK to have counter incremented on one CPU and decremented on
523 * another: the sum will add up correctly. The danger would be when we
524 * sum up each counter, if we read a counter before it is incremented,
525 * but then read another CPU's count which it has been subsequently
526 * decremented from -- we would see more decrements than we should.
527 * MNT_WRITE_HOLD protects against this scenario, because
528 * mnt_want_write first increments count, then smp_mb, then spins on
529 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 * we're counting up here.
3d733633 531 */
c6653a83 532 if (mnt_get_writers(mnt) > 0)
fbdc2f6c
CB
533 return -EBUSY;
534
535 return 0;
536}
537
538f4f02
CB
538/**
539 * mnt_unhold_writers - stop preventing write access to the given mount
540 * @mnt: mnt to stop preventing write access to
541 *
542 * Stop preventing write access to @mnt allowing callers to gain write access
543 * to @mnt again.
544 *
545 * This function can only be called after a successful call to
546 * mnt_hold_writers().
547 *
548 * Context: This function expects lock_mount_hash() to be held.
549 */
fbdc2f6c
CB
550static inline void mnt_unhold_writers(struct mount *mnt)
551{
d3ef3d73 552 /*
553 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 * that become unheld will see MNT_READONLY.
555 */
556 smp_wmb();
83adc753 557 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
fbdc2f6c
CB
558}
559
560static int mnt_make_readonly(struct mount *mnt)
561{
562 int ret;
563
564 ret = mnt_hold_writers(mnt);
565 if (!ret)
566 mnt->mnt.mnt_flags |= MNT_READONLY;
567 mnt_unhold_writers(mnt);
3d733633 568 return ret;
8366025e 569}
8366025e 570
4ed5e82f
MS
571int sb_prepare_remount_readonly(struct super_block *sb)
572{
573 struct mount *mnt;
574 int err = 0;
575
8e8b8796
MS
576 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
577 if (atomic_long_read(&sb->s_remove_count))
578 return -EBUSY;
579
719ea2fb 580 lock_mount_hash();
4ed5e82f
MS
581 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
ad1844a0
CB
583 err = mnt_hold_writers(mnt);
584 if (err)
4ed5e82f 585 break;
4ed5e82f
MS
586 }
587 }
8e8b8796
MS
588 if (!err && atomic_long_read(&sb->s_remove_count))
589 err = -EBUSY;
590
4ed5e82f
MS
591 if (!err) {
592 sb->s_readonly_remount = 1;
593 smp_wmb();
594 }
595 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 }
719ea2fb 599 unlock_mount_hash();
4ed5e82f
MS
600
601 return err;
602}
603
b105e270 604static void free_vfsmnt(struct mount *mnt)
1da177e4 605{
256c8aed 606 mnt_idmap_put(mnt_idmap(&mnt->mnt));
fcc139ae 607 kfree_const(mnt->mnt_devname);
d3ef3d73 608#ifdef CONFIG_SMP
68e8a9fe 609 free_percpu(mnt->mnt_pcp);
d3ef3d73 610#endif
b105e270 611 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
612}
613
8ffcb32e
DH
614static void delayed_free_vfsmnt(struct rcu_head *head)
615{
616 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617}
618
48a066e7 619/* call under rcu_read_lock */
294d71ff 620int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
621{
622 struct mount *mnt;
623 if (read_seqretry(&mount_lock, seq))
294d71ff 624 return 1;
48a066e7 625 if (bastard == NULL)
294d71ff 626 return 0;
48a066e7
AV
627 mnt = real_mount(bastard);
628 mnt_add_count(mnt, 1);
119e1ef8 629 smp_mb(); // see mntput_no_expire()
48a066e7 630 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 631 return 0;
48a066e7
AV
632 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 mnt_add_count(mnt, -1);
294d71ff
AV
634 return 1;
635 }
119e1ef8
AV
636 lock_mount_hash();
637 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 mnt_add_count(mnt, -1);
639 unlock_mount_hash();
640 return 1;
641 }
642 unlock_mount_hash();
643 /* caller will mntput() */
294d71ff
AV
644 return -1;
645}
646
647/* call under rcu_read_lock */
7e4745a0 648static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
294d71ff
AV
649{
650 int res = __legitimize_mnt(bastard, seq);
651 if (likely(!res))
652 return true;
653 if (unlikely(res < 0)) {
654 rcu_read_unlock();
655 mntput(bastard);
656 rcu_read_lock();
48a066e7 657 }
48a066e7
AV
658 return false;
659}
660
1da177e4 661/*
474279dc 662 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 663 * call under rcu_read_lock()
1da177e4 664 */
474279dc 665struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 666{
38129a13 667 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
668 struct mount *p;
669
38129a13 670 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
671 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
672 return p;
673 return NULL;
674}
675
a05964f3 676/*
f015f126
DH
677 * lookup_mnt - Return the first child mount mounted at path
678 *
679 * "First" means first mounted chronologically. If you create the
680 * following mounts:
681 *
682 * mount /dev/sda1 /mnt
683 * mount /dev/sda2 /mnt
684 * mount /dev/sda3 /mnt
685 *
686 * Then lookup_mnt() on the base /mnt dentry in the root mount will
687 * return successively the root dentry and vfsmount of /dev/sda1, then
688 * /dev/sda2, then /dev/sda3, then NULL.
689 *
690 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 691 */
ca71cf71 692struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 693{
c7105365 694 struct mount *child_mnt;
48a066e7
AV
695 struct vfsmount *m;
696 unsigned seq;
99b7db7b 697
48a066e7
AV
698 rcu_read_lock();
699 do {
700 seq = read_seqbegin(&mount_lock);
701 child_mnt = __lookup_mnt(path->mnt, path->dentry);
702 m = child_mnt ? &child_mnt->mnt : NULL;
703 } while (!legitimize_mnt(m, seq));
704 rcu_read_unlock();
705 return m;
a05964f3
RP
706}
707
9f6c61f9
MS
708static inline void lock_ns_list(struct mnt_namespace *ns)
709{
710 spin_lock(&ns->ns_lock);
711}
712
713static inline void unlock_ns_list(struct mnt_namespace *ns)
714{
715 spin_unlock(&ns->ns_lock);
716}
717
718static inline bool mnt_is_cursor(struct mount *mnt)
719{
720 return mnt->mnt.mnt_flags & MNT_CURSOR;
721}
722
7af1364f
EB
723/*
724 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
725 * current mount namespace.
726 *
727 * The common case is dentries are not mountpoints at all and that
728 * test is handled inline. For the slow case when we are actually
729 * dealing with a mountpoint of some kind, walk through all of the
730 * mounts in the current mount namespace and test to see if the dentry
731 * is a mountpoint.
732 *
733 * The mount_hashtable is not usable in the context because we
734 * need to identify all mounts that may be in the current mount
735 * namespace not just a mount that happens to have some specified
736 * parent mount.
737 */
738bool __is_local_mountpoint(struct dentry *dentry)
739{
740 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
741 struct mount *mnt;
742 bool is_covered = false;
743
7af1364f 744 down_read(&namespace_sem);
9f6c61f9 745 lock_ns_list(ns);
7af1364f 746 list_for_each_entry(mnt, &ns->list, mnt_list) {
9f6c61f9
MS
747 if (mnt_is_cursor(mnt))
748 continue;
7af1364f
EB
749 is_covered = (mnt->mnt_mountpoint == dentry);
750 if (is_covered)
751 break;
752 }
9f6c61f9 753 unlock_ns_list(ns);
7af1364f 754 up_read(&namespace_sem);
5ad05cc8 755
7af1364f
EB
756 return is_covered;
757}
758
e2dfa935 759static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 760{
0818bf27 761 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
762 struct mountpoint *mp;
763
0818bf27 764 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 765 if (mp->m_dentry == dentry) {
84d17192
AV
766 mp->m_count++;
767 return mp;
768 }
769 }
e2dfa935
EB
770 return NULL;
771}
772
3895dbf8 773static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 774{
3895dbf8 775 struct mountpoint *mp, *new = NULL;
e2dfa935 776 int ret;
84d17192 777
3895dbf8 778 if (d_mountpoint(dentry)) {
1e9c75fb
BC
779 /* might be worth a WARN_ON() */
780 if (d_unlinked(dentry))
781 return ERR_PTR(-ENOENT);
3895dbf8
EB
782mountpoint:
783 read_seqlock_excl(&mount_lock);
784 mp = lookup_mountpoint(dentry);
785 read_sequnlock_excl(&mount_lock);
786 if (mp)
787 goto done;
788 }
789
790 if (!new)
791 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
792 if (!new)
84d17192
AV
793 return ERR_PTR(-ENOMEM);
794
3895dbf8
EB
795
796 /* Exactly one processes may set d_mounted */
eed81007 797 ret = d_set_mounted(dentry);
eed81007 798
3895dbf8
EB
799 /* Someone else set d_mounted? */
800 if (ret == -EBUSY)
801 goto mountpoint;
802
803 /* The dentry is not available as a mountpoint? */
804 mp = ERR_PTR(ret);
805 if (ret)
806 goto done;
807
808 /* Add the new mountpoint to the hash table */
809 read_seqlock_excl(&mount_lock);
4edbe133 810 new->m_dentry = dget(dentry);
3895dbf8
EB
811 new->m_count = 1;
812 hlist_add_head(&new->m_hash, mp_hash(dentry));
813 INIT_HLIST_HEAD(&new->m_list);
814 read_sequnlock_excl(&mount_lock);
815
816 mp = new;
817 new = NULL;
818done:
819 kfree(new);
84d17192
AV
820 return mp;
821}
822
4edbe133
AV
823/*
824 * vfsmount lock must be held. Additionally, the caller is responsible
825 * for serializing calls for given disposal list.
826 */
827static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
828{
829 if (!--mp->m_count) {
830 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 831 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
832 spin_lock(&dentry->d_lock);
833 dentry->d_flags &= ~DCACHE_MOUNTED;
834 spin_unlock(&dentry->d_lock);
4edbe133 835 dput_to_list(dentry, list);
0818bf27 836 hlist_del(&mp->m_hash);
84d17192
AV
837 kfree(mp);
838 }
839}
840
4edbe133
AV
841/* called with namespace_lock and vfsmount lock */
842static void put_mountpoint(struct mountpoint *mp)
843{
844 __put_mountpoint(mp, &ex_mountpoints);
845}
846
143c8c91 847static inline int check_mnt(struct mount *mnt)
1da177e4 848{
6b3286ed 849 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
850}
851
99b7db7b
NP
852/*
853 * vfsmount lock must be held for write
854 */
6b3286ed 855static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
856{
857 if (ns) {
858 ns->event = ++event;
859 wake_up_interruptible(&ns->poll);
860 }
861}
862
99b7db7b
NP
863/*
864 * vfsmount lock must be held for write
865 */
6b3286ed 866static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
867{
868 if (ns && ns->event != event) {
869 ns->event = event;
870 wake_up_interruptible(&ns->poll);
871 }
872}
873
99b7db7b
NP
874/*
875 * vfsmount lock must be held for write
876 */
e4e59906 877static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 878{
e4e59906 879 struct mountpoint *mp;
0714a533 880 mnt->mnt_parent = mnt;
a73324da 881 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 882 list_del_init(&mnt->mnt_child);
38129a13 883 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 884 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 885 mp = mnt->mnt_mp;
84d17192 886 mnt->mnt_mp = NULL;
e4e59906 887 return mp;
7bdb11de
EB
888}
889
6a46c573
EB
890/*
891 * vfsmount lock must be held for write
892 */
893static void umount_mnt(struct mount *mnt)
894{
e4e59906 895 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
896}
897
99b7db7b
NP
898/*
899 * vfsmount lock must be held for write
900 */
84d17192
AV
901void mnt_set_mountpoint(struct mount *mnt,
902 struct mountpoint *mp,
44d964d6 903 struct mount *child_mnt)
b90fa9ae 904{
84d17192 905 mp->m_count++;
3a2393d7 906 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 907 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 908 child_mnt->mnt_parent = mnt;
84d17192 909 child_mnt->mnt_mp = mp;
0a5eb7c8 910 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
911}
912
1064f874
EB
913static void __attach_mnt(struct mount *mnt, struct mount *parent)
914{
915 hlist_add_head_rcu(&mnt->mnt_hash,
916 m_hash(&parent->mnt, mnt->mnt_mountpoint));
917 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
918}
919
99b7db7b
NP
920/*
921 * vfsmount lock must be held for write
922 */
84d17192
AV
923static void attach_mnt(struct mount *mnt,
924 struct mount *parent,
925 struct mountpoint *mp)
1da177e4 926{
84d17192 927 mnt_set_mountpoint(parent, mp, mnt);
1064f874 928 __attach_mnt(mnt, parent);
b90fa9ae
RP
929}
930
1064f874 931void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 932{
1064f874 933 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
934 struct mount *old_parent = mnt->mnt_parent;
935
936 list_del_init(&mnt->mnt_child);
937 hlist_del_init(&mnt->mnt_mp_list);
938 hlist_del_init_rcu(&mnt->mnt_hash);
939
940 attach_mnt(mnt, parent, mp);
941
942 put_mountpoint(old_mp);
1064f874 943 mnt_add_count(old_parent, -1);
12a5b529
AV
944}
945
b90fa9ae 946/*
99b7db7b 947 * vfsmount lock must be held for write
b90fa9ae 948 */
1064f874 949static void commit_tree(struct mount *mnt)
b90fa9ae 950{
0714a533 951 struct mount *parent = mnt->mnt_parent;
83adc753 952 struct mount *m;
b90fa9ae 953 LIST_HEAD(head);
143c8c91 954 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 955
0714a533 956 BUG_ON(parent == mnt);
b90fa9ae 957
1a4eeaf2 958 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 959 list_for_each_entry(m, &head, mnt_list)
143c8c91 960 m->mnt_ns = n;
f03c6599 961
b90fa9ae
RP
962 list_splice(&head, n->list.prev);
963
d2921684
EB
964 n->mounts += n->pending_mounts;
965 n->pending_mounts = 0;
966
1064f874 967 __attach_mnt(mnt, parent);
6b3286ed 968 touch_mnt_namespace(n);
1da177e4
LT
969}
970
909b0a88 971static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 972{
6b41d536
AV
973 struct list_head *next = p->mnt_mounts.next;
974 if (next == &p->mnt_mounts) {
1da177e4 975 while (1) {
909b0a88 976 if (p == root)
1da177e4 977 return NULL;
6b41d536
AV
978 next = p->mnt_child.next;
979 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 980 break;
0714a533 981 p = p->mnt_parent;
1da177e4
LT
982 }
983 }
6b41d536 984 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
985}
986
315fc83e 987static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 988{
6b41d536
AV
989 struct list_head *prev = p->mnt_mounts.prev;
990 while (prev != &p->mnt_mounts) {
991 p = list_entry(prev, struct mount, mnt_child);
992 prev = p->mnt_mounts.prev;
9676f0c6
RP
993 }
994 return p;
995}
996
8f291889
AV
997/**
998 * vfs_create_mount - Create a mount for a configured superblock
999 * @fc: The configuration context with the superblock attached
1000 *
1001 * Create a mount to an already configured superblock. If necessary, the
1002 * caller should invoke vfs_get_tree() before calling this.
1003 *
1004 * Note that this does not attach the mount to anything.
1005 */
1006struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 1007{
b105e270 1008 struct mount *mnt;
9d412a43 1009
8f291889
AV
1010 if (!fc->root)
1011 return ERR_PTR(-EINVAL);
9d412a43 1012
8f291889 1013 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
1014 if (!mnt)
1015 return ERR_PTR(-ENOMEM);
1016
8f291889 1017 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 1018 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 1019
8f291889
AV
1020 atomic_inc(&fc->root->d_sb->s_active);
1021 mnt->mnt.mnt_sb = fc->root->d_sb;
1022 mnt->mnt.mnt_root = dget(fc->root);
1023 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1024 mnt->mnt_parent = mnt;
9d412a43 1025
719ea2fb 1026 lock_mount_hash();
8f291889 1027 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 1028 unlock_mount_hash();
b105e270 1029 return &mnt->mnt;
9d412a43 1030}
8f291889
AV
1031EXPORT_SYMBOL(vfs_create_mount);
1032
1033struct vfsmount *fc_mount(struct fs_context *fc)
1034{
1035 int err = vfs_get_tree(fc);
1036 if (!err) {
1037 up_write(&fc->root->d_sb->s_umount);
1038 return vfs_create_mount(fc);
1039 }
1040 return ERR_PTR(err);
1041}
1042EXPORT_SYMBOL(fc_mount);
1043
9bc61ab1
DH
1044struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1045 int flags, const char *name,
1046 void *data)
9d412a43 1047{
9bc61ab1 1048 struct fs_context *fc;
8f291889 1049 struct vfsmount *mnt;
9bc61ab1 1050 int ret = 0;
9d412a43
AV
1051
1052 if (!type)
3e1aeb00 1053 return ERR_PTR(-EINVAL);
9d412a43 1054
9bc61ab1
DH
1055 fc = fs_context_for_mount(type, flags);
1056 if (IS_ERR(fc))
1057 return ERR_CAST(fc);
1058
3e1aeb00
DH
1059 if (name)
1060 ret = vfs_parse_fs_string(fc, "source",
1061 name, strlen(name));
9bc61ab1
DH
1062 if (!ret)
1063 ret = parse_monolithic_mount_data(fc, data);
1064 if (!ret)
8f291889
AV
1065 mnt = fc_mount(fc);
1066 else
1067 mnt = ERR_PTR(ret);
9d412a43 1068
9bc61ab1 1069 put_fs_context(fc);
8f291889 1070 return mnt;
9d412a43
AV
1071}
1072EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073
93faccbb
EB
1074struct vfsmount *
1075vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 const char *name, void *data)
1077{
1078 /* Until it is worked out how to pass the user namespace
1079 * through from the parent mount to the submount don't support
1080 * unprivileged mounts with submounts.
1081 */
1082 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 return ERR_PTR(-EPERM);
1084
e462ec50 1085 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1086}
1087EXPORT_SYMBOL_GPL(vfs_submount);
1088
87129cc0 1089static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1090 int flag)
1da177e4 1091{
87129cc0 1092 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1093 struct mount *mnt;
1094 int err;
1da177e4 1095
be34d1a3
DH
1096 mnt = alloc_vfsmnt(old->mnt_devname);
1097 if (!mnt)
1098 return ERR_PTR(-ENOMEM);
719f5d7f 1099
7a472ef4 1100 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1101 mnt->mnt_group_id = 0; /* not a peer of original */
1102 else
1103 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1104
be34d1a3
DH
1105 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1106 err = mnt_alloc_group_id(mnt);
1107 if (err)
1108 goto out_free;
1da177e4 1109 }
be34d1a3 1110
16a34adb
AV
1111 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1112 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1113
be34d1a3 1114 atomic_inc(&sb->s_active);
256c8aed
CB
1115 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1116
be34d1a3
DH
1117 mnt->mnt.mnt_sb = sb;
1118 mnt->mnt.mnt_root = dget(root);
1119 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 mnt->mnt_parent = mnt;
719ea2fb 1121 lock_mount_hash();
be34d1a3 1122 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1123 unlock_mount_hash();
be34d1a3 1124
7a472ef4
EB
1125 if ((flag & CL_SLAVE) ||
1126 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1127 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 mnt->mnt_master = old;
1129 CLEAR_MNT_SHARED(mnt);
1130 } else if (!(flag & CL_PRIVATE)) {
1131 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 list_add(&mnt->mnt_share, &old->mnt_share);
1133 if (IS_MNT_SLAVE(old))
1134 list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 mnt->mnt_master = old->mnt_master;
5235d448
AV
1136 } else {
1137 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1138 }
1139 if (flag & CL_MAKE_SHARED)
1140 set_mnt_shared(mnt);
1141
1142 /* stick the duplicate mount on the same expiry list
1143 * as the original if that was on one */
1144 if (flag & CL_EXPIRE) {
1145 if (!list_empty(&old->mnt_expire))
1146 list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 }
1148
cb338d06 1149 return mnt;
719f5d7f
MS
1150
1151 out_free:
8ffcb32e 1152 mnt_free_id(mnt);
719f5d7f 1153 free_vfsmnt(mnt);
be34d1a3 1154 return ERR_PTR(err);
1da177e4
LT
1155}
1156
9ea459e1
AV
1157static void cleanup_mnt(struct mount *mnt)
1158{
56cbb429
AV
1159 struct hlist_node *p;
1160 struct mount *m;
9ea459e1 1161 /*
56cbb429
AV
1162 * The warning here probably indicates that somebody messed
1163 * up a mnt_want/drop_write() pair. If this happens, the
1164 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1165 * The locking used to deal with mnt_count decrement provides barriers,
1166 * so mnt_get_writers() below is safe.
1167 */
1168 WARN_ON(mnt_get_writers(mnt));
1169 if (unlikely(mnt->mnt_pins.first))
1170 mnt_pin_kill(mnt);
56cbb429
AV
1171 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1172 hlist_del(&m->mnt_umount);
1173 mntput(&m->mnt);
1174 }
9ea459e1
AV
1175 fsnotify_vfsmount_delete(&mnt->mnt);
1176 dput(mnt->mnt.mnt_root);
1177 deactivate_super(mnt->mnt.mnt_sb);
1178 mnt_free_id(mnt);
1179 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1180}
1181
1182static void __cleanup_mnt(struct rcu_head *head)
1183{
1184 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1185}
1186
1187static LLIST_HEAD(delayed_mntput_list);
1188static void delayed_mntput(struct work_struct *unused)
1189{
1190 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1191 struct mount *m, *t;
9ea459e1 1192
29785735
BP
1193 llist_for_each_entry_safe(m, t, node, mnt_llist)
1194 cleanup_mnt(m);
9ea459e1
AV
1195}
1196static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1197
900148dc 1198static void mntput_no_expire(struct mount *mnt)
b3e19d92 1199{
4edbe133 1200 LIST_HEAD(list);
edf7ddbf 1201 int count;
4edbe133 1202
48a066e7 1203 rcu_read_lock();
9ea0a46c
AV
1204 if (likely(READ_ONCE(mnt->mnt_ns))) {
1205 /*
1206 * Since we don't do lock_mount_hash() here,
1207 * ->mnt_ns can change under us. However, if it's
1208 * non-NULL, then there's a reference that won't
1209 * be dropped until after an RCU delay done after
1210 * turning ->mnt_ns NULL. So if we observe it
1211 * non-NULL under rcu_read_lock(), the reference
1212 * we are dropping is not the final one.
1213 */
1214 mnt_add_count(mnt, -1);
48a066e7 1215 rcu_read_unlock();
f03c6599 1216 return;
b3e19d92 1217 }
719ea2fb 1218 lock_mount_hash();
119e1ef8
AV
1219 /*
1220 * make sure that if __legitimize_mnt() has not seen us grab
1221 * mount_lock, we'll see their refcount increment here.
1222 */
1223 smp_mb();
9ea0a46c 1224 mnt_add_count(mnt, -1);
edf7ddbf
EB
1225 count = mnt_get_count(mnt);
1226 if (count != 0) {
1227 WARN_ON(count < 0);
48a066e7 1228 rcu_read_unlock();
719ea2fb 1229 unlock_mount_hash();
99b7db7b
NP
1230 return;
1231 }
48a066e7
AV
1232 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1233 rcu_read_unlock();
1234 unlock_mount_hash();
1235 return;
1236 }
1237 mnt->mnt.mnt_flags |= MNT_DOOMED;
1238 rcu_read_unlock();
962830df 1239
39f7c4db 1240 list_del(&mnt->mnt_instance);
ce07d891
EB
1241
1242 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1243 struct mount *p, *tmp;
1244 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1245 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1246 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1247 }
1248 }
719ea2fb 1249 unlock_mount_hash();
4edbe133 1250 shrink_dentry_list(&list);
649a795a 1251
9ea459e1
AV
1252 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1253 struct task_struct *task = current;
1254 if (likely(!(task->flags & PF_KTHREAD))) {
1255 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
91989c70 1256 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
9ea459e1
AV
1257 return;
1258 }
1259 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1260 schedule_delayed_work(&delayed_mntput_work, 1);
1261 return;
1262 }
1263 cleanup_mnt(mnt);
b3e19d92 1264}
b3e19d92
NP
1265
1266void mntput(struct vfsmount *mnt)
1267{
1268 if (mnt) {
863d684f 1269 struct mount *m = real_mount(mnt);
b3e19d92 1270 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1271 if (unlikely(m->mnt_expiry_mark))
1272 m->mnt_expiry_mark = 0;
1273 mntput_no_expire(m);
b3e19d92
NP
1274 }
1275}
1276EXPORT_SYMBOL(mntput);
1277
1278struct vfsmount *mntget(struct vfsmount *mnt)
1279{
1280 if (mnt)
83adc753 1281 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1282 return mnt;
1283}
1284EXPORT_SYMBOL(mntget);
1285
da27f796
RR
1286/*
1287 * Make a mount point inaccessible to new lookups.
1288 * Because there may still be current users, the caller MUST WAIT
1289 * for an RCU grace period before destroying the mount point.
1290 */
1291void mnt_make_shortterm(struct vfsmount *mnt)
1292{
1293 if (mnt)
1294 real_mount(mnt)->mnt_ns = NULL;
1295}
1296
1f287bc4
RD
1297/**
1298 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1299 * @path: path to check
c6609c0a
IK
1300 *
1301 * d_mountpoint() can only be used reliably to establish if a dentry is
1302 * not mounted in any namespace and that common case is handled inline.
1303 * d_mountpoint() isn't aware of the possibility there may be multiple
1304 * mounts using a given dentry in a different namespace. This function
1305 * checks if the passed in path is a mountpoint rather than the dentry
1306 * alone.
1307 */
1308bool path_is_mountpoint(const struct path *path)
1309{
1310 unsigned seq;
1311 bool res;
1312
1313 if (!d_mountpoint(path->dentry))
1314 return false;
1315
1316 rcu_read_lock();
1317 do {
1318 seq = read_seqbegin(&mount_lock);
1319 res = __path_is_mountpoint(path);
1320 } while (read_seqretry(&mount_lock, seq));
1321 rcu_read_unlock();
1322
1323 return res;
1324}
1325EXPORT_SYMBOL(path_is_mountpoint);
1326
ca71cf71 1327struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1328{
3064c356
AV
1329 struct mount *p;
1330 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1331 if (IS_ERR(p))
1332 return ERR_CAST(p);
1333 p->mnt.mnt_flags |= MNT_INTERNAL;
1334 return &p->mnt;
7b7b1ace 1335}
1da177e4 1336
a1a2c409 1337#ifdef CONFIG_PROC_FS
9f6c61f9
MS
1338static struct mount *mnt_list_next(struct mnt_namespace *ns,
1339 struct list_head *p)
1340{
1341 struct mount *mnt, *ret = NULL;
1342
1343 lock_ns_list(ns);
1344 list_for_each_continue(p, &ns->list) {
1345 mnt = list_entry(p, typeof(*mnt), mnt_list);
1346 if (!mnt_is_cursor(mnt)) {
1347 ret = mnt;
1348 break;
1349 }
1350 }
1351 unlock_ns_list(ns);
1352
1353 return ret;
1354}
1355
0226f492 1356/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1357static void *m_start(struct seq_file *m, loff_t *pos)
1358{
ede1bf0d 1359 struct proc_mounts *p = m->private;
9f6c61f9 1360 struct list_head *prev;
1da177e4 1361
390c6843 1362 down_read(&namespace_sem);
9f6c61f9
MS
1363 if (!*pos) {
1364 prev = &p->ns->list;
1365 } else {
1366 prev = &p->cursor.mnt_list;
1367
1368 /* Read after we'd reached the end? */
1369 if (list_empty(prev))
1370 return NULL;
c7999c36
AV
1371 }
1372
9f6c61f9 1373 return mnt_list_next(p->ns, prev);
1da177e4
LT
1374}
1375
1376static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1377{
ede1bf0d 1378 struct proc_mounts *p = m->private;
9f6c61f9 1379 struct mount *mnt = v;
b0765fb8 1380
9f6c61f9
MS
1381 ++*pos;
1382 return mnt_list_next(p->ns, &mnt->mnt_list);
1da177e4
LT
1383}
1384
1385static void m_stop(struct seq_file *m, void *v)
1386{
9f6c61f9
MS
1387 struct proc_mounts *p = m->private;
1388 struct mount *mnt = v;
1389
1390 lock_ns_list(p->ns);
1391 if (mnt)
1392 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1393 else
1394 list_del_init(&p->cursor.mnt_list);
1395 unlock_ns_list(p->ns);
390c6843 1396 up_read(&namespace_sem);
1da177e4
LT
1397}
1398
0226f492 1399static int m_show(struct seq_file *m, void *v)
2d4d4864 1400{
ede1bf0d 1401 struct proc_mounts *p = m->private;
9f6c61f9 1402 struct mount *r = v;
0226f492 1403 return p->show(m, &r->mnt);
1da177e4
LT
1404}
1405
a1a2c409 1406const struct seq_operations mounts_op = {
1da177e4
LT
1407 .start = m_start,
1408 .next = m_next,
1409 .stop = m_stop,
0226f492 1410 .show = m_show,
b4629fe2 1411};
9f6c61f9
MS
1412
1413void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1414{
1415 down_read(&namespace_sem);
1416 lock_ns_list(ns);
1417 list_del(&cursor->mnt_list);
1418 unlock_ns_list(ns);
1419 up_read(&namespace_sem);
1420}
a1a2c409 1421#endif /* CONFIG_PROC_FS */
b4629fe2 1422
1da177e4
LT
1423/**
1424 * may_umount_tree - check if a mount tree is busy
1f287bc4 1425 * @m: root of mount tree
1da177e4
LT
1426 *
1427 * This is called to check if a tree of mounts has any
1428 * open files, pwds, chroots or sub mounts that are
1429 * busy.
1430 */
909b0a88 1431int may_umount_tree(struct vfsmount *m)
1da177e4 1432{
909b0a88 1433 struct mount *mnt = real_mount(m);
36341f64
RP
1434 int actual_refs = 0;
1435 int minimum_refs = 0;
315fc83e 1436 struct mount *p;
909b0a88 1437 BUG_ON(!m);
1da177e4 1438
b3e19d92 1439 /* write lock needed for mnt_get_count */
719ea2fb 1440 lock_mount_hash();
909b0a88 1441 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1442 actual_refs += mnt_get_count(p);
1da177e4 1443 minimum_refs += 2;
1da177e4 1444 }
719ea2fb 1445 unlock_mount_hash();
1da177e4
LT
1446
1447 if (actual_refs > minimum_refs)
e3474a8e 1448 return 0;
1da177e4 1449
e3474a8e 1450 return 1;
1da177e4
LT
1451}
1452
1453EXPORT_SYMBOL(may_umount_tree);
1454
1455/**
1456 * may_umount - check if a mount point is busy
1457 * @mnt: root of mount
1458 *
1459 * This is called to check if a mount point has any
1460 * open files, pwds, chroots or sub mounts. If the
1461 * mount has sub mounts this will return busy
1462 * regardless of whether the sub mounts are busy.
1463 *
1464 * Doesn't take quota and stuff into account. IOW, in some cases it will
1465 * give false negatives. The main reason why it's here is that we need
1466 * a non-destructive way to look for easily umountable filesystems.
1467 */
1468int may_umount(struct vfsmount *mnt)
1469{
e3474a8e 1470 int ret = 1;
8ad08d8a 1471 down_read(&namespace_sem);
719ea2fb 1472 lock_mount_hash();
1ab59738 1473 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1474 ret = 0;
719ea2fb 1475 unlock_mount_hash();
8ad08d8a 1476 up_read(&namespace_sem);
a05964f3 1477 return ret;
1da177e4
LT
1478}
1479
1480EXPORT_SYMBOL(may_umount);
1481
97216be0 1482static void namespace_unlock(void)
70fbcdf4 1483{
a3b3c562 1484 struct hlist_head head;
56cbb429
AV
1485 struct hlist_node *p;
1486 struct mount *m;
4edbe133 1487 LIST_HEAD(list);
97216be0 1488
a3b3c562 1489 hlist_move_list(&unmounted, &head);
4edbe133 1490 list_splice_init(&ex_mountpoints, &list);
97216be0 1491
97216be0
AV
1492 up_write(&namespace_sem);
1493
4edbe133
AV
1494 shrink_dentry_list(&list);
1495
a3b3c562
EB
1496 if (likely(hlist_empty(&head)))
1497 return;
1498
22cb7405 1499 synchronize_rcu_expedited();
48a066e7 1500
56cbb429
AV
1501 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1502 hlist_del(&m->mnt_umount);
1503 mntput(&m->mnt);
1504 }
70fbcdf4
RP
1505}
1506
97216be0 1507static inline void namespace_lock(void)
e3197d83 1508{
97216be0 1509 down_write(&namespace_sem);
e3197d83
AV
1510}
1511
e819f152
EB
1512enum umount_tree_flags {
1513 UMOUNT_SYNC = 1,
1514 UMOUNT_PROPAGATE = 2,
e0c9c0af 1515 UMOUNT_CONNECTED = 4,
e819f152 1516};
f2d0a123
EB
1517
1518static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1519{
1520 /* Leaving mounts connected is only valid for lazy umounts */
1521 if (how & UMOUNT_SYNC)
1522 return true;
1523
1524 /* A mount without a parent has nothing to be connected to */
1525 if (!mnt_has_parent(mnt))
1526 return true;
1527
1528 /* Because the reference counting rules change when mounts are
1529 * unmounted and connected, umounted mounts may not be
1530 * connected to mounted mounts.
1531 */
1532 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1533 return true;
1534
1535 /* Has it been requested that the mount remain connected? */
1536 if (how & UMOUNT_CONNECTED)
1537 return false;
1538
1539 /* Is the mount locked such that it needs to remain connected? */
1540 if (IS_MNT_LOCKED(mnt))
1541 return false;
1542
1543 /* By default disconnect the mount */
1544 return true;
1545}
1546
99b7db7b 1547/*
48a066e7 1548 * mount_lock must be held
99b7db7b
NP
1549 * namespace_sem must be held for write
1550 */
e819f152 1551static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1552{
c003b26f 1553 LIST_HEAD(tmp_list);
315fc83e 1554 struct mount *p;
1da177e4 1555
5d88457e
EB
1556 if (how & UMOUNT_PROPAGATE)
1557 propagate_mount_unlock(mnt);
1558
c003b26f 1559 /* Gather the mounts to umount */
590ce4bc
EB
1560 for (p = mnt; p; p = next_mnt(p, mnt)) {
1561 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1562 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1563 }
1da177e4 1564
411a938b 1565 /* Hide the mounts from mnt_mounts */
c003b26f 1566 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1567 list_del_init(&p->mnt_child);
c003b26f 1568 }
88b368f2 1569
c003b26f 1570 /* Add propogated mounts to the tmp_list */
e819f152 1571 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1572 propagate_umount(&tmp_list);
a05964f3 1573
c003b26f 1574 while (!list_empty(&tmp_list)) {
d2921684 1575 struct mnt_namespace *ns;
ce07d891 1576 bool disconnect;
c003b26f 1577 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1578 list_del_init(&p->mnt_expire);
1a4eeaf2 1579 list_del_init(&p->mnt_list);
d2921684
EB
1580 ns = p->mnt_ns;
1581 if (ns) {
1582 ns->mounts--;
1583 __touch_mnt_namespace(ns);
1584 }
143c8c91 1585 p->mnt_ns = NULL;
e819f152 1586 if (how & UMOUNT_SYNC)
48a066e7 1587 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1588
f2d0a123 1589 disconnect = disconnect_mount(p, how);
676da58d 1590 if (mnt_has_parent(p)) {
81b6b061 1591 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1592 if (!disconnect) {
1593 /* Don't forget about p */
1594 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1595 } else {
1596 umount_mnt(p);
1597 }
7c4b93d8 1598 }
0f0afb1d 1599 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1600 if (disconnect)
1601 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1602 }
1603}
1604
b54b9be7 1605static void shrink_submounts(struct mount *mnt);
c35038be 1606
8d0347f6
DH
1607static int do_umount_root(struct super_block *sb)
1608{
1609 int ret = 0;
1610
1611 down_write(&sb->s_umount);
1612 if (!sb_rdonly(sb)) {
1613 struct fs_context *fc;
1614
1615 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1616 SB_RDONLY);
1617 if (IS_ERR(fc)) {
1618 ret = PTR_ERR(fc);
1619 } else {
1620 ret = parse_monolithic_mount_data(fc, NULL);
1621 if (!ret)
1622 ret = reconfigure_super(fc);
1623 put_fs_context(fc);
1624 }
1625 }
1626 up_write(&sb->s_umount);
1627 return ret;
1628}
1629
1ab59738 1630static int do_umount(struct mount *mnt, int flags)
1da177e4 1631{
1ab59738 1632 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1633 int retval;
1634
1ab59738 1635 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1636 if (retval)
1637 return retval;
1638
1639 /*
1640 * Allow userspace to request a mountpoint be expired rather than
1641 * unmounting unconditionally. Unmount only happens if:
1642 * (1) the mark is already set (the mark is cleared by mntput())
1643 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1644 */
1645 if (flags & MNT_EXPIRE) {
1ab59738 1646 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1647 flags & (MNT_FORCE | MNT_DETACH))
1648 return -EINVAL;
1649
b3e19d92
NP
1650 /*
1651 * probably don't strictly need the lock here if we examined
1652 * all race cases, but it's a slowpath.
1653 */
719ea2fb 1654 lock_mount_hash();
83adc753 1655 if (mnt_get_count(mnt) != 2) {
719ea2fb 1656 unlock_mount_hash();
1da177e4 1657 return -EBUSY;
b3e19d92 1658 }
719ea2fb 1659 unlock_mount_hash();
1da177e4 1660
863d684f 1661 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1662 return -EAGAIN;
1663 }
1664
1665 /*
1666 * If we may have to abort operations to get out of this
1667 * mount, and they will themselves hold resources we must
1668 * allow the fs to do things. In the Unix tradition of
1669 * 'Gee thats tricky lets do it in userspace' the umount_begin
1670 * might fail to complete on the first run through as other tasks
1671 * must return, and the like. Thats for the mount program to worry
1672 * about for the moment.
1673 */
1674
42faad99 1675 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1676 sb->s_op->umount_begin(sb);
42faad99 1677 }
1da177e4
LT
1678
1679 /*
1680 * No sense to grab the lock for this test, but test itself looks
1681 * somewhat bogus. Suggestions for better replacement?
1682 * Ho-hum... In principle, we might treat that as umount + switch
1683 * to rootfs. GC would eventually take care of the old vfsmount.
1684 * Actually it makes sense, especially if rootfs would contain a
1685 * /reboot - static binary that would close all descriptors and
1686 * call reboot(9). Then init(8) could umount root and exec /reboot.
1687 */
1ab59738 1688 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1689 /*
1690 * Special case for "unmounting" root ...
1691 * we just try to remount it readonly.
1692 */
bc6155d1 1693 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1694 return -EPERM;
8d0347f6 1695 return do_umount_root(sb);
1da177e4
LT
1696 }
1697
97216be0 1698 namespace_lock();
719ea2fb 1699 lock_mount_hash();
1da177e4 1700
25d202ed
EB
1701 /* Recheck MNT_LOCKED with the locks held */
1702 retval = -EINVAL;
1703 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1704 goto out;
1705
1706 event++;
48a066e7 1707 if (flags & MNT_DETACH) {
1a4eeaf2 1708 if (!list_empty(&mnt->mnt_list))
e819f152 1709 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1710 retval = 0;
48a066e7
AV
1711 } else {
1712 shrink_submounts(mnt);
1713 retval = -EBUSY;
1714 if (!propagate_mount_busy(mnt, 2)) {
1715 if (!list_empty(&mnt->mnt_list))
e819f152 1716 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1717 retval = 0;
1718 }
1da177e4 1719 }
25d202ed 1720out:
719ea2fb 1721 unlock_mount_hash();
e3197d83 1722 namespace_unlock();
1da177e4
LT
1723 return retval;
1724}
1725
80b5dce8
EB
1726/*
1727 * __detach_mounts - lazily unmount all mounts on the specified dentry
1728 *
1729 * During unlink, rmdir, and d_drop it is possible to loose the path
1730 * to an existing mountpoint, and wind up leaking the mount.
1731 * detach_mounts allows lazily unmounting those mounts instead of
1732 * leaking them.
1733 *
1734 * The caller may hold dentry->d_inode->i_mutex.
1735 */
1736void __detach_mounts(struct dentry *dentry)
1737{
1738 struct mountpoint *mp;
1739 struct mount *mnt;
1740
1741 namespace_lock();
3895dbf8 1742 lock_mount_hash();
80b5dce8 1743 mp = lookup_mountpoint(dentry);
adc9b5c0 1744 if (!mp)
80b5dce8
EB
1745 goto out_unlock;
1746
e06b933e 1747 event++;
80b5dce8
EB
1748 while (!hlist_empty(&mp->m_list)) {
1749 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1750 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1751 umount_mnt(mnt);
56cbb429 1752 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1753 }
e0c9c0af 1754 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1755 }
80b5dce8
EB
1756 put_mountpoint(mp);
1757out_unlock:
3895dbf8 1758 unlock_mount_hash();
80b5dce8
EB
1759 namespace_unlock();
1760}
1761
dd111b31 1762/*
9b40bc90
AV
1763 * Is the caller allowed to modify his namespace?
1764 */
a5f85d78 1765bool may_mount(void)
9b40bc90
AV
1766{
1767 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1768}
1769
f7e33bdb 1770static void warn_mandlock(void)
9e8925b6 1771{
f7e33bdb
JL
1772 pr_warn_once("=======================================================\n"
1773 "WARNING: The mand mount option has been deprecated and\n"
1774 " and is ignored by this kernel. Remove the mand\n"
1775 " option from the mount to silence this warning.\n"
1776 "=======================================================\n");
9e8925b6
JL
1777}
1778
25ccd24f 1779static int can_umount(const struct path *path, int flags)
1da177e4 1780{
25ccd24f 1781 struct mount *mnt = real_mount(path->mnt);
1da177e4 1782
9b40bc90
AV
1783 if (!may_mount())
1784 return -EPERM;
41525f56 1785 if (path->dentry != path->mnt->mnt_root)
25ccd24f 1786 return -EINVAL;
143c8c91 1787 if (!check_mnt(mnt))
25ccd24f 1788 return -EINVAL;
25d202ed 1789 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
25ccd24f 1790 return -EINVAL;
b2f5d4dc 1791 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
25ccd24f
CH
1792 return -EPERM;
1793 return 0;
1794}
1795
a0a6df9a 1796// caller is responsible for flags being sane
25ccd24f
CH
1797int path_umount(struct path *path, int flags)
1798{
1799 struct mount *mnt = real_mount(path->mnt);
1800 int ret;
1801
1802 ret = can_umount(path, flags);
1803 if (!ret)
1804 ret = do_umount(mnt, flags);
1da177e4 1805
429731b1 1806 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
41525f56 1807 dput(path->dentry);
900148dc 1808 mntput_no_expire(mnt);
25ccd24f 1809 return ret;
1da177e4
LT
1810}
1811
09267def 1812static int ksys_umount(char __user *name, int flags)
41525f56
CH
1813{
1814 int lookup_flags = LOOKUP_MOUNTPOINT;
1815 struct path path;
1816 int ret;
1817
a0a6df9a
AV
1818 // basic validity checks done first
1819 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1820 return -EINVAL;
1821
41525f56
CH
1822 if (!(flags & UMOUNT_NOFOLLOW))
1823 lookup_flags |= LOOKUP_FOLLOW;
1824 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1825 if (ret)
1826 return ret;
1827 return path_umount(&path, flags);
1828}
1829
3a18ef5c
DB
1830SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1831{
1832 return ksys_umount(name, flags);
1833}
1834
1da177e4
LT
1835#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1836
1837/*
b58fed8b 1838 * The 2.0 compatible umount. No flags.
1da177e4 1839 */
bdc480e3 1840SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1841{
3a18ef5c 1842 return ksys_umount(name, 0);
1da177e4
LT
1843}
1844
1845#endif
1846
4ce5d2b1 1847static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1848{
4ce5d2b1 1849 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1850 return dentry->d_op == &ns_dentry_operations &&
1851 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1852}
1853
213921f9 1854static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1855{
1856 return container_of(ns, struct mnt_namespace, ns);
1857}
1858
303cc571
CB
1859struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1860{
1861 return &mnt->ns;
1862}
1863
4ce5d2b1
EB
1864static bool mnt_ns_loop(struct dentry *dentry)
1865{
1866 /* Could bind mounting the mount namespace inode cause a
1867 * mount namespace loop?
1868 */
1869 struct mnt_namespace *mnt_ns;
1870 if (!is_mnt_ns_file(dentry))
1871 return false;
1872
f77c8014 1873 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1874 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1875}
1876
87129cc0 1877struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1878 int flag)
1da177e4 1879{
84d17192 1880 struct mount *res, *p, *q, *r, *parent;
1da177e4 1881
4ce5d2b1
EB
1882 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1883 return ERR_PTR(-EINVAL);
1884
1885 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1886 return ERR_PTR(-EINVAL);
9676f0c6 1887
36341f64 1888 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1889 if (IS_ERR(q))
1890 return q;
1891
a73324da 1892 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1893
1894 p = mnt;
6b41d536 1895 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1896 struct mount *s;
7ec02ef1 1897 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1898 continue;
1899
909b0a88 1900 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1901 if (!(flag & CL_COPY_UNBINDABLE) &&
1902 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1903 if (s->mnt.mnt_flags & MNT_LOCKED) {
1904 /* Both unbindable and locked. */
1905 q = ERR_PTR(-EPERM);
1906 goto out;
1907 } else {
1908 s = skip_mnt_tree(s);
1909 continue;
1910 }
4ce5d2b1
EB
1911 }
1912 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1913 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1914 s = skip_mnt_tree(s);
1915 continue;
1916 }
0714a533
AV
1917 while (p != s->mnt_parent) {
1918 p = p->mnt_parent;
1919 q = q->mnt_parent;
1da177e4 1920 }
87129cc0 1921 p = s;
84d17192 1922 parent = q;
87129cc0 1923 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1924 if (IS_ERR(q))
1925 goto out;
719ea2fb 1926 lock_mount_hash();
1a4eeaf2 1927 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1928 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1929 unlock_mount_hash();
1da177e4
LT
1930 }
1931 }
1932 return res;
be34d1a3 1933out:
1da177e4 1934 if (res) {
719ea2fb 1935 lock_mount_hash();
e819f152 1936 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1937 unlock_mount_hash();
1da177e4 1938 }
be34d1a3 1939 return q;
1da177e4
LT
1940}
1941
be34d1a3
DH
1942/* Caller should check returned pointer for errors */
1943
ca71cf71 1944struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1945{
cb338d06 1946 struct mount *tree;
97216be0 1947 namespace_lock();
cd4a4017
EB
1948 if (!check_mnt(real_mount(path->mnt)))
1949 tree = ERR_PTR(-EINVAL);
1950 else
1951 tree = copy_tree(real_mount(path->mnt), path->dentry,
1952 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1953 namespace_unlock();
be34d1a3 1954 if (IS_ERR(tree))
52e220d3 1955 return ERR_CAST(tree);
be34d1a3 1956 return &tree->mnt;
8aec0809
AV
1957}
1958
a07b2000
AV
1959static void free_mnt_ns(struct mnt_namespace *);
1960static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1961
1962void dissolve_on_fput(struct vfsmount *mnt)
1963{
1964 struct mnt_namespace *ns;
1965 namespace_lock();
1966 lock_mount_hash();
1967 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1968 if (ns) {
1969 if (is_anon_ns(ns))
1970 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1971 else
1972 ns = NULL;
1973 }
a07b2000
AV
1974 unlock_mount_hash();
1975 namespace_unlock();
44dfd84a
DH
1976 if (ns)
1977 free_mnt_ns(ns);
a07b2000
AV
1978}
1979
8aec0809
AV
1980void drop_collected_mounts(struct vfsmount *mnt)
1981{
97216be0 1982 namespace_lock();
719ea2fb 1983 lock_mount_hash();
9c8e0a1b 1984 umount_tree(real_mount(mnt), 0);
719ea2fb 1985 unlock_mount_hash();
3ab6abee 1986 namespace_unlock();
8aec0809
AV
1987}
1988
427215d8
MS
1989static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1990{
1991 struct mount *child;
1992
1993 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1994 if (!is_subdir(child->mnt_mountpoint, dentry))
1995 continue;
1996
1997 if (child->mnt.mnt_flags & MNT_LOCKED)
1998 return true;
1999 }
2000 return false;
2001}
2002
c771d683
MS
2003/**
2004 * clone_private_mount - create a private clone of a path
1f287bc4 2005 * @path: path to clone
c771d683 2006 *
1f287bc4
RD
2007 * This creates a new vfsmount, which will be the clone of @path. The new mount
2008 * will not be attached anywhere in the namespace and will be private (i.e.
2009 * changes to the originating mount won't be propagated into this).
c771d683
MS
2010 *
2011 * Release with mntput().
2012 */
ca71cf71 2013struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
2014{
2015 struct mount *old_mnt = real_mount(path->mnt);
2016 struct mount *new_mnt;
2017
427215d8 2018 down_read(&namespace_sem);
c771d683 2019 if (IS_MNT_UNBINDABLE(old_mnt))
427215d8
MS
2020 goto invalid;
2021
2022 if (!check_mnt(old_mnt))
2023 goto invalid;
2024
2025 if (has_locked_children(old_mnt, path->dentry))
2026 goto invalid;
c771d683 2027
c771d683 2028 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
427215d8
MS
2029 up_read(&namespace_sem);
2030
c771d683
MS
2031 if (IS_ERR(new_mnt))
2032 return ERR_CAST(new_mnt);
2033
df820f8d
MS
2034 /* Longterm mount to be removed by kern_unmount*() */
2035 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2036
c771d683 2037 return &new_mnt->mnt;
427215d8
MS
2038
2039invalid:
2040 up_read(&namespace_sem);
2041 return ERR_PTR(-EINVAL);
c771d683
MS
2042}
2043EXPORT_SYMBOL_GPL(clone_private_mount);
2044
1f707137
AV
2045int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2046 struct vfsmount *root)
2047{
1a4eeaf2 2048 struct mount *mnt;
1f707137
AV
2049 int res = f(root, arg);
2050 if (res)
2051 return res;
1a4eeaf2
AV
2052 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2053 res = f(&mnt->mnt, arg);
1f707137
AV
2054 if (res)
2055 return res;
2056 }
2057 return 0;
2058}
2059
3bd045cc
AV
2060static void lock_mnt_tree(struct mount *mnt)
2061{
2062 struct mount *p;
2063
2064 for (p = mnt; p; p = next_mnt(p, mnt)) {
2065 int flags = p->mnt.mnt_flags;
2066 /* Don't allow unprivileged users to change mount flags */
2067 flags |= MNT_LOCK_ATIME;
2068
2069 if (flags & MNT_READONLY)
2070 flags |= MNT_LOCK_READONLY;
2071
2072 if (flags & MNT_NODEV)
2073 flags |= MNT_LOCK_NODEV;
2074
2075 if (flags & MNT_NOSUID)
2076 flags |= MNT_LOCK_NOSUID;
2077
2078 if (flags & MNT_NOEXEC)
2079 flags |= MNT_LOCK_NOEXEC;
2080 /* Don't allow unprivileged users to reveal what is under a mount */
2081 if (list_empty(&p->mnt_expire))
2082 flags |= MNT_LOCKED;
2083 p->mnt.mnt_flags = flags;
2084 }
2085}
2086
4b8b21f4 2087static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 2088{
315fc83e 2089 struct mount *p;
719f5d7f 2090
909b0a88 2091 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 2092 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 2093 mnt_release_group_id(p);
719f5d7f
MS
2094 }
2095}
2096
4b8b21f4 2097static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 2098{
315fc83e 2099 struct mount *p;
719f5d7f 2100
909b0a88 2101 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 2102 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 2103 int err = mnt_alloc_group_id(p);
719f5d7f 2104 if (err) {
4b8b21f4 2105 cleanup_group_ids(mnt, p);
719f5d7f
MS
2106 return err;
2107 }
2108 }
2109 }
2110
2111 return 0;
2112}
2113
d2921684
EB
2114int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2115{
2116 unsigned int max = READ_ONCE(sysctl_mount_max);
124f75f8 2117 unsigned int mounts = 0;
d2921684
EB
2118 struct mount *p;
2119
124f75f8
AV
2120 if (ns->mounts >= max)
2121 return -ENOSPC;
2122 max -= ns->mounts;
2123 if (ns->pending_mounts >= max)
2124 return -ENOSPC;
2125 max -= ns->pending_mounts;
2126
d2921684
EB
2127 for (p = mnt; p; p = next_mnt(p, mnt))
2128 mounts++;
2129
124f75f8 2130 if (mounts > max)
d2921684
EB
2131 return -ENOSPC;
2132
124f75f8 2133 ns->pending_mounts += mounts;
d2921684
EB
2134 return 0;
2135}
2136
b90fa9ae
RP
2137/*
2138 * @source_mnt : mount tree to be attached
21444403
RP
2139 * @nd : place the mount tree @source_mnt is attached
2140 * @parent_nd : if non-null, detach the source_mnt from its parent and
2141 * store the parent mount and mountpoint dentry.
2142 * (done when source_mnt is moved)
b90fa9ae
RP
2143 *
2144 * NOTE: in the table below explains the semantics when a source mount
2145 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
2146 * ---------------------------------------------------------------------------
2147 * | BIND MOUNT OPERATION |
2148 * |**************************************************************************
2149 * | source-->| shared | private | slave | unbindable |
2150 * | dest | | | | |
2151 * | | | | | | |
2152 * | v | | | | |
2153 * |**************************************************************************
2154 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2155 * | | | | | |
2156 * |non-shared| shared (+) | private | slave (*) | invalid |
2157 * ***************************************************************************
b90fa9ae
RP
2158 * A bind operation clones the source mount and mounts the clone on the
2159 * destination mount.
2160 *
2161 * (++) the cloned mount is propagated to all the mounts in the propagation
2162 * tree of the destination mount and the cloned mount is added to
2163 * the peer group of the source mount.
2164 * (+) the cloned mount is created under the destination mount and is marked
2165 * as shared. The cloned mount is added to the peer group of the source
2166 * mount.
5afe0022
RP
2167 * (+++) the mount is propagated to all the mounts in the propagation tree
2168 * of the destination mount and the cloned mount is made slave
2169 * of the same master as that of the source mount. The cloned mount
2170 * is marked as 'shared and slave'.
2171 * (*) the cloned mount is made a slave of the same master as that of the
2172 * source mount.
2173 *
9676f0c6
RP
2174 * ---------------------------------------------------------------------------
2175 * | MOVE MOUNT OPERATION |
2176 * |**************************************************************************
2177 * | source-->| shared | private | slave | unbindable |
2178 * | dest | | | | |
2179 * | | | | | | |
2180 * | v | | | | |
2181 * |**************************************************************************
2182 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2183 * | | | | | |
2184 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2185 * ***************************************************************************
5afe0022
RP
2186 *
2187 * (+) the mount is moved to the destination. And is then propagated to
2188 * all the mounts in the propagation tree of the destination mount.
21444403 2189 * (+*) the mount is moved to the destination.
5afe0022
RP
2190 * (+++) the mount is moved to the destination and is then propagated to
2191 * all the mounts belonging to the destination mount's propagation tree.
2192 * the mount is marked as 'shared and slave'.
2193 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2194 *
2195 * if the source mount is a tree, the operations explained above is
2196 * applied to each mount in the tree.
2197 * Must be called without spinlocks held, since this function can sleep
2198 * in allocations.
2199 */
0fb54e50 2200static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2201 struct mount *dest_mnt,
2202 struct mountpoint *dest_mp,
2763d119 2203 bool moving)
b90fa9ae 2204{
3bd045cc 2205 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2206 HLIST_HEAD(tree_list);
d2921684 2207 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2208 struct mountpoint *smp;
315fc83e 2209 struct mount *child, *p;
38129a13 2210 struct hlist_node *n;
719f5d7f 2211 int err;
b90fa9ae 2212
1064f874
EB
2213 /* Preallocate a mountpoint in case the new mounts need
2214 * to be tucked under other mounts.
2215 */
2216 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2217 if (IS_ERR(smp))
2218 return PTR_ERR(smp);
2219
d2921684 2220 /* Is there space to add these mounts to the mount namespace? */
2763d119 2221 if (!moving) {
d2921684
EB
2222 err = count_mounts(ns, source_mnt);
2223 if (err)
2224 goto out;
2225 }
2226
fc7be130 2227 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2228 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2229 if (err)
2230 goto out;
0b1b901b 2231 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2232 lock_mount_hash();
0b1b901b
AV
2233 if (err)
2234 goto out_cleanup_ids;
909b0a88 2235 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2236 set_mnt_shared(p);
0b1b901b
AV
2237 } else {
2238 lock_mount_hash();
b90fa9ae 2239 }
2763d119
AV
2240 if (moving) {
2241 unhash_mnt(source_mnt);
84d17192 2242 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2243 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2244 } else {
44dfd84a
DH
2245 if (source_mnt->mnt_ns) {
2246 /* move from anon - the caller will destroy */
2247 list_del_init(&source_mnt->mnt_ns->list);
2248 }
84d17192 2249 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2250 commit_tree(source_mnt);
21444403 2251 }
b90fa9ae 2252
38129a13 2253 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2254 struct mount *q;
38129a13 2255 hlist_del_init(&child->mnt_hash);
1064f874
EB
2256 q = __lookup_mnt(&child->mnt_parent->mnt,
2257 child->mnt_mountpoint);
2258 if (q)
2259 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2260 /* Notice when we are propagating across user namespaces */
2261 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2262 lock_mnt_tree(child);
d728cf79 2263 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2264 commit_tree(child);
b90fa9ae 2265 }
1064f874 2266 put_mountpoint(smp);
719ea2fb 2267 unlock_mount_hash();
99b7db7b 2268
b90fa9ae 2269 return 0;
719f5d7f
MS
2270
2271 out_cleanup_ids:
f2ebb3a9
AV
2272 while (!hlist_empty(&tree_list)) {
2273 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2274 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2275 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2276 }
2277 unlock_mount_hash();
0b1b901b 2278 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2279 out:
d2921684 2280 ns->pending_mounts = 0;
1064f874
EB
2281
2282 read_seqlock_excl(&mount_lock);
2283 put_mountpoint(smp);
2284 read_sequnlock_excl(&mount_lock);
2285
719f5d7f 2286 return err;
b90fa9ae
RP
2287}
2288
84d17192 2289static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2290{
2291 struct vfsmount *mnt;
84d17192 2292 struct dentry *dentry = path->dentry;
b12cea91 2293retry:
5955102c 2294 inode_lock(dentry->d_inode);
84d17192 2295 if (unlikely(cant_mount(dentry))) {
5955102c 2296 inode_unlock(dentry->d_inode);
84d17192 2297 return ERR_PTR(-ENOENT);
b12cea91 2298 }
97216be0 2299 namespace_lock();
b12cea91 2300 mnt = lookup_mnt(path);
84d17192 2301 if (likely(!mnt)) {
3895dbf8 2302 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2303 if (IS_ERR(mp)) {
97216be0 2304 namespace_unlock();
5955102c 2305 inode_unlock(dentry->d_inode);
84d17192
AV
2306 return mp;
2307 }
2308 return mp;
2309 }
97216be0 2310 namespace_unlock();
5955102c 2311 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2312 path_put(path);
2313 path->mnt = mnt;
84d17192 2314 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2315 goto retry;
2316}
2317
84d17192 2318static void unlock_mount(struct mountpoint *where)
b12cea91 2319{
84d17192 2320 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2321
2322 read_seqlock_excl(&mount_lock);
84d17192 2323 put_mountpoint(where);
3895dbf8
EB
2324 read_sequnlock_excl(&mount_lock);
2325
328e6d90 2326 namespace_unlock();
5955102c 2327 inode_unlock(dentry->d_inode);
b12cea91
AV
2328}
2329
84d17192 2330static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2331{
e462ec50 2332 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2333 return -EINVAL;
2334
e36cb0b8
DH
2335 if (d_is_dir(mp->m_dentry) !=
2336 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2337 return -ENOTDIR;
2338
2763d119 2339 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2340}
2341
7a2e8a8f
VA
2342/*
2343 * Sanity check the flags to change_mnt_propagation.
2344 */
2345
e462ec50 2346static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2347{
e462ec50 2348 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2349
2350 /* Fail if any non-propagation flags are set */
2351 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2352 return 0;
2353 /* Only one propagation flag should be set */
2354 if (!is_power_of_2(type))
2355 return 0;
2356 return type;
2357}
2358
07b20889
RP
2359/*
2360 * recursively change the type of the mountpoint.
2361 */
e462ec50 2362static int do_change_type(struct path *path, int ms_flags)
07b20889 2363{
315fc83e 2364 struct mount *m;
4b8b21f4 2365 struct mount *mnt = real_mount(path->mnt);
e462ec50 2366 int recurse = ms_flags & MS_REC;
7a2e8a8f 2367 int type;
719f5d7f 2368 int err = 0;
07b20889 2369
2d92ab3c 2370 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2371 return -EINVAL;
2372
e462ec50 2373 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2374 if (!type)
2375 return -EINVAL;
2376
97216be0 2377 namespace_lock();
719f5d7f
MS
2378 if (type == MS_SHARED) {
2379 err = invent_group_ids(mnt, recurse);
2380 if (err)
2381 goto out_unlock;
2382 }
2383
719ea2fb 2384 lock_mount_hash();
909b0a88 2385 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2386 change_mnt_propagation(m, type);
719ea2fb 2387 unlock_mount_hash();
719f5d7f
MS
2388
2389 out_unlock:
97216be0 2390 namespace_unlock();
719f5d7f 2391 return err;
07b20889
RP
2392}
2393
a07b2000
AV
2394static struct mount *__do_loopback(struct path *old_path, int recurse)
2395{
2396 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2397
2398 if (IS_MNT_UNBINDABLE(old))
2399 return mnt;
2400
2401 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2402 return mnt;
2403
2404 if (!recurse && has_locked_children(old, old_path->dentry))
2405 return mnt;
2406
2407 if (recurse)
2408 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2409 else
2410 mnt = clone_mnt(old, old_path->dentry, 0);
2411
2412 if (!IS_ERR(mnt))
2413 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2414
2415 return mnt;
2416}
2417
1da177e4
LT
2418/*
2419 * do loopback mount.
2420 */
808d4e3c 2421static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2422 int recurse)
1da177e4 2423{
2d92ab3c 2424 struct path old_path;
a07b2000 2425 struct mount *mnt = NULL, *parent;
84d17192 2426 struct mountpoint *mp;
57eccb83 2427 int err;
1da177e4
LT
2428 if (!old_name || !*old_name)
2429 return -EINVAL;
815d405c 2430 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2431 if (err)
2432 return err;
2433
8823c079 2434 err = -EINVAL;
4ce5d2b1 2435 if (mnt_ns_loop(old_path.dentry))
dd111b31 2436 goto out;
8823c079 2437
84d17192 2438 mp = lock_mount(path);
a07b2000
AV
2439 if (IS_ERR(mp)) {
2440 err = PTR_ERR(mp);
b12cea91 2441 goto out;
a07b2000 2442 }
b12cea91 2443
84d17192 2444 parent = real_mount(path->mnt);
e149ed2b
AV
2445 if (!check_mnt(parent))
2446 goto out2;
2447
a07b2000 2448 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2449 if (IS_ERR(mnt)) {
2450 err = PTR_ERR(mnt);
e9c5d8a5 2451 goto out2;
be34d1a3 2452 }
ccd48bc7 2453
84d17192 2454 err = graft_tree(mnt, parent, mp);
ccd48bc7 2455 if (err) {
719ea2fb 2456 lock_mount_hash();
e819f152 2457 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2458 unlock_mount_hash();
5b83d2c5 2459 }
b12cea91 2460out2:
84d17192 2461 unlock_mount(mp);
ccd48bc7 2462out:
2d92ab3c 2463 path_put(&old_path);
1da177e4
LT
2464 return err;
2465}
2466
a07b2000
AV
2467static struct file *open_detached_copy(struct path *path, bool recursive)
2468{
2469 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2470 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2471 struct mount *mnt, *p;
2472 struct file *file;
2473
2474 if (IS_ERR(ns))
2475 return ERR_CAST(ns);
2476
2477 namespace_lock();
2478 mnt = __do_loopback(path, recursive);
2479 if (IS_ERR(mnt)) {
2480 namespace_unlock();
2481 free_mnt_ns(ns);
2482 return ERR_CAST(mnt);
2483 }
2484
2485 lock_mount_hash();
2486 for (p = mnt; p; p = next_mnt(p, mnt)) {
2487 p->mnt_ns = ns;
2488 ns->mounts++;
2489 }
2490 ns->root = mnt;
2491 list_add_tail(&ns->list, &mnt->mnt_list);
2492 mntget(&mnt->mnt);
2493 unlock_mount_hash();
2494 namespace_unlock();
2495
2496 mntput(path->mnt);
2497 path->mnt = &mnt->mnt;
2498 file = dentry_open(path, O_PATH, current_cred());
2499 if (IS_ERR(file))
2500 dissolve_on_fput(path->mnt);
2501 else
2502 file->f_mode |= FMODE_NEED_UNMOUNT;
2503 return file;
2504}
2505
2658ce09 2506SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2507{
2508 struct file *file;
2509 struct path path;
2510 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2511 bool detached = flags & OPEN_TREE_CLONE;
2512 int error;
2513 int fd;
2514
2515 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2516
2517 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2518 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2519 OPEN_TREE_CLOEXEC))
2520 return -EINVAL;
2521
2522 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2523 return -EINVAL;
2524
2525 if (flags & AT_NO_AUTOMOUNT)
2526 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2527 if (flags & AT_SYMLINK_NOFOLLOW)
2528 lookup_flags &= ~LOOKUP_FOLLOW;
2529 if (flags & AT_EMPTY_PATH)
2530 lookup_flags |= LOOKUP_EMPTY;
2531
2532 if (detached && !may_mount())
2533 return -EPERM;
2534
2535 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2536 if (fd < 0)
2537 return fd;
2538
2539 error = user_path_at(dfd, filename, lookup_flags, &path);
2540 if (unlikely(error)) {
2541 file = ERR_PTR(error);
2542 } else {
2543 if (detached)
2544 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2545 else
2546 file = dentry_open(&path, O_PATH, current_cred());
2547 path_put(&path);
2548 }
2549 if (IS_ERR(file)) {
2550 put_unused_fd(fd);
2551 return PTR_ERR(file);
2552 }
2553 fd_install(fd, file);
2554 return fd;
2555}
2556
43f5e655
DH
2557/*
2558 * Don't allow locked mount flags to be cleared.
2559 *
2560 * No locks need to be held here while testing the various MNT_LOCK
2561 * flags because those flags can never be cleared once they are set.
2562 */
2563static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2564{
43f5e655
DH
2565 unsigned int fl = mnt->mnt.mnt_flags;
2566
2567 if ((fl & MNT_LOCK_READONLY) &&
2568 !(mnt_flags & MNT_READONLY))
2569 return false;
2570
2571 if ((fl & MNT_LOCK_NODEV) &&
2572 !(mnt_flags & MNT_NODEV))
2573 return false;
2574
2575 if ((fl & MNT_LOCK_NOSUID) &&
2576 !(mnt_flags & MNT_NOSUID))
2577 return false;
2578
2579 if ((fl & MNT_LOCK_NOEXEC) &&
2580 !(mnt_flags & MNT_NOEXEC))
2581 return false;
2582
2583 if ((fl & MNT_LOCK_ATIME) &&
2584 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2585 return false;
2e4b7fcd 2586
43f5e655
DH
2587 return true;
2588}
2589
2590static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2591{
43f5e655 2592 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2593
43f5e655 2594 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2595 return 0;
2596
2597 if (readonly_request)
43f5e655
DH
2598 return mnt_make_readonly(mnt);
2599
68847c94
CB
2600 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2601 return 0;
43f5e655
DH
2602}
2603
43f5e655
DH
2604static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2605{
43f5e655
DH
2606 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2607 mnt->mnt.mnt_flags = mnt_flags;
2608 touch_mnt_namespace(mnt->mnt_ns);
43f5e655
DH
2609}
2610
f8b92ba6
DD
2611static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2612{
2613 struct super_block *sb = mnt->mnt_sb;
2614
2615 if (!__mnt_is_readonly(mnt) &&
a128b054 2616 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
f8b92ba6
DD
2617 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2618 char *buf = (char *)__get_free_page(GFP_KERNEL);
2619 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
f8b92ba6 2620
74e60b8b 2621 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
0ecee669
EB
2622 sb->s_type->name,
2623 is_mounted(mnt) ? "remounted" : "mounted",
74e60b8b
AS
2624 mntpath, &sb->s_time_max,
2625 (unsigned long long)sb->s_time_max);
f8b92ba6
DD
2626
2627 free_page((unsigned long)buf);
a128b054 2628 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
f8b92ba6
DD
2629 }
2630}
2631
43f5e655
DH
2632/*
2633 * Handle reconfiguration of the mountpoint only without alteration of the
2634 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2635 * to mount(2).
2636 */
2637static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2638{
2639 struct super_block *sb = path->mnt->mnt_sb;
2640 struct mount *mnt = real_mount(path->mnt);
2641 int ret;
2642
2643 if (!check_mnt(mnt))
2644 return -EINVAL;
2645
2646 if (path->dentry != mnt->mnt.mnt_root)
2647 return -EINVAL;
2648
2649 if (!can_change_locked_flags(mnt, mnt_flags))
2650 return -EPERM;
2651
e58ace1a
CB
2652 /*
2653 * We're only checking whether the superblock is read-only not
2654 * changing it, so only take down_read(&sb->s_umount).
2655 */
2656 down_read(&sb->s_umount);
68847c94 2657 lock_mount_hash();
43f5e655
DH
2658 ret = change_mount_ro_state(mnt, mnt_flags);
2659 if (ret == 0)
2660 set_mount_attributes(mnt, mnt_flags);
68847c94 2661 unlock_mount_hash();
e58ace1a 2662 up_read(&sb->s_umount);
f8b92ba6
DD
2663
2664 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2665
43f5e655 2666 return ret;
2e4b7fcd
DH
2667}
2668
1da177e4
LT
2669/*
2670 * change filesystem flags. dir should be a physical root of filesystem.
2671 * If you've mounted a non-root directory somewhere and want to do remount
2672 * on it - tough luck.
2673 */
e462ec50
DH
2674static int do_remount(struct path *path, int ms_flags, int sb_flags,
2675 int mnt_flags, void *data)
1da177e4
LT
2676{
2677 int err;
2d92ab3c 2678 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2679 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2680 struct fs_context *fc;
1da177e4 2681
143c8c91 2682 if (!check_mnt(mnt))
1da177e4
LT
2683 return -EINVAL;
2684
2d92ab3c 2685 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2686 return -EINVAL;
2687
43f5e655 2688 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2689 return -EPERM;
9566d674 2690
8d0347f6
DH
2691 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2692 if (IS_ERR(fc))
2693 return PTR_ERR(fc);
ff36fe2c 2694
b330966f 2695 fc->oldapi = true;
8d0347f6
DH
2696 err = parse_monolithic_mount_data(fc, data);
2697 if (!err) {
2698 down_write(&sb->s_umount);
2699 err = -EPERM;
2700 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2701 err = reconfigure_super(fc);
68847c94
CB
2702 if (!err) {
2703 lock_mount_hash();
8d0347f6 2704 set_mount_attributes(mnt, mnt_flags);
68847c94
CB
2705 unlock_mount_hash();
2706 }
8d0347f6
DH
2707 }
2708 up_write(&sb->s_umount);
0e55a7cc 2709 }
f8b92ba6
DD
2710
2711 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2712
8d0347f6 2713 put_fs_context(fc);
1da177e4
LT
2714 return err;
2715}
2716
cbbe362c 2717static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2718{
315fc83e 2719 struct mount *p;
909b0a88 2720 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2721 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2722 return 1;
2723 }
2724 return 0;
2725}
2726
44dfd84a
DH
2727/*
2728 * Check that there aren't references to earlier/same mount namespaces in the
2729 * specified subtree. Such references can act as pins for mount namespaces
2730 * that aren't checked by the mount-cycle checking code, thereby allowing
2731 * cycles to be made.
2732 */
2733static bool check_for_nsfs_mounts(struct mount *subtree)
2734{
2735 struct mount *p;
2736 bool ret = false;
2737
2738 lock_mount_hash();
2739 for (p = subtree; p; p = next_mnt(p, subtree))
2740 if (mnt_ns_loop(p->mnt.mnt_root))
2741 goto out;
2742
2743 ret = true;
2744out:
2745 unlock_mount_hash();
2746 return ret;
2747}
2748
9ffb14ef
PT
2749static int do_set_group(struct path *from_path, struct path *to_path)
2750{
2751 struct mount *from, *to;
2752 int err;
2753
2754 from = real_mount(from_path->mnt);
2755 to = real_mount(to_path->mnt);
2756
2757 namespace_lock();
2758
2759 err = -EINVAL;
2760 /* To and From must be mounted */
2761 if (!is_mounted(&from->mnt))
2762 goto out;
2763 if (!is_mounted(&to->mnt))
2764 goto out;
2765
2766 err = -EPERM;
2767 /* We should be allowed to modify mount namespaces of both mounts */
2768 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2769 goto out;
2770 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2771 goto out;
2772
2773 err = -EINVAL;
2774 /* To and From paths should be mount roots */
2775 if (from_path->dentry != from_path->mnt->mnt_root)
2776 goto out;
2777 if (to_path->dentry != to_path->mnt->mnt_root)
2778 goto out;
2779
2780 /* Setting sharing groups is only allowed across same superblock */
2781 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2782 goto out;
2783
2784 /* From mount root should be wider than To mount root */
2785 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2786 goto out;
2787
2788 /* From mount should not have locked children in place of To's root */
2789 if (has_locked_children(from, to->mnt.mnt_root))
2790 goto out;
2791
2792 /* Setting sharing groups is only allowed on private mounts */
2793 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2794 goto out;
2795
2796 /* From should not be private */
2797 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2798 goto out;
2799
2800 if (IS_MNT_SLAVE(from)) {
2801 struct mount *m = from->mnt_master;
2802
2803 list_add(&to->mnt_slave, &m->mnt_slave_list);
2804 to->mnt_master = m;
2805 }
2806
2807 if (IS_MNT_SHARED(from)) {
2808 to->mnt_group_id = from->mnt_group_id;
2809 list_add(&to->mnt_share, &from->mnt_share);
2810 lock_mount_hash();
2811 set_mnt_shared(to);
2812 unlock_mount_hash();
2813 }
2814
2815 err = 0;
2816out:
2817 namespace_unlock();
2818 return err;
2819}
2820
2db154b3 2821static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2822{
44dfd84a 2823 struct mnt_namespace *ns;
676da58d 2824 struct mount *p;
0fb54e50 2825 struct mount *old;
2763d119
AV
2826 struct mount *parent;
2827 struct mountpoint *mp, *old_mp;
57eccb83 2828 int err;
44dfd84a 2829 bool attached;
1da177e4 2830
2db154b3 2831 mp = lock_mount(new_path);
84d17192 2832 if (IS_ERR(mp))
2db154b3 2833 return PTR_ERR(mp);
cc53ce53 2834
2db154b3
DH
2835 old = real_mount(old_path->mnt);
2836 p = real_mount(new_path->mnt);
2763d119 2837 parent = old->mnt_parent;
44dfd84a 2838 attached = mnt_has_parent(old);
2763d119 2839 old_mp = old->mnt_mp;
44dfd84a 2840 ns = old->mnt_ns;
143c8c91 2841
1da177e4 2842 err = -EINVAL;
44dfd84a
DH
2843 /* The mountpoint must be in our namespace. */
2844 if (!check_mnt(p))
2db154b3 2845 goto out;
1da177e4 2846
570d7a98
EB
2847 /* The thing moved must be mounted... */
2848 if (!is_mounted(&old->mnt))
44dfd84a
DH
2849 goto out;
2850
570d7a98
EB
2851 /* ... and either ours or the root of anon namespace */
2852 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2853 goto out;
5ff9d8a6 2854
2db154b3
DH
2855 if (old->mnt.mnt_flags & MNT_LOCKED)
2856 goto out;
1da177e4 2857
2db154b3
DH
2858 if (old_path->dentry != old_path->mnt->mnt_root)
2859 goto out;
1da177e4 2860
2db154b3
DH
2861 if (d_is_dir(new_path->dentry) !=
2862 d_is_dir(old_path->dentry))
2863 goto out;
21444403
RP
2864 /*
2865 * Don't move a mount residing in a shared parent.
2866 */
2763d119 2867 if (attached && IS_MNT_SHARED(parent))
2db154b3 2868 goto out;
9676f0c6
RP
2869 /*
2870 * Don't move a mount tree containing unbindable mounts to a destination
2871 * mount which is shared.
2872 */
fc7be130 2873 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2874 goto out;
1da177e4 2875 err = -ELOOP;
44dfd84a
DH
2876 if (!check_for_nsfs_mounts(old))
2877 goto out;
fc7be130 2878 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2879 if (p == old)
2db154b3 2880 goto out;
1da177e4 2881
2db154b3 2882 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2883 attached);
4ac91378 2884 if (err)
2db154b3 2885 goto out;
1da177e4
LT
2886
2887 /* if the mount is moved, it should no longer be expire
2888 * automatically */
6776db3d 2889 list_del_init(&old->mnt_expire);
2763d119
AV
2890 if (attached)
2891 put_mountpoint(old_mp);
1da177e4 2892out:
2db154b3 2893 unlock_mount(mp);
44dfd84a 2894 if (!err) {
2763d119
AV
2895 if (attached)
2896 mntput_no_expire(parent);
2897 else
44dfd84a
DH
2898 free_mnt_ns(ns);
2899 }
2db154b3
DH
2900 return err;
2901}
2902
2903static int do_move_mount_old(struct path *path, const char *old_name)
2904{
2905 struct path old_path;
2906 int err;
2907
2908 if (!old_name || !*old_name)
2909 return -EINVAL;
2910
2911 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2912 if (err)
2913 return err;
2914
2915 err = do_move_mount(&old_path, path);
2d92ab3c 2916 path_put(&old_path);
1da177e4
LT
2917 return err;
2918}
2919
9d412a43
AV
2920/*
2921 * add a mount into a namespace's mount tree
2922 */
8f11538e 2923static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
1e2d8464 2924 const struct path *path, int mnt_flags)
9d412a43 2925{
8f11538e 2926 struct mount *parent = real_mount(path->mnt);
9d412a43 2927
f2ebb3a9 2928 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2929
84d17192 2930 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2931 /* that's acceptable only for automounts done in private ns */
2932 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2933 return -EINVAL;
156cacb1 2934 /* ... and for those we'd better have mountpoint still alive */
84d17192 2935 if (!parent->mnt_ns)
8f11538e 2936 return -EINVAL;
156cacb1 2937 }
9d412a43
AV
2938
2939 /* Refuse the same filesystem on the same mount point */
95bc5f25 2940 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2941 path->mnt->mnt_root == path->dentry)
8f11538e 2942 return -EBUSY;
9d412a43 2943
e36cb0b8 2944 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2945 return -EINVAL;
9d412a43 2946
95bc5f25 2947 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2948 return graft_tree(newmnt, parent, mp);
9d412a43 2949}
b1e75df4 2950
132e4608
DH
2951static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2952
2953/*
2954 * Create a new mount using a superblock configuration and request it
2955 * be added to the namespace tree.
2956 */
2957static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2958 unsigned int mnt_flags)
2959{
2960 struct vfsmount *mnt;
8f11538e 2961 struct mountpoint *mp;
132e4608
DH
2962 struct super_block *sb = fc->root->d_sb;
2963 int error;
2964
c9ce29ed
AV
2965 error = security_sb_kern_mount(sb);
2966 if (!error && mount_too_revealing(sb, &mnt_flags))
2967 error = -EPERM;
2968
2969 if (unlikely(error)) {
2970 fc_drop_locked(fc);
2971 return error;
132e4608
DH
2972 }
2973
2974 up_write(&sb->s_umount);
2975
2976 mnt = vfs_create_mount(fc);
2977 if (IS_ERR(mnt))
2978 return PTR_ERR(mnt);
2979
f8b92ba6
DD
2980 mnt_warn_timestamp_expiry(mountpoint, mnt);
2981
8f11538e
AV
2982 mp = lock_mount(mountpoint);
2983 if (IS_ERR(mp)) {
2984 mntput(mnt);
2985 return PTR_ERR(mp);
2986 }
2987 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2988 unlock_mount(mp);
0ecee669
EB
2989 if (error < 0)
2990 mntput(mnt);
132e4608
DH
2991 return error;
2992}
1b852bce 2993
1da177e4
LT
2994/*
2995 * create a new mount for userspace and request it to be added into the
2996 * namespace's tree
2997 */
e462ec50 2998static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2999 int mnt_flags, const char *name, void *data)
1da177e4 3000{
0c55cfc4 3001 struct file_system_type *type;
a0c9a8b8
AV
3002 struct fs_context *fc;
3003 const char *subtype = NULL;
3004 int err = 0;
1da177e4 3005
0c55cfc4 3006 if (!fstype)
1da177e4
LT
3007 return -EINVAL;
3008
0c55cfc4
EB
3009 type = get_fs_type(fstype);
3010 if (!type)
3011 return -ENODEV;
3012
a0c9a8b8
AV
3013 if (type->fs_flags & FS_HAS_SUBTYPE) {
3014 subtype = strchr(fstype, '.');
3015 if (subtype) {
3016 subtype++;
3017 if (!*subtype) {
3018 put_filesystem(type);
3019 return -EINVAL;
3020 }
a0c9a8b8
AV
3021 }
3022 }
0c55cfc4 3023
a0c9a8b8 3024 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 3025 put_filesystem(type);
a0c9a8b8
AV
3026 if (IS_ERR(fc))
3027 return PTR_ERR(fc);
3028
3e1aeb00
DH
3029 if (subtype)
3030 err = vfs_parse_fs_string(fc, "subtype",
3031 subtype, strlen(subtype));
3032 if (!err && name)
3033 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
3034 if (!err)
3035 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
3036 if (!err && !mount_capable(fc))
3037 err = -EPERM;
a0c9a8b8
AV
3038 if (!err)
3039 err = vfs_get_tree(fc);
132e4608
DH
3040 if (!err)
3041 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 3042
a0c9a8b8 3043 put_fs_context(fc);
15f9a3f3 3044 return err;
1da177e4
LT
3045}
3046
1e2d8464 3047int finish_automount(struct vfsmount *m, const struct path *path)
19a167af 3048{
26df6034 3049 struct dentry *dentry = path->dentry;
8f11538e 3050 struct mountpoint *mp;
25e195aa 3051 struct mount *mnt;
19a167af 3052 int err;
25e195aa
AV
3053
3054 if (!m)
3055 return 0;
3056 if (IS_ERR(m))
3057 return PTR_ERR(m);
3058
3059 mnt = real_mount(m);
19a167af
AV
3060 /* The new mount record should have at least 2 refs to prevent it being
3061 * expired before we get a chance to add it
3062 */
6776db3d 3063 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
3064
3065 if (m->mnt_sb == path->mnt->mnt_sb &&
26df6034 3066 m->mnt_root == dentry) {
b1e75df4 3067 err = -ELOOP;
26df6034 3068 goto discard;
19a167af
AV
3069 }
3070
26df6034
AV
3071 /*
3072 * we don't want to use lock_mount() - in this case finding something
3073 * that overmounts our mountpoint to be means "quitely drop what we've
3074 * got", not "try to mount it on top".
3075 */
3076 inode_lock(dentry->d_inode);
3077 namespace_lock();
3078 if (unlikely(cant_mount(dentry))) {
3079 err = -ENOENT;
3080 goto discard_locked;
3081 }
3082 rcu_read_lock();
3083 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3084 rcu_read_unlock();
3085 err = 0;
3086 goto discard_locked;
3087 }
3088 rcu_read_unlock();
3089 mp = get_mountpoint(dentry);
8f11538e
AV
3090 if (IS_ERR(mp)) {
3091 err = PTR_ERR(mp);
26df6034 3092 goto discard_locked;
8f11538e 3093 }
26df6034 3094
8f11538e
AV
3095 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3096 unlock_mount(mp);
26df6034
AV
3097 if (unlikely(err))
3098 goto discard;
3099 mntput(m);
3100 return 0;
3101
3102discard_locked:
3103 namespace_unlock();
3104 inode_unlock(dentry->d_inode);
3105discard:
b1e75df4 3106 /* remove m from any expiration list it may be on */
6776db3d 3107 if (!list_empty(&mnt->mnt_expire)) {
97216be0 3108 namespace_lock();
6776db3d 3109 list_del_init(&mnt->mnt_expire);
97216be0 3110 namespace_unlock();
19a167af 3111 }
b1e75df4
AV
3112 mntput(m);
3113 mntput(m);
19a167af
AV
3114 return err;
3115}
3116
ea5b778a
DH
3117/**
3118 * mnt_set_expiry - Put a mount on an expiration list
3119 * @mnt: The mount to list.
3120 * @expiry_list: The list to add the mount to.
3121 */
3122void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3123{
97216be0 3124 namespace_lock();
ea5b778a 3125
6776db3d 3126 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 3127
97216be0 3128 namespace_unlock();
ea5b778a
DH
3129}
3130EXPORT_SYMBOL(mnt_set_expiry);
3131
1da177e4
LT
3132/*
3133 * process a list of expirable mountpoints with the intent of discarding any
3134 * mountpoints that aren't in use and haven't been touched since last we came
3135 * here
3136 */
3137void mark_mounts_for_expiry(struct list_head *mounts)
3138{
761d5c38 3139 struct mount *mnt, *next;
1da177e4
LT
3140 LIST_HEAD(graveyard);
3141
3142 if (list_empty(mounts))
3143 return;
3144
97216be0 3145 namespace_lock();
719ea2fb 3146 lock_mount_hash();
1da177e4
LT
3147
3148 /* extract from the expiration list every vfsmount that matches the
3149 * following criteria:
3150 * - only referenced by its parent vfsmount
3151 * - still marked for expiry (marked on the last call here; marks are
3152 * cleared by mntput())
3153 */
6776db3d 3154 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 3155 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 3156 propagate_mount_busy(mnt, 1))
1da177e4 3157 continue;
6776db3d 3158 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 3159 }
bcc5c7d2 3160 while (!list_empty(&graveyard)) {
6776db3d 3161 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 3162 touch_mnt_namespace(mnt->mnt_ns);
e819f152 3163 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 3164 }
719ea2fb 3165 unlock_mount_hash();
3ab6abee 3166 namespace_unlock();
5528f911
TM
3167}
3168
3169EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3170
3171/*
3172 * Ripoff of 'select_parent()'
3173 *
3174 * search the list of submounts for a given mountpoint, and move any
3175 * shrinkable submounts to the 'graveyard' list.
3176 */
692afc31 3177static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 3178{
692afc31 3179 struct mount *this_parent = parent;
5528f911
TM
3180 struct list_head *next;
3181 int found = 0;
3182
3183repeat:
6b41d536 3184 next = this_parent->mnt_mounts.next;
5528f911 3185resume:
6b41d536 3186 while (next != &this_parent->mnt_mounts) {
5528f911 3187 struct list_head *tmp = next;
6b41d536 3188 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
3189
3190 next = tmp->next;
692afc31 3191 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 3192 continue;
5528f911
TM
3193 /*
3194 * Descend a level if the d_mounts list is non-empty.
3195 */
6b41d536 3196 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
3197 this_parent = mnt;
3198 goto repeat;
3199 }
1da177e4 3200
1ab59738 3201 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 3202 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
3203 found++;
3204 }
1da177e4 3205 }
5528f911
TM
3206 /*
3207 * All done at this level ... ascend and resume the search
3208 */
3209 if (this_parent != parent) {
6b41d536 3210 next = this_parent->mnt_child.next;
0714a533 3211 this_parent = this_parent->mnt_parent;
5528f911
TM
3212 goto resume;
3213 }
3214 return found;
3215}
3216
3217/*
3218 * process a list of expirable mountpoints with the intent of discarding any
3219 * submounts of a specific parent mountpoint
99b7db7b 3220 *
48a066e7 3221 * mount_lock must be held for write
5528f911 3222 */
b54b9be7 3223static void shrink_submounts(struct mount *mnt)
5528f911
TM
3224{
3225 LIST_HEAD(graveyard);
761d5c38 3226 struct mount *m;
5528f911 3227
5528f911 3228 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3229 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3230 while (!list_empty(&graveyard)) {
761d5c38 3231 m = list_first_entry(&graveyard, struct mount,
6776db3d 3232 mnt_expire);
143c8c91 3233 touch_mnt_namespace(m->mnt_ns);
e819f152 3234 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3235 }
3236 }
1da177e4
LT
3237}
3238
028abd92 3239static void *copy_mount_options(const void __user * data)
1da177e4 3240{
b40ef869 3241 char *copy;
d563d678 3242 unsigned left, offset;
b58fed8b 3243
1da177e4 3244 if (!data)
b40ef869 3245 return NULL;
1da177e4 3246
b40ef869
AV
3247 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3248 if (!copy)
3249 return ERR_PTR(-ENOMEM);
1da177e4 3250
d563d678 3251 left = copy_from_user(copy, data, PAGE_SIZE);
1da177e4 3252
d563d678
CM
3253 /*
3254 * Not all architectures have an exact copy_from_user(). Resort to
3255 * byte at a time.
3256 */
3257 offset = PAGE_SIZE - left;
3258 while (left) {
3259 char c;
3260 if (get_user(c, (const char __user *)data + offset))
3261 break;
3262 copy[offset] = c;
3263 left--;
3264 offset++;
3265 }
3266
3267 if (left == PAGE_SIZE) {
b40ef869
AV
3268 kfree(copy);
3269 return ERR_PTR(-EFAULT);
1da177e4 3270 }
d563d678 3271
b40ef869 3272 return copy;
1da177e4
LT
3273}
3274
028abd92 3275static char *copy_mount_string(const void __user *data)
eca6f534 3276{
fbdb4401 3277 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3278}
3279
1da177e4
LT
3280/*
3281 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3282 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3283 *
3284 * data is a (void *) that can point to any structure up to
3285 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3286 * information (or be NULL).
3287 *
3288 * Pre-0.97 versions of mount() didn't have a flags word.
3289 * When the flags word was introduced its top half was required
3290 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3291 * Therefore, if this magic number is present, it carries no information
3292 * and must be discarded.
3293 */
c60166f0 3294int path_mount(const char *dev_name, struct path *path,
808d4e3c 3295 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3296{
e462ec50 3297 unsigned int mnt_flags = 0, sb_flags;
a1e6aaa3 3298 int ret;
1da177e4
LT
3299
3300 /* Discard magic */
3301 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3302 flags &= ~MS_MGC_MSK;
3303
3304 /* Basic sanity checks */
1da177e4
LT
3305 if (data_page)
3306 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3307
e462ec50
DH
3308 if (flags & MS_NOUSER)
3309 return -EINVAL;
3310
a1e6aaa3
CH
3311 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3312 if (ret)
3313 return ret;
3314 if (!may_mount())
3315 return -EPERM;
f7e33bdb
JL
3316 if (flags & SB_MANDLOCK)
3317 warn_mandlock();
a27ab9f2 3318
613cbe3d
AK
3319 /* Default to relatime unless overriden */
3320 if (!(flags & MS_NOATIME))
3321 mnt_flags |= MNT_RELATIME;
0a1c01c9 3322
1da177e4
LT
3323 /* Separate the per-mountpoint flags */
3324 if (flags & MS_NOSUID)
3325 mnt_flags |= MNT_NOSUID;
3326 if (flags & MS_NODEV)
3327 mnt_flags |= MNT_NODEV;
3328 if (flags & MS_NOEXEC)
3329 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3330 if (flags & MS_NOATIME)
3331 mnt_flags |= MNT_NOATIME;
3332 if (flags & MS_NODIRATIME)
3333 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3334 if (flags & MS_STRICTATIME)
3335 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3336 if (flags & MS_RDONLY)
2e4b7fcd 3337 mnt_flags |= MNT_READONLY;
dab741e0
MN
3338 if (flags & MS_NOSYMFOLLOW)
3339 mnt_flags |= MNT_NOSYMFOLLOW;
fc33a7bb 3340
ffbc6f0e
EB
3341 /* The default atime for remount is preservation */
3342 if ((flags & MS_REMOUNT) &&
3343 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3344 MS_STRICTATIME)) == 0)) {
3345 mnt_flags &= ~MNT_ATIME_MASK;
a1e6aaa3 3346 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
ffbc6f0e
EB
3347 }
3348
e462ec50
DH
3349 sb_flags = flags & (SB_RDONLY |
3350 SB_SYNCHRONOUS |
3351 SB_MANDLOCK |
3352 SB_DIRSYNC |
3353 SB_SILENT |
917086ff 3354 SB_POSIXACL |
d7ee9469 3355 SB_LAZYTIME |
917086ff 3356 SB_I_VERSION);
1da177e4 3357
43f5e655 3358 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
a1e6aaa3
CH
3359 return do_reconfigure_mnt(path, mnt_flags);
3360 if (flags & MS_REMOUNT)
3361 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3362 if (flags & MS_BIND)
3363 return do_loopback(path, dev_name, flags & MS_REC);
3364 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3365 return do_change_type(path, flags);
3366 if (flags & MS_MOVE)
3367 return do_move_mount_old(path, dev_name);
3368
3369 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3370 data_page);
3371}
3372
3373long do_mount(const char *dev_name, const char __user *dir_name,
3374 const char *type_page, unsigned long flags, void *data_page)
3375{
3376 struct path path;
3377 int ret;
3378
3379 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3380 if (ret)
3381 return ret;
3382 ret = path_mount(dev_name, &path, type_page, flags, data_page);
2d92ab3c 3383 path_put(&path);
a1e6aaa3 3384 return ret;
1da177e4
LT
3385}
3386
537f7ccb
EB
3387static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3388{
3389 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3390}
3391
3392static void dec_mnt_namespaces(struct ucounts *ucounts)
3393{
3394 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3395}
3396
771b1371
EB
3397static void free_mnt_ns(struct mnt_namespace *ns)
3398{
74e83122
AV
3399 if (!is_anon_ns(ns))
3400 ns_free_inum(&ns->ns);
537f7ccb 3401 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3402 put_user_ns(ns->user_ns);
3403 kfree(ns);
3404}
3405
8823c079
EB
3406/*
3407 * Assign a sequence number so we can detect when we attempt to bind
3408 * mount a reference to an older mount namespace into the current
3409 * mount namespace, preventing reference counting loops. A 64bit
3410 * number incrementing at 10Ghz will take 12,427 years to wrap which
3411 * is effectively never, so we can ignore the possibility.
3412 */
3413static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3414
74e83122 3415static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3416{
3417 struct mnt_namespace *new_ns;
537f7ccb 3418 struct ucounts *ucounts;
98f842e6 3419 int ret;
cf8d2c11 3420
537f7ccb
EB
3421 ucounts = inc_mnt_namespaces(user_ns);
3422 if (!ucounts)
df75e774 3423 return ERR_PTR(-ENOSPC);
537f7ccb 3424
30acd0bd 3425 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
537f7ccb
EB
3426 if (!new_ns) {
3427 dec_mnt_namespaces(ucounts);
cf8d2c11 3428 return ERR_PTR(-ENOMEM);
537f7ccb 3429 }
74e83122
AV
3430 if (!anon) {
3431 ret = ns_alloc_inum(&new_ns->ns);
3432 if (ret) {
3433 kfree(new_ns);
3434 dec_mnt_namespaces(ucounts);
3435 return ERR_PTR(ret);
3436 }
98f842e6 3437 }
33c42940 3438 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3439 if (!anon)
3440 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
1a7b8969 3441 refcount_set(&new_ns->ns.count, 1);
cf8d2c11
TM
3442 INIT_LIST_HEAD(&new_ns->list);
3443 init_waitqueue_head(&new_ns->poll);
9f6c61f9 3444 spin_lock_init(&new_ns->ns_lock);
771b1371 3445 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3446 new_ns->ucounts = ucounts;
cf8d2c11
TM
3447 return new_ns;
3448}
3449
0766f788 3450__latent_entropy
9559f689
AV
3451struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3452 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3453{
6b3286ed 3454 struct mnt_namespace *new_ns;
7f2da1e7 3455 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3456 struct mount *p, *q;
9559f689 3457 struct mount *old;
cb338d06 3458 struct mount *new;
7a472ef4 3459 int copy_flags;
1da177e4 3460
9559f689
AV
3461 BUG_ON(!ns);
3462
3463 if (likely(!(flags & CLONE_NEWNS))) {
3464 get_mnt_ns(ns);
3465 return ns;
3466 }
3467
3468 old = ns->root;
3469
74e83122 3470 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3471 if (IS_ERR(new_ns))
3472 return new_ns;
1da177e4 3473
97216be0 3474 namespace_lock();
1da177e4 3475 /* First pass: copy the tree topology */
4ce5d2b1 3476 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3477 if (user_ns != ns->user_ns)
3bd045cc 3478 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3479 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3480 if (IS_ERR(new)) {
328e6d90 3481 namespace_unlock();
771b1371 3482 free_mnt_ns(new_ns);
be34d1a3 3483 return ERR_CAST(new);
1da177e4 3484 }
3bd045cc
AV
3485 if (user_ns != ns->user_ns) {
3486 lock_mount_hash();
3487 lock_mnt_tree(new);
3488 unlock_mount_hash();
3489 }
be08d6d2 3490 new_ns->root = new;
1a4eeaf2 3491 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3492
3493 /*
3494 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3495 * as belonging to new namespace. We have already acquired a private
3496 * fs_struct, so tsk->fs->lock is not needed.
3497 */
909b0a88 3498 p = old;
cb338d06 3499 q = new;
1da177e4 3500 while (p) {
143c8c91 3501 q->mnt_ns = new_ns;
d2921684 3502 new_ns->mounts++;
9559f689
AV
3503 if (new_fs) {
3504 if (&p->mnt == new_fs->root.mnt) {
3505 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3506 rootmnt = &p->mnt;
1da177e4 3507 }
9559f689
AV
3508 if (&p->mnt == new_fs->pwd.mnt) {
3509 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3510 pwdmnt = &p->mnt;
1da177e4 3511 }
1da177e4 3512 }
909b0a88
AV
3513 p = next_mnt(p, old);
3514 q = next_mnt(q, new);
4ce5d2b1
EB
3515 if (!q)
3516 break;
61d8e426 3517 // an mntns binding we'd skipped?
4ce5d2b1 3518 while (p->mnt.mnt_root != q->mnt.mnt_root)
61d8e426 3519 p = next_mnt(skip_mnt_tree(p), old);
1da177e4 3520 }
328e6d90 3521 namespace_unlock();
1da177e4 3522
1da177e4 3523 if (rootmnt)
f03c6599 3524 mntput(rootmnt);
1da177e4 3525 if (pwdmnt)
f03c6599 3526 mntput(pwdmnt);
1da177e4 3527
741a2951 3528 return new_ns;
1da177e4
LT
3529}
3530
74e83122 3531struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3532{
74e83122 3533 struct mount *mnt = real_mount(m);
ea441d11 3534 struct mnt_namespace *ns;
d31da0f0 3535 struct super_block *s;
ea441d11
AV
3536 struct path path;
3537 int err;
3538
74e83122
AV
3539 ns = alloc_mnt_ns(&init_user_ns, true);
3540 if (IS_ERR(ns)) {
3541 mntput(m);
ea441d11 3542 return ERR_CAST(ns);
74e83122
AV
3543 }
3544 mnt->mnt_ns = ns;
3545 ns->root = mnt;
3546 ns->mounts++;
3547 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3548
74e83122 3549 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3550 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3551
3552 put_mnt_ns(ns);
3553
3554 if (err)
3555 return ERR_PTR(err);
3556
3557 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3558 s = path.mnt->mnt_sb;
3559 atomic_inc(&s->s_active);
ea441d11
AV
3560 mntput(path.mnt);
3561 /* lock the sucker */
d31da0f0 3562 down_write(&s->s_umount);
ea441d11
AV
3563 /* ... and return the root of (sub)tree on it */
3564 return path.dentry;
3565}
3566EXPORT_SYMBOL(mount_subtree);
3567
cccaa5e3
DB
3568SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3569 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3570{
eca6f534
VN
3571 int ret;
3572 char *kernel_type;
eca6f534 3573 char *kernel_dev;
b40ef869 3574 void *options;
1da177e4 3575
b8850d1f
TG
3576 kernel_type = copy_mount_string(type);
3577 ret = PTR_ERR(kernel_type);
3578 if (IS_ERR(kernel_type))
eca6f534 3579 goto out_type;
1da177e4 3580
b8850d1f
TG
3581 kernel_dev = copy_mount_string(dev_name);
3582 ret = PTR_ERR(kernel_dev);
3583 if (IS_ERR(kernel_dev))
eca6f534 3584 goto out_dev;
1da177e4 3585
b40ef869
AV
3586 options = copy_mount_options(data);
3587 ret = PTR_ERR(options);
3588 if (IS_ERR(options))
eca6f534 3589 goto out_data;
1da177e4 3590
b40ef869 3591 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3592
b40ef869 3593 kfree(options);
eca6f534
VN
3594out_data:
3595 kfree(kernel_dev);
3596out_dev:
eca6f534
VN
3597 kfree(kernel_type);
3598out_type:
3599 return ret;
1da177e4
LT
3600}
3601
dd8b477f
CB
3602#define FSMOUNT_VALID_FLAGS \
3603 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3604 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3605 MOUNT_ATTR_NOSYMFOLLOW)
5b490500 3606
9caccd41 3607#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
2a186721
CB
3608
3609#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3610 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3611
5b490500
CB
3612static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3613{
3614 unsigned int mnt_flags = 0;
3615
3616 if (attr_flags & MOUNT_ATTR_RDONLY)
3617 mnt_flags |= MNT_READONLY;
3618 if (attr_flags & MOUNT_ATTR_NOSUID)
3619 mnt_flags |= MNT_NOSUID;
3620 if (attr_flags & MOUNT_ATTR_NODEV)
3621 mnt_flags |= MNT_NODEV;
3622 if (attr_flags & MOUNT_ATTR_NOEXEC)
3623 mnt_flags |= MNT_NOEXEC;
3624 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3625 mnt_flags |= MNT_NODIRATIME;
dd8b477f
CB
3626 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3627 mnt_flags |= MNT_NOSYMFOLLOW;
5b490500
CB
3628
3629 return mnt_flags;
3630}
3631
2db154b3 3632/*
93766fbd
DH
3633 * Create a kernel mount representation for a new, prepared superblock
3634 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3635 */
3636SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3637 unsigned int, attr_flags)
3638{
3639 struct mnt_namespace *ns;
3640 struct fs_context *fc;
3641 struct file *file;
3642 struct path newmount;
3643 struct mount *mnt;
3644 struct fd f;
3645 unsigned int mnt_flags = 0;
3646 long ret;
3647
3648 if (!may_mount())
3649 return -EPERM;
3650
3651 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3652 return -EINVAL;
3653
5b490500 3654 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
93766fbd
DH
3655 return -EINVAL;
3656
5b490500 3657 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
93766fbd
DH
3658
3659 switch (attr_flags & MOUNT_ATTR__ATIME) {
3660 case MOUNT_ATTR_STRICTATIME:
3661 break;
3662 case MOUNT_ATTR_NOATIME:
3663 mnt_flags |= MNT_NOATIME;
3664 break;
3665 case MOUNT_ATTR_RELATIME:
3666 mnt_flags |= MNT_RELATIME;
3667 break;
3668 default:
3669 return -EINVAL;
3670 }
3671
3672 f = fdget(fs_fd);
3673 if (!f.file)
3674 return -EBADF;
3675
3676 ret = -EINVAL;
3677 if (f.file->f_op != &fscontext_fops)
3678 goto err_fsfd;
3679
3680 fc = f.file->private_data;
3681
3682 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3683 if (ret < 0)
3684 goto err_fsfd;
3685
3686 /* There must be a valid superblock or we can't mount it */
3687 ret = -EINVAL;
3688 if (!fc->root)
3689 goto err_unlock;
3690
3691 ret = -EPERM;
3692 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3693 pr_warn("VFS: Mount too revealing\n");
3694 goto err_unlock;
3695 }
3696
3697 ret = -EBUSY;
3698 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3699 goto err_unlock;
3700
f7e33bdb
JL
3701 if (fc->sb_flags & SB_MANDLOCK)
3702 warn_mandlock();
93766fbd
DH
3703
3704 newmount.mnt = vfs_create_mount(fc);
3705 if (IS_ERR(newmount.mnt)) {
3706 ret = PTR_ERR(newmount.mnt);
3707 goto err_unlock;
3708 }
3709 newmount.dentry = dget(fc->root);
3710 newmount.mnt->mnt_flags = mnt_flags;
3711
3712 /* We've done the mount bit - now move the file context into more or
3713 * less the same state as if we'd done an fspick(). We don't want to
3714 * do any memory allocation or anything like that at this point as we
3715 * don't want to have to handle any errors incurred.
3716 */
3717 vfs_clean_context(fc);
3718
3719 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3720 if (IS_ERR(ns)) {
3721 ret = PTR_ERR(ns);
3722 goto err_path;
3723 }
3724 mnt = real_mount(newmount.mnt);
3725 mnt->mnt_ns = ns;
3726 ns->root = mnt;
3727 ns->mounts = 1;
3728 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3729 mntget(newmount.mnt);
93766fbd
DH
3730
3731 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3732 * it, not just simply put it.
3733 */
3734 file = dentry_open(&newmount, O_PATH, fc->cred);
3735 if (IS_ERR(file)) {
3736 dissolve_on_fput(newmount.mnt);
3737 ret = PTR_ERR(file);
3738 goto err_path;
3739 }
3740 file->f_mode |= FMODE_NEED_UNMOUNT;
3741
3742 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3743 if (ret >= 0)
3744 fd_install(ret, file);
3745 else
3746 fput(file);
3747
3748err_path:
3749 path_put(&newmount);
3750err_unlock:
3751 mutex_unlock(&fc->uapi_mutex);
3752err_fsfd:
3753 fdput(f);
3754 return ret;
3755}
3756
3757/*
3758 * Move a mount from one place to another. In combination with
3759 * fsopen()/fsmount() this is used to install a new mount and in combination
3760 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3761 * a mount subtree.
2db154b3
DH
3762 *
3763 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3764 */
3765SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3766 int, from_dfd, const char __user *, from_pathname,
3767 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3768 unsigned int, flags)
3769{
3770 struct path from_path, to_path;
3771 unsigned int lflags;
3772 int ret = 0;
3773
3774 if (!may_mount())
3775 return -EPERM;
3776
3777 if (flags & ~MOVE_MOUNT__MASK)
3778 return -EINVAL;
3779
3780 /* If someone gives a pathname, they aren't permitted to move
3781 * from an fd that requires unmount as we can't get at the flag
3782 * to clear it afterwards.
3783 */
3784 lflags = 0;
3785 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3786 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3787 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3788
3789 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3790 if (ret < 0)
3791 return ret;
3792
3793 lflags = 0;
3794 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3795 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3796 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3797
3798 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3799 if (ret < 0)
3800 goto out_from;
3801
3802 ret = security_move_mount(&from_path, &to_path);
3803 if (ret < 0)
3804 goto out_to;
3805
9ffb14ef
PT
3806 if (flags & MOVE_MOUNT_SET_GROUP)
3807 ret = do_set_group(&from_path, &to_path);
3808 else
3809 ret = do_move_mount(&from_path, &to_path);
2db154b3
DH
3810
3811out_to:
3812 path_put(&to_path);
3813out_from:
3814 path_put(&from_path);
3815 return ret;
3816}
3817
afac7cba
AV
3818/*
3819 * Return true if path is reachable from root
3820 *
48a066e7 3821 * namespace_sem or mount_lock is held
afac7cba 3822 */
643822b4 3823bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3824 const struct path *root)
3825{
643822b4 3826 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3827 dentry = mnt->mnt_mountpoint;
0714a533 3828 mnt = mnt->mnt_parent;
afac7cba 3829 }
643822b4 3830 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3831}
3832
640eb7e7 3833bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3834{
25ab4c9b 3835 bool res;
48a066e7 3836 read_seqlock_excl(&mount_lock);
643822b4 3837 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3838 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3839 return res;
3840}
3841EXPORT_SYMBOL(path_is_under);
3842
1da177e4
LT
3843/*
3844 * pivot_root Semantics:
3845 * Moves the root file system of the current process to the directory put_old,
3846 * makes new_root as the new root file system of the current process, and sets
3847 * root/cwd of all processes which had them on the current root to new_root.
3848 *
3849 * Restrictions:
3850 * The new_root and put_old must be directories, and must not be on the
3851 * same file system as the current process root. The put_old must be
3852 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3853 * pointed to by put_old must yield the same directory as new_root. No other
3854 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3855 *
4a0d11fa 3856 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
0c1bc6b8 3857 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4a0d11fa
NB
3858 * in this situation.
3859 *
1da177e4
LT
3860 * Notes:
3861 * - we don't move root/cwd if they are not at the root (reason: if something
3862 * cared enough to change them, it's probably wrong to force them elsewhere)
3863 * - it's okay to pick a root that isn't the root of a file system, e.g.
3864 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3865 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3866 * first.
3867 */
3480b257
HC
3868SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3869 const char __user *, put_old)
1da177e4 3870{
2763d119
AV
3871 struct path new, old, root;
3872 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3873 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3874 int error;
3875
9b40bc90 3876 if (!may_mount())
1da177e4
LT
3877 return -EPERM;
3878
ce6595a2
AV
3879 error = user_path_at(AT_FDCWD, new_root,
3880 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3881 if (error)
3882 goto out0;
1da177e4 3883
ce6595a2
AV
3884 error = user_path_at(AT_FDCWD, put_old,
3885 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3886 if (error)
3887 goto out1;
3888
2d8f3038 3889 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3890 if (error)
3891 goto out2;
1da177e4 3892
f7ad3c6b 3893 get_fs_root(current->fs, &root);
84d17192
AV
3894 old_mp = lock_mount(&old);
3895 error = PTR_ERR(old_mp);
3896 if (IS_ERR(old_mp))
b12cea91
AV
3897 goto out3;
3898
1da177e4 3899 error = -EINVAL;
419148da
AV
3900 new_mnt = real_mount(new.mnt);
3901 root_mnt = real_mount(root.mnt);
84d17192 3902 old_mnt = real_mount(old.mnt);
2763d119
AV
3903 ex_parent = new_mnt->mnt_parent;
3904 root_parent = root_mnt->mnt_parent;
84d17192 3905 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3906 IS_MNT_SHARED(ex_parent) ||
3907 IS_MNT_SHARED(root_parent))
b12cea91 3908 goto out4;
143c8c91 3909 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3910 goto out4;
5ff9d8a6
EB
3911 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3912 goto out4;
1da177e4 3913 error = -ENOENT;
f3da392e 3914 if (d_unlinked(new.dentry))
b12cea91 3915 goto out4;
1da177e4 3916 error = -EBUSY;
84d17192 3917 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3918 goto out4; /* loop, on the same file system */
1da177e4 3919 error = -EINVAL;
8c3ee42e 3920 if (root.mnt->mnt_root != root.dentry)
b12cea91 3921 goto out4; /* not a mountpoint */
676da58d 3922 if (!mnt_has_parent(root_mnt))
b12cea91 3923 goto out4; /* not attached */
2d8f3038 3924 if (new.mnt->mnt_root != new.dentry)
b12cea91 3925 goto out4; /* not a mountpoint */
676da58d 3926 if (!mnt_has_parent(new_mnt))
b12cea91 3927 goto out4; /* not attached */
4ac91378 3928 /* make sure we can reach put_old from new_root */
84d17192 3929 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3930 goto out4;
0d082601
EB
3931 /* make certain new is below the root */
3932 if (!is_path_reachable(new_mnt, new.dentry, &root))
3933 goto out4;
719ea2fb 3934 lock_mount_hash();
2763d119
AV
3935 umount_mnt(new_mnt);
3936 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3937 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3938 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3939 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3940 }
4ac91378 3941 /* mount old root on put_old */
84d17192 3942 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3943 /* mount new_root on / */
2763d119
AV
3944 attach_mnt(new_mnt, root_parent, root_mp);
3945 mnt_add_count(root_parent, -1);
6b3286ed 3946 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3947 /* A moved mount should not expire automatically */
3948 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3949 put_mountpoint(root_mp);
719ea2fb 3950 unlock_mount_hash();
2d8f3038 3951 chroot_fs_refs(&root, &new);
1da177e4 3952 error = 0;
b12cea91 3953out4:
84d17192 3954 unlock_mount(old_mp);
2763d119
AV
3955 if (!error)
3956 mntput_no_expire(ex_parent);
b12cea91 3957out3:
8c3ee42e 3958 path_put(&root);
b12cea91 3959out2:
2d8f3038 3960 path_put(&old);
1da177e4 3961out1:
2d8f3038 3962 path_put(&new);
1da177e4 3963out0:
1da177e4 3964 return error;
1da177e4
LT
3965}
3966
2a186721
CB
3967static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3968{
3969 unsigned int flags = mnt->mnt.mnt_flags;
3970
3971 /* flags to clear */
3972 flags &= ~kattr->attr_clr;
3973 /* flags to raise */
3974 flags |= kattr->attr_set;
3975
3976 return flags;
3977}
3978
9caccd41
CB
3979static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3980{
3981 struct vfsmount *m = &mnt->mnt;
bd303368 3982 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
9caccd41 3983
256c8aed 3984 if (!kattr->mnt_idmap)
9caccd41
CB
3985 return 0;
3986
bd303368
CB
3987 /*
3988 * Creating an idmapped mount with the filesystem wide idmapping
3989 * doesn't make sense so block that. We don't allow mushy semantics.
3990 */
3707d84c 3991 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
bd303368
CB
3992 return -EINVAL;
3993
9caccd41
CB
3994 /*
3995 * Once a mount has been idmapped we don't allow it to change its
3996 * mapping. It makes things simpler and callers can just create
3997 * another bind-mount they can idmap if they want to.
3998 */
bb49e9e7 3999 if (is_idmapped_mnt(m))
9caccd41
CB
4000 return -EPERM;
4001
4002 /* The underlying filesystem doesn't support idmapped mounts yet. */
4003 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4004 return -EINVAL;
4005
4006 /* We're not controlling the superblock. */
bd303368 4007 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
9caccd41
CB
4008 return -EPERM;
4009
4010 /* Mount has already been visible in the filesystem hierarchy. */
4011 if (!is_anon_ns(mnt->mnt_ns))
4012 return -EINVAL;
4013
4014 return 0;
4015}
4016
a26f788b
CB
4017/**
4018 * mnt_allow_writers() - check whether the attribute change allows writers
4019 * @kattr: the new mount attributes
4020 * @mnt: the mount to which @kattr will be applied
4021 *
4022 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4023 *
4024 * Return: true if writers need to be held, false if not
4025 */
4026static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4027 const struct mount *mnt)
2a186721 4028{
e1bbcd27
CB
4029 return (!(kattr->attr_set & MNT_READONLY) ||
4030 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
256c8aed 4031 !kattr->mnt_idmap;
a26f788b 4032}
2a186721 4033
87bb5b60 4034static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
2a186721 4035{
e257039f
AV
4036 struct mount *m;
4037 int err;
2a186721 4038
e257039f
AV
4039 for (m = mnt; m; m = next_mnt(m, mnt)) {
4040 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4041 err = -EPERM;
4042 break;
4043 }
2a186721 4044
87bb5b60
CB
4045 err = can_idmap_mount(kattr, m);
4046 if (err)
e257039f 4047 break;
2a186721 4048
e257039f
AV
4049 if (!mnt_allow_writers(kattr, m)) {
4050 err = mnt_hold_writers(m);
4051 if (err)
4052 break;
2a186721
CB
4053 }
4054
e257039f
AV
4055 if (!kattr->recurse)
4056 return 0;
4057 }
9caccd41 4058
e257039f
AV
4059 if (err) {
4060 struct mount *p;
2a186721 4061
0014edae
CB
4062 /*
4063 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4064 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4065 * mounts and needs to take care to include the first mount.
4066 */
4067 for (p = mnt; p; p = next_mnt(p, mnt)) {
e257039f
AV
4068 /* If we had to hold writers unblock them. */
4069 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4070 mnt_unhold_writers(p);
0014edae
CB
4071
4072 /*
4073 * We're done once the first mount we changed got
4074 * MNT_WRITE_HOLD unset.
4075 */
4076 if (p == m)
4077 break;
2a186721 4078 }
e257039f
AV
4079 }
4080 return err;
2a186721
CB
4081}
4082
9caccd41
CB
4083static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4084{
256c8aed 4085 if (!kattr->mnt_idmap)
9caccd41
CB
4086 return;
4087
bd303368 4088 /*
256c8aed
CB
4089 * Pairs with smp_load_acquire() in mnt_idmap().
4090 *
4091 * Since we only allow a mount to change the idmapping once and
4092 * verified this in can_idmap_mount() we know that the mount has
4093 * @nop_mnt_idmap attached to it. So there's no need to drop any
4094 * references.
bd303368 4095 */
256c8aed 4096 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
9caccd41
CB
4097}
4098
e257039f 4099static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
2a186721 4100{
e257039f 4101 struct mount *m;
2a186721 4102
e257039f
AV
4103 for (m = mnt; m; m = next_mnt(m, mnt)) {
4104 unsigned int flags;
2a186721 4105
e257039f
AV
4106 do_idmap_mount(kattr, m);
4107 flags = recalc_flags(kattr, m);
4108 WRITE_ONCE(m->mnt.mnt_flags, flags);
2a186721 4109
03b6abee
CB
4110 /* If we had to hold writers unblock them. */
4111 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
2a186721
CB
4112 mnt_unhold_writers(m);
4113
e257039f 4114 if (kattr->propagation)
2a186721 4115 change_mnt_propagation(m, kattr->propagation);
e257039f 4116 if (!kattr->recurse)
2a186721 4117 break;
e257039f
AV
4118 }
4119 touch_mnt_namespace(mnt->mnt_ns);
2a186721
CB
4120}
4121
4122static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4123{
87bb5b60 4124 struct mount *mnt = real_mount(path->mnt);
2a186721
CB
4125 int err = 0;
4126
4127 if (path->dentry != mnt->mnt.mnt_root)
4128 return -EINVAL;
4129
256c8aed
CB
4130 if (kattr->mnt_userns) {
4131 struct mnt_idmap *mnt_idmap;
4132
4133 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4134 if (IS_ERR(mnt_idmap))
4135 return PTR_ERR(mnt_idmap);
4136 kattr->mnt_idmap = mnt_idmap;
4137 }
4138
2a186721
CB
4139 if (kattr->propagation) {
4140 /*
4141 * Only take namespace_lock() if we're actually changing
4142 * propagation.
4143 */
4144 namespace_lock();
4145 if (kattr->propagation == MS_SHARED) {
4146 err = invent_group_ids(mnt, kattr->recurse);
4147 if (err) {
4148 namespace_unlock();
4149 return err;
4150 }
4151 }
4152 }
4153
87bb5b60 4154 err = -EINVAL;
2a186721
CB
4155 lock_mount_hash();
4156
87bb5b60
CB
4157 /* Ensure that this isn't anything purely vfs internal. */
4158 if (!is_mounted(&mnt->mnt))
4159 goto out;
4160
2a186721 4161 /*
87bb5b60
CB
4162 * If this is an attached mount make sure it's located in the callers
4163 * mount namespace. If it's not don't let the caller interact with it.
4164 * If this is a detached mount make sure it has an anonymous mount
4165 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
2a186721 4166 */
87bb5b60
CB
4167 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4168 goto out;
2a186721 4169
87bb5b60
CB
4170 /*
4171 * First, we get the mount tree in a shape where we can change mount
4172 * properties without failure. If we succeeded to do so we commit all
4173 * changes and if we failed we clean up.
4174 */
4175 err = mount_setattr_prepare(kattr, mnt);
e257039f
AV
4176 if (!err)
4177 mount_setattr_commit(kattr, mnt);
2a186721 4178
87bb5b60 4179out:
2a186721
CB
4180 unlock_mount_hash();
4181
4182 if (kattr->propagation) {
2a186721
CB
4183 if (err)
4184 cleanup_group_ids(mnt, NULL);
cb2239c1 4185 namespace_unlock();
2a186721
CB
4186 }
4187
4188 return err;
4189}
4190
9caccd41
CB
4191static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4192 struct mount_kattr *kattr, unsigned int flags)
4193{
4194 int err = 0;
4195 struct ns_common *ns;
4196 struct user_namespace *mnt_userns;
96e85e95 4197 struct fd f;
9caccd41
CB
4198
4199 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4200 return 0;
4201
4202 /*
4203 * We currently do not support clearing an idmapped mount. If this ever
4204 * is a use-case we can revisit this but for now let's keep it simple
4205 * and not allow it.
4206 */
4207 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4208 return -EINVAL;
4209
4210 if (attr->userns_fd > INT_MAX)
4211 return -EINVAL;
4212
96e85e95
AV
4213 f = fdget(attr->userns_fd);
4214 if (!f.file)
9caccd41
CB
4215 return -EBADF;
4216
96e85e95 4217 if (!proc_ns_file(f.file)) {
9caccd41
CB
4218 err = -EINVAL;
4219 goto out_fput;
4220 }
4221
96e85e95 4222 ns = get_proc_ns(file_inode(f.file));
9caccd41
CB
4223 if (ns->ops->type != CLONE_NEWUSER) {
4224 err = -EINVAL;
4225 goto out_fput;
4226 }
4227
4228 /*
bd303368
CB
4229 * The initial idmapping cannot be used to create an idmapped
4230 * mount. We use the initial idmapping as an indicator of a mount
4231 * that is not idmapped. It can simply be passed into helpers that
4232 * are aware of idmapped mounts as a convenient shortcut. A user
4233 * can just create a dedicated identity mapping to achieve the same
4234 * result.
9caccd41
CB
4235 */
4236 mnt_userns = container_of(ns, struct user_namespace, ns);
3707d84c 4237 if (mnt_userns == &init_user_ns) {
9caccd41
CB
4238 err = -EPERM;
4239 goto out_fput;
4240 }
bf1ac16e
SF
4241
4242 /* We're not controlling the target namespace. */
4243 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4244 err = -EPERM;
4245 goto out_fput;
4246 }
4247
9caccd41
CB
4248 kattr->mnt_userns = get_user_ns(mnt_userns);
4249
4250out_fput:
96e85e95 4251 fdput(f);
9caccd41
CB
4252 return err;
4253}
4254
4255static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
2a186721
CB
4256 struct mount_kattr *kattr, unsigned int flags)
4257{
4258 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4259
4260 if (flags & AT_NO_AUTOMOUNT)
4261 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4262 if (flags & AT_SYMLINK_NOFOLLOW)
4263 lookup_flags &= ~LOOKUP_FOLLOW;
4264 if (flags & AT_EMPTY_PATH)
4265 lookup_flags |= LOOKUP_EMPTY;
4266
4267 *kattr = (struct mount_kattr) {
4268 .lookup_flags = lookup_flags,
4269 .recurse = !!(flags & AT_RECURSIVE),
4270 };
4271
4272 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4273 return -EINVAL;
4274 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4275 return -EINVAL;
4276 kattr->propagation = attr->propagation;
4277
4278 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4279 return -EINVAL;
4280
2a186721
CB
4281 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4282 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4283
4284 /*
4285 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4286 * users wanting to transition to a different atime setting cannot
4287 * simply specify the atime setting in @attr_set, but must also
4288 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4289 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4290 * @attr_clr and that @attr_set can't have any atime bits set if
4291 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4292 */
4293 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4294 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4295 return -EINVAL;
4296
4297 /*
4298 * Clear all previous time settings as they are mutually
4299 * exclusive.
4300 */
4301 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4302 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4303 case MOUNT_ATTR_RELATIME:
4304 kattr->attr_set |= MNT_RELATIME;
4305 break;
4306 case MOUNT_ATTR_NOATIME:
4307 kattr->attr_set |= MNT_NOATIME;
4308 break;
4309 case MOUNT_ATTR_STRICTATIME:
4310 break;
4311 default:
4312 return -EINVAL;
4313 }
4314 } else {
4315 if (attr->attr_set & MOUNT_ATTR__ATIME)
4316 return -EINVAL;
4317 }
4318
9caccd41
CB
4319 return build_mount_idmapped(attr, usize, kattr, flags);
4320}
4321
4322static void finish_mount_kattr(struct mount_kattr *kattr)
4323{
4324 put_user_ns(kattr->mnt_userns);
4325 kattr->mnt_userns = NULL;
256c8aed
CB
4326
4327 if (kattr->mnt_idmap)
4328 mnt_idmap_put(kattr->mnt_idmap);
2a186721
CB
4329}
4330
4331SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4332 unsigned int, flags, struct mount_attr __user *, uattr,
4333 size_t, usize)
4334{
4335 int err;
4336 struct path target;
4337 struct mount_attr attr;
4338 struct mount_kattr kattr;
4339
4340 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4341
4342 if (flags & ~(AT_EMPTY_PATH |
4343 AT_RECURSIVE |
4344 AT_SYMLINK_NOFOLLOW |
4345 AT_NO_AUTOMOUNT))
4346 return -EINVAL;
4347
4348 if (unlikely(usize > PAGE_SIZE))
4349 return -E2BIG;
4350 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4351 return -EINVAL;
4352
4353 if (!may_mount())
4354 return -EPERM;
4355
4356 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4357 if (err)
4358 return err;
4359
4360 /* Don't bother walking through the mounts if this is a nop. */
4361 if (attr.attr_set == 0 &&
4362 attr.attr_clr == 0 &&
4363 attr.propagation == 0)
4364 return 0;
4365
9caccd41 4366 err = build_mount_kattr(&attr, usize, &kattr, flags);
2a186721
CB
4367 if (err)
4368 return err;
4369
4370 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
012e3322
CB
4371 if (!err) {
4372 err = do_mount_setattr(&target, &kattr);
4373 path_put(&target);
4374 }
9caccd41 4375 finish_mount_kattr(&kattr);
2a186721
CB
4376 return err;
4377}
4378
1da177e4
LT
4379static void __init init_mount_tree(void)
4380{
4381 struct vfsmount *mnt;
74e83122 4382 struct mount *m;
6b3286ed 4383 struct mnt_namespace *ns;
ac748a09 4384 struct path root;
1da177e4 4385
fd3e007f 4386 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
4387 if (IS_ERR(mnt))
4388 panic("Can't create rootfs");
b3e19d92 4389
74e83122 4390 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 4391 if (IS_ERR(ns))
1da177e4 4392 panic("Can't allocate initial namespace");
74e83122
AV
4393 m = real_mount(mnt);
4394 m->mnt_ns = ns;
4395 ns->root = m;
4396 ns->mounts = 1;
4397 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
4398 init_task.nsproxy->mnt_ns = ns;
4399 get_mnt_ns(ns);
4400
be08d6d2
AV
4401 root.mnt = mnt;
4402 root.dentry = mnt->mnt_root;
da362b09 4403 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
4404
4405 set_fs_pwd(current->fs, &root);
4406 set_fs_root(current->fs, &root);
1da177e4
LT
4407}
4408
74bf17cf 4409void __init mnt_init(void)
1da177e4 4410{
15a67dd8 4411 int err;
1da177e4 4412
7d6fec45 4413 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
79f6540b 4414 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 4415
0818bf27 4416 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 4417 sizeof(struct hlist_head),
0818bf27 4418 mhash_entries, 19,
3d375d78 4419 HASH_ZERO,
0818bf27
AV
4420 &m_hash_shift, &m_hash_mask, 0, 0);
4421 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4422 sizeof(struct hlist_head),
4423 mphash_entries, 19,
3d375d78 4424 HASH_ZERO,
0818bf27 4425 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 4426
84d17192 4427 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
4428 panic("Failed to allocate mount hash table\n");
4429
4b93dc9b
TH
4430 kernfs_init();
4431
15a67dd8
RD
4432 err = sysfs_init();
4433 if (err)
4434 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 4435 __func__, err);
00d26666
GKH
4436 fs_kobj = kobject_create_and_add("fs", NULL);
4437 if (!fs_kobj)
8e24eea7 4438 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 4439 shmem_init();
1da177e4
LT
4440 init_rootfs();
4441 init_mount_tree();
4442}
4443
616511d0 4444void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 4445{
1a7b8969 4446 if (!refcount_dec_and_test(&ns->ns.count))
616511d0 4447 return;
7b00ed6f 4448 drop_collected_mounts(&ns->root->mnt);
771b1371 4449 free_mnt_ns(ns);
1da177e4 4450}
9d412a43 4451
d911b458 4452struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 4453{
423e0ab0 4454 struct vfsmount *mnt;
d911b458 4455 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
4456 if (!IS_ERR(mnt)) {
4457 /*
4458 * it is a longterm mount, don't release mnt until
4459 * we unmount before file sys is unregistered
4460 */
f7a99c5b 4461 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
4462 }
4463 return mnt;
9d412a43 4464}
d911b458 4465EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
4466
4467void kern_unmount(struct vfsmount *mnt)
4468{
4469 /* release long term mount so mount point can be released */
da27f796
RR
4470 if (!IS_ERR(mnt)) {
4471 mnt_make_shortterm(mnt);
48a066e7 4472 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
4473 mntput(mnt);
4474 }
4475}
4476EXPORT_SYMBOL(kern_unmount);
02125a82 4477
df820f8d
MS
4478void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4479{
4480 unsigned int i;
4481
4482 for (i = 0; i < num; i++)
da27f796 4483 mnt_make_shortterm(mnt[i]);
df820f8d
MS
4484 synchronize_rcu_expedited();
4485 for (i = 0; i < num; i++)
4486 mntput(mnt[i]);
4487}
4488EXPORT_SYMBOL(kern_unmount_array);
4489
02125a82
AV
4490bool our_mnt(struct vfsmount *mnt)
4491{
143c8c91 4492 return check_mnt(real_mount(mnt));
02125a82 4493}
8823c079 4494
3151527e
EB
4495bool current_chrooted(void)
4496{
4497 /* Does the current process have a non-standard root */
4498 struct path ns_root;
4499 struct path fs_root;
4500 bool chrooted;
4501
4502 /* Find the namespace root */
4503 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4504 ns_root.dentry = ns_root.mnt->mnt_root;
4505 path_get(&ns_root);
4506 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4507 ;
4508
4509 get_fs_root(current->fs, &fs_root);
4510
4511 chrooted = !path_equal(&fs_root, &ns_root);
4512
4513 path_put(&fs_root);
4514 path_put(&ns_root);
4515
4516 return chrooted;
4517}
4518
132e4608
DH
4519static bool mnt_already_visible(struct mnt_namespace *ns,
4520 const struct super_block *sb,
8654df4e 4521 int *new_mnt_flags)
87a8ebd6 4522{
8c6cf9cc 4523 int new_flags = *new_mnt_flags;
87a8ebd6 4524 struct mount *mnt;
e51db735 4525 bool visible = false;
87a8ebd6 4526
44bb4385 4527 down_read(&namespace_sem);
9f6c61f9 4528 lock_ns_list(ns);
87a8ebd6 4529 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 4530 struct mount *child;
77b1a97d
EB
4531 int mnt_flags;
4532
9f6c61f9
MS
4533 if (mnt_is_cursor(mnt))
4534 continue;
4535
132e4608 4536 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
4537 continue;
4538
7e96c1b0
EB
4539 /* This mount is not fully visible if it's root directory
4540 * is not the root directory of the filesystem.
4541 */
4542 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4543 continue;
4544
a1935c17 4545 /* A local view of the mount flags */
77b1a97d 4546 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 4547
695e9df0 4548 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 4549 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
4550 mnt_flags |= MNT_LOCK_READONLY;
4551
8c6cf9cc
EB
4552 /* Verify the mount flags are equal to or more permissive
4553 * than the proposed new mount.
4554 */
77b1a97d 4555 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
4556 !(new_flags & MNT_READONLY))
4557 continue;
77b1a97d
EB
4558 if ((mnt_flags & MNT_LOCK_ATIME) &&
4559 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
4560 continue;
4561
ceeb0e5d
EB
4562 /* This mount is not fully visible if there are any
4563 * locked child mounts that cover anything except for
4564 * empty directories.
e51db735
EB
4565 */
4566 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4567 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 4568 /* Only worry about locked mounts */
d71ed6c9 4569 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 4570 continue;
7236c85e
EB
4571 /* Is the directory permanetly empty? */
4572 if (!is_empty_dir_inode(inode))
e51db735 4573 goto next;
87a8ebd6 4574 }
8c6cf9cc 4575 /* Preserve the locked attributes */
77b1a97d 4576 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 4577 MNT_LOCK_ATIME);
e51db735
EB
4578 visible = true;
4579 goto found;
4580 next: ;
87a8ebd6 4581 }
e51db735 4582found:
9f6c61f9 4583 unlock_ns_list(ns);
44bb4385 4584 up_read(&namespace_sem);
e51db735 4585 return visible;
87a8ebd6
EB
4586}
4587
132e4608 4588static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 4589{
a1935c17 4590 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
4591 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4592 unsigned long s_iflags;
4593
4594 if (ns->user_ns == &init_user_ns)
4595 return false;
4596
4597 /* Can this filesystem be too revealing? */
132e4608 4598 s_iflags = sb->s_iflags;
8654df4e
EB
4599 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4600 return false;
4601
a1935c17
EB
4602 if ((s_iflags & required_iflags) != required_iflags) {
4603 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4604 required_iflags);
4605 return true;
4606 }
4607
132e4608 4608 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
4609}
4610
380cf5ba
AL
4611bool mnt_may_suid(struct vfsmount *mnt)
4612{
4613 /*
4614 * Foreign mounts (accessed via fchdir or through /proc
4615 * symlinks) are always treated as if they are nosuid. This
4616 * prevents namespaces from trusting potentially unsafe
4617 * suid/sgid bits, file caps, or security labels that originate
4618 * in other namespaces.
4619 */
4620 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4621 current_in_userns(mnt->mnt_sb->s_user_ns);
4622}
4623
64964528 4624static struct ns_common *mntns_get(struct task_struct *task)
8823c079 4625{
58be2825 4626 struct ns_common *ns = NULL;
8823c079
EB
4627 struct nsproxy *nsproxy;
4628
728dba3a
EB
4629 task_lock(task);
4630 nsproxy = task->nsproxy;
8823c079 4631 if (nsproxy) {
58be2825
AV
4632 ns = &nsproxy->mnt_ns->ns;
4633 get_mnt_ns(to_mnt_ns(ns));
8823c079 4634 }
728dba3a 4635 task_unlock(task);
8823c079
EB
4636
4637 return ns;
4638}
4639
64964528 4640static void mntns_put(struct ns_common *ns)
8823c079 4641{
58be2825 4642 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
4643}
4644
f2a8d52e 4645static int mntns_install(struct nsset *nsset, struct ns_common *ns)
8823c079 4646{
f2a8d52e
CB
4647 struct nsproxy *nsproxy = nsset->nsproxy;
4648 struct fs_struct *fs = nsset->fs;
4f757f3c 4649 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
f2a8d52e 4650 struct user_namespace *user_ns = nsset->cred->user_ns;
8823c079 4651 struct path root;
4f757f3c 4652 int err;
8823c079 4653
0c55cfc4 4654 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
f2a8d52e
CB
4655 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4656 !ns_capable(user_ns, CAP_SYS_ADMIN))
ae11e0f1 4657 return -EPERM;
8823c079 4658
74e83122
AV
4659 if (is_anon_ns(mnt_ns))
4660 return -EINVAL;
4661
8823c079
EB
4662 if (fs->users != 1)
4663 return -EINVAL;
4664
4665 get_mnt_ns(mnt_ns);
4f757f3c 4666 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
4667 nsproxy->mnt_ns = mnt_ns;
4668
4669 /* Find the root */
4f757f3c
AV
4670 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4671 "/", LOOKUP_DOWN, &root);
4672 if (err) {
4673 /* revert to old namespace */
4674 nsproxy->mnt_ns = old_mnt_ns;
4675 put_mnt_ns(mnt_ns);
4676 return err;
4677 }
8823c079 4678
4068367c
AV
4679 put_mnt_ns(old_mnt_ns);
4680
8823c079
EB
4681 /* Update the pwd and root */
4682 set_fs_pwd(fs, &root);
4683 set_fs_root(fs, &root);
4684
4685 path_put(&root);
4686 return 0;
4687}
4688
bcac25a5
AV
4689static struct user_namespace *mntns_owner(struct ns_common *ns)
4690{
4691 return to_mnt_ns(ns)->user_ns;
4692}
4693
8823c079
EB
4694const struct proc_ns_operations mntns_operations = {
4695 .name = "mnt",
4696 .type = CLONE_NEWNS,
4697 .get = mntns_get,
4698 .put = mntns_put,
4699 .install = mntns_install,
bcac25a5 4700 .owner = mntns_owner,
8823c079 4701};
ab171b95
LC
4702
4703#ifdef CONFIG_SYSCTL
4704static struct ctl_table fs_namespace_sysctls[] = {
4705 {
4706 .procname = "mount-max",
4707 .data = &sysctl_mount_max,
4708 .maxlen = sizeof(unsigned int),
4709 .mode = 0644,
4710 .proc_handler = proc_dointvec_minmax,
4711 .extra1 = SYSCTL_ONE,
4712 },
4713 { }
4714};
4715
4716static int __init init_fs_namespace_sysctls(void)
4717{
4718 register_sysctl_init("fs", fs_namespace_sysctls);
4719 return 0;
4720}
4721fs_initcall(init_fs_namespace_sysctls);
4722
4723#endif /* CONFIG_SYSCTL */