f2fs: Remove the redundancy initialization
[linux-block.git] / fs / libfs.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
ac13a829 7#include <linux/blkdev.h>
630d9c47 8#include <linux/export.h>
1da177e4 9#include <linux/pagemap.h>
5a0e3ad6 10#include <linux/slab.h>
5b825c3a 11#include <linux/cred.h>
1da177e4
LT
12#include <linux/mount.h>
13#include <linux/vfs.h>
7bb46a67 14#include <linux/quotaops.h>
7cf34c76 15#include <linux/mutex.h>
87dc800b 16#include <linux/namei.h>
2596110a 17#include <linux/exportfs.h>
d5aacad5 18#include <linux/writeback.h>
ff01bb48 19#include <linux/buffer_head.h> /* sync_mapping_buffers */
31d6d5ce
DH
20#include <linux/fs_context.h>
21#include <linux/pseudo_fs.h>
a3d1e7eb 22#include <linux/fsnotify.h>
c843843e
DR
23#include <linux/unicode.h>
24#include <linux/fscrypt.h>
7cf34c76 25
7c0f6ba6 26#include <linux/uaccess.h>
1da177e4 27
a4464dbc
AV
28#include "internal.h"
29
a528d35e
DH
30int simple_getattr(const struct path *path, struct kstat *stat,
31 u32 request_mask, unsigned int query_flags)
1da177e4 32{
a528d35e 33 struct inode *inode = d_inode(path->dentry);
1da177e4 34 generic_fillattr(inode, stat);
09cbfeaf 35 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
1da177e4
LT
36 return 0;
37}
12f38872 38EXPORT_SYMBOL(simple_getattr);
1da177e4 39
726c3342 40int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 41{
726c3342 42 buf->f_type = dentry->d_sb->s_magic;
09cbfeaf 43 buf->f_bsize = PAGE_SIZE;
1da177e4
LT
44 buf->f_namelen = NAME_MAX;
45 return 0;
46}
12f38872 47EXPORT_SYMBOL(simple_statfs);
1da177e4
LT
48
49/*
50 * Retaining negative dentries for an in-memory filesystem just wastes
51 * memory and lookup time: arrange for them to be deleted immediately.
52 */
b26d4cd3 53int always_delete_dentry(const struct dentry *dentry)
1da177e4
LT
54{
55 return 1;
56}
b26d4cd3
AV
57EXPORT_SYMBOL(always_delete_dentry);
58
59const struct dentry_operations simple_dentry_operations = {
60 .d_delete = always_delete_dentry,
61};
62EXPORT_SYMBOL(simple_dentry_operations);
1da177e4
LT
63
64/*
65 * Lookup the data. This is trivial - if the dentry didn't already
66 * exist, we know it is negative. Set d_op to delete negative dentries.
67 */
00cd8dd3 68struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1da177e4 69{
1da177e4
LT
70 if (dentry->d_name.len > NAME_MAX)
71 return ERR_PTR(-ENAMETOOLONG);
74931da7
AV
72 if (!dentry->d_sb->s_d_op)
73 d_set_d_op(dentry, &simple_dentry_operations);
1da177e4
LT
74 d_add(dentry, NULL);
75 return NULL;
76}
12f38872 77EXPORT_SYMBOL(simple_lookup);
1da177e4 78
1da177e4
LT
79int dcache_dir_open(struct inode *inode, struct file *file)
80{
ba65dc5e 81 file->private_data = d_alloc_cursor(file->f_path.dentry);
1da177e4
LT
82
83 return file->private_data ? 0 : -ENOMEM;
84}
12f38872 85EXPORT_SYMBOL(dcache_dir_open);
1da177e4
LT
86
87int dcache_dir_close(struct inode *inode, struct file *file)
88{
89 dput(file->private_data);
90 return 0;
91}
12f38872 92EXPORT_SYMBOL(dcache_dir_close);
1da177e4 93
4f42c1b5 94/* parent is locked at least shared */
d4f4de5e
AV
95/*
96 * Returns an element of siblings' list.
97 * We are looking for <count>th positive after <p>; if
26b6c984
AV
98 * found, dentry is grabbed and returned to caller.
99 * If no such element exists, NULL is returned.
d4f4de5e 100 */
26b6c984 101static struct dentry *scan_positives(struct dentry *cursor,
d4f4de5e
AV
102 struct list_head *p,
103 loff_t count,
26b6c984 104 struct dentry *last)
4f42c1b5 105{
d4f4de5e
AV
106 struct dentry *dentry = cursor->d_parent, *found = NULL;
107
108 spin_lock(&dentry->d_lock);
109 while ((p = p->next) != &dentry->d_subdirs) {
4f42c1b5 110 struct dentry *d = list_entry(p, struct dentry, d_child);
d4f4de5e
AV
111 // we must at least skip cursors, to avoid livelocks
112 if (d->d_flags & DCACHE_DENTRY_CURSOR)
113 continue;
114 if (simple_positive(d) && !--count) {
115 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
116 if (simple_positive(d))
117 found = dget_dlock(d);
118 spin_unlock(&d->d_lock);
119 if (likely(found))
120 break;
121 count = 1;
122 }
123 if (need_resched()) {
124 list_move(&cursor->d_child, p);
125 p = &cursor->d_child;
126 spin_unlock(&dentry->d_lock);
127 cond_resched();
128 spin_lock(&dentry->d_lock);
4f42c1b5
AV
129 }
130 }
d4f4de5e 131 spin_unlock(&dentry->d_lock);
26b6c984
AV
132 dput(last);
133 return found;
4f42c1b5
AV
134}
135
965c8e59 136loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
1da177e4 137{
2fd6b7f5 138 struct dentry *dentry = file->f_path.dentry;
965c8e59 139 switch (whence) {
1da177e4
LT
140 case 1:
141 offset += file->f_pos;
df561f66 142 fallthrough;
1da177e4
LT
143 case 0:
144 if (offset >= 0)
145 break;
df561f66 146 fallthrough;
1da177e4 147 default:
1da177e4
LT
148 return -EINVAL;
149 }
150 if (offset != file->f_pos) {
d4f4de5e
AV
151 struct dentry *cursor = file->private_data;
152 struct dentry *to = NULL;
d4f4de5e 153
d4f4de5e
AV
154 inode_lock_shared(dentry->d_inode);
155
26b6c984
AV
156 if (offset > 2)
157 to = scan_positives(cursor, &dentry->d_subdirs,
158 offset - 2, NULL);
159 spin_lock(&dentry->d_lock);
160 if (to)
161 list_move(&cursor->d_child, &to->d_child);
162 else
d4f4de5e 163 list_del_init(&cursor->d_child);
26b6c984 164 spin_unlock(&dentry->d_lock);
d4f4de5e
AV
165 dput(to);
166
26b6c984
AV
167 file->f_pos = offset;
168
d4f4de5e 169 inode_unlock_shared(dentry->d_inode);
1da177e4 170 }
1da177e4
LT
171 return offset;
172}
12f38872 173EXPORT_SYMBOL(dcache_dir_lseek);
1da177e4
LT
174
175/* Relationship between i_mode and the DT_xxx types */
176static inline unsigned char dt_type(struct inode *inode)
177{
178 return (inode->i_mode >> 12) & 15;
179}
180
181/*
182 * Directory is locked and all positive dentries in it are safe, since
183 * for ramfs-type trees they can't go away without unlink() or rmdir(),
184 * both impossible due to the lock on directory.
185 */
186
5f99f4e7 187int dcache_readdir(struct file *file, struct dir_context *ctx)
1da177e4 188{
5f99f4e7
AV
189 struct dentry *dentry = file->f_path.dentry;
190 struct dentry *cursor = file->private_data;
d4f4de5e
AV
191 struct list_head *anchor = &dentry->d_subdirs;
192 struct dentry *next = NULL;
193 struct list_head *p;
1da177e4 194
5f99f4e7
AV
195 if (!dir_emit_dots(file, ctx))
196 return 0;
5f99f4e7 197
4f42c1b5 198 if (ctx->pos == 2)
d4f4de5e 199 p = anchor;
26b6c984 200 else if (!list_empty(&cursor->d_child))
d4f4de5e 201 p = &cursor->d_child;
26b6c984
AV
202 else
203 return 0;
d4f4de5e 204
26b6c984 205 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
5f99f4e7 206 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
dea655c2 207 d_inode(next)->i_ino, dt_type(d_inode(next))))
4f42c1b5 208 break;
5f99f4e7 209 ctx->pos++;
26b6c984 210 p = &next->d_child;
1da177e4 211 }
d4f4de5e 212 spin_lock(&dentry->d_lock);
26b6c984
AV
213 if (next)
214 list_move_tail(&cursor->d_child, &next->d_child);
215 else
216 list_del_init(&cursor->d_child);
d4f4de5e
AV
217 spin_unlock(&dentry->d_lock);
218 dput(next);
219
1da177e4
LT
220 return 0;
221}
12f38872 222EXPORT_SYMBOL(dcache_readdir);
1da177e4
LT
223
224ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225{
226 return -EISDIR;
227}
12f38872 228EXPORT_SYMBOL(generic_read_dir);
1da177e4 229
4b6f5d20 230const struct file_operations simple_dir_operations = {
1da177e4
LT
231 .open = dcache_dir_open,
232 .release = dcache_dir_close,
233 .llseek = dcache_dir_lseek,
234 .read = generic_read_dir,
4e82901c 235 .iterate_shared = dcache_readdir,
1b061d92 236 .fsync = noop_fsync,
1da177e4 237};
12f38872 238EXPORT_SYMBOL(simple_dir_operations);
1da177e4 239
92e1d5be 240const struct inode_operations simple_dir_inode_operations = {
1da177e4
LT
241 .lookup = simple_lookup,
242};
12f38872 243EXPORT_SYMBOL(simple_dir_inode_operations);
1da177e4 244
a3d1e7eb
AV
245static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
246{
247 struct dentry *child = NULL;
248 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
249
250 spin_lock(&parent->d_lock);
251 while ((p = p->next) != &parent->d_subdirs) {
252 struct dentry *d = container_of(p, struct dentry, d_child);
253 if (simple_positive(d)) {
254 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
255 if (simple_positive(d))
256 child = dget_dlock(d);
257 spin_unlock(&d->d_lock);
258 if (likely(child))
259 break;
260 }
261 }
262 spin_unlock(&parent->d_lock);
263 dput(prev);
264 return child;
265}
266
267void simple_recursive_removal(struct dentry *dentry,
268 void (*callback)(struct dentry *))
269{
270 struct dentry *this = dget(dentry);
271 while (true) {
272 struct dentry *victim = NULL, *child;
273 struct inode *inode = this->d_inode;
274
275 inode_lock(inode);
276 if (d_is_dir(this))
277 inode->i_flags |= S_DEAD;
278 while ((child = find_next_child(this, victim)) == NULL) {
279 // kill and ascend
280 // update metadata while it's still locked
281 inode->i_ctime = current_time(inode);
282 clear_nlink(inode);
283 inode_unlock(inode);
284 victim = this;
285 this = this->d_parent;
286 inode = this->d_inode;
287 inode_lock(inode);
288 if (simple_positive(victim)) {
289 d_invalidate(victim); // avoid lost mounts
290 if (d_is_dir(victim))
291 fsnotify_rmdir(inode, victim);
292 else
293 fsnotify_unlink(inode, victim);
294 if (callback)
295 callback(victim);
296 dput(victim); // unpin it
297 }
298 if (victim == dentry) {
299 inode->i_ctime = inode->i_mtime =
300 current_time(inode);
301 if (d_is_dir(dentry))
302 drop_nlink(inode);
303 inode_unlock(inode);
304 dput(dentry);
305 return;
306 }
307 }
308 inode_unlock(inode);
309 this = child;
310 }
311}
312EXPORT_SYMBOL(simple_recursive_removal);
313
759b9775
HD
314static const struct super_operations simple_super_operations = {
315 .statfs = simple_statfs,
316};
317
db2c246a 318static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
1da177e4 319{
31d6d5ce 320 struct pseudo_fs_context *ctx = fc->fs_private;
1da177e4 321 struct inode *root;
1da177e4 322
89a4eb4b 323 s->s_maxbytes = MAX_LFS_FILESIZE;
3971e1a9
AN
324 s->s_blocksize = PAGE_SIZE;
325 s->s_blocksize_bits = PAGE_SHIFT;
8d9e46d8
AV
326 s->s_magic = ctx->magic;
327 s->s_op = ctx->ops ?: &simple_super_operations;
328 s->s_xattr = ctx->xattr;
1da177e4
LT
329 s->s_time_gran = 1;
330 root = new_inode(s);
331 if (!root)
db2c246a
DH
332 return -ENOMEM;
333
1a1c9bb4
JL
334 /*
335 * since this is the first inode, make it number 1. New inodes created
336 * after this must take care not to collide with it (by passing
337 * max_reserved of 1 to iunique).
338 */
339 root->i_ino = 1;
1da177e4 340 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
078cd827 341 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
8d9e46d8
AV
342 s->s_root = d_make_root(root);
343 if (!s->s_root)
db2c246a 344 return -ENOMEM;
8d9e46d8 345 s->s_d_op = ctx->dops;
31d6d5ce 346 return 0;
db2c246a 347}
8d9e46d8 348
db2c246a
DH
349static int pseudo_fs_get_tree(struct fs_context *fc)
350{
2ac295d4 351 return get_tree_nodev(fc, pseudo_fs_fill_super);
31d6d5ce
DH
352}
353
354static void pseudo_fs_free(struct fs_context *fc)
355{
356 kfree(fc->fs_private);
357}
358
359static const struct fs_context_operations pseudo_fs_context_ops = {
360 .free = pseudo_fs_free,
361 .get_tree = pseudo_fs_get_tree,
362};
363
364/*
365 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
366 * will never be mountable)
367 */
368struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
369 unsigned long magic)
370{
371 struct pseudo_fs_context *ctx;
372
373 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
374 if (likely(ctx)) {
375 ctx->magic = magic;
376 fc->fs_private = ctx;
377 fc->ops = &pseudo_fs_context_ops;
db2c246a
DH
378 fc->sb_flags |= SB_NOUSER;
379 fc->global = true;
1da177e4 380 }
31d6d5ce 381 return ctx;
1da177e4 382}
31d6d5ce 383EXPORT_SYMBOL(init_pseudo);
1da177e4 384
20955e89
SB
385int simple_open(struct inode *inode, struct file *file)
386{
387 if (inode->i_private)
388 file->private_data = inode->i_private;
389 return 0;
390}
12f38872 391EXPORT_SYMBOL(simple_open);
20955e89 392
1da177e4
LT
393int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
394{
dea655c2 395 struct inode *inode = d_inode(old_dentry);
1da177e4 396
078cd827 397 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 398 inc_nlink(inode);
7de9c6ee 399 ihold(inode);
1da177e4
LT
400 dget(dentry);
401 d_instantiate(dentry, inode);
402 return 0;
403}
12f38872 404EXPORT_SYMBOL(simple_link);
1da177e4 405
1da177e4
LT
406int simple_empty(struct dentry *dentry)
407{
408 struct dentry *child;
409 int ret = 0;
410
2fd6b7f5 411 spin_lock(&dentry->d_lock);
946e51f2 412 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
da502956
NP
413 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
414 if (simple_positive(child)) {
415 spin_unlock(&child->d_lock);
1da177e4 416 goto out;
da502956
NP
417 }
418 spin_unlock(&child->d_lock);
419 }
1da177e4
LT
420 ret = 1;
421out:
2fd6b7f5 422 spin_unlock(&dentry->d_lock);
1da177e4
LT
423 return ret;
424}
12f38872 425EXPORT_SYMBOL(simple_empty);
1da177e4
LT
426
427int simple_unlink(struct inode *dir, struct dentry *dentry)
428{
dea655c2 429 struct inode *inode = d_inode(dentry);
1da177e4 430
078cd827 431 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 432 drop_nlink(inode);
1da177e4
LT
433 dput(dentry);
434 return 0;
435}
12f38872 436EXPORT_SYMBOL(simple_unlink);
1da177e4
LT
437
438int simple_rmdir(struct inode *dir, struct dentry *dentry)
439{
440 if (!simple_empty(dentry))
441 return -ENOTEMPTY;
442
dea655c2 443 drop_nlink(d_inode(dentry));
1da177e4 444 simple_unlink(dir, dentry);
9a53c3a7 445 drop_nlink(dir);
1da177e4
LT
446 return 0;
447}
12f38872 448EXPORT_SYMBOL(simple_rmdir);
1da177e4
LT
449
450int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
e0e0be8a
MS
451 struct inode *new_dir, struct dentry *new_dentry,
452 unsigned int flags)
1da177e4 453{
dea655c2 454 struct inode *inode = d_inode(old_dentry);
e36cb0b8 455 int they_are_dirs = d_is_dir(old_dentry);
1da177e4 456
e0e0be8a
MS
457 if (flags & ~RENAME_NOREPLACE)
458 return -EINVAL;
459
1da177e4
LT
460 if (!simple_empty(new_dentry))
461 return -ENOTEMPTY;
462
dea655c2 463 if (d_really_is_positive(new_dentry)) {
1da177e4 464 simple_unlink(new_dir, new_dentry);
841590ce 465 if (they_are_dirs) {
dea655c2 466 drop_nlink(d_inode(new_dentry));
9a53c3a7 467 drop_nlink(old_dir);
841590ce 468 }
1da177e4 469 } else if (they_are_dirs) {
9a53c3a7 470 drop_nlink(old_dir);
d8c76e6f 471 inc_nlink(new_dir);
1da177e4
LT
472 }
473
474 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
078cd827 475 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
1da177e4
LT
476
477 return 0;
478}
12f38872 479EXPORT_SYMBOL(simple_rename);
1da177e4 480
7bb46a67 481/**
eef2380c 482 * simple_setattr - setattr for simple filesystem
7bb46a67 483 * @dentry: dentry
484 * @iattr: iattr structure
485 *
486 * Returns 0 on success, -error on failure.
487 *
eef2380c
CH
488 * simple_setattr is a simple ->setattr implementation without a proper
489 * implementation of size changes.
490 *
491 * It can either be used for in-memory filesystems or special files
492 * on simple regular filesystems. Anything that needs to change on-disk
493 * or wire state on size changes needs its own setattr method.
7bb46a67 494 */
495int simple_setattr(struct dentry *dentry, struct iattr *iattr)
496{
dea655c2 497 struct inode *inode = d_inode(dentry);
7bb46a67 498 int error;
499
31051c85 500 error = setattr_prepare(dentry, iattr);
7bb46a67 501 if (error)
502 return error;
503
2c27c65e
CH
504 if (iattr->ia_valid & ATTR_SIZE)
505 truncate_setsize(inode, iattr->ia_size);
6a1a90ad 506 setattr_copy(inode, iattr);
eef2380c
CH
507 mark_inode_dirty(inode);
508 return 0;
7bb46a67 509}
510EXPORT_SYMBOL(simple_setattr);
511
1da177e4
LT
512int simple_readpage(struct file *file, struct page *page)
513{
c0d92cbc 514 clear_highpage(page);
1da177e4
LT
515 flush_dcache_page(page);
516 SetPageUptodate(page);
1da177e4
LT
517 unlock_page(page);
518 return 0;
519}
12f38872 520EXPORT_SYMBOL(simple_readpage);
1da177e4 521
afddba49
NP
522int simple_write_begin(struct file *file, struct address_space *mapping,
523 loff_t pos, unsigned len, unsigned flags,
524 struct page **pagep, void **fsdata)
525{
526 struct page *page;
527 pgoff_t index;
afddba49 528
09cbfeaf 529 index = pos >> PAGE_SHIFT;
afddba49 530
54566b2c 531 page = grab_cache_page_write_begin(mapping, index, flags);
afddba49
NP
532 if (!page)
533 return -ENOMEM;
534
535 *pagep = page;
536
09cbfeaf
KS
537 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
538 unsigned from = pos & (PAGE_SIZE - 1);
193cf4b9 539
09cbfeaf 540 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
193cf4b9
BH
541 }
542 return 0;
afddba49 543}
12f38872 544EXPORT_SYMBOL(simple_write_begin);
afddba49 545
ad2a722f
BH
546/**
547 * simple_write_end - .write_end helper for non-block-device FSes
8e88bfba 548 * @file: See .write_end of address_space_operations
ad2a722f
BH
549 * @mapping: "
550 * @pos: "
551 * @len: "
552 * @copied: "
553 * @page: "
554 * @fsdata: "
555 *
556 * simple_write_end does the minimum needed for updating a page after writing is
557 * done. It has the same API signature as the .write_end of
558 * address_space_operations vector. So it can just be set onto .write_end for
559 * FSes that don't need any other processing. i_mutex is assumed to be held.
560 * Block based filesystems should use generic_write_end().
561 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
562 * is not called, so a filesystem that actually does store data in .write_inode
563 * should extend on what's done here with a call to mark_inode_dirty() in the
564 * case that i_size has changed.
04fff641
AV
565 *
566 * Use *ONLY* with simple_readpage()
ad2a722f 567 */
afddba49
NP
568int simple_write_end(struct file *file, struct address_space *mapping,
569 loff_t pos, unsigned len, unsigned copied,
570 struct page *page, void *fsdata)
571{
ad2a722f
BH
572 struct inode *inode = page->mapping->host;
573 loff_t last_pos = pos + copied;
afddba49
NP
574
575 /* zero the stale part of the page if we did a short copy */
04fff641
AV
576 if (!PageUptodate(page)) {
577 if (copied < len) {
578 unsigned from = pos & (PAGE_SIZE - 1);
afddba49 579
04fff641
AV
580 zero_user(page, from + copied, len - copied);
581 }
ad2a722f 582 SetPageUptodate(page);
04fff641 583 }
ad2a722f
BH
584 /*
585 * No need to use i_size_read() here, the i_size
586 * cannot change under us because we hold the i_mutex.
587 */
588 if (last_pos > inode->i_size)
589 i_size_write(inode, last_pos);
afddba49 590
ad2a722f 591 set_page_dirty(page);
afddba49 592 unlock_page(page);
09cbfeaf 593 put_page(page);
afddba49
NP
594
595 return copied;
596}
12f38872 597EXPORT_SYMBOL(simple_write_end);
afddba49 598
1a1c9bb4
JL
599/*
600 * the inodes created here are not hashed. If you use iunique to generate
601 * unique inode values later for this filesystem, then you must take care
602 * to pass it an appropriate max_reserved value to avoid collisions.
603 */
7d683a09 604int simple_fill_super(struct super_block *s, unsigned long magic,
cda37124 605 const struct tree_descr *files)
1da177e4 606{
1da177e4
LT
607 struct inode *inode;
608 struct dentry *root;
609 struct dentry *dentry;
610 int i;
611
09cbfeaf
KS
612 s->s_blocksize = PAGE_SIZE;
613 s->s_blocksize_bits = PAGE_SHIFT;
1da177e4 614 s->s_magic = magic;
759b9775 615 s->s_op = &simple_super_operations;
1da177e4
LT
616 s->s_time_gran = 1;
617
618 inode = new_inode(s);
619 if (!inode)
620 return -ENOMEM;
1a1c9bb4
JL
621 /*
622 * because the root inode is 1, the files array must not contain an
623 * entry at index 1
624 */
625 inode->i_ino = 1;
1da177e4 626 inode->i_mode = S_IFDIR | 0755;
078cd827 627 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1da177e4
LT
628 inode->i_op = &simple_dir_inode_operations;
629 inode->i_fop = &simple_dir_operations;
bfe86848 630 set_nlink(inode, 2);
48fde701
AV
631 root = d_make_root(inode);
632 if (!root)
1da177e4 633 return -ENOMEM;
1da177e4
LT
634 for (i = 0; !files->name || files->name[0]; i++, files++) {
635 if (!files->name)
636 continue;
1a1c9bb4
JL
637
638 /* warn if it tries to conflict with the root inode */
639 if (unlikely(i == 1))
640 printk(KERN_WARNING "%s: %s passed in a files array"
641 "with an index of 1!\n", __func__,
642 s->s_type->name);
643
1da177e4
LT
644 dentry = d_alloc_name(root, files->name);
645 if (!dentry)
646 goto out;
647 inode = new_inode(s);
32096ea1
KK
648 if (!inode) {
649 dput(dentry);
1da177e4 650 goto out;
32096ea1 651 }
1da177e4 652 inode->i_mode = S_IFREG | files->mode;
078cd827 653 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1da177e4
LT
654 inode->i_fop = files->ops;
655 inode->i_ino = i;
656 d_add(dentry, inode);
657 }
658 s->s_root = root;
659 return 0;
660out:
661 d_genocide(root);
640946f2 662 shrink_dcache_parent(root);
1da177e4
LT
663 dput(root);
664 return -ENOMEM;
665}
12f38872 666EXPORT_SYMBOL(simple_fill_super);
1da177e4
LT
667
668static DEFINE_SPINLOCK(pin_fs_lock);
669
1f5ce9e9 670int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1da177e4
LT
671{
672 struct vfsmount *mnt = NULL;
673 spin_lock(&pin_fs_lock);
674 if (unlikely(!*mount)) {
675 spin_unlock(&pin_fs_lock);
1751e8a6 676 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1da177e4
LT
677 if (IS_ERR(mnt))
678 return PTR_ERR(mnt);
679 spin_lock(&pin_fs_lock);
680 if (!*mount)
681 *mount = mnt;
682 }
683 mntget(*mount);
684 ++*count;
685 spin_unlock(&pin_fs_lock);
686 mntput(mnt);
687 return 0;
688}
12f38872 689EXPORT_SYMBOL(simple_pin_fs);
1da177e4
LT
690
691void simple_release_fs(struct vfsmount **mount, int *count)
692{
693 struct vfsmount *mnt;
694 spin_lock(&pin_fs_lock);
695 mnt = *mount;
696 if (!--*count)
697 *mount = NULL;
698 spin_unlock(&pin_fs_lock);
699 mntput(mnt);
700}
12f38872 701EXPORT_SYMBOL(simple_release_fs);
1da177e4 702
6d1029b5
AM
703/**
704 * simple_read_from_buffer - copy data from the buffer to user space
705 * @to: the user space buffer to read to
706 * @count: the maximum number of bytes to read
707 * @ppos: the current position in the buffer
708 * @from: the buffer to read from
709 * @available: the size of the buffer
710 *
711 * The simple_read_from_buffer() function reads up to @count bytes from the
712 * buffer @from at offset @ppos into the user space address starting at @to.
713 *
714 * On success, the number of bytes read is returned and the offset @ppos is
715 * advanced by this number, or negative value is returned on error.
716 **/
1da177e4
LT
717ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
718 const void *from, size_t available)
719{
720 loff_t pos = *ppos;
14be2746
SR
721 size_t ret;
722
1da177e4
LT
723 if (pos < 0)
724 return -EINVAL;
14be2746 725 if (pos >= available || !count)
1da177e4
LT
726 return 0;
727 if (count > available - pos)
728 count = available - pos;
14be2746
SR
729 ret = copy_to_user(to, from + pos, count);
730 if (ret == count)
1da177e4 731 return -EFAULT;
14be2746 732 count -= ret;
1da177e4
LT
733 *ppos = pos + count;
734 return count;
735}
12f38872 736EXPORT_SYMBOL(simple_read_from_buffer);
1da177e4 737
6a727b43
JS
738/**
739 * simple_write_to_buffer - copy data from user space to the buffer
740 * @to: the buffer to write to
741 * @available: the size of the buffer
742 * @ppos: the current position in the buffer
743 * @from: the user space buffer to read from
744 * @count: the maximum number of bytes to read
745 *
746 * The simple_write_to_buffer() function reads up to @count bytes from the user
747 * space address starting at @from into the buffer @to at offset @ppos.
748 *
749 * On success, the number of bytes written is returned and the offset @ppos is
750 * advanced by this number, or negative value is returned on error.
751 **/
752ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
753 const void __user *from, size_t count)
754{
755 loff_t pos = *ppos;
756 size_t res;
757
758 if (pos < 0)
759 return -EINVAL;
760 if (pos >= available || !count)
761 return 0;
762 if (count > available - pos)
763 count = available - pos;
764 res = copy_from_user(to + pos, from, count);
765 if (res == count)
766 return -EFAULT;
767 count -= res;
768 *ppos = pos + count;
769 return count;
770}
12f38872 771EXPORT_SYMBOL(simple_write_to_buffer);
6a727b43 772
6d1029b5
AM
773/**
774 * memory_read_from_buffer - copy data from the buffer
775 * @to: the kernel space buffer to read to
776 * @count: the maximum number of bytes to read
777 * @ppos: the current position in the buffer
778 * @from: the buffer to read from
779 * @available: the size of the buffer
780 *
781 * The memory_read_from_buffer() function reads up to @count bytes from the
782 * buffer @from at offset @ppos into the kernel space address starting at @to.
783 *
784 * On success, the number of bytes read is returned and the offset @ppos is
785 * advanced by this number, or negative value is returned on error.
786 **/
93b07113
AM
787ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
788 const void *from, size_t available)
789{
790 loff_t pos = *ppos;
791
792 if (pos < 0)
793 return -EINVAL;
794 if (pos >= available)
795 return 0;
796 if (count > available - pos)
797 count = available - pos;
798 memcpy(to, from + pos, count);
799 *ppos = pos + count;
800
801 return count;
802}
12f38872 803EXPORT_SYMBOL(memory_read_from_buffer);
93b07113 804
1da177e4
LT
805/*
806 * Transaction based IO.
807 * The file expects a single write which triggers the transaction, and then
808 * possibly a read which collects the result - which is stored in a
809 * file-local buffer.
810 */
76791ab2
IM
811
812void simple_transaction_set(struct file *file, size_t n)
813{
814 struct simple_transaction_argresp *ar = file->private_data;
815
816 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
817
818 /*
819 * The barrier ensures that ar->size will really remain zero until
820 * ar->data is ready for reading.
821 */
822 smp_mb();
823 ar->size = n;
824}
12f38872 825EXPORT_SYMBOL(simple_transaction_set);
76791ab2 826
1da177e4
LT
827char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
828{
829 struct simple_transaction_argresp *ar;
830 static DEFINE_SPINLOCK(simple_transaction_lock);
831
832 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
833 return ERR_PTR(-EFBIG);
834
835 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
836 if (!ar)
837 return ERR_PTR(-ENOMEM);
838
839 spin_lock(&simple_transaction_lock);
840
841 /* only one write allowed per open */
842 if (file->private_data) {
843 spin_unlock(&simple_transaction_lock);
844 free_page((unsigned long)ar);
845 return ERR_PTR(-EBUSY);
846 }
847
848 file->private_data = ar;
849
850 spin_unlock(&simple_transaction_lock);
851
852 if (copy_from_user(ar->data, buf, size))
853 return ERR_PTR(-EFAULT);
854
855 return ar->data;
856}
12f38872 857EXPORT_SYMBOL(simple_transaction_get);
1da177e4
LT
858
859ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
860{
861 struct simple_transaction_argresp *ar = file->private_data;
862
863 if (!ar)
864 return 0;
865 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
866}
12f38872 867EXPORT_SYMBOL(simple_transaction_read);
1da177e4
LT
868
869int simple_transaction_release(struct inode *inode, struct file *file)
870{
871 free_page((unsigned long)file->private_data);
872 return 0;
873}
12f38872 874EXPORT_SYMBOL(simple_transaction_release);
1da177e4 875
acaefc25
AB
876/* Simple attribute files */
877
878struct simple_attr {
8b88b099
CH
879 int (*get)(void *, u64 *);
880 int (*set)(void *, u64);
acaefc25
AB
881 char get_buf[24]; /* enough to store a u64 and "\n\0" */
882 char set_buf[24];
883 void *data;
884 const char *fmt; /* format for read operation */
7cf34c76 885 struct mutex mutex; /* protects access to these buffers */
acaefc25
AB
886};
887
888/* simple_attr_open is called by an actual attribute open file operation
889 * to set the attribute specific access operations. */
890int simple_attr_open(struct inode *inode, struct file *file,
8b88b099 891 int (*get)(void *, u64 *), int (*set)(void *, u64),
acaefc25
AB
892 const char *fmt)
893{
894 struct simple_attr *attr;
895
a65cab7d 896 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
acaefc25
AB
897 if (!attr)
898 return -ENOMEM;
899
900 attr->get = get;
901 attr->set = set;
8e18e294 902 attr->data = inode->i_private;
acaefc25 903 attr->fmt = fmt;
7cf34c76 904 mutex_init(&attr->mutex);
acaefc25
AB
905
906 file->private_data = attr;
907
908 return nonseekable_open(inode, file);
909}
12f38872 910EXPORT_SYMBOL_GPL(simple_attr_open);
acaefc25 911
74bedc4d 912int simple_attr_release(struct inode *inode, struct file *file)
acaefc25
AB
913{
914 kfree(file->private_data);
915 return 0;
916}
12f38872 917EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
acaefc25
AB
918
919/* read from the buffer that is filled with the get function */
920ssize_t simple_attr_read(struct file *file, char __user *buf,
921 size_t len, loff_t *ppos)
922{
923 struct simple_attr *attr;
924 size_t size;
925 ssize_t ret;
926
927 attr = file->private_data;
928
929 if (!attr->get)
930 return -EACCES;
931
9261303a
CH
932 ret = mutex_lock_interruptible(&attr->mutex);
933 if (ret)
934 return ret;
935
a65cab7d
EB
936 if (*ppos && attr->get_buf[0]) {
937 /* continued read */
acaefc25 938 size = strlen(attr->get_buf);
a65cab7d
EB
939 } else {
940 /* first read */
8b88b099
CH
941 u64 val;
942 ret = attr->get(attr->data, &val);
943 if (ret)
944 goto out;
945
acaefc25 946 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
8b88b099
CH
947 attr->fmt, (unsigned long long)val);
948 }
acaefc25
AB
949
950 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
8b88b099 951out:
7cf34c76 952 mutex_unlock(&attr->mutex);
acaefc25
AB
953 return ret;
954}
12f38872 955EXPORT_SYMBOL_GPL(simple_attr_read);
acaefc25
AB
956
957/* interpret the buffer as a number to call the set function with */
958ssize_t simple_attr_write(struct file *file, const char __user *buf,
959 size_t len, loff_t *ppos)
960{
961 struct simple_attr *attr;
962 u64 val;
963 size_t size;
964 ssize_t ret;
965
966 attr = file->private_data;
acaefc25
AB
967 if (!attr->set)
968 return -EACCES;
969
9261303a
CH
970 ret = mutex_lock_interruptible(&attr->mutex);
971 if (ret)
972 return ret;
973
acaefc25
AB
974 ret = -EFAULT;
975 size = min(sizeof(attr->set_buf) - 1, len);
976 if (copy_from_user(attr->set_buf, buf, size))
977 goto out;
978
acaefc25 979 attr->set_buf[size] = '\0';
f7b88631 980 val = simple_strtoll(attr->set_buf, NULL, 0);
05cc0cee
WF
981 ret = attr->set(attr->data, val);
982 if (ret == 0)
983 ret = len; /* on success, claim we got the whole input */
acaefc25 984out:
7cf34c76 985 mutex_unlock(&attr->mutex);
acaefc25
AB
986 return ret;
987}
12f38872 988EXPORT_SYMBOL_GPL(simple_attr_write);
acaefc25 989
2596110a
CH
990/**
991 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
992 * @sb: filesystem to do the file handle conversion on
993 * @fid: file handle to convert
994 * @fh_len: length of the file handle in bytes
995 * @fh_type: type of file handle
996 * @get_inode: filesystem callback to retrieve inode
997 *
998 * This function decodes @fid as long as it has one of the well-known
999 * Linux filehandle types and calls @get_inode on it to retrieve the
1000 * inode for the object specified in the file handle.
1001 */
1002struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1003 int fh_len, int fh_type, struct inode *(*get_inode)
1004 (struct super_block *sb, u64 ino, u32 gen))
1005{
1006 struct inode *inode = NULL;
1007
1008 if (fh_len < 2)
1009 return NULL;
1010
1011 switch (fh_type) {
1012 case FILEID_INO32_GEN:
1013 case FILEID_INO32_GEN_PARENT:
1014 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1015 break;
1016 }
1017
4ea3ada2 1018 return d_obtain_alias(inode);
2596110a
CH
1019}
1020EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1021
1022/**
ca186830 1023 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
2596110a
CH
1024 * @sb: filesystem to do the file handle conversion on
1025 * @fid: file handle to convert
1026 * @fh_len: length of the file handle in bytes
1027 * @fh_type: type of file handle
1028 * @get_inode: filesystem callback to retrieve inode
1029 *
1030 * This function decodes @fid as long as it has one of the well-known
1031 * Linux filehandle types and calls @get_inode on it to retrieve the
1032 * inode for the _parent_ object specified in the file handle if it
1033 * is specified in the file handle, or NULL otherwise.
1034 */
1035struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1036 int fh_len, int fh_type, struct inode *(*get_inode)
1037 (struct super_block *sb, u64 ino, u32 gen))
1038{
1039 struct inode *inode = NULL;
1040
1041 if (fh_len <= 2)
1042 return NULL;
1043
1044 switch (fh_type) {
1045 case FILEID_INO32_GEN_PARENT:
1046 inode = get_inode(sb, fid->i32.parent_ino,
1047 (fh_len > 3 ? fid->i32.parent_gen : 0));
1048 break;
1049 }
1050
4ea3ada2 1051 return d_obtain_alias(inode);
2596110a
CH
1052}
1053EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1054
1b061d92 1055/**
ac13a829
FF
1056 * __generic_file_fsync - generic fsync implementation for simple filesystems
1057 *
1b061d92 1058 * @file: file to synchronize
ac13a829
FF
1059 * @start: start offset in bytes
1060 * @end: end offset in bytes (inclusive)
1b061d92
CH
1061 * @datasync: only synchronize essential metadata if true
1062 *
1063 * This is a generic implementation of the fsync method for simple
1064 * filesystems which track all non-inode metadata in the buffers list
1065 * hanging off the address_space structure.
1066 */
ac13a829
FF
1067int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1068 int datasync)
d5aacad5 1069{
7ea80859 1070 struct inode *inode = file->f_mapping->host;
d5aacad5
AV
1071 int err;
1072 int ret;
1073
383aa543 1074 err = file_write_and_wait_range(file, start, end);
02c24a82
JB
1075 if (err)
1076 return err;
1077
5955102c 1078 inode_lock(inode);
d5aacad5 1079 ret = sync_mapping_buffers(inode->i_mapping);
0ae45f63 1080 if (!(inode->i_state & I_DIRTY_ALL))
02c24a82 1081 goto out;
d5aacad5 1082 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
02c24a82 1083 goto out;
d5aacad5 1084
c3765016 1085 err = sync_inode_metadata(inode, 1);
d5aacad5
AV
1086 if (ret == 0)
1087 ret = err;
ac13a829 1088
02c24a82 1089out:
5955102c 1090 inode_unlock(inode);
383aa543
JL
1091 /* check and advance again to catch errors after syncing out buffers */
1092 err = file_check_and_advance_wb_err(file);
1093 if (ret == 0)
1094 ret = err;
1095 return ret;
d5aacad5 1096}
ac13a829
FF
1097EXPORT_SYMBOL(__generic_file_fsync);
1098
1099/**
1100 * generic_file_fsync - generic fsync implementation for simple filesystems
1101 * with flush
1102 * @file: file to synchronize
1103 * @start: start offset in bytes
1104 * @end: end offset in bytes (inclusive)
1105 * @datasync: only synchronize essential metadata if true
1106 *
1107 */
1108
1109int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1110 int datasync)
1111{
1112 struct inode *inode = file->f_mapping->host;
1113 int err;
1114
1115 err = __generic_file_fsync(file, start, end, datasync);
1116 if (err)
1117 return err;
9398554f 1118 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
ac13a829 1119}
1b061d92
CH
1120EXPORT_SYMBOL(generic_file_fsync);
1121
30ca22c7
PL
1122/**
1123 * generic_check_addressable - Check addressability of file system
1124 * @blocksize_bits: log of file system block size
1125 * @num_blocks: number of blocks in file system
1126 *
1127 * Determine whether a file system with @num_blocks blocks (and a
1128 * block size of 2**@blocksize_bits) is addressable by the sector_t
1129 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1130 */
1131int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1132{
1133 u64 last_fs_block = num_blocks - 1;
a33f13ef 1134 u64 last_fs_page =
09cbfeaf 1135 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
30ca22c7
PL
1136
1137 if (unlikely(num_blocks == 0))
1138 return 0;
1139
09cbfeaf 1140 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
30ca22c7
PL
1141 return -EINVAL;
1142
a33f13ef
JB
1143 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1144 (last_fs_page > (pgoff_t)(~0ULL))) {
30ca22c7
PL
1145 return -EFBIG;
1146 }
1147 return 0;
1148}
1149EXPORT_SYMBOL(generic_check_addressable);
1150
1b061d92
CH
1151/*
1152 * No-op implementation of ->fsync for in-memory filesystems.
1153 */
02c24a82 1154int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1b061d92
CH
1155{
1156 return 0;
1157}
1b061d92 1158EXPORT_SYMBOL(noop_fsync);
87dc800b 1159
f44c7763
DW
1160int noop_set_page_dirty(struct page *page)
1161{
1162 /*
1163 * Unlike __set_page_dirty_no_writeback that handles dirty page
1164 * tracking in the page object, dax does all dirty tracking in
1165 * the inode address_space in response to mkwrite faults. In the
1166 * dax case we only need to worry about potentially dirty CPU
1167 * caches, not dirty page cache pages to write back.
1168 *
1169 * This callback is defined to prevent fallback to
1170 * __set_page_dirty_buffers() in set_page_dirty().
1171 */
1172 return 0;
1173}
1174EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1175
1176void noop_invalidatepage(struct page *page, unsigned int offset,
1177 unsigned int length)
1178{
1179 /*
1180 * There is no page cache to invalidate in the dax case, however
1181 * we need this callback defined to prevent falling back to
1182 * block_invalidatepage() in do_invalidatepage().
1183 */
1184}
1185EXPORT_SYMBOL_GPL(noop_invalidatepage);
1186
1187ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1188{
1189 /*
1190 * iomap based filesystems support direct I/O without need for
1191 * this callback. However, it still needs to be set in
1192 * inode->a_ops so that open/fcntl know that direct I/O is
1193 * generally supported.
1194 */
1195 return -EINVAL;
1196}
1197EXPORT_SYMBOL_GPL(noop_direct_IO);
1198
fceef393
AV
1199/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1200void kfree_link(void *p)
87dc800b 1201{
fceef393 1202 kfree(p);
87dc800b 1203}
fceef393 1204EXPORT_SYMBOL(kfree_link);
6987843f
AV
1205
1206/*
1207 * nop .set_page_dirty method so that people can use .page_mkwrite on
1208 * anon inodes.
1209 */
1210static int anon_set_page_dirty(struct page *page)
1211{
1212 return 0;
1213};
1214
1215/*
1216 * A single inode exists for all anon_inode files. Contrary to pipes,
1217 * anon_inode inodes have no associated per-instance data, so we need
1218 * only allocate one of them.
1219 */
1220struct inode *alloc_anon_inode(struct super_block *s)
1221{
1222 static const struct address_space_operations anon_aops = {
1223 .set_page_dirty = anon_set_page_dirty,
1224 };
1225 struct inode *inode = new_inode_pseudo(s);
1226
1227 if (!inode)
1228 return ERR_PTR(-ENOMEM);
1229
1230 inode->i_ino = get_next_ino();
1231 inode->i_mapping->a_ops = &anon_aops;
1232
1233 /*
1234 * Mark the inode dirty from the very beginning,
1235 * that way it will never be moved to the dirty
1236 * list because mark_inode_dirty() will think
1237 * that it already _is_ on the dirty list.
1238 */
1239 inode->i_state = I_DIRTY;
1240 inode->i_mode = S_IRUSR | S_IWUSR;
1241 inode->i_uid = current_fsuid();
1242 inode->i_gid = current_fsgid();
1243 inode->i_flags |= S_PRIVATE;
078cd827 1244 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
6987843f
AV
1245 return inode;
1246}
1247EXPORT_SYMBOL(alloc_anon_inode);
1c994a09
JL
1248
1249/**
1250 * simple_nosetlease - generic helper for prohibiting leases
1251 * @filp: file pointer
1252 * @arg: type of lease to obtain
1253 * @flp: new lease supplied for insertion
e6f5c789 1254 * @priv: private data for lm_setup operation
1c994a09
JL
1255 *
1256 * Generic helper for filesystems that do not wish to allow leases to be set.
1257 * All arguments are ignored and it just returns -EINVAL.
1258 */
1259int
e6f5c789
JL
1260simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1261 void **priv)
1c994a09
JL
1262{
1263 return -EINVAL;
1264}
1265EXPORT_SYMBOL(simple_nosetlease);
61ba64fc 1266
6ee9706a
EB
1267/**
1268 * simple_get_link - generic helper to get the target of "fast" symlinks
1269 * @dentry: not used here
1270 * @inode: the symlink inode
1271 * @done: not used here
1272 *
1273 * Generic helper for filesystems to use for symlink inodes where a pointer to
1274 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1275 * since as an optimization the path lookup code uses any non-NULL ->i_link
1276 * directly, without calling ->get_link(). But ->get_link() still must be set,
1277 * to mark the inode_operations as being for a symlink.
1278 *
1279 * Return: the symlink target
1280 */
6b255391 1281const char *simple_get_link(struct dentry *dentry, struct inode *inode,
fceef393 1282 struct delayed_call *done)
61ba64fc 1283{
6b255391 1284 return inode->i_link;
61ba64fc 1285}
6b255391 1286EXPORT_SYMBOL(simple_get_link);
61ba64fc
AV
1287
1288const struct inode_operations simple_symlink_inode_operations = {
6b255391 1289 .get_link = simple_get_link,
61ba64fc
AV
1290};
1291EXPORT_SYMBOL(simple_symlink_inode_operations);
fbabfd0f
EB
1292
1293/*
1294 * Operations for a permanently empty directory.
1295 */
1296static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1297{
1298 return ERR_PTR(-ENOENT);
1299}
1300
a528d35e
DH
1301static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1302 u32 request_mask, unsigned int query_flags)
fbabfd0f 1303{
a528d35e 1304 struct inode *inode = d_inode(path->dentry);
fbabfd0f
EB
1305 generic_fillattr(inode, stat);
1306 return 0;
1307}
1308
1309static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1310{
1311 return -EPERM;
1312}
1313
fbabfd0f
EB
1314static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1315{
1316 return -EOPNOTSUPP;
1317}
1318
1319static const struct inode_operations empty_dir_inode_operations = {
1320 .lookup = empty_dir_lookup,
1321 .permission = generic_permission,
1322 .setattr = empty_dir_setattr,
1323 .getattr = empty_dir_getattr,
fbabfd0f
EB
1324 .listxattr = empty_dir_listxattr,
1325};
1326
1327static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1328{
1329 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1330 return generic_file_llseek_size(file, offset, whence, 2, 2);
1331}
1332
1333static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1334{
1335 dir_emit_dots(file, ctx);
1336 return 0;
1337}
1338
1339static const struct file_operations empty_dir_operations = {
1340 .llseek = empty_dir_llseek,
1341 .read = generic_read_dir,
c51da20c 1342 .iterate_shared = empty_dir_readdir,
fbabfd0f
EB
1343 .fsync = noop_fsync,
1344};
1345
1346
1347void make_empty_dir_inode(struct inode *inode)
1348{
1349 set_nlink(inode, 2);
1350 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1351 inode->i_uid = GLOBAL_ROOT_UID;
1352 inode->i_gid = GLOBAL_ROOT_GID;
1353 inode->i_rdev = 0;
4b75de86 1354 inode->i_size = 0;
fbabfd0f
EB
1355 inode->i_blkbits = PAGE_SHIFT;
1356 inode->i_blocks = 0;
1357
1358 inode->i_op = &empty_dir_inode_operations;
f5c24438 1359 inode->i_opflags &= ~IOP_XATTR;
fbabfd0f
EB
1360 inode->i_fop = &empty_dir_operations;
1361}
1362
1363bool is_empty_dir_inode(struct inode *inode)
1364{
1365 return (inode->i_fop == &empty_dir_operations) &&
1366 (inode->i_op == &empty_dir_inode_operations);
1367}
c843843e
DR
1368
1369#ifdef CONFIG_UNICODE
1370/*
1371 * Determine if the name of a dentry should be casefolded.
1372 *
1373 * Return: if names will need casefolding
1374 */
1375static bool needs_casefold(const struct inode *dir)
1376{
1377 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1378}
1379
1380/**
1381 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1382 * @dentry: dentry whose name we are checking against
1383 * @len: len of name of dentry
1384 * @str: str pointer to name of dentry
1385 * @name: Name to compare against
1386 *
1387 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1388 */
1389int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1390 const char *str, const struct qstr *name)
1391{
1392 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1393 const struct inode *dir = READ_ONCE(parent->d_inode);
1394 const struct super_block *sb = dentry->d_sb;
1395 const struct unicode_map *um = sb->s_encoding;
1396 struct qstr qstr = QSTR_INIT(str, len);
1397 char strbuf[DNAME_INLINE_LEN];
1398 int ret;
1399
1400 if (!dir || !needs_casefold(dir))
1401 goto fallback;
1402 /*
1403 * If the dentry name is stored in-line, then it may be concurrently
1404 * modified by a rename. If this happens, the VFS will eventually retry
1405 * the lookup, so it doesn't matter what ->d_compare() returns.
1406 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1407 * string. Therefore, we have to copy the name into a temporary buffer.
1408 */
1409 if (len <= DNAME_INLINE_LEN - 1) {
1410 memcpy(strbuf, str, len);
1411 strbuf[len] = 0;
1412 qstr.name = strbuf;
1413 /* prevent compiler from optimizing out the temporary buffer */
1414 barrier();
1415 }
1416 ret = utf8_strncasecmp(um, name, &qstr);
1417 if (ret >= 0)
1418 return ret;
1419
1420 if (sb_has_strict_encoding(sb))
1421 return -EINVAL;
1422fallback:
1423 if (len != name->len)
1424 return 1;
1425 return !!memcmp(str, name->name, len);
1426}
1427EXPORT_SYMBOL(generic_ci_d_compare);
1428
1429/**
1430 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1431 * @dentry: dentry of the parent directory
1432 * @str: qstr of name whose hash we should fill in
1433 *
1434 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1435 */
1436int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1437{
1438 const struct inode *dir = READ_ONCE(dentry->d_inode);
1439 struct super_block *sb = dentry->d_sb;
1440 const struct unicode_map *um = sb->s_encoding;
1441 int ret = 0;
1442
1443 if (!dir || !needs_casefold(dir))
1444 return 0;
1445
1446 ret = utf8_casefold_hash(um, dentry, str);
1447 if (ret < 0 && sb_has_strict_encoding(sb))
1448 return -EINVAL;
1449 return 0;
1450}
1451EXPORT_SYMBOL(generic_ci_d_hash);
1452#endif