fs: remove silly warning from current_time
[linux-block.git] / fs / libfs.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
ac13a829 7#include <linux/blkdev.h>
630d9c47 8#include <linux/export.h>
1da177e4 9#include <linux/pagemap.h>
5a0e3ad6 10#include <linux/slab.h>
5b825c3a 11#include <linux/cred.h>
1da177e4
LT
12#include <linux/mount.h>
13#include <linux/vfs.h>
7bb46a67 14#include <linux/quotaops.h>
7cf34c76 15#include <linux/mutex.h>
87dc800b 16#include <linux/namei.h>
2596110a 17#include <linux/exportfs.h>
5ca14835 18#include <linux/iversion.h>
d5aacad5 19#include <linux/writeback.h>
ff01bb48 20#include <linux/buffer_head.h> /* sync_mapping_buffers */
31d6d5ce
DH
21#include <linux/fs_context.h>
22#include <linux/pseudo_fs.h>
a3d1e7eb 23#include <linux/fsnotify.h>
c843843e
DR
24#include <linux/unicode.h>
25#include <linux/fscrypt.h>
7cf34c76 26
7c0f6ba6 27#include <linux/uaccess.h>
1da177e4 28
a4464dbc
AV
29#include "internal.h"
30
b74d24f7 31int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
549c7297
CB
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
1da177e4 34{
a528d35e 35 struct inode *inode = d_inode(path->dentry);
b74d24f7 36 generic_fillattr(&nop_mnt_idmap, inode, stat);
09cbfeaf 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
1da177e4
LT
38 return 0;
39}
12f38872 40EXPORT_SYMBOL(simple_getattr);
1da177e4 41
726c3342 42int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 43{
726c3342 44 buf->f_type = dentry->d_sb->s_magic;
09cbfeaf 45 buf->f_bsize = PAGE_SIZE;
1da177e4
LT
46 buf->f_namelen = NAME_MAX;
47 return 0;
48}
12f38872 49EXPORT_SYMBOL(simple_statfs);
1da177e4
LT
50
51/*
52 * Retaining negative dentries for an in-memory filesystem just wastes
53 * memory and lookup time: arrange for them to be deleted immediately.
54 */
b26d4cd3 55int always_delete_dentry(const struct dentry *dentry)
1da177e4
LT
56{
57 return 1;
58}
b26d4cd3
AV
59EXPORT_SYMBOL(always_delete_dentry);
60
61const struct dentry_operations simple_dentry_operations = {
62 .d_delete = always_delete_dentry,
63};
64EXPORT_SYMBOL(simple_dentry_operations);
1da177e4
LT
65
66/*
67 * Lookup the data. This is trivial - if the dentry didn't already
68 * exist, we know it is negative. Set d_op to delete negative dentries.
69 */
00cd8dd3 70struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1da177e4 71{
1da177e4
LT
72 if (dentry->d_name.len > NAME_MAX)
73 return ERR_PTR(-ENAMETOOLONG);
74931da7
AV
74 if (!dentry->d_sb->s_d_op)
75 d_set_d_op(dentry, &simple_dentry_operations);
1da177e4
LT
76 d_add(dentry, NULL);
77 return NULL;
78}
12f38872 79EXPORT_SYMBOL(simple_lookup);
1da177e4 80
1da177e4
LT
81int dcache_dir_open(struct inode *inode, struct file *file)
82{
ba65dc5e 83 file->private_data = d_alloc_cursor(file->f_path.dentry);
1da177e4
LT
84
85 return file->private_data ? 0 : -ENOMEM;
86}
12f38872 87EXPORT_SYMBOL(dcache_dir_open);
1da177e4
LT
88
89int dcache_dir_close(struct inode *inode, struct file *file)
90{
91 dput(file->private_data);
92 return 0;
93}
12f38872 94EXPORT_SYMBOL(dcache_dir_close);
1da177e4 95
4f42c1b5 96/* parent is locked at least shared */
d4f4de5e
AV
97/*
98 * Returns an element of siblings' list.
99 * We are looking for <count>th positive after <p>; if
26b6c984
AV
100 * found, dentry is grabbed and returned to caller.
101 * If no such element exists, NULL is returned.
d4f4de5e 102 */
26b6c984 103static struct dentry *scan_positives(struct dentry *cursor,
d4f4de5e
AV
104 struct list_head *p,
105 loff_t count,
26b6c984 106 struct dentry *last)
4f42c1b5 107{
d4f4de5e
AV
108 struct dentry *dentry = cursor->d_parent, *found = NULL;
109
110 spin_lock(&dentry->d_lock);
111 while ((p = p->next) != &dentry->d_subdirs) {
4f42c1b5 112 struct dentry *d = list_entry(p, struct dentry, d_child);
d4f4de5e
AV
113 // we must at least skip cursors, to avoid livelocks
114 if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 continue;
116 if (simple_positive(d) && !--count) {
117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 if (simple_positive(d))
119 found = dget_dlock(d);
120 spin_unlock(&d->d_lock);
121 if (likely(found))
122 break;
123 count = 1;
124 }
125 if (need_resched()) {
126 list_move(&cursor->d_child, p);
127 p = &cursor->d_child;
128 spin_unlock(&dentry->d_lock);
129 cond_resched();
130 spin_lock(&dentry->d_lock);
4f42c1b5
AV
131 }
132 }
d4f4de5e 133 spin_unlock(&dentry->d_lock);
26b6c984
AV
134 dput(last);
135 return found;
4f42c1b5
AV
136}
137
965c8e59 138loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
1da177e4 139{
2fd6b7f5 140 struct dentry *dentry = file->f_path.dentry;
965c8e59 141 switch (whence) {
1da177e4
LT
142 case 1:
143 offset += file->f_pos;
df561f66 144 fallthrough;
1da177e4
LT
145 case 0:
146 if (offset >= 0)
147 break;
df561f66 148 fallthrough;
1da177e4 149 default:
1da177e4
LT
150 return -EINVAL;
151 }
152 if (offset != file->f_pos) {
d4f4de5e
AV
153 struct dentry *cursor = file->private_data;
154 struct dentry *to = NULL;
d4f4de5e 155
d4f4de5e
AV
156 inode_lock_shared(dentry->d_inode);
157
26b6c984
AV
158 if (offset > 2)
159 to = scan_positives(cursor, &dentry->d_subdirs,
160 offset - 2, NULL);
161 spin_lock(&dentry->d_lock);
162 if (to)
163 list_move(&cursor->d_child, &to->d_child);
164 else
d4f4de5e 165 list_del_init(&cursor->d_child);
26b6c984 166 spin_unlock(&dentry->d_lock);
d4f4de5e
AV
167 dput(to);
168
26b6c984
AV
169 file->f_pos = offset;
170
d4f4de5e 171 inode_unlock_shared(dentry->d_inode);
1da177e4 172 }
1da177e4
LT
173 return offset;
174}
12f38872 175EXPORT_SYMBOL(dcache_dir_lseek);
1da177e4 176
1da177e4
LT
177/*
178 * Directory is locked and all positive dentries in it are safe, since
179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
180 * both impossible due to the lock on directory.
181 */
182
5f99f4e7 183int dcache_readdir(struct file *file, struct dir_context *ctx)
1da177e4 184{
5f99f4e7
AV
185 struct dentry *dentry = file->f_path.dentry;
186 struct dentry *cursor = file->private_data;
d4f4de5e
AV
187 struct list_head *anchor = &dentry->d_subdirs;
188 struct dentry *next = NULL;
189 struct list_head *p;
1da177e4 190
5f99f4e7
AV
191 if (!dir_emit_dots(file, ctx))
192 return 0;
5f99f4e7 193
4f42c1b5 194 if (ctx->pos == 2)
d4f4de5e 195 p = anchor;
26b6c984 196 else if (!list_empty(&cursor->d_child))
d4f4de5e 197 p = &cursor->d_child;
26b6c984
AV
198 else
199 return 0;
d4f4de5e 200
26b6c984 201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
5f99f4e7 202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
364595a6
JL
203 d_inode(next)->i_ino,
204 fs_umode_to_dtype(d_inode(next)->i_mode)))
4f42c1b5 205 break;
5f99f4e7 206 ctx->pos++;
26b6c984 207 p = &next->d_child;
1da177e4 208 }
d4f4de5e 209 spin_lock(&dentry->d_lock);
26b6c984
AV
210 if (next)
211 list_move_tail(&cursor->d_child, &next->d_child);
212 else
213 list_del_init(&cursor->d_child);
d4f4de5e
AV
214 spin_unlock(&dentry->d_lock);
215 dput(next);
216
1da177e4
LT
217 return 0;
218}
12f38872 219EXPORT_SYMBOL(dcache_readdir);
1da177e4
LT
220
221ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222{
223 return -EISDIR;
224}
12f38872 225EXPORT_SYMBOL(generic_read_dir);
1da177e4 226
4b6f5d20 227const struct file_operations simple_dir_operations = {
1da177e4
LT
228 .open = dcache_dir_open,
229 .release = dcache_dir_close,
230 .llseek = dcache_dir_lseek,
231 .read = generic_read_dir,
4e82901c 232 .iterate_shared = dcache_readdir,
1b061d92 233 .fsync = noop_fsync,
1da177e4 234};
12f38872 235EXPORT_SYMBOL(simple_dir_operations);
1da177e4 236
92e1d5be 237const struct inode_operations simple_dir_inode_operations = {
1da177e4
LT
238 .lookup = simple_lookup,
239};
12f38872 240EXPORT_SYMBOL(simple_dir_inode_operations);
1da177e4 241
a3d1e7eb
AV
242static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
243{
244 struct dentry *child = NULL;
245 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
246
247 spin_lock(&parent->d_lock);
248 while ((p = p->next) != &parent->d_subdirs) {
249 struct dentry *d = container_of(p, struct dentry, d_child);
250 if (simple_positive(d)) {
251 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
252 if (simple_positive(d))
253 child = dget_dlock(d);
254 spin_unlock(&d->d_lock);
255 if (likely(child))
256 break;
257 }
258 }
259 spin_unlock(&parent->d_lock);
260 dput(prev);
261 return child;
262}
263
264void simple_recursive_removal(struct dentry *dentry,
265 void (*callback)(struct dentry *))
266{
267 struct dentry *this = dget(dentry);
268 while (true) {
269 struct dentry *victim = NULL, *child;
270 struct inode *inode = this->d_inode;
271
272 inode_lock(inode);
273 if (d_is_dir(this))
274 inode->i_flags |= S_DEAD;
275 while ((child = find_next_child(this, victim)) == NULL) {
276 // kill and ascend
277 // update metadata while it's still locked
f7f43858 278 inode_set_ctime_current(inode);
a3d1e7eb
AV
279 clear_nlink(inode);
280 inode_unlock(inode);
281 victim = this;
282 this = this->d_parent;
283 inode = this->d_inode;
284 inode_lock(inode);
285 if (simple_positive(victim)) {
286 d_invalidate(victim); // avoid lost mounts
287 if (d_is_dir(victim))
288 fsnotify_rmdir(inode, victim);
289 else
290 fsnotify_unlink(inode, victim);
291 if (callback)
292 callback(victim);
293 dput(victim); // unpin it
294 }
295 if (victim == dentry) {
f7f43858 296 inode->i_mtime = inode_set_ctime_current(inode);
a3d1e7eb
AV
297 if (d_is_dir(dentry))
298 drop_nlink(inode);
299 inode_unlock(inode);
300 dput(dentry);
301 return;
302 }
303 }
304 inode_unlock(inode);
305 this = child;
306 }
307}
308EXPORT_SYMBOL(simple_recursive_removal);
309
759b9775
HD
310static const struct super_operations simple_super_operations = {
311 .statfs = simple_statfs,
312};
313
db2c246a 314static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
1da177e4 315{
31d6d5ce 316 struct pseudo_fs_context *ctx = fc->fs_private;
1da177e4 317 struct inode *root;
1da177e4 318
89a4eb4b 319 s->s_maxbytes = MAX_LFS_FILESIZE;
3971e1a9
AN
320 s->s_blocksize = PAGE_SIZE;
321 s->s_blocksize_bits = PAGE_SHIFT;
8d9e46d8
AV
322 s->s_magic = ctx->magic;
323 s->s_op = ctx->ops ?: &simple_super_operations;
324 s->s_xattr = ctx->xattr;
1da177e4
LT
325 s->s_time_gran = 1;
326 root = new_inode(s);
327 if (!root)
db2c246a
DH
328 return -ENOMEM;
329
1a1c9bb4
JL
330 /*
331 * since this is the first inode, make it number 1. New inodes created
332 * after this must take care not to collide with it (by passing
333 * max_reserved of 1 to iunique).
334 */
335 root->i_ino = 1;
1da177e4 336 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
f7f43858 337 root->i_atime = root->i_mtime = inode_set_ctime_current(root);
8d9e46d8
AV
338 s->s_root = d_make_root(root);
339 if (!s->s_root)
db2c246a 340 return -ENOMEM;
8d9e46d8 341 s->s_d_op = ctx->dops;
31d6d5ce 342 return 0;
db2c246a 343}
8d9e46d8 344
db2c246a
DH
345static int pseudo_fs_get_tree(struct fs_context *fc)
346{
2ac295d4 347 return get_tree_nodev(fc, pseudo_fs_fill_super);
31d6d5ce
DH
348}
349
350static void pseudo_fs_free(struct fs_context *fc)
351{
352 kfree(fc->fs_private);
353}
354
355static const struct fs_context_operations pseudo_fs_context_ops = {
356 .free = pseudo_fs_free,
357 .get_tree = pseudo_fs_get_tree,
358};
359
360/*
361 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
362 * will never be mountable)
363 */
364struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
365 unsigned long magic)
366{
367 struct pseudo_fs_context *ctx;
368
369 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
370 if (likely(ctx)) {
371 ctx->magic = magic;
372 fc->fs_private = ctx;
373 fc->ops = &pseudo_fs_context_ops;
db2c246a
DH
374 fc->sb_flags |= SB_NOUSER;
375 fc->global = true;
1da177e4 376 }
31d6d5ce 377 return ctx;
1da177e4 378}
31d6d5ce 379EXPORT_SYMBOL(init_pseudo);
1da177e4 380
20955e89
SB
381int simple_open(struct inode *inode, struct file *file)
382{
383 if (inode->i_private)
384 file->private_data = inode->i_private;
385 return 0;
386}
12f38872 387EXPORT_SYMBOL(simple_open);
20955e89 388
1da177e4
LT
389int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
390{
dea655c2 391 struct inode *inode = d_inode(old_dentry);
1da177e4 392
f7f43858
JL
393 dir->i_mtime = inode_set_ctime_to_ts(dir,
394 inode_set_ctime_current(inode));
d8c76e6f 395 inc_nlink(inode);
7de9c6ee 396 ihold(inode);
1da177e4
LT
397 dget(dentry);
398 d_instantiate(dentry, inode);
399 return 0;
400}
12f38872 401EXPORT_SYMBOL(simple_link);
1da177e4 402
1da177e4
LT
403int simple_empty(struct dentry *dentry)
404{
405 struct dentry *child;
406 int ret = 0;
407
2fd6b7f5 408 spin_lock(&dentry->d_lock);
946e51f2 409 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
da502956
NP
410 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
411 if (simple_positive(child)) {
412 spin_unlock(&child->d_lock);
1da177e4 413 goto out;
da502956
NP
414 }
415 spin_unlock(&child->d_lock);
416 }
1da177e4
LT
417 ret = 1;
418out:
2fd6b7f5 419 spin_unlock(&dentry->d_lock);
1da177e4
LT
420 return ret;
421}
12f38872 422EXPORT_SYMBOL(simple_empty);
1da177e4
LT
423
424int simple_unlink(struct inode *dir, struct dentry *dentry)
425{
dea655c2 426 struct inode *inode = d_inode(dentry);
1da177e4 427
f7f43858
JL
428 dir->i_mtime = inode_set_ctime_to_ts(dir,
429 inode_set_ctime_current(inode));
9a53c3a7 430 drop_nlink(inode);
1da177e4
LT
431 dput(dentry);
432 return 0;
433}
12f38872 434EXPORT_SYMBOL(simple_unlink);
1da177e4
LT
435
436int simple_rmdir(struct inode *dir, struct dentry *dentry)
437{
438 if (!simple_empty(dentry))
439 return -ENOTEMPTY;
440
dea655c2 441 drop_nlink(d_inode(dentry));
1da177e4 442 simple_unlink(dir, dentry);
9a53c3a7 443 drop_nlink(dir);
1da177e4
LT
444 return 0;
445}
12f38872 446EXPORT_SYMBOL(simple_rmdir);
1da177e4 447
0c476792
JL
448/**
449 * simple_rename_timestamp - update the various inode timestamps for rename
450 * @old_dir: old parent directory
451 * @old_dentry: dentry that is being renamed
452 * @new_dir: new parent directory
453 * @new_dentry: target for rename
454 *
455 * POSIX mandates that the old and new parent directories have their ctime and
456 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
457 * their ctime updated.
458 */
459void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
460 struct inode *new_dir, struct dentry *new_dentry)
461{
462 struct inode *newino = d_inode(new_dentry);
463
464 old_dir->i_mtime = inode_set_ctime_current(old_dir);
465 if (new_dir != old_dir)
466 new_dir->i_mtime = inode_set_ctime_current(new_dir);
467 inode_set_ctime_current(d_inode(old_dentry));
468 if (newino)
469 inode_set_ctime_current(newino);
470}
471EXPORT_SYMBOL_GPL(simple_rename_timestamp);
472
6429e463
LB
473int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
474 struct inode *new_dir, struct dentry *new_dentry)
475{
476 bool old_is_dir = d_is_dir(old_dentry);
477 bool new_is_dir = d_is_dir(new_dentry);
478
479 if (old_dir != new_dir && old_is_dir != new_is_dir) {
480 if (old_is_dir) {
481 drop_nlink(old_dir);
482 inc_nlink(new_dir);
483 } else {
484 drop_nlink(new_dir);
485 inc_nlink(old_dir);
486 }
487 }
0c476792 488 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
6429e463
LB
489 return 0;
490}
491EXPORT_SYMBOL_GPL(simple_rename_exchange);
492
e18275ae 493int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
549c7297
CB
494 struct dentry *old_dentry, struct inode *new_dir,
495 struct dentry *new_dentry, unsigned int flags)
1da177e4 496{
e36cb0b8 497 int they_are_dirs = d_is_dir(old_dentry);
1da177e4 498
3871cb8c 499 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
e0e0be8a
MS
500 return -EINVAL;
501
3871cb8c
LB
502 if (flags & RENAME_EXCHANGE)
503 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
504
1da177e4
LT
505 if (!simple_empty(new_dentry))
506 return -ENOTEMPTY;
507
dea655c2 508 if (d_really_is_positive(new_dentry)) {
1da177e4 509 simple_unlink(new_dir, new_dentry);
841590ce 510 if (they_are_dirs) {
dea655c2 511 drop_nlink(d_inode(new_dentry));
9a53c3a7 512 drop_nlink(old_dir);
841590ce 513 }
1da177e4 514 } else if (they_are_dirs) {
9a53c3a7 515 drop_nlink(old_dir);
d8c76e6f 516 inc_nlink(new_dir);
1da177e4
LT
517 }
518
0c476792 519 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
1da177e4
LT
520 return 0;
521}
12f38872 522EXPORT_SYMBOL(simple_rename);
1da177e4 523
7bb46a67 524/**
eef2380c 525 * simple_setattr - setattr for simple filesystem
c1632a0f 526 * @idmap: idmap of the target mount
7bb46a67 527 * @dentry: dentry
528 * @iattr: iattr structure
529 *
530 * Returns 0 on success, -error on failure.
531 *
eef2380c
CH
532 * simple_setattr is a simple ->setattr implementation without a proper
533 * implementation of size changes.
534 *
535 * It can either be used for in-memory filesystems or special files
536 * on simple regular filesystems. Anything that needs to change on-disk
537 * or wire state on size changes needs its own setattr method.
7bb46a67 538 */
c1632a0f 539int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
549c7297 540 struct iattr *iattr)
7bb46a67 541{
dea655c2 542 struct inode *inode = d_inode(dentry);
7bb46a67 543 int error;
544
c1632a0f 545 error = setattr_prepare(idmap, dentry, iattr);
7bb46a67 546 if (error)
547 return error;
548
2c27c65e
CH
549 if (iattr->ia_valid & ATTR_SIZE)
550 truncate_setsize(inode, iattr->ia_size);
c1632a0f 551 setattr_copy(idmap, inode, iattr);
eef2380c
CH
552 mark_inode_dirty(inode);
553 return 0;
7bb46a67 554}
555EXPORT_SYMBOL(simple_setattr);
556
a77f580a 557static int simple_read_folio(struct file *file, struct folio *folio)
1da177e4 558{
a77f580a
MWO
559 folio_zero_range(folio, 0, folio_size(folio));
560 flush_dcache_folio(folio);
561 folio_mark_uptodate(folio);
562 folio_unlock(folio);
1da177e4
LT
563 return 0;
564}
565
afddba49 566int simple_write_begin(struct file *file, struct address_space *mapping,
9d6b0cd7 567 loff_t pos, unsigned len,
afddba49
NP
568 struct page **pagep, void **fsdata)
569{
570 struct page *page;
571 pgoff_t index;
afddba49 572
09cbfeaf 573 index = pos >> PAGE_SHIFT;
afddba49 574
b7446e7c 575 page = grab_cache_page_write_begin(mapping, index);
afddba49
NP
576 if (!page)
577 return -ENOMEM;
578
579 *pagep = page;
580
09cbfeaf
KS
581 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
582 unsigned from = pos & (PAGE_SIZE - 1);
193cf4b9 583
09cbfeaf 584 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
193cf4b9
BH
585 }
586 return 0;
afddba49 587}
12f38872 588EXPORT_SYMBOL(simple_write_begin);
afddba49 589
ad2a722f
BH
590/**
591 * simple_write_end - .write_end helper for non-block-device FSes
8e88bfba 592 * @file: See .write_end of address_space_operations
ad2a722f
BH
593 * @mapping: "
594 * @pos: "
595 * @len: "
596 * @copied: "
597 * @page: "
598 * @fsdata: "
599 *
600 * simple_write_end does the minimum needed for updating a page after writing is
601 * done. It has the same API signature as the .write_end of
602 * address_space_operations vector. So it can just be set onto .write_end for
603 * FSes that don't need any other processing. i_mutex is assumed to be held.
604 * Block based filesystems should use generic_write_end().
605 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
606 * is not called, so a filesystem that actually does store data in .write_inode
607 * should extend on what's done here with a call to mark_inode_dirty() in the
608 * case that i_size has changed.
04fff641 609 *
a77f580a 610 * Use *ONLY* with simple_read_folio()
ad2a722f 611 */
c1e3dbe9 612static int simple_write_end(struct file *file, struct address_space *mapping,
afddba49
NP
613 loff_t pos, unsigned len, unsigned copied,
614 struct page *page, void *fsdata)
615{
ad2a722f
BH
616 struct inode *inode = page->mapping->host;
617 loff_t last_pos = pos + copied;
afddba49
NP
618
619 /* zero the stale part of the page if we did a short copy */
04fff641
AV
620 if (!PageUptodate(page)) {
621 if (copied < len) {
622 unsigned from = pos & (PAGE_SIZE - 1);
afddba49 623
04fff641
AV
624 zero_user(page, from + copied, len - copied);
625 }
ad2a722f 626 SetPageUptodate(page);
04fff641 627 }
ad2a722f
BH
628 /*
629 * No need to use i_size_read() here, the i_size
630 * cannot change under us because we hold the i_mutex.
631 */
632 if (last_pos > inode->i_size)
633 i_size_write(inode, last_pos);
afddba49 634
ad2a722f 635 set_page_dirty(page);
afddba49 636 unlock_page(page);
09cbfeaf 637 put_page(page);
afddba49
NP
638
639 return copied;
640}
c1e3dbe9
CH
641
642/*
643 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
644 */
645const struct address_space_operations ram_aops = {
a77f580a 646 .read_folio = simple_read_folio,
c1e3dbe9
CH
647 .write_begin = simple_write_begin,
648 .write_end = simple_write_end,
46de8b97 649 .dirty_folio = noop_dirty_folio,
c1e3dbe9
CH
650};
651EXPORT_SYMBOL(ram_aops);
afddba49 652
1a1c9bb4
JL
653/*
654 * the inodes created here are not hashed. If you use iunique to generate
655 * unique inode values later for this filesystem, then you must take care
656 * to pass it an appropriate max_reserved value to avoid collisions.
657 */
7d683a09 658int simple_fill_super(struct super_block *s, unsigned long magic,
cda37124 659 const struct tree_descr *files)
1da177e4 660{
1da177e4
LT
661 struct inode *inode;
662 struct dentry *root;
663 struct dentry *dentry;
664 int i;
665
09cbfeaf
KS
666 s->s_blocksize = PAGE_SIZE;
667 s->s_blocksize_bits = PAGE_SHIFT;
1da177e4 668 s->s_magic = magic;
759b9775 669 s->s_op = &simple_super_operations;
1da177e4
LT
670 s->s_time_gran = 1;
671
672 inode = new_inode(s);
673 if (!inode)
674 return -ENOMEM;
1a1c9bb4
JL
675 /*
676 * because the root inode is 1, the files array must not contain an
677 * entry at index 1
678 */
679 inode->i_ino = 1;
1da177e4 680 inode->i_mode = S_IFDIR | 0755;
f7f43858 681 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1da177e4
LT
682 inode->i_op = &simple_dir_inode_operations;
683 inode->i_fop = &simple_dir_operations;
bfe86848 684 set_nlink(inode, 2);
48fde701
AV
685 root = d_make_root(inode);
686 if (!root)
1da177e4 687 return -ENOMEM;
1da177e4
LT
688 for (i = 0; !files->name || files->name[0]; i++, files++) {
689 if (!files->name)
690 continue;
1a1c9bb4
JL
691
692 /* warn if it tries to conflict with the root inode */
693 if (unlikely(i == 1))
694 printk(KERN_WARNING "%s: %s passed in a files array"
695 "with an index of 1!\n", __func__,
696 s->s_type->name);
697
1da177e4
LT
698 dentry = d_alloc_name(root, files->name);
699 if (!dentry)
700 goto out;
701 inode = new_inode(s);
32096ea1
KK
702 if (!inode) {
703 dput(dentry);
1da177e4 704 goto out;
32096ea1 705 }
1da177e4 706 inode->i_mode = S_IFREG | files->mode;
f7f43858 707 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1da177e4
LT
708 inode->i_fop = files->ops;
709 inode->i_ino = i;
710 d_add(dentry, inode);
711 }
712 s->s_root = root;
713 return 0;
714out:
715 d_genocide(root);
640946f2 716 shrink_dcache_parent(root);
1da177e4
LT
717 dput(root);
718 return -ENOMEM;
719}
12f38872 720EXPORT_SYMBOL(simple_fill_super);
1da177e4
LT
721
722static DEFINE_SPINLOCK(pin_fs_lock);
723
1f5ce9e9 724int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1da177e4
LT
725{
726 struct vfsmount *mnt = NULL;
727 spin_lock(&pin_fs_lock);
728 if (unlikely(!*mount)) {
729 spin_unlock(&pin_fs_lock);
1751e8a6 730 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1da177e4
LT
731 if (IS_ERR(mnt))
732 return PTR_ERR(mnt);
733 spin_lock(&pin_fs_lock);
734 if (!*mount)
735 *mount = mnt;
736 }
737 mntget(*mount);
738 ++*count;
739 spin_unlock(&pin_fs_lock);
740 mntput(mnt);
741 return 0;
742}
12f38872 743EXPORT_SYMBOL(simple_pin_fs);
1da177e4
LT
744
745void simple_release_fs(struct vfsmount **mount, int *count)
746{
747 struct vfsmount *mnt;
748 spin_lock(&pin_fs_lock);
749 mnt = *mount;
750 if (!--*count)
751 *mount = NULL;
752 spin_unlock(&pin_fs_lock);
753 mntput(mnt);
754}
12f38872 755EXPORT_SYMBOL(simple_release_fs);
1da177e4 756
6d1029b5
AM
757/**
758 * simple_read_from_buffer - copy data from the buffer to user space
759 * @to: the user space buffer to read to
760 * @count: the maximum number of bytes to read
761 * @ppos: the current position in the buffer
762 * @from: the buffer to read from
763 * @available: the size of the buffer
764 *
765 * The simple_read_from_buffer() function reads up to @count bytes from the
766 * buffer @from at offset @ppos into the user space address starting at @to.
767 *
768 * On success, the number of bytes read is returned and the offset @ppos is
769 * advanced by this number, or negative value is returned on error.
770 **/
1da177e4
LT
771ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
772 const void *from, size_t available)
773{
774 loff_t pos = *ppos;
14be2746
SR
775 size_t ret;
776
1da177e4
LT
777 if (pos < 0)
778 return -EINVAL;
14be2746 779 if (pos >= available || !count)
1da177e4
LT
780 return 0;
781 if (count > available - pos)
782 count = available - pos;
14be2746
SR
783 ret = copy_to_user(to, from + pos, count);
784 if (ret == count)
1da177e4 785 return -EFAULT;
14be2746 786 count -= ret;
1da177e4
LT
787 *ppos = pos + count;
788 return count;
789}
12f38872 790EXPORT_SYMBOL(simple_read_from_buffer);
1da177e4 791
6a727b43
JS
792/**
793 * simple_write_to_buffer - copy data from user space to the buffer
794 * @to: the buffer to write to
795 * @available: the size of the buffer
796 * @ppos: the current position in the buffer
797 * @from: the user space buffer to read from
798 * @count: the maximum number of bytes to read
799 *
800 * The simple_write_to_buffer() function reads up to @count bytes from the user
801 * space address starting at @from into the buffer @to at offset @ppos.
802 *
803 * On success, the number of bytes written is returned and the offset @ppos is
804 * advanced by this number, or negative value is returned on error.
805 **/
806ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
807 const void __user *from, size_t count)
808{
809 loff_t pos = *ppos;
810 size_t res;
811
812 if (pos < 0)
813 return -EINVAL;
814 if (pos >= available || !count)
815 return 0;
816 if (count > available - pos)
817 count = available - pos;
818 res = copy_from_user(to + pos, from, count);
819 if (res == count)
820 return -EFAULT;
821 count -= res;
822 *ppos = pos + count;
823 return count;
824}
12f38872 825EXPORT_SYMBOL(simple_write_to_buffer);
6a727b43 826
6d1029b5
AM
827/**
828 * memory_read_from_buffer - copy data from the buffer
829 * @to: the kernel space buffer to read to
830 * @count: the maximum number of bytes to read
831 * @ppos: the current position in the buffer
832 * @from: the buffer to read from
833 * @available: the size of the buffer
834 *
835 * The memory_read_from_buffer() function reads up to @count bytes from the
836 * buffer @from at offset @ppos into the kernel space address starting at @to.
837 *
838 * On success, the number of bytes read is returned and the offset @ppos is
839 * advanced by this number, or negative value is returned on error.
840 **/
93b07113
AM
841ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
842 const void *from, size_t available)
843{
844 loff_t pos = *ppos;
845
846 if (pos < 0)
847 return -EINVAL;
848 if (pos >= available)
849 return 0;
850 if (count > available - pos)
851 count = available - pos;
852 memcpy(to, from + pos, count);
853 *ppos = pos + count;
854
855 return count;
856}
12f38872 857EXPORT_SYMBOL(memory_read_from_buffer);
93b07113 858
1da177e4
LT
859/*
860 * Transaction based IO.
861 * The file expects a single write which triggers the transaction, and then
862 * possibly a read which collects the result - which is stored in a
863 * file-local buffer.
864 */
76791ab2
IM
865
866void simple_transaction_set(struct file *file, size_t n)
867{
868 struct simple_transaction_argresp *ar = file->private_data;
869
870 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
871
872 /*
873 * The barrier ensures that ar->size will really remain zero until
874 * ar->data is ready for reading.
875 */
876 smp_mb();
877 ar->size = n;
878}
12f38872 879EXPORT_SYMBOL(simple_transaction_set);
76791ab2 880
1da177e4
LT
881char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
882{
883 struct simple_transaction_argresp *ar;
884 static DEFINE_SPINLOCK(simple_transaction_lock);
885
886 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
887 return ERR_PTR(-EFBIG);
888
889 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
890 if (!ar)
891 return ERR_PTR(-ENOMEM);
892
893 spin_lock(&simple_transaction_lock);
894
895 /* only one write allowed per open */
896 if (file->private_data) {
897 spin_unlock(&simple_transaction_lock);
898 free_page((unsigned long)ar);
899 return ERR_PTR(-EBUSY);
900 }
901
902 file->private_data = ar;
903
904 spin_unlock(&simple_transaction_lock);
905
906 if (copy_from_user(ar->data, buf, size))
907 return ERR_PTR(-EFAULT);
908
909 return ar->data;
910}
12f38872 911EXPORT_SYMBOL(simple_transaction_get);
1da177e4
LT
912
913ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
914{
915 struct simple_transaction_argresp *ar = file->private_data;
916
917 if (!ar)
918 return 0;
919 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
920}
12f38872 921EXPORT_SYMBOL(simple_transaction_read);
1da177e4
LT
922
923int simple_transaction_release(struct inode *inode, struct file *file)
924{
925 free_page((unsigned long)file->private_data);
926 return 0;
927}
12f38872 928EXPORT_SYMBOL(simple_transaction_release);
1da177e4 929
acaefc25
AB
930/* Simple attribute files */
931
932struct simple_attr {
8b88b099
CH
933 int (*get)(void *, u64 *);
934 int (*set)(void *, u64);
acaefc25
AB
935 char get_buf[24]; /* enough to store a u64 and "\n\0" */
936 char set_buf[24];
937 void *data;
938 const char *fmt; /* format for read operation */
7cf34c76 939 struct mutex mutex; /* protects access to these buffers */
acaefc25
AB
940};
941
942/* simple_attr_open is called by an actual attribute open file operation
943 * to set the attribute specific access operations. */
944int simple_attr_open(struct inode *inode, struct file *file,
8b88b099 945 int (*get)(void *, u64 *), int (*set)(void *, u64),
acaefc25
AB
946 const char *fmt)
947{
948 struct simple_attr *attr;
949
a65cab7d 950 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
acaefc25
AB
951 if (!attr)
952 return -ENOMEM;
953
954 attr->get = get;
955 attr->set = set;
8e18e294 956 attr->data = inode->i_private;
acaefc25 957 attr->fmt = fmt;
7cf34c76 958 mutex_init(&attr->mutex);
acaefc25
AB
959
960 file->private_data = attr;
961
962 return nonseekable_open(inode, file);
963}
12f38872 964EXPORT_SYMBOL_GPL(simple_attr_open);
acaefc25 965
74bedc4d 966int simple_attr_release(struct inode *inode, struct file *file)
acaefc25
AB
967{
968 kfree(file->private_data);
969 return 0;
970}
12f38872 971EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
acaefc25
AB
972
973/* read from the buffer that is filled with the get function */
974ssize_t simple_attr_read(struct file *file, char __user *buf,
975 size_t len, loff_t *ppos)
976{
977 struct simple_attr *attr;
978 size_t size;
979 ssize_t ret;
980
981 attr = file->private_data;
982
983 if (!attr->get)
984 return -EACCES;
985
9261303a
CH
986 ret = mutex_lock_interruptible(&attr->mutex);
987 if (ret)
988 return ret;
989
a65cab7d
EB
990 if (*ppos && attr->get_buf[0]) {
991 /* continued read */
acaefc25 992 size = strlen(attr->get_buf);
a65cab7d
EB
993 } else {
994 /* first read */
8b88b099
CH
995 u64 val;
996 ret = attr->get(attr->data, &val);
997 if (ret)
998 goto out;
999
acaefc25 1000 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
8b88b099
CH
1001 attr->fmt, (unsigned long long)val);
1002 }
acaefc25
AB
1003
1004 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
8b88b099 1005out:
7cf34c76 1006 mutex_unlock(&attr->mutex);
acaefc25
AB
1007 return ret;
1008}
12f38872 1009EXPORT_SYMBOL_GPL(simple_attr_read);
acaefc25
AB
1010
1011/* interpret the buffer as a number to call the set function with */
2e41f274
AM
1012static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1013 size_t len, loff_t *ppos, bool is_signed)
acaefc25
AB
1014{
1015 struct simple_attr *attr;
488dac0c 1016 unsigned long long val;
acaefc25
AB
1017 size_t size;
1018 ssize_t ret;
1019
1020 attr = file->private_data;
acaefc25
AB
1021 if (!attr->set)
1022 return -EACCES;
1023
9261303a
CH
1024 ret = mutex_lock_interruptible(&attr->mutex);
1025 if (ret)
1026 return ret;
1027
acaefc25
AB
1028 ret = -EFAULT;
1029 size = min(sizeof(attr->set_buf) - 1, len);
1030 if (copy_from_user(attr->set_buf, buf, size))
1031 goto out;
1032
acaefc25 1033 attr->set_buf[size] = '\0';
2e41f274
AM
1034 if (is_signed)
1035 ret = kstrtoll(attr->set_buf, 0, &val);
1036 else
1037 ret = kstrtoull(attr->set_buf, 0, &val);
488dac0c
YY
1038 if (ret)
1039 goto out;
05cc0cee
WF
1040 ret = attr->set(attr->data, val);
1041 if (ret == 0)
1042 ret = len; /* on success, claim we got the whole input */
acaefc25 1043out:
7cf34c76 1044 mutex_unlock(&attr->mutex);
acaefc25
AB
1045 return ret;
1046}
2e41f274
AM
1047
1048ssize_t simple_attr_write(struct file *file, const char __user *buf,
1049 size_t len, loff_t *ppos)
1050{
1051 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1052}
12f38872 1053EXPORT_SYMBOL_GPL(simple_attr_write);
acaefc25 1054
2e41f274
AM
1055ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1056 size_t len, loff_t *ppos)
1057{
1058 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1059}
1060EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1061
2596110a
CH
1062/**
1063 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1064 * @sb: filesystem to do the file handle conversion on
1065 * @fid: file handle to convert
1066 * @fh_len: length of the file handle in bytes
1067 * @fh_type: type of file handle
1068 * @get_inode: filesystem callback to retrieve inode
1069 *
1070 * This function decodes @fid as long as it has one of the well-known
1071 * Linux filehandle types and calls @get_inode on it to retrieve the
1072 * inode for the object specified in the file handle.
1073 */
1074struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1075 int fh_len, int fh_type, struct inode *(*get_inode)
1076 (struct super_block *sb, u64 ino, u32 gen))
1077{
1078 struct inode *inode = NULL;
1079
1080 if (fh_len < 2)
1081 return NULL;
1082
1083 switch (fh_type) {
1084 case FILEID_INO32_GEN:
1085 case FILEID_INO32_GEN_PARENT:
1086 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1087 break;
1088 }
1089
4ea3ada2 1090 return d_obtain_alias(inode);
2596110a
CH
1091}
1092EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1093
1094/**
ca186830 1095 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
2596110a
CH
1096 * @sb: filesystem to do the file handle conversion on
1097 * @fid: file handle to convert
1098 * @fh_len: length of the file handle in bytes
1099 * @fh_type: type of file handle
1100 * @get_inode: filesystem callback to retrieve inode
1101 *
1102 * This function decodes @fid as long as it has one of the well-known
1103 * Linux filehandle types and calls @get_inode on it to retrieve the
1104 * inode for the _parent_ object specified in the file handle if it
1105 * is specified in the file handle, or NULL otherwise.
1106 */
1107struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1108 int fh_len, int fh_type, struct inode *(*get_inode)
1109 (struct super_block *sb, u64 ino, u32 gen))
1110{
1111 struct inode *inode = NULL;
1112
1113 if (fh_len <= 2)
1114 return NULL;
1115
1116 switch (fh_type) {
1117 case FILEID_INO32_GEN_PARENT:
1118 inode = get_inode(sb, fid->i32.parent_ino,
1119 (fh_len > 3 ? fid->i32.parent_gen : 0));
1120 break;
1121 }
1122
4ea3ada2 1123 return d_obtain_alias(inode);
2596110a
CH
1124}
1125EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1126
1b061d92 1127/**
ac13a829
FF
1128 * __generic_file_fsync - generic fsync implementation for simple filesystems
1129 *
1b061d92 1130 * @file: file to synchronize
ac13a829
FF
1131 * @start: start offset in bytes
1132 * @end: end offset in bytes (inclusive)
1b061d92
CH
1133 * @datasync: only synchronize essential metadata if true
1134 *
1135 * This is a generic implementation of the fsync method for simple
1136 * filesystems which track all non-inode metadata in the buffers list
1137 * hanging off the address_space structure.
1138 */
ac13a829
FF
1139int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1140 int datasync)
d5aacad5 1141{
7ea80859 1142 struct inode *inode = file->f_mapping->host;
d5aacad5
AV
1143 int err;
1144 int ret;
1145
383aa543 1146 err = file_write_and_wait_range(file, start, end);
02c24a82
JB
1147 if (err)
1148 return err;
1149
5955102c 1150 inode_lock(inode);
d5aacad5 1151 ret = sync_mapping_buffers(inode->i_mapping);
0ae45f63 1152 if (!(inode->i_state & I_DIRTY_ALL))
02c24a82 1153 goto out;
d5aacad5 1154 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
02c24a82 1155 goto out;
d5aacad5 1156
c3765016 1157 err = sync_inode_metadata(inode, 1);
d5aacad5
AV
1158 if (ret == 0)
1159 ret = err;
ac13a829 1160
02c24a82 1161out:
5955102c 1162 inode_unlock(inode);
383aa543
JL
1163 /* check and advance again to catch errors after syncing out buffers */
1164 err = file_check_and_advance_wb_err(file);
1165 if (ret == 0)
1166 ret = err;
1167 return ret;
d5aacad5 1168}
ac13a829
FF
1169EXPORT_SYMBOL(__generic_file_fsync);
1170
1171/**
1172 * generic_file_fsync - generic fsync implementation for simple filesystems
1173 * with flush
1174 * @file: file to synchronize
1175 * @start: start offset in bytes
1176 * @end: end offset in bytes (inclusive)
1177 * @datasync: only synchronize essential metadata if true
1178 *
1179 */
1180
1181int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1182 int datasync)
1183{
1184 struct inode *inode = file->f_mapping->host;
1185 int err;
1186
1187 err = __generic_file_fsync(file, start, end, datasync);
1188 if (err)
1189 return err;
c6bf3f0e 1190 return blkdev_issue_flush(inode->i_sb->s_bdev);
ac13a829 1191}
1b061d92
CH
1192EXPORT_SYMBOL(generic_file_fsync);
1193
30ca22c7
PL
1194/**
1195 * generic_check_addressable - Check addressability of file system
1196 * @blocksize_bits: log of file system block size
1197 * @num_blocks: number of blocks in file system
1198 *
1199 * Determine whether a file system with @num_blocks blocks (and a
1200 * block size of 2**@blocksize_bits) is addressable by the sector_t
1201 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1202 */
1203int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1204{
1205 u64 last_fs_block = num_blocks - 1;
a33f13ef 1206 u64 last_fs_page =
09cbfeaf 1207 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
30ca22c7
PL
1208
1209 if (unlikely(num_blocks == 0))
1210 return 0;
1211
09cbfeaf 1212 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
30ca22c7
PL
1213 return -EINVAL;
1214
a33f13ef
JB
1215 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1216 (last_fs_page > (pgoff_t)(~0ULL))) {
30ca22c7
PL
1217 return -EFBIG;
1218 }
1219 return 0;
1220}
1221EXPORT_SYMBOL(generic_check_addressable);
1222
1b061d92
CH
1223/*
1224 * No-op implementation of ->fsync for in-memory filesystems.
1225 */
02c24a82 1226int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1b061d92
CH
1227{
1228 return 0;
1229}
1b061d92 1230EXPORT_SYMBOL(noop_fsync);
87dc800b 1231
f44c7763
DW
1232ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1233{
1234 /*
1235 * iomap based filesystems support direct I/O without need for
1236 * this callback. However, it still needs to be set in
1237 * inode->a_ops so that open/fcntl know that direct I/O is
1238 * generally supported.
1239 */
1240 return -EINVAL;
1241}
1242EXPORT_SYMBOL_GPL(noop_direct_IO);
1243
fceef393
AV
1244/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1245void kfree_link(void *p)
87dc800b 1246{
fceef393 1247 kfree(p);
87dc800b 1248}
fceef393 1249EXPORT_SYMBOL(kfree_link);
6987843f 1250
6987843f
AV
1251struct inode *alloc_anon_inode(struct super_block *s)
1252{
1253 static const struct address_space_operations anon_aops = {
46de8b97 1254 .dirty_folio = noop_dirty_folio,
6987843f
AV
1255 };
1256 struct inode *inode = new_inode_pseudo(s);
1257
1258 if (!inode)
1259 return ERR_PTR(-ENOMEM);
1260
1261 inode->i_ino = get_next_ino();
1262 inode->i_mapping->a_ops = &anon_aops;
1263
1264 /*
1265 * Mark the inode dirty from the very beginning,
1266 * that way it will never be moved to the dirty
1267 * list because mark_inode_dirty() will think
1268 * that it already _is_ on the dirty list.
1269 */
1270 inode->i_state = I_DIRTY;
1271 inode->i_mode = S_IRUSR | S_IWUSR;
1272 inode->i_uid = current_fsuid();
1273 inode->i_gid = current_fsgid();
1274 inode->i_flags |= S_PRIVATE;
f7f43858 1275 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
6987843f
AV
1276 return inode;
1277}
1278EXPORT_SYMBOL(alloc_anon_inode);
1c994a09
JL
1279
1280/**
1281 * simple_nosetlease - generic helper for prohibiting leases
1282 * @filp: file pointer
1283 * @arg: type of lease to obtain
1284 * @flp: new lease supplied for insertion
e6f5c789 1285 * @priv: private data for lm_setup operation
1c994a09
JL
1286 *
1287 * Generic helper for filesystems that do not wish to allow leases to be set.
1288 * All arguments are ignored and it just returns -EINVAL.
1289 */
1290int
e6f5c789
JL
1291simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1292 void **priv)
1c994a09
JL
1293{
1294 return -EINVAL;
1295}
1296EXPORT_SYMBOL(simple_nosetlease);
61ba64fc 1297
6ee9706a
EB
1298/**
1299 * simple_get_link - generic helper to get the target of "fast" symlinks
1300 * @dentry: not used here
1301 * @inode: the symlink inode
1302 * @done: not used here
1303 *
1304 * Generic helper for filesystems to use for symlink inodes where a pointer to
1305 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1306 * since as an optimization the path lookup code uses any non-NULL ->i_link
1307 * directly, without calling ->get_link(). But ->get_link() still must be set,
1308 * to mark the inode_operations as being for a symlink.
1309 *
1310 * Return: the symlink target
1311 */
6b255391 1312const char *simple_get_link(struct dentry *dentry, struct inode *inode,
fceef393 1313 struct delayed_call *done)
61ba64fc 1314{
6b255391 1315 return inode->i_link;
61ba64fc 1316}
6b255391 1317EXPORT_SYMBOL(simple_get_link);
61ba64fc
AV
1318
1319const struct inode_operations simple_symlink_inode_operations = {
6b255391 1320 .get_link = simple_get_link,
61ba64fc
AV
1321};
1322EXPORT_SYMBOL(simple_symlink_inode_operations);
fbabfd0f
EB
1323
1324/*
1325 * Operations for a permanently empty directory.
1326 */
1327static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1328{
1329 return ERR_PTR(-ENOENT);
1330}
1331
b74d24f7 1332static int empty_dir_getattr(struct mnt_idmap *idmap,
549c7297 1333 const struct path *path, struct kstat *stat,
a528d35e 1334 u32 request_mask, unsigned int query_flags)
fbabfd0f 1335{
a528d35e 1336 struct inode *inode = d_inode(path->dentry);
b74d24f7 1337 generic_fillattr(&nop_mnt_idmap, inode, stat);
fbabfd0f
EB
1338 return 0;
1339}
1340
c1632a0f 1341static int empty_dir_setattr(struct mnt_idmap *idmap,
549c7297 1342 struct dentry *dentry, struct iattr *attr)
fbabfd0f
EB
1343{
1344 return -EPERM;
1345}
1346
fbabfd0f
EB
1347static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1348{
1349 return -EOPNOTSUPP;
1350}
1351
1352static const struct inode_operations empty_dir_inode_operations = {
1353 .lookup = empty_dir_lookup,
1354 .permission = generic_permission,
1355 .setattr = empty_dir_setattr,
1356 .getattr = empty_dir_getattr,
fbabfd0f
EB
1357 .listxattr = empty_dir_listxattr,
1358};
1359
1360static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1361{
1362 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1363 return generic_file_llseek_size(file, offset, whence, 2, 2);
1364}
1365
1366static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1367{
1368 dir_emit_dots(file, ctx);
1369 return 0;
1370}
1371
1372static const struct file_operations empty_dir_operations = {
1373 .llseek = empty_dir_llseek,
1374 .read = generic_read_dir,
c51da20c 1375 .iterate_shared = empty_dir_readdir,
fbabfd0f
EB
1376 .fsync = noop_fsync,
1377};
1378
1379
1380void make_empty_dir_inode(struct inode *inode)
1381{
1382 set_nlink(inode, 2);
1383 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1384 inode->i_uid = GLOBAL_ROOT_UID;
1385 inode->i_gid = GLOBAL_ROOT_GID;
1386 inode->i_rdev = 0;
4b75de86 1387 inode->i_size = 0;
fbabfd0f
EB
1388 inode->i_blkbits = PAGE_SHIFT;
1389 inode->i_blocks = 0;
1390
1391 inode->i_op = &empty_dir_inode_operations;
f5c24438 1392 inode->i_opflags &= ~IOP_XATTR;
fbabfd0f
EB
1393 inode->i_fop = &empty_dir_operations;
1394}
1395
1396bool is_empty_dir_inode(struct inode *inode)
1397{
1398 return (inode->i_fop == &empty_dir_operations) &&
1399 (inode->i_op == &empty_dir_inode_operations);
1400}
c843843e 1401
5298d4bf 1402#if IS_ENABLED(CONFIG_UNICODE)
c843843e
DR
1403/*
1404 * Determine if the name of a dentry should be casefolded.
1405 *
1406 * Return: if names will need casefolding
1407 */
1408static bool needs_casefold(const struct inode *dir)
1409{
1410 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1411}
1412
1413/**
1414 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1415 * @dentry: dentry whose name we are checking against
1416 * @len: len of name of dentry
1417 * @str: str pointer to name of dentry
1418 * @name: Name to compare against
1419 *
1420 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1421 */
794c43f7
EB
1422static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1423 const char *str, const struct qstr *name)
c843843e
DR
1424{
1425 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1426 const struct inode *dir = READ_ONCE(parent->d_inode);
1427 const struct super_block *sb = dentry->d_sb;
1428 const struct unicode_map *um = sb->s_encoding;
1429 struct qstr qstr = QSTR_INIT(str, len);
1430 char strbuf[DNAME_INLINE_LEN];
1431 int ret;
1432
1433 if (!dir || !needs_casefold(dir))
1434 goto fallback;
1435 /*
1436 * If the dentry name is stored in-line, then it may be concurrently
1437 * modified by a rename. If this happens, the VFS will eventually retry
1438 * the lookup, so it doesn't matter what ->d_compare() returns.
1439 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1440 * string. Therefore, we have to copy the name into a temporary buffer.
1441 */
1442 if (len <= DNAME_INLINE_LEN - 1) {
1443 memcpy(strbuf, str, len);
1444 strbuf[len] = 0;
1445 qstr.name = strbuf;
1446 /* prevent compiler from optimizing out the temporary buffer */
1447 barrier();
1448 }
1449 ret = utf8_strncasecmp(um, name, &qstr);
1450 if (ret >= 0)
1451 return ret;
1452
1453 if (sb_has_strict_encoding(sb))
1454 return -EINVAL;
1455fallback:
1456 if (len != name->len)
1457 return 1;
1458 return !!memcmp(str, name->name, len);
1459}
c843843e
DR
1460
1461/**
1462 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1463 * @dentry: dentry of the parent directory
1464 * @str: qstr of name whose hash we should fill in
1465 *
1466 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1467 */
794c43f7 1468static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
c843843e
DR
1469{
1470 const struct inode *dir = READ_ONCE(dentry->d_inode);
1471 struct super_block *sb = dentry->d_sb;
1472 const struct unicode_map *um = sb->s_encoding;
1473 int ret = 0;
1474
1475 if (!dir || !needs_casefold(dir))
1476 return 0;
1477
1478 ret = utf8_casefold_hash(um, dentry, str);
1479 if (ret < 0 && sb_has_strict_encoding(sb))
1480 return -EINVAL;
1481 return 0;
1482}
608af703
DR
1483
1484static const struct dentry_operations generic_ci_dentry_ops = {
1485 .d_hash = generic_ci_d_hash,
1486 .d_compare = generic_ci_d_compare,
1487};
1488#endif
1489
1490#ifdef CONFIG_FS_ENCRYPTION
1491static const struct dentry_operations generic_encrypted_dentry_ops = {
1492 .d_revalidate = fscrypt_d_revalidate,
1493};
1494#endif
1495
5298d4bf 1496#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
608af703
DR
1497static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1498 .d_hash = generic_ci_d_hash,
1499 .d_compare = generic_ci_d_compare,
1500 .d_revalidate = fscrypt_d_revalidate,
1501};
1502#endif
1503
1504/**
1505 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1506 * @dentry: dentry to set ops on
1507 *
1508 * Casefolded directories need d_hash and d_compare set, so that the dentries
1509 * contained in them are handled case-insensitively. Note that these operations
1510 * are needed on the parent directory rather than on the dentries in it, and
1511 * while the casefolding flag can be toggled on and off on an empty directory,
1512 * dentry_operations can't be changed later. As a result, if the filesystem has
1513 * casefolding support enabled at all, we have to give all dentries the
1514 * casefolding operations even if their inode doesn't have the casefolding flag
1515 * currently (and thus the casefolding ops would be no-ops for now).
1516 *
1517 * Encryption works differently in that the only dentry operation it needs is
1518 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1519 * The no-key flag can't be set "later", so we don't have to worry about that.
1520 *
1521 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1522 * with certain dentry operations) and to avoid taking an unnecessary
1523 * performance hit, we use custom dentry_operations for each possible
1524 * combination rather than always installing all operations.
1525 */
1526void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1527{
1528#ifdef CONFIG_FS_ENCRYPTION
1529 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1530#endif
5298d4bf 1531#if IS_ENABLED(CONFIG_UNICODE)
608af703
DR
1532 bool needs_ci_ops = dentry->d_sb->s_encoding;
1533#endif
5298d4bf 1534#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
608af703
DR
1535 if (needs_encrypt_ops && needs_ci_ops) {
1536 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1537 return;
1538 }
c843843e 1539#endif
608af703
DR
1540#ifdef CONFIG_FS_ENCRYPTION
1541 if (needs_encrypt_ops) {
1542 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1543 return;
1544 }
1545#endif
5298d4bf 1546#if IS_ENABLED(CONFIG_UNICODE)
608af703
DR
1547 if (needs_ci_ops) {
1548 d_set_d_op(dentry, &generic_ci_dentry_ops);
1549 return;
1550 }
1551#endif
1552}
1553EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
5ca14835
AM
1554
1555/**
1556 * inode_maybe_inc_iversion - increments i_version
1557 * @inode: inode with the i_version that should be updated
1558 * @force: increment the counter even if it's not necessary?
1559 *
1560 * Every time the inode is modified, the i_version field must be seen to have
1561 * changed by any observer.
1562 *
1563 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1564 * the value, and clear the queried flag.
1565 *
1566 * In the common case where neither is set, then we can return "false" without
1567 * updating i_version.
1568 *
1569 * If this function returns false, and no other metadata has changed, then we
1570 * can avoid logging the metadata.
1571 */
1572bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1573{
1574 u64 cur, new;
1575
1576 /*
1577 * The i_version field is not strictly ordered with any other inode
1578 * information, but the legacy inode_inc_iversion code used a spinlock
1579 * to serialize increments.
1580 *
1581 * Here, we add full memory barriers to ensure that any de-facto
1582 * ordering with other info is preserved.
1583 *
1584 * This barrier pairs with the barrier in inode_query_iversion()
1585 */
1586 smp_mb();
1587 cur = inode_peek_iversion_raw(inode);
1588 do {
1589 /* If flag is clear then we needn't do anything */
1590 if (!force && !(cur & I_VERSION_QUERIED))
1591 return false;
1592
1593 /* Since lowest bit is flag, add 2 to avoid it */
1594 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1595 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1596 return true;
1597}
1598EXPORT_SYMBOL(inode_maybe_inc_iversion);
c5bc1b3f
JL
1599
1600/**
1601 * inode_query_iversion - read i_version for later use
1602 * @inode: inode from which i_version should be read
1603 *
1604 * Read the inode i_version counter. This should be used by callers that wish
1605 * to store the returned i_version for later comparison. This will guarantee
1606 * that a later query of the i_version will result in a different value if
1607 * anything has changed.
1608 *
1609 * In this implementation, we fetch the current value, set the QUERIED flag and
1610 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1611 * that fails, we try again with the newly fetched value from the cmpxchg.
1612 */
1613u64 inode_query_iversion(struct inode *inode)
1614{
1615 u64 cur, new;
1616
1617 cur = inode_peek_iversion_raw(inode);
1618 do {
1619 /* If flag is already set, then no need to swap */
1620 if (cur & I_VERSION_QUERIED) {
1621 /*
1622 * This barrier (and the implicit barrier in the
1623 * cmpxchg below) pairs with the barrier in
1624 * inode_maybe_inc_iversion().
1625 */
1626 smp_mb();
1627 break;
1628 }
1629
1630 new = cur | I_VERSION_QUERIED;
1631 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1632 return cur >> I_VERSION_QUERIED_SHIFT;
1633}
1634EXPORT_SYMBOL(inode_query_iversion);
44fff0fa
CH
1635
1636ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1637 ssize_t direct_written, ssize_t buffered_written)
1638{
1639 struct address_space *mapping = iocb->ki_filp->f_mapping;
1640 loff_t pos = iocb->ki_pos - buffered_written;
1641 loff_t end = iocb->ki_pos - 1;
1642 int err;
1643
1644 /*
1645 * If the buffered write fallback returned an error, we want to return
1646 * the number of bytes which were written by direct I/O, or the error
1647 * code if that was zero.
1648 *
1649 * Note that this differs from normal direct-io semantics, which will
1650 * return -EFOO even if some bytes were written.
1651 */
1652 if (unlikely(buffered_written < 0)) {
1653 if (direct_written)
1654 return direct_written;
1655 return buffered_written;
1656 }
1657
1658 /*
1659 * We need to ensure that the page cache pages are written to disk and
1660 * invalidated to preserve the expected O_DIRECT semantics.
1661 */
1662 err = filemap_write_and_wait_range(mapping, pos, end);
1663 if (err < 0) {
1664 /*
1665 * We don't know how much we wrote, so just return the number of
1666 * bytes which were direct-written
1667 */
1668 if (direct_written)
1669 return direct_written;
1670 return err;
1671 }
1672 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1673 return direct_written + buffered_written;
1674}
1675EXPORT_SYMBOL_GPL(direct_write_fallback);