nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
[linux-block.git] / fs / mpage.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * fs/mpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains functions related to preparing and submitting BIOs which contain
8 * multiple pagecache pages.
9 *
e1f8e874 10 * 15May2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 * 27Jun2002 axboe@suse.de
13 * use bio_add_page() to build bio's just the right size
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4
LT
18#include <linux/mm.h>
19#include <linux/kdev_t.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/bio.h>
22#include <linux/fs.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/highmem.h>
26#include <linux/prefetch.h>
27#include <linux/mpage.h>
02c43638 28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/writeback.h>
30#include <linux/backing-dev.h>
31#include <linux/pagevec.h>
4db96b71 32#include "internal.h"
1da177e4
LT
33
34/*
35 * I/O completion handler for multipage BIOs.
36 *
37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
38 * If a page does not map to a contiguous run of blocks then it simply falls
39 * back to block_read_full_page().
40 *
41 * Why is this? If a page's completion depends on a number of different BIOs
42 * which can complete in any order (or at the same time) then determining the
43 * status of that page is hard. See end_buffer_async_read() for the details.
44 * There is no point in duplicating all that complexity.
45 */
4246a0b6 46static void mpage_end_io(struct bio *bio)
1da177e4 47{
2c30c71b 48 struct bio_vec *bv;
6dc4f100 49 struct bvec_iter_all iter_all;
1da177e4 50
2b070cfe 51 bio_for_each_segment_all(bv, bio, iter_all) {
2c30c71b 52 struct page *page = bv->bv_page;
3f289dcb
TH
53 page_endio(page, bio_op(bio),
54 blk_status_to_errno(bio->bi_status));
2c30c71b
KO
55 }
56
1da177e4 57 bio_put(bio);
1da177e4
LT
58}
59
eed25cd5 60static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
1da177e4 61{
c32b0d4b 62 bio->bi_end_io = mpage_end_io;
eed25cd5 63 bio_set_op_attrs(bio, op, op_flags);
83c9c547 64 guard_bio_eod(bio);
4e49ea4a 65 submit_bio(bio);
1da177e4
LT
66 return NULL;
67}
68
69static struct bio *
70mpage_alloc(struct block_device *bdev,
71 sector_t first_sector, int nr_vecs,
dd0fc66f 72 gfp_t gfp_flags)
1da177e4
LT
73{
74 struct bio *bio;
75
8a5c743e
MH
76 /* Restrict the given (page cache) mask for slab allocations */
77 gfp_flags &= GFP_KERNEL;
1da177e4
LT
78 bio = bio_alloc(gfp_flags, nr_vecs);
79
80 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
81 while (!bio && (nr_vecs /= 2))
82 bio = bio_alloc(gfp_flags, nr_vecs);
83 }
84
85 if (bio) {
74d46992 86 bio_set_dev(bio, bdev);
4f024f37 87 bio->bi_iter.bi_sector = first_sector;
1da177e4
LT
88 }
89 return bio;
90}
91
92/*
d4388340 93 * support function for mpage_readahead. The fs supplied get_block might
1da177e4
LT
94 * return an up to date buffer. This is used to map that buffer into
95 * the page, which allows readpage to avoid triggering a duplicate call
96 * to get_block.
97 *
98 * The idea is to avoid adding buffers to pages that don't already have
99 * them. So when the buffer is up to date and the page size == block size,
100 * this marks the page up to date instead of adding new buffers.
101 */
102static void
103map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
104{
105 struct inode *inode = page->mapping->host;
106 struct buffer_head *page_bh, *head;
107 int block = 0;
108
109 if (!page_has_buffers(page)) {
110 /*
111 * don't make any buffers if there is only one buffer on
112 * the page and the page just needs to be set up to date
113 */
09cbfeaf 114 if (inode->i_blkbits == PAGE_SHIFT &&
1da177e4
LT
115 buffer_uptodate(bh)) {
116 SetPageUptodate(page);
117 return;
118 }
93407472 119 create_empty_buffers(page, i_blocksize(inode), 0);
1da177e4
LT
120 }
121 head = page_buffers(page);
122 page_bh = head;
123 do {
124 if (block == page_block) {
125 page_bh->b_state = bh->b_state;
126 page_bh->b_bdev = bh->b_bdev;
127 page_bh->b_blocknr = bh->b_blocknr;
128 break;
129 }
130 page_bh = page_bh->b_this_page;
131 block++;
132 } while (page_bh != head);
133}
134
357c1206
JA
135struct mpage_readpage_args {
136 struct bio *bio;
137 struct page *page;
138 unsigned int nr_pages;
74c8164e 139 bool is_readahead;
357c1206
JA
140 sector_t last_block_in_bio;
141 struct buffer_head map_bh;
142 unsigned long first_logical_block;
143 get_block_t *get_block;
357c1206
JA
144};
145
fa30bd05
BP
146/*
147 * This is the worker routine which does all the work of mapping the disk
148 * blocks and constructs largest possible bios, submits them for IO if the
149 * blocks are not contiguous on the disk.
150 *
151 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
152 * represent the validity of its disk mapping and to decide when to do the next
153 * get_block() call.
154 */
357c1206 155static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
1da177e4 156{
357c1206 157 struct page *page = args->page;
1da177e4
LT
158 struct inode *inode = page->mapping->host;
159 const unsigned blkbits = inode->i_blkbits;
09cbfeaf 160 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
1da177e4 161 const unsigned blocksize = 1 << blkbits;
357c1206 162 struct buffer_head *map_bh = &args->map_bh;
1da177e4
LT
163 sector_t block_in_file;
164 sector_t last_block;
fa30bd05 165 sector_t last_block_in_file;
1da177e4
LT
166 sector_t blocks[MAX_BUF_PER_PAGE];
167 unsigned page_block;
168 unsigned first_hole = blocks_per_page;
169 struct block_device *bdev = NULL;
1da177e4
LT
170 int length;
171 int fully_mapped = 1;
74c8164e 172 int op_flags;
fa30bd05
BP
173 unsigned nblocks;
174 unsigned relative_block;
74c8164e
JA
175 gfp_t gfp;
176
177 if (args->is_readahead) {
178 op_flags = REQ_RAHEAD;
179 gfp = readahead_gfp_mask(page->mapping);
180 } else {
181 op_flags = 0;
182 gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
183 }
1da177e4
LT
184
185 if (page_has_buffers(page))
186 goto confused;
187
09cbfeaf 188 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
357c1206 189 last_block = block_in_file + args->nr_pages * blocks_per_page;
fa30bd05
BP
190 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
191 if (last_block > last_block_in_file)
192 last_block = last_block_in_file;
193 page_block = 0;
194
195 /*
196 * Map blocks using the result from the previous get_blocks call first.
197 */
198 nblocks = map_bh->b_size >> blkbits;
357c1206
JA
199 if (buffer_mapped(map_bh) &&
200 block_in_file > args->first_logical_block &&
201 block_in_file < (args->first_logical_block + nblocks)) {
202 unsigned map_offset = block_in_file - args->first_logical_block;
fa30bd05
BP
203 unsigned last = nblocks - map_offset;
204
205 for (relative_block = 0; ; relative_block++) {
206 if (relative_block == last) {
207 clear_buffer_mapped(map_bh);
208 break;
209 }
210 if (page_block == blocks_per_page)
211 break;
212 blocks[page_block] = map_bh->b_blocknr + map_offset +
213 relative_block;
214 page_block++;
215 block_in_file++;
216 }
217 bdev = map_bh->b_bdev;
218 }
219
220 /*
221 * Then do more get_blocks calls until we are done with this page.
222 */
223 map_bh->b_page = page;
224 while (page_block < blocks_per_page) {
225 map_bh->b_state = 0;
226 map_bh->b_size = 0;
1da177e4 227
1da177e4 228 if (block_in_file < last_block) {
fa30bd05 229 map_bh->b_size = (last_block-block_in_file) << blkbits;
357c1206 230 if (args->get_block(inode, block_in_file, map_bh, 0))
1da177e4 231 goto confused;
357c1206 232 args->first_logical_block = block_in_file;
1da177e4
LT
233 }
234
fa30bd05 235 if (!buffer_mapped(map_bh)) {
1da177e4
LT
236 fully_mapped = 0;
237 if (first_hole == blocks_per_page)
238 first_hole = page_block;
fa30bd05
BP
239 page_block++;
240 block_in_file++;
1da177e4
LT
241 continue;
242 }
243
244 /* some filesystems will copy data into the page during
245 * the get_block call, in which case we don't want to
246 * read it again. map_buffer_to_page copies the data
247 * we just collected from get_block into the page's buffers
248 * so readpage doesn't have to repeat the get_block call
249 */
fa30bd05
BP
250 if (buffer_uptodate(map_bh)) {
251 map_buffer_to_page(page, map_bh, page_block);
1da177e4
LT
252 goto confused;
253 }
254
255 if (first_hole != blocks_per_page)
256 goto confused; /* hole -> non-hole */
257
258 /* Contiguous blocks? */
fa30bd05 259 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
1da177e4 260 goto confused;
fa30bd05
BP
261 nblocks = map_bh->b_size >> blkbits;
262 for (relative_block = 0; ; relative_block++) {
263 if (relative_block == nblocks) {
264 clear_buffer_mapped(map_bh);
265 break;
266 } else if (page_block == blocks_per_page)
267 break;
268 blocks[page_block] = map_bh->b_blocknr+relative_block;
269 page_block++;
270 block_in_file++;
271 }
272 bdev = map_bh->b_bdev;
1da177e4
LT
273 }
274
275 if (first_hole != blocks_per_page) {
09cbfeaf 276 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
1da177e4
LT
277 if (first_hole == 0) {
278 SetPageUptodate(page);
279 unlock_page(page);
280 goto out;
281 }
282 } else if (fully_mapped) {
283 SetPageMappedToDisk(page);
284 }
285
286 /*
287 * This page will go to BIO. Do we need to send this BIO off first?
288 */
357c1206 289 if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
74c8164e 290 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4
LT
291
292alloc_new:
357c1206 293 if (args->bio == NULL) {
47a191fd
MW
294 if (first_hole == blocks_per_page) {
295 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
296 page))
297 goto out;
298 }
357c1206 299 args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
5f7136db 300 bio_max_segs(args->nr_pages), gfp);
357c1206 301 if (args->bio == NULL)
1da177e4
LT
302 goto confused;
303 }
304
305 length = first_hole << blkbits;
357c1206 306 if (bio_add_page(args->bio, page, length, 0) < length) {
74c8164e 307 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4
LT
308 goto alloc_new;
309 }
310
357c1206 311 relative_block = block_in_file - args->first_logical_block;
38c8e618
MS
312 nblocks = map_bh->b_size >> blkbits;
313 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
314 (first_hole != blocks_per_page))
74c8164e 315 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4 316 else
357c1206 317 args->last_block_in_bio = blocks[blocks_per_page - 1];
1da177e4 318out:
357c1206 319 return args->bio;
1da177e4
LT
320
321confused:
357c1206 322 if (args->bio)
74c8164e 323 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4 324 if (!PageUptodate(page))
357c1206 325 block_read_full_page(page, args->get_block);
1da177e4
LT
326 else
327 unlock_page(page);
328 goto out;
329}
330
67be2dd1 331/**
d4388340
MWO
332 * mpage_readahead - start reads against pages
333 * @rac: Describes which pages to read.
67be2dd1
MW
334 * @get_block: The filesystem's block mapper function.
335 *
336 * This function walks the pages and the blocks within each page, building and
337 * emitting large BIOs.
338 *
339 * If anything unusual happens, such as:
340 *
341 * - encountering a page which has buffers
342 * - encountering a page which has a non-hole after a hole
343 * - encountering a page with non-contiguous blocks
344 *
345 * then this code just gives up and calls the buffer_head-based read function.
346 * It does handle a page which has holes at the end - that is a common case:
ea1754a0 347 * the end-of-file on blocksize < PAGE_SIZE setups.
67be2dd1
MW
348 *
349 * BH_Boundary explanation:
350 *
351 * There is a problem. The mpage read code assembles several pages, gets all
352 * their disk mappings, and then submits them all. That's fine, but obtaining
353 * the disk mappings may require I/O. Reads of indirect blocks, for example.
354 *
355 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
356 * submitted in the following order:
0117d427 357 *
67be2dd1 358 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
78a4a50a 359 *
67be2dd1
MW
360 * because the indirect block has to be read to get the mappings of blocks
361 * 13,14,15,16. Obviously, this impacts performance.
362 *
363 * So what we do it to allow the filesystem's get_block() function to set
364 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
365 * after this one will require I/O against a block which is probably close to
366 * this one. So you should push what I/O you have currently accumulated.
367 *
368 * This all causes the disk requests to be issued in the correct order.
369 */
d4388340 370void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
1da177e4 371{
d4388340 372 struct page *page;
357c1206
JA
373 struct mpage_readpage_args args = {
374 .get_block = get_block,
74c8164e 375 .is_readahead = true,
357c1206 376 };
1da177e4 377
d4388340 378 while ((page = readahead_page(rac))) {
1da177e4 379 prefetchw(&page->flags);
d4388340
MWO
380 args.page = page;
381 args.nr_pages = readahead_count(rac);
382 args.bio = do_mpage_readpage(&args);
09cbfeaf 383 put_page(page);
1da177e4 384 }
357c1206 385 if (args.bio)
74c8164e 386 mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
1da177e4 387}
d4388340 388EXPORT_SYMBOL(mpage_readahead);
1da177e4
LT
389
390/*
391 * This isn't called much at all
392 */
393int mpage_readpage(struct page *page, get_block_t get_block)
394{
357c1206
JA
395 struct mpage_readpage_args args = {
396 .page = page,
397 .nr_pages = 1,
398 .get_block = get_block,
357c1206
JA
399 };
400
401 args.bio = do_mpage_readpage(&args);
402 if (args.bio)
403 mpage_bio_submit(REQ_OP_READ, 0, args.bio);
1da177e4
LT
404 return 0;
405}
406EXPORT_SYMBOL(mpage_readpage);
407
408/*
409 * Writing is not so simple.
410 *
411 * If the page has buffers then they will be used for obtaining the disk
412 * mapping. We only support pages which are fully mapped-and-dirty, with a
413 * special case for pages which are unmapped at the end: end-of-file.
414 *
415 * If the page has no buffers (preferred) then the page is mapped here.
416 *
417 * If all blocks are found to be contiguous then the page can go into the
418 * BIO. Otherwise fall back to the mapping's writepage().
419 *
420 * FIXME: This code wants an estimate of how many pages are still to be
421 * written, so it can intelligently allocate a suitably-sized BIO. For now,
422 * just allocate full-size (16-page) BIOs.
423 */
0ea97180 424
ced117c7
DV
425struct mpage_data {
426 struct bio *bio;
427 sector_t last_block_in_bio;
428 get_block_t *get_block;
429 unsigned use_writepage;
430};
431
90768eee
MW
432/*
433 * We have our BIO, so we can now mark the buffers clean. Make
434 * sure to only clean buffers which we know we'll be writing.
435 */
436static void clean_buffers(struct page *page, unsigned first_unmapped)
437{
438 unsigned buffer_counter = 0;
439 struct buffer_head *bh, *head;
440 if (!page_has_buffers(page))
441 return;
442 head = page_buffers(page);
443 bh = head;
444
445 do {
446 if (buffer_counter++ == first_unmapped)
447 break;
448 clear_buffer_dirty(bh);
449 bh = bh->b_this_page;
450 } while (bh != head);
451
452 /*
453 * we cannot drop the bh if the page is not uptodate or a concurrent
454 * readpage would fail to serialize with the bh and it would read from
455 * disk before we reach the platter.
456 */
457 if (buffer_heads_over_limit && PageUptodate(page))
458 try_to_free_buffers(page);
459}
460
f892760a
MW
461/*
462 * For situations where we want to clean all buffers attached to a page.
463 * We don't need to calculate how many buffers are attached to the page,
464 * we just need to specify a number larger than the maximum number of buffers.
465 */
466void clean_page_buffers(struct page *page)
467{
468 clean_buffers(page, ~0U);
469}
470
ced117c7 471static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
29a814d2 472 void *data)
1da177e4 473{
0ea97180
MS
474 struct mpage_data *mpd = data;
475 struct bio *bio = mpd->bio;
1da177e4
LT
476 struct address_space *mapping = page->mapping;
477 struct inode *inode = page->mapping->host;
478 const unsigned blkbits = inode->i_blkbits;
479 unsigned long end_index;
09cbfeaf 480 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
1da177e4
LT
481 sector_t last_block;
482 sector_t block_in_file;
483 sector_t blocks[MAX_BUF_PER_PAGE];
484 unsigned page_block;
485 unsigned first_unmapped = blocks_per_page;
486 struct block_device *bdev = NULL;
487 int boundary = 0;
488 sector_t boundary_block = 0;
489 struct block_device *boundary_bdev = NULL;
490 int length;
491 struct buffer_head map_bh;
492 loff_t i_size = i_size_read(inode);
0ea97180 493 int ret = 0;
7637241e 494 int op_flags = wbc_to_write_flags(wbc);
1da177e4
LT
495
496 if (page_has_buffers(page)) {
497 struct buffer_head *head = page_buffers(page);
498 struct buffer_head *bh = head;
499
500 /* If they're all mapped and dirty, do it */
501 page_block = 0;
502 do {
503 BUG_ON(buffer_locked(bh));
504 if (!buffer_mapped(bh)) {
505 /*
506 * unmapped dirty buffers are created by
507 * __set_page_dirty_buffers -> mmapped data
508 */
509 if (buffer_dirty(bh))
510 goto confused;
511 if (first_unmapped == blocks_per_page)
512 first_unmapped = page_block;
513 continue;
514 }
515
516 if (first_unmapped != blocks_per_page)
517 goto confused; /* hole -> non-hole */
518
519 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
520 goto confused;
521 if (page_block) {
522 if (bh->b_blocknr != blocks[page_block-1] + 1)
523 goto confused;
524 }
525 blocks[page_block++] = bh->b_blocknr;
526 boundary = buffer_boundary(bh);
527 if (boundary) {
528 boundary_block = bh->b_blocknr;
529 boundary_bdev = bh->b_bdev;
530 }
531 bdev = bh->b_bdev;
532 } while ((bh = bh->b_this_page) != head);
533
534 if (first_unmapped)
535 goto page_is_mapped;
536
537 /*
538 * Page has buffers, but they are all unmapped. The page was
539 * created by pagein or read over a hole which was handled by
540 * block_read_full_page(). If this address_space is also
d4388340 541 * using mpage_readahead then this can rarely happen.
1da177e4
LT
542 */
543 goto confused;
544 }
545
546 /*
547 * The page has no buffers: map it to disk
548 */
549 BUG_ON(!PageUptodate(page));
09cbfeaf 550 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
551 last_block = (i_size - 1) >> blkbits;
552 map_bh.b_page = page;
553 for (page_block = 0; page_block < blocks_per_page; ) {
554
555 map_bh.b_state = 0;
b0cf2321 556 map_bh.b_size = 1 << blkbits;
0ea97180 557 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
1da177e4
LT
558 goto confused;
559 if (buffer_new(&map_bh))
e64855c6 560 clean_bdev_bh_alias(&map_bh);
1da177e4
LT
561 if (buffer_boundary(&map_bh)) {
562 boundary_block = map_bh.b_blocknr;
563 boundary_bdev = map_bh.b_bdev;
564 }
565 if (page_block) {
566 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
567 goto confused;
568 }
569 blocks[page_block++] = map_bh.b_blocknr;
570 boundary = buffer_boundary(&map_bh);
571 bdev = map_bh.b_bdev;
572 if (block_in_file == last_block)
573 break;
574 block_in_file++;
575 }
576 BUG_ON(page_block == 0);
577
578 first_unmapped = page_block;
579
580page_is_mapped:
09cbfeaf 581 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
582 if (page->index >= end_index) {
583 /*
584 * The page straddles i_size. It must be zeroed out on each
2a61aa40 585 * and every writepage invocation because it may be mmapped.
1da177e4
LT
586 * "A file is mapped in multiples of the page size. For a file
587 * that is not a multiple of the page size, the remaining memory
588 * is zeroed when mapped, and writes to that region are not
589 * written out to the file."
590 */
09cbfeaf 591 unsigned offset = i_size & (PAGE_SIZE - 1);
1da177e4
LT
592
593 if (page->index > end_index || !offset)
594 goto confused;
09cbfeaf 595 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
596 }
597
598 /*
599 * This page will go to BIO. Do we need to send this BIO off first?
600 */
0ea97180 601 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
eed25cd5 602 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4
LT
603
604alloc_new:
605 if (bio == NULL) {
47a191fd
MW
606 if (first_unmapped == blocks_per_page) {
607 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
f892760a 608 page, wbc))
47a191fd 609 goto out;
47a191fd 610 }
1da177e4 611 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
a8affc03 612 BIO_MAX_VECS, GFP_NOFS|__GFP_HIGH);
1da177e4
LT
613 if (bio == NULL)
614 goto confused;
429b3fb0 615
b16b1deb 616 wbc_init_bio(wbc, bio);
8e8f9298 617 bio->bi_write_hint = inode->i_write_hint;
1da177e4
LT
618 }
619
620 /*
621 * Must try to add the page before marking the buffer clean or
622 * the confused fail path above (OOM) will be very confused when
623 * it finds all bh marked clean (i.e. it will not write anything)
624 */
34e51a5e 625 wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
1da177e4
LT
626 length = first_unmapped << blkbits;
627 if (bio_add_page(bio, page, length, 0) < length) {
eed25cd5 628 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4
LT
629 goto alloc_new;
630 }
631
90768eee 632 clean_buffers(page, first_unmapped);
1da177e4
LT
633
634 BUG_ON(PageWriteback(page));
635 set_page_writeback(page);
636 unlock_page(page);
637 if (boundary || (first_unmapped != blocks_per_page)) {
eed25cd5 638 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4
LT
639 if (boundary_block) {
640 write_boundary_block(boundary_bdev,
641 boundary_block, 1 << blkbits);
642 }
643 } else {
0ea97180 644 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
1da177e4
LT
645 }
646 goto out;
647
648confused:
649 if (bio)
eed25cd5 650 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4 651
0ea97180
MS
652 if (mpd->use_writepage) {
653 ret = mapping->a_ops->writepage(page, wbc);
1da177e4 654 } else {
0ea97180 655 ret = -EAGAIN;
1da177e4
LT
656 goto out;
657 }
658 /*
659 * The caller has a ref on the inode, so *mapping is stable
660 */
0ea97180 661 mapping_set_error(mapping, ret);
1da177e4 662out:
0ea97180
MS
663 mpd->bio = bio;
664 return ret;
1da177e4
LT
665}
666
667/**
78a4a50a 668 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
1da177e4
LT
669 * @mapping: address space structure to write
670 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
671 * @get_block: the filesystem's block mapper function.
672 * If this is NULL then use a_ops->writepage. Otherwise, go
673 * direct-to-BIO.
674 *
675 * This is a library function, which implements the writepages()
676 * address_space_operation.
677 *
678 * If a page is already under I/O, generic_writepages() skips it, even
679 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
680 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
681 * and msync() need to guarantee that all the data which was dirty at the time
682 * the call was made get new I/O started against them. If wbc->sync_mode is
683 * WB_SYNC_ALL then we were called for data integrity and we must wait for
684 * existing IO to complete.
685 */
686int
687mpage_writepages(struct address_space *mapping,
688 struct writeback_control *wbc, get_block_t get_block)
1da177e4 689{
2ed1a6bc 690 struct blk_plug plug;
0ea97180
MS
691 int ret;
692
2ed1a6bc
JA
693 blk_start_plug(&plug);
694
0ea97180
MS
695 if (!get_block)
696 ret = generic_writepages(mapping, wbc);
697 else {
698 struct mpage_data mpd = {
699 .bio = NULL,
700 .last_block_in_bio = 0,
701 .get_block = get_block,
702 .use_writepage = 1,
703 };
704
705 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
5948edbc 706 if (mpd.bio) {
eed25cd5 707 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
70fd7614 708 REQ_SYNC : 0);
eed25cd5 709 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
5948edbc 710 }
1da177e4 711 }
2ed1a6bc 712 blk_finish_plug(&plug);
1da177e4
LT
713 return ret;
714}
715EXPORT_SYMBOL(mpage_writepages);
1da177e4
LT
716
717int mpage_writepage(struct page *page, get_block_t get_block,
718 struct writeback_control *wbc)
719{
0ea97180
MS
720 struct mpage_data mpd = {
721 .bio = NULL,
722 .last_block_in_bio = 0,
723 .get_block = get_block,
724 .use_writepage = 0,
725 };
726 int ret = __mpage_writepage(page, wbc, &mpd);
5948edbc 727 if (mpd.bio) {
eed25cd5 728 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
70fd7614 729 REQ_SYNC : 0);
eed25cd5 730 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
5948edbc 731 }
1da177e4
LT
732 return ret;
733}
734EXPORT_SYMBOL(mpage_writepage);