fs: make helpers idmap mount aware
[linux-2.6-block.git] / fs / kernfs / dir.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
b8441ed2
TH
2/*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
b8441ed2 8 */
fd7b9f7b 9
abd54f02 10#include <linux/sched.h>
fd7b9f7b
TH
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
a797bfc3 20DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
21static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
7d35079f 23static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
17627157
KK
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
46
3eef34ad
TH
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48}
49
9f6df573
AK
50/* kernfs_node_depth - compute depth from @from to @to */
51static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
3eef34ad 52{
9f6df573 53 size_t depth = 0;
3eef34ad 54
9f6df573
AK
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
58 }
59 return depth;
60}
3eef34ad 61
9f6df573
AK
62static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
64{
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67
68 if (ra != rb)
69 return NULL;
70
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
73
74 while (da > db) {
75 a = a->parent;
76 da--;
77 }
78 while (db > da) {
79 b = b->parent;
80 db--;
81 }
82
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
87 }
88
89 return a;
90}
91
92/**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
99 *
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
105 *
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
115 *
17627157
KK
116 * [3] when @kn_to is NULL result will be "(null)"
117 *
3abb1d90
TH
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
9f6df573
AK
121 */
122static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
125{
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
3abb1d90
TH
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
9f6df573 130
17627157
KK
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
133
9f6df573
AK
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
136
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
139
bbe70e4e
JJB
140 if (!buf)
141 return -EINVAL;
142
9f6df573
AK
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
3abb1d90 145 return -EINVAL;
9f6df573
AK
146
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
149
bbe70e4e 150 buf[0] = '\0';
9f6df573
AK
151
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
155
156 /* Calculate how many bytes we need for the rest */
3abb1d90
TH
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
159 kn = kn->parent;
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
9f6df573 164 }
3eef34ad 165
3abb1d90 166 return len;
3eef34ad
TH
167}
168
169/**
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
174 *
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 *
17627157
KK
179 * Fills buffer with "(null)" if @kn is NULL.
180 *
3eef34ad
TH
181 * This function can be called from any context.
182 */
183int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184{
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 return ret;
192}
193
9f6df573
AK
194/**
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
200 *
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
204 * returned.
205 *
3abb1d90
TH
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
9f6df573
AK
209 */
210int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
212{
213 unsigned long flags;
214 int ret;
215
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 return ret;
220}
221EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222
3eef34ad
TH
223/**
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
226 *
227 * This function can be called from any context.
228 */
229void pr_cont_kernfs_name(struct kernfs_node *kn)
230{
231 unsigned long flags;
232
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
234
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
237
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239}
240
241/**
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
244 *
245 * This function can be called from any context.
246 */
247void pr_cont_kernfs_path(struct kernfs_node *kn)
248{
249 unsigned long flags;
9f6df573 250 int sz;
3eef34ad
TH
251
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
253
9f6df573
AK
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
256 if (sz < 0) {
257 pr_cont("(error)");
258 goto out;
259 }
260
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
263 goto out;
264 }
265
266 pr_cont("%s", kernfs_pr_cont_buf);
3eef34ad 267
9f6df573 268out:
3eef34ad
TH
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270}
271
272/**
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
275 *
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
278 */
279struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280{
281 struct kernfs_node *parent;
282 unsigned long flags;
283
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 parent = kn->parent;
286 kernfs_get(parent);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288
289 return parent;
290}
291
fd7b9f7b 292/**
c637b8ac 293 * kernfs_name_hash
fd7b9f7b
TH
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
296 *
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 */
c637b8ac 299static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b 300{
8387ff25 301 unsigned long hash = init_name_hash(ns);
fd7b9f7b
TH
302 unsigned int len = strlen(name);
303 while (len--)
304 hash = partial_name_hash(*name++, hash);
8387ff25 305 hash = end_name_hash(hash);
fd7b9f7b
TH
306 hash &= 0x7fffffffU;
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 308 if (hash < 2)
fd7b9f7b
TH
309 hash += 2;
310 if (hash >= INT_MAX)
311 hash = INT_MAX - 1;
312 return hash;
313}
314
c637b8ac
TH
315static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 317{
72392ed0
RV
318 if (hash < kn->hash)
319 return -1;
320 if (hash > kn->hash)
321 return 1;
322 if (ns < kn->ns)
323 return -1;
324 if (ns > kn->ns)
325 return 1;
adc5e8b5 326 return strcmp(name, kn->name);
fd7b9f7b
TH
327}
328
c637b8ac
TH
329static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
fd7b9f7b 331{
c637b8ac 332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
333}
334
335/**
c637b8ac 336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 337 * @kn: kernfs_node of interest
fd7b9f7b 338 *
324a56e1 339 * Link @kn into its sibling rbtree which starts from
adc5e8b5 340 * @kn->parent->dir.children.
fd7b9f7b
TH
341 *
342 * Locking:
a797bfc3 343 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
344 *
345 * RETURNS:
346 * 0 on susccess -EEXIST on failure.
347 */
c637b8ac 348static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 349{
adc5e8b5 350 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
351 struct rb_node *parent = NULL;
352
fd7b9f7b 353 while (*node) {
324a56e1 354 struct kernfs_node *pos;
fd7b9f7b
TH
355 int result;
356
324a56e1 357 pos = rb_to_kn(*node);
fd7b9f7b 358 parent = *node;
c637b8ac 359 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 360 if (result < 0)
adc5e8b5 361 node = &pos->rb.rb_left;
fd7b9f7b 362 else if (result > 0)
adc5e8b5 363 node = &pos->rb.rb_right;
fd7b9f7b
TH
364 else
365 return -EEXIST;
366 }
c1befb88 367
fd7b9f7b 368 /* add new node and rebalance the tree */
adc5e8b5
TH
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
371
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
375
fd7b9f7b
TH
376 return 0;
377}
378
379/**
c637b8ac 380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 381 * @kn: kernfs_node of interest
fd7b9f7b 382 *
35beab06
TH
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
386 *
387 * Locking:
a797bfc3 388 * mutex_lock(kernfs_mutex)
fd7b9f7b 389 */
35beab06 390static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 391{
35beab06
TH
392 if (RB_EMPTY_NODE(&kn->rb))
393 return false;
394
df23fc39 395 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 396 kn->parent->dir.subdirs--;
fd7b9f7b 397
adc5e8b5 398 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
399 RB_CLEAR_NODE(&kn->rb);
400 return true;
fd7b9f7b
TH
401}
402
403/**
c637b8ac 404 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 405 * @kn: kernfs_node to get an active reference to
fd7b9f7b 406 *
324a56e1 407 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
408 * is NULL.
409 *
410 * RETURNS:
324a56e1 411 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 412 */
c637b8ac 413struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 414{
324a56e1 415 if (unlikely(!kn))
fd7b9f7b
TH
416 return NULL;
417
f4b3e631
GKH
418 if (!atomic_inc_unless_negative(&kn->active))
419 return NULL;
895a068a 420
182fd64b 421 if (kernfs_lockdep(kn))
f4b3e631
GKH
422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 return kn;
fd7b9f7b
TH
424}
425
426/**
c637b8ac 427 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 428 * @kn: kernfs_node to put an active reference to
fd7b9f7b 429 *
324a56e1 430 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
431 * is NULL.
432 */
c637b8ac 433void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b
TH
434{
435 int v;
436
324a56e1 437 if (unlikely(!kn))
fd7b9f7b
TH
438 return;
439
182fd64b 440 if (kernfs_lockdep(kn))
5facae4f 441 rwsem_release(&kn->dep_map, _RET_IP_);
adc5e8b5 442 v = atomic_dec_return(&kn->active);
df23fc39 443 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
444 return;
445
2fd60da4 446 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
fd7b9f7b
TH
447}
448
449/**
81c173cb
TH
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
fd7b9f7b 452 *
81c173cb
TH
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
fd7b9f7b 456 */
81c173cb 457static void kernfs_drain(struct kernfs_node *kn)
35beab06 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 459{
abd54f02 460 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 461
35beab06 462 lockdep_assert_held(&kernfs_mutex);
81c173cb 463 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 464
35beab06 465 mutex_unlock(&kernfs_mutex);
abd54f02 466
182fd64b 467 if (kernfs_lockdep(kn)) {
35beab06
TH
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
abd54f02 472
35beab06 473 /* but everyone should wait for draining */
abd54f02
TH
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 476
182fd64b 477 if (kernfs_lockdep(kn)) {
a6607930 478 lock_acquired(&kn->dep_map, _RET_IP_);
5facae4f 479 rwsem_release(&kn->dep_map, _RET_IP_);
a6607930 480 }
35beab06 481
0e67db2f 482 kernfs_drain_open_files(kn);
ccf02aaf 483
35beab06 484 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
485}
486
fd7b9f7b 487/**
324a56e1
TH
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
fd7b9f7b 490 */
324a56e1 491void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 492{
324a56e1 493 if (kn) {
adc5e8b5
TH
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
fd7b9f7b
TH
496 }
497}
498EXPORT_SYMBOL_GPL(kernfs_get);
499
500/**
324a56e1
TH
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
fd7b9f7b 503 *
324a56e1 504 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 505 */
324a56e1 506void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 507{
324a56e1 508 struct kernfs_node *parent;
ba7443bc 509 struct kernfs_root *root;
fd7b9f7b 510
adc5e8b5 511 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 512 return;
324a56e1 513 root = kernfs_root(kn);
fd7b9f7b 514 repeat:
81c173cb
TH
515 /*
516 * Moving/renaming is always done while holding reference.
adc5e8b5 517 * kn->parent won't change beneath us.
fd7b9f7b 518 */
adc5e8b5 519 parent = kn->parent;
fd7b9f7b 520
81c173cb
TH
521 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
523 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 524
df23fc39 525 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 526 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
527
528 kfree_const(kn->name);
529
adc5e8b5 530 if (kn->iattr) {
adc5e8b5 531 simple_xattrs_free(&kn->iattr->xattrs);
26e28d68 532 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
2322392b 533 }
7d35079f 534 spin_lock(&kernfs_idr_lock);
40430452 535 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
7d35079f 536 spin_unlock(&kernfs_idr_lock);
a797bfc3 537 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 538
324a56e1
TH
539 kn = parent;
540 if (kn) {
adc5e8b5 541 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
542 goto repeat;
543 } else {
324a56e1 544 /* just released the root kn, free @root too */
7d35079f 545 idr_destroy(&root->ino_idr);
ba7443bc
TH
546 kfree(root);
547 }
fd7b9f7b
TH
548}
549EXPORT_SYMBOL_GPL(kernfs_put);
550
c637b8ac 551static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 552{
324a56e1 553 struct kernfs_node *kn;
fd7b9f7b
TH
554
555 if (flags & LOOKUP_RCU)
556 return -ECHILD;
557
19bbb926 558 /* Always perform fresh lookup for negatives */
2b0143b5 559 if (d_really_is_negative(dentry))
19bbb926
TH
560 goto out_bad_unlocked;
561
319ba91d 562 kn = kernfs_dentry_node(dentry);
a797bfc3 563 mutex_lock(&kernfs_mutex);
fd7b9f7b 564
81c173cb
TH
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn))
fd7b9f7b
TH
567 goto out_bad;
568
c637b8ac 569 /* The kernfs node has been moved? */
319ba91d 570 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
fd7b9f7b
TH
571 goto out_bad;
572
c637b8ac 573 /* The kernfs node has been renamed */
adc5e8b5 574 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
575 goto out_bad;
576
c637b8ac 577 /* The kernfs node has been moved to a different namespace */
adc5e8b5 578 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 579 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
580 goto out_bad;
581
a797bfc3 582 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
583 return 1;
584out_bad:
a797bfc3 585 mutex_unlock(&kernfs_mutex);
19bbb926 586out_bad_unlocked:
fd7b9f7b
TH
587 return 0;
588}
589
a797bfc3 590const struct dentry_operations kernfs_dops = {
c637b8ac 591 .d_revalidate = kernfs_dop_revalidate,
fd7b9f7b
TH
592};
593
0c23b225
TH
594/**
595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
596 * @dentry: the dentry in question
597 *
598 * Return the kernfs_node associated with @dentry. If @dentry is not a
599 * kernfs one, %NULL is returned.
600 *
601 * While the returned kernfs_node will stay accessible as long as @dentry
602 * is accessible, the returned node can be in any state and the caller is
603 * fully responsible for determining what's accessible.
604 */
605struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
606{
0288e7fa 607 if (dentry->d_sb->s_op == &kernfs_sops)
319ba91d 608 return kernfs_dentry_node(dentry);
0c23b225
TH
609 return NULL;
610}
611
db4aad20 612static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
e19dfdc8 613 struct kernfs_node *parent,
db4aad20 614 const char *name, umode_t mode,
488dee96 615 kuid_t uid, kgid_t gid,
db4aad20 616 unsigned flags)
fd7b9f7b 617{
324a56e1 618 struct kernfs_node *kn;
40430452 619 u32 id_highbits;
bc755553 620 int ret;
fd7b9f7b 621
dfeb0750
TH
622 name = kstrdup_const(name, GFP_KERNEL);
623 if (!name)
624 return NULL;
fd7b9f7b 625
a797bfc3 626 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 627 if (!kn)
fd7b9f7b
TH
628 goto err_out1;
629
7d35079f
SL
630 idr_preload(GFP_KERNEL);
631 spin_lock(&kernfs_idr_lock);
4a3ef68a 632 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
40430452
TH
633 if (ret >= 0 && ret < root->last_id_lowbits)
634 root->id_highbits++;
635 id_highbits = root->id_highbits;
636 root->last_id_lowbits = ret;
7d35079f
SL
637 spin_unlock(&kernfs_idr_lock);
638 idr_preload_end();
bc755553 639 if (ret < 0)
fd7b9f7b 640 goto err_out2;
67c0496e 641
40430452 642 kn->id = (u64)id_highbits << 32 | ret;
fd7b9f7b 643
b680b081 644 atomic_set(&kn->count, 1);
81c173cb 645 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 646 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 647
adc5e8b5
TH
648 kn->name = name;
649 kn->mode = mode;
81c173cb 650 kn->flags = flags;
fd7b9f7b 651
488dee96
DT
652 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
653 struct iattr iattr = {
654 .ia_valid = ATTR_UID | ATTR_GID,
655 .ia_uid = uid,
656 .ia_gid = gid,
657 };
658
659 ret = __kernfs_setattr(kn, &iattr);
660 if (ret < 0)
661 goto err_out3;
662 }
663
e19dfdc8
OM
664 if (parent) {
665 ret = security_kernfs_init_security(parent, kn);
666 if (ret)
667 goto err_out3;
668 }
669
324a56e1 670 return kn;
fd7b9f7b 671
488dee96 672 err_out3:
40430452 673 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
fd7b9f7b 674 err_out2:
a797bfc3 675 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 676 err_out1:
dfeb0750 677 kfree_const(name);
fd7b9f7b
TH
678 return NULL;
679}
680
db4aad20
TH
681struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
682 const char *name, umode_t mode,
488dee96 683 kuid_t uid, kgid_t gid,
db4aad20
TH
684 unsigned flags)
685{
686 struct kernfs_node *kn;
687
e19dfdc8 688 kn = __kernfs_new_node(kernfs_root(parent), parent,
488dee96 689 name, mode, uid, gid, flags);
db4aad20
TH
690 if (kn) {
691 kernfs_get(parent);
692 kn->parent = parent;
693 }
694 return kn;
695}
696
ba16b284 697/*
fe0f726c 698 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
ba16b284 699 * @root: the kernfs root
fe0f726c
TH
700 * @id: the target node id
701 *
702 * @id's lower 32bits encode ino and upper gen. If the gen portion is
703 * zero, all generations are matched.
ba16b284
SL
704 *
705 * RETURNS:
706 * NULL on failure. Return a kernfs node with reference counter incremented
707 */
fe0f726c
TH
708struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
709 u64 id)
ba16b284
SL
710{
711 struct kernfs_node *kn;
fe0f726c
TH
712 ino_t ino = kernfs_id_ino(id);
713 u32 gen = kernfs_id_gen(id);
ba16b284 714
b680b081
TH
715 spin_lock(&kernfs_idr_lock);
716
40430452 717 kn = idr_find(&root->ino_idr, (u32)ino);
ba16b284 718 if (!kn)
b680b081 719 goto err_unlock;
ba16b284 720
40430452
TH
721 if (sizeof(ino_t) >= sizeof(u64)) {
722 /* we looked up with the low 32bits, compare the whole */
723 if (kernfs_ino(kn) != ino)
724 goto err_unlock;
725 } else {
726 /* 0 matches all generations */
727 if (unlikely(gen && kernfs_gen(kn) != gen))
728 goto err_unlock;
729 }
fe0f726c 730
880df131
TH
731 /*
732 * ACTIVATED is protected with kernfs_mutex but it was clear when
733 * @kn was added to idr and we just wanna see it set. No need to
734 * grab kernfs_mutex.
735 */
736 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
737 !atomic_inc_not_zero(&kn->count)))
b680b081 738 goto err_unlock;
ba16b284 739
b680b081 740 spin_unlock(&kernfs_idr_lock);
ba16b284 741 return kn;
b680b081
TH
742err_unlock:
743 spin_unlock(&kernfs_idr_lock);
ba16b284
SL
744 return NULL;
745}
746
fd7b9f7b 747/**
c637b8ac 748 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 749 * @kn: kernfs_node to be added
fd7b9f7b 750 *
db4aad20
TH
751 * The caller must already have initialized @kn->parent. This
752 * function increments nlink of the parent's inode if @kn is a
753 * directory and link into the children list of the parent.
fd7b9f7b 754 *
fd7b9f7b
TH
755 * RETURNS:
756 * 0 on success, -EEXIST if entry with the given name already
757 * exists.
758 */
988cd7af 759int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 760{
db4aad20 761 struct kernfs_node *parent = kn->parent;
c525aadd 762 struct kernfs_iattrs *ps_iattr;
988cd7af 763 bool has_ns;
fd7b9f7b
TH
764 int ret;
765
988cd7af
TH
766 mutex_lock(&kernfs_mutex);
767
768 ret = -EINVAL;
769 has_ns = kernfs_ns_enabled(parent);
770 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
771 has_ns ? "required" : "invalid", parent->name, kn->name))
772 goto out_unlock;
fd7b9f7b 773
df23fc39 774 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 775 goto out_unlock;
fd7b9f7b 776
988cd7af 777 ret = -ENOENT;
ea015218
EB
778 if (parent->flags & KERNFS_EMPTY_DIR)
779 goto out_unlock;
780
d35258ef 781 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 782 goto out_unlock;
798c75a0 783
c637b8ac 784 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 785
c637b8ac 786 ret = kernfs_link_sibling(kn);
fd7b9f7b 787 if (ret)
988cd7af 788 goto out_unlock;
fd7b9f7b
TH
789
790 /* Update timestamps on the parent */
adc5e8b5 791 ps_iattr = parent->iattr;
fd7b9f7b 792 if (ps_iattr) {
05895219
OM
793 ktime_get_real_ts64(&ps_iattr->ia_ctime);
794 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
fd7b9f7b
TH
795 }
796
d35258ef
TH
797 mutex_unlock(&kernfs_mutex);
798
799 /*
800 * Activate the new node unless CREATE_DEACTIVATED is requested.
801 * If not activated here, the kernfs user is responsible for
802 * activating the node with kernfs_activate(). A node which hasn't
803 * been activated is not visible to userland and its removal won't
804 * trigger deactivation.
805 */
806 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
807 kernfs_activate(kn);
808 return 0;
809
988cd7af 810out_unlock:
a797bfc3 811 mutex_unlock(&kernfs_mutex);
988cd7af 812 return ret;
fd7b9f7b
TH
813}
814
815/**
324a56e1
TH
816 * kernfs_find_ns - find kernfs_node with the given name
817 * @parent: kernfs_node to search under
fd7b9f7b
TH
818 * @name: name to look for
819 * @ns: the namespace tag to use
820 *
324a56e1
TH
821 * Look for kernfs_node with name @name under @parent. Returns pointer to
822 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 823 */
324a56e1
TH
824static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
825 const unsigned char *name,
826 const void *ns)
fd7b9f7b 827{
adc5e8b5 828 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 829 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
830 unsigned int hash;
831
a797bfc3 832 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
833
834 if (has_ns != (bool)ns) {
c637b8ac 835 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 836 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
837 return NULL;
838 }
839
c637b8ac 840 hash = kernfs_name_hash(name, ns);
fd7b9f7b 841 while (node) {
324a56e1 842 struct kernfs_node *kn;
fd7b9f7b
TH
843 int result;
844
324a56e1 845 kn = rb_to_kn(node);
c637b8ac 846 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
847 if (result < 0)
848 node = node->rb_left;
849 else if (result > 0)
850 node = node->rb_right;
851 else
324a56e1 852 return kn;
fd7b9f7b
TH
853 }
854 return NULL;
855}
856
bd96f76a
TH
857static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
858 const unsigned char *path,
859 const void *ns)
860{
e56ed358
TH
861 size_t len;
862 char *p, *name;
bd96f76a
TH
863
864 lockdep_assert_held(&kernfs_mutex);
865
e56ed358
TH
866 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
867 spin_lock_irq(&kernfs_rename_lock);
868
869 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
870
871 if (len >= sizeof(kernfs_pr_cont_buf)) {
872 spin_unlock_irq(&kernfs_rename_lock);
bd96f76a 873 return NULL;
e56ed358
TH
874 }
875
876 p = kernfs_pr_cont_buf;
bd96f76a
TH
877
878 while ((name = strsep(&p, "/")) && parent) {
879 if (*name == '\0')
880 continue;
881 parent = kernfs_find_ns(parent, name, ns);
882 }
883
e56ed358
TH
884 spin_unlock_irq(&kernfs_rename_lock);
885
bd96f76a
TH
886 return parent;
887}
888
fd7b9f7b 889/**
324a56e1
TH
890 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
891 * @parent: kernfs_node to search under
fd7b9f7b
TH
892 * @name: name to look for
893 * @ns: the namespace tag to use
894 *
324a56e1 895 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 896 * if found. This function may sleep and returns pointer to the found
324a56e1 897 * kernfs_node on success, %NULL on failure.
fd7b9f7b 898 */
324a56e1
TH
899struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
900 const char *name, const void *ns)
fd7b9f7b 901{
324a56e1 902 struct kernfs_node *kn;
fd7b9f7b 903
a797bfc3 904 mutex_lock(&kernfs_mutex);
324a56e1
TH
905 kn = kernfs_find_ns(parent, name, ns);
906 kernfs_get(kn);
a797bfc3 907 mutex_unlock(&kernfs_mutex);
fd7b9f7b 908
324a56e1 909 return kn;
fd7b9f7b
TH
910}
911EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
912
bd96f76a
TH
913/**
914 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
915 * @parent: kernfs_node to search under
916 * @path: path to look for
917 * @ns: the namespace tag to use
918 *
919 * Look for kernfs_node with path @path under @parent and get a reference
920 * if found. This function may sleep and returns pointer to the found
921 * kernfs_node on success, %NULL on failure.
922 */
923struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
924 const char *path, const void *ns)
925{
926 struct kernfs_node *kn;
927
928 mutex_lock(&kernfs_mutex);
929 kn = kernfs_walk_ns(parent, path, ns);
930 kernfs_get(kn);
931 mutex_unlock(&kernfs_mutex);
932
933 return kn;
934}
935
ba7443bc
TH
936/**
937 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 938 * @scops: optional syscall operations for the hierarchy
d35258ef 939 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
940 * @priv: opaque data associated with the new directory
941 *
942 * Returns the root of the new hierarchy on success, ERR_PTR() value on
943 * failure.
944 */
90c07c89 945struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 946 unsigned int flags, void *priv)
ba7443bc
TH
947{
948 struct kernfs_root *root;
324a56e1 949 struct kernfs_node *kn;
ba7443bc
TH
950
951 root = kzalloc(sizeof(*root), GFP_KERNEL);
952 if (!root)
953 return ERR_PTR(-ENOMEM);
954
7d35079f 955 idr_init(&root->ino_idr);
7d568a83 956 INIT_LIST_HEAD(&root->supers);
40430452
TH
957
958 /*
959 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
960 * High bits generation. The starting value for both ino and
961 * genenration is 1. Initialize upper 32bit allocation
962 * accordingly.
963 */
964 if (sizeof(ino_t) >= sizeof(u64))
965 root->id_highbits = 0;
966 else
967 root->id_highbits = 1;
bc755553 968
e19dfdc8 969 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
488dee96 970 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
db4aad20 971 KERNFS_DIR);
324a56e1 972 if (!kn) {
7d35079f 973 idr_destroy(&root->ino_idr);
ba7443bc
TH
974 kfree(root);
975 return ERR_PTR(-ENOMEM);
976 }
977
324a56e1 978 kn->priv = priv;
adc5e8b5 979 kn->dir.root = root;
ba7443bc 980
90c07c89 981 root->syscall_ops = scops;
d35258ef 982 root->flags = flags;
324a56e1 983 root->kn = kn;
abd54f02 984 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 985
d35258ef
TH
986 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
987 kernfs_activate(kn);
988
ba7443bc
TH
989 return root;
990}
991
992/**
993 * kernfs_destroy_root - destroy a kernfs hierarchy
994 * @root: root of the hierarchy to destroy
995 *
996 * Destroy the hierarchy anchored at @root by removing all existing
997 * directories and destroying @root.
998 */
999void kernfs_destroy_root(struct kernfs_root *root)
1000{
324a56e1 1001 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
1002}
1003
fd7b9f7b
TH
1004/**
1005 * kernfs_create_dir_ns - create a directory
1006 * @parent: parent in which to create a new directory
1007 * @name: name of the new directory
bb8b9d09 1008 * @mode: mode of the new directory
488dee96
DT
1009 * @uid: uid of the new directory
1010 * @gid: gid of the new directory
fd7b9f7b
TH
1011 * @priv: opaque data associated with the new directory
1012 * @ns: optional namespace tag of the directory
1013 *
1014 * Returns the created node on success, ERR_PTR() value on failure.
1015 */
324a56e1 1016struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09 1017 const char *name, umode_t mode,
488dee96 1018 kuid_t uid, kgid_t gid,
bb8b9d09 1019 void *priv, const void *ns)
fd7b9f7b 1020{
324a56e1 1021 struct kernfs_node *kn;
fd7b9f7b
TH
1022 int rc;
1023
1024 /* allocate */
488dee96
DT
1025 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1026 uid, gid, KERNFS_DIR);
324a56e1 1027 if (!kn)
fd7b9f7b
TH
1028 return ERR_PTR(-ENOMEM);
1029
adc5e8b5
TH
1030 kn->dir.root = parent->dir.root;
1031 kn->ns = ns;
324a56e1 1032 kn->priv = priv;
fd7b9f7b
TH
1033
1034 /* link in */
988cd7af 1035 rc = kernfs_add_one(kn);
fd7b9f7b 1036 if (!rc)
324a56e1 1037 return kn;
fd7b9f7b 1038
324a56e1 1039 kernfs_put(kn);
fd7b9f7b
TH
1040 return ERR_PTR(rc);
1041}
1042
ea015218
EB
1043/**
1044 * kernfs_create_empty_dir - create an always empty directory
1045 * @parent: parent in which to create a new directory
1046 * @name: name of the new directory
1047 *
1048 * Returns the created node on success, ERR_PTR() value on failure.
1049 */
1050struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1051 const char *name)
1052{
1053 struct kernfs_node *kn;
1054 int rc;
1055
1056 /* allocate */
488dee96
DT
1057 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1058 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
ea015218
EB
1059 if (!kn)
1060 return ERR_PTR(-ENOMEM);
1061
1062 kn->flags |= KERNFS_EMPTY_DIR;
1063 kn->dir.root = parent->dir.root;
1064 kn->ns = NULL;
1065 kn->priv = NULL;
1066
1067 /* link in */
1068 rc = kernfs_add_one(kn);
1069 if (!rc)
1070 return kn;
1071
1072 kernfs_put(kn);
1073 return ERR_PTR(rc);
1074}
1075
c637b8ac
TH
1076static struct dentry *kernfs_iop_lookup(struct inode *dir,
1077 struct dentry *dentry,
1078 unsigned int flags)
fd7b9f7b 1079{
19bbb926 1080 struct dentry *ret;
319ba91d 1081 struct kernfs_node *parent = dir->i_private;
324a56e1 1082 struct kernfs_node *kn;
fd7b9f7b
TH
1083 struct inode *inode;
1084 const void *ns = NULL;
1085
a797bfc3 1086 mutex_lock(&kernfs_mutex);
fd7b9f7b 1087
324a56e1 1088 if (kernfs_ns_enabled(parent))
c525aadd 1089 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 1090
324a56e1 1091 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
1092
1093 /* no such entry */
b9c9dad0 1094 if (!kn || !kernfs_active(kn)) {
19bbb926 1095 ret = NULL;
fd7b9f7b
TH
1096 goto out_unlock;
1097 }
fd7b9f7b
TH
1098
1099 /* attach dentry and inode */
c637b8ac 1100 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
1101 if (!inode) {
1102 ret = ERR_PTR(-ENOMEM);
1103 goto out_unlock;
1104 }
1105
1106 /* instantiate and hash dentry */
41d28bca 1107 ret = d_splice_alias(inode, dentry);
fd7b9f7b 1108 out_unlock:
a797bfc3 1109 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1110 return ret;
1111}
1112
549c7297
CB
1113static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1114 struct inode *dir, struct dentry *dentry,
80b9bbef
TH
1115 umode_t mode)
1116{
1117 struct kernfs_node *parent = dir->i_private;
90c07c89 1118 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 1119 int ret;
80b9bbef 1120
90c07c89 1121 if (!scops || !scops->mkdir)
80b9bbef
TH
1122 return -EPERM;
1123
07c7530d
TH
1124 if (!kernfs_get_active(parent))
1125 return -ENODEV;
1126
90c07c89 1127 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
1128
1129 kernfs_put_active(parent);
1130 return ret;
80b9bbef
TH
1131}
1132
1133static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1134{
319ba91d 1135 struct kernfs_node *kn = kernfs_dentry_node(dentry);
90c07c89 1136 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1137 int ret;
80b9bbef 1138
90c07c89 1139 if (!scops || !scops->rmdir)
80b9bbef
TH
1140 return -EPERM;
1141
07c7530d
TH
1142 if (!kernfs_get_active(kn))
1143 return -ENODEV;
1144
90c07c89 1145 ret = scops->rmdir(kn);
07c7530d
TH
1146
1147 kernfs_put_active(kn);
1148 return ret;
80b9bbef
TH
1149}
1150
549c7297
CB
1151static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1152 struct inode *old_dir, struct dentry *old_dentry,
1cd66c93
MS
1153 struct inode *new_dir, struct dentry *new_dentry,
1154 unsigned int flags)
80b9bbef 1155{
319ba91d 1156 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
80b9bbef 1157 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 1158 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1159 int ret;
80b9bbef 1160
1cd66c93
MS
1161 if (flags)
1162 return -EINVAL;
1163
90c07c89 1164 if (!scops || !scops->rename)
80b9bbef
TH
1165 return -EPERM;
1166
07c7530d
TH
1167 if (!kernfs_get_active(kn))
1168 return -ENODEV;
1169
1170 if (!kernfs_get_active(new_parent)) {
1171 kernfs_put_active(kn);
1172 return -ENODEV;
1173 }
1174
90c07c89 1175 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
1176
1177 kernfs_put_active(new_parent);
1178 kernfs_put_active(kn);
1179 return ret;
80b9bbef
TH
1180}
1181
a797bfc3 1182const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
1183 .lookup = kernfs_iop_lookup,
1184 .permission = kernfs_iop_permission,
1185 .setattr = kernfs_iop_setattr,
1186 .getattr = kernfs_iop_getattr,
c637b8ac 1187 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
1188
1189 .mkdir = kernfs_iop_mkdir,
1190 .rmdir = kernfs_iop_rmdir,
1191 .rename = kernfs_iop_rename,
fd7b9f7b
TH
1192};
1193
c637b8ac 1194static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 1195{
324a56e1 1196 struct kernfs_node *last;
fd7b9f7b
TH
1197
1198 while (true) {
1199 struct rb_node *rbn;
1200
1201 last = pos;
1202
df23fc39 1203 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
1204 break;
1205
adc5e8b5 1206 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
1207 if (!rbn)
1208 break;
1209
324a56e1 1210 pos = rb_to_kn(rbn);
fd7b9f7b
TH
1211 }
1212
1213 return last;
1214}
1215
1216/**
c637b8ac 1217 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 1218 * @pos: the current position (%NULL to initiate traversal)
324a56e1 1219 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
1220 *
1221 * Find the next descendant to visit for post-order traversal of @root's
1222 * descendants. @root is included in the iteration and the last node to be
1223 * visited.
1224 */
c637b8ac
TH
1225static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1226 struct kernfs_node *root)
fd7b9f7b
TH
1227{
1228 struct rb_node *rbn;
1229
a797bfc3 1230 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
1231
1232 /* if first iteration, visit leftmost descendant which may be root */
1233 if (!pos)
c637b8ac 1234 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
1235
1236 /* if we visited @root, we're done */
1237 if (pos == root)
1238 return NULL;
1239
1240 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 1241 rbn = rb_next(&pos->rb);
fd7b9f7b 1242 if (rbn)
c637b8ac 1243 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
1244
1245 /* no sibling left, visit parent */
adc5e8b5 1246 return pos->parent;
fd7b9f7b
TH
1247}
1248
d35258ef
TH
1249/**
1250 * kernfs_activate - activate a node which started deactivated
1251 * @kn: kernfs_node whose subtree is to be activated
1252 *
1253 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1254 * needs to be explicitly activated. A node which hasn't been activated
1255 * isn't visible to userland and deactivation is skipped during its
1256 * removal. This is useful to construct atomic init sequences where
1257 * creation of multiple nodes should either succeed or fail atomically.
1258 *
1259 * The caller is responsible for ensuring that this function is not called
1260 * after kernfs_remove*() is invoked on @kn.
1261 */
1262void kernfs_activate(struct kernfs_node *kn)
1263{
1264 struct kernfs_node *pos;
1265
1266 mutex_lock(&kernfs_mutex);
1267
1268 pos = NULL;
1269 while ((pos = kernfs_next_descendant_post(pos, kn))) {
5bf33f04 1270 if (pos->flags & KERNFS_ACTIVATED)
d35258ef
TH
1271 continue;
1272
1273 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1274 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1275
1276 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1277 pos->flags |= KERNFS_ACTIVATED;
1278 }
1279
1280 mutex_unlock(&kernfs_mutex);
1281}
1282
988cd7af 1283static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1284{
35beab06
TH
1285 struct kernfs_node *pos;
1286
1287 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 1288
6b0afc2a
TH
1289 /*
1290 * Short-circuit if non-root @kn has already finished removal.
1291 * This is for kernfs_remove_self() which plays with active ref
1292 * after removal.
1293 */
1294 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1295 return;
1296
c637b8ac 1297 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1298
81c173cb 1299 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1300 pos = NULL;
1301 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1302 if (kernfs_active(pos))
1303 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1304
1305 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1306 do {
35beab06
TH
1307 pos = kernfs_leftmost_descendant(kn);
1308
1309 /*
81c173cb
TH
1310 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1311 * base ref could have been put by someone else by the time
1312 * the function returns. Make sure it doesn't go away
1313 * underneath us.
35beab06
TH
1314 */
1315 kernfs_get(pos);
1316
d35258ef
TH
1317 /*
1318 * Drain iff @kn was activated. This avoids draining and
1319 * its lockdep annotations for nodes which have never been
1320 * activated and allows embedding kernfs_remove() in create
1321 * error paths without worrying about draining.
1322 */
1323 if (kn->flags & KERNFS_ACTIVATED)
1324 kernfs_drain(pos);
1325 else
1326 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1327
1328 /*
1329 * kernfs_unlink_sibling() succeeds once per node. Use it
1330 * to decide who's responsible for cleanups.
1331 */
1332 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1333 struct kernfs_iattrs *ps_iattr =
1334 pos->parent ? pos->parent->iattr : NULL;
1335
1336 /* update timestamps on the parent */
1337 if (ps_iattr) {
05895219
OM
1338 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1339 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
35beab06
TH
1340 }
1341
988cd7af 1342 kernfs_put(pos);
35beab06
TH
1343 }
1344
1345 kernfs_put(pos);
1346 } while (pos != kn);
fd7b9f7b
TH
1347}
1348
1349/**
324a56e1
TH
1350 * kernfs_remove - remove a kernfs_node recursively
1351 * @kn: the kernfs_node to remove
fd7b9f7b 1352 *
324a56e1 1353 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1354 */
324a56e1 1355void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1356{
988cd7af
TH
1357 mutex_lock(&kernfs_mutex);
1358 __kernfs_remove(kn);
1359 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1360}
1361
6b0afc2a
TH
1362/**
1363 * kernfs_break_active_protection - break out of active protection
1364 * @kn: the self kernfs_node
1365 *
1366 * The caller must be running off of a kernfs operation which is invoked
1367 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1368 * this function must also be matched with an invocation of
1369 * kernfs_unbreak_active_protection().
1370 *
1371 * This function releases the active reference of @kn the caller is
1372 * holding. Once this function is called, @kn may be removed at any point
1373 * and the caller is solely responsible for ensuring that the objects it
1374 * dereferences are accessible.
1375 */
1376void kernfs_break_active_protection(struct kernfs_node *kn)
1377{
1378 /*
1379 * Take out ourself out of the active ref dependency chain. If
1380 * we're called without an active ref, lockdep will complain.
1381 */
1382 kernfs_put_active(kn);
1383}
1384
1385/**
1386 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1387 * @kn: the self kernfs_node
1388 *
1389 * If kernfs_break_active_protection() was called, this function must be
1390 * invoked before finishing the kernfs operation. Note that while this
1391 * function restores the active reference, it doesn't and can't actually
1392 * restore the active protection - @kn may already or be in the process of
1393 * being removed. Once kernfs_break_active_protection() is invoked, that
1394 * protection is irreversibly gone for the kernfs operation instance.
1395 *
1396 * While this function may be called at any point after
1397 * kernfs_break_active_protection() is invoked, its most useful location
1398 * would be right before the enclosing kernfs operation returns.
1399 */
1400void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1401{
1402 /*
1403 * @kn->active could be in any state; however, the increment we do
1404 * here will be undone as soon as the enclosing kernfs operation
1405 * finishes and this temporary bump can't break anything. If @kn
1406 * is alive, nothing changes. If @kn is being deactivated, the
1407 * soon-to-follow put will either finish deactivation or restore
1408 * deactivated state. If @kn is already removed, the temporary
1409 * bump is guaranteed to be gone before @kn is released.
1410 */
1411 atomic_inc(&kn->active);
1412 if (kernfs_lockdep(kn))
1413 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1414}
1415
1416/**
1417 * kernfs_remove_self - remove a kernfs_node from its own method
1418 * @kn: the self kernfs_node to remove
1419 *
1420 * The caller must be running off of a kernfs operation which is invoked
1421 * with an active reference - e.g. one of kernfs_ops. This can be used to
1422 * implement a file operation which deletes itself.
1423 *
1424 * For example, the "delete" file for a sysfs device directory can be
1425 * implemented by invoking kernfs_remove_self() on the "delete" file
1426 * itself. This function breaks the circular dependency of trying to
1427 * deactivate self while holding an active ref itself. It isn't necessary
1428 * to modify the usual removal path to use kernfs_remove_self(). The
1429 * "delete" implementation can simply invoke kernfs_remove_self() on self
1430 * before proceeding with the usual removal path. kernfs will ignore later
1431 * kernfs_remove() on self.
1432 *
1433 * kernfs_remove_self() can be called multiple times concurrently on the
1434 * same kernfs_node. Only the first one actually performs removal and
1435 * returns %true. All others will wait until the kernfs operation which
1436 * won self-removal finishes and return %false. Note that the losers wait
1437 * for the completion of not only the winning kernfs_remove_self() but also
1438 * the whole kernfs_ops which won the arbitration. This can be used to
1439 * guarantee, for example, all concurrent writes to a "delete" file to
1440 * finish only after the whole operation is complete.
1441 */
1442bool kernfs_remove_self(struct kernfs_node *kn)
1443{
1444 bool ret;
1445
1446 mutex_lock(&kernfs_mutex);
1447 kernfs_break_active_protection(kn);
1448
1449 /*
1450 * SUICIDAL is used to arbitrate among competing invocations. Only
1451 * the first one will actually perform removal. When the removal
1452 * is complete, SUICIDED is set and the active ref is restored
1453 * while holding kernfs_mutex. The ones which lost arbitration
1454 * waits for SUICDED && drained which can happen only after the
1455 * enclosing kernfs operation which executed the winning instance
1456 * of kernfs_remove_self() finished.
1457 */
1458 if (!(kn->flags & KERNFS_SUICIDAL)) {
1459 kn->flags |= KERNFS_SUICIDAL;
1460 __kernfs_remove(kn);
1461 kn->flags |= KERNFS_SUICIDED;
1462 ret = true;
1463 } else {
1464 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1465 DEFINE_WAIT(wait);
1466
1467 while (true) {
1468 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1469
1470 if ((kn->flags & KERNFS_SUICIDED) &&
1471 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1472 break;
1473
1474 mutex_unlock(&kernfs_mutex);
1475 schedule();
1476 mutex_lock(&kernfs_mutex);
1477 }
1478 finish_wait(waitq, &wait);
1479 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1480 ret = false;
1481 }
1482
1483 /*
1484 * This must be done while holding kernfs_mutex; otherwise, waiting
1485 * for SUICIDED && deactivated could finish prematurely.
1486 */
1487 kernfs_unbreak_active_protection(kn);
1488
1489 mutex_unlock(&kernfs_mutex);
1490 return ret;
1491}
1492
fd7b9f7b 1493/**
324a56e1
TH
1494 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1495 * @parent: parent of the target
1496 * @name: name of the kernfs_node to remove
1497 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1498 *
324a56e1
TH
1499 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1500 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1501 */
324a56e1 1502int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1503 const void *ns)
1504{
324a56e1 1505 struct kernfs_node *kn;
fd7b9f7b 1506
324a56e1 1507 if (!parent) {
c637b8ac 1508 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1509 name);
1510 return -ENOENT;
1511 }
1512
988cd7af 1513 mutex_lock(&kernfs_mutex);
fd7b9f7b 1514
324a56e1
TH
1515 kn = kernfs_find_ns(parent, name, ns);
1516 if (kn)
988cd7af 1517 __kernfs_remove(kn);
fd7b9f7b 1518
988cd7af 1519 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1520
324a56e1 1521 if (kn)
fd7b9f7b
TH
1522 return 0;
1523 else
1524 return -ENOENT;
1525}
1526
1527/**
1528 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1529 * @kn: target node
fd7b9f7b
TH
1530 * @new_parent: new parent to put @sd under
1531 * @new_name: new name
1532 * @new_ns: new namespace tag
1533 */
324a56e1 1534int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1535 const char *new_name, const void *new_ns)
1536{
3eef34ad
TH
1537 struct kernfs_node *old_parent;
1538 const char *old_name = NULL;
fd7b9f7b
TH
1539 int error;
1540
3eef34ad
TH
1541 /* can't move or rename root */
1542 if (!kn->parent)
1543 return -EINVAL;
1544
798c75a0
GKH
1545 mutex_lock(&kernfs_mutex);
1546
d0ae3d43 1547 error = -ENOENT;
ea015218
EB
1548 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1549 (new_parent->flags & KERNFS_EMPTY_DIR))
d0ae3d43
TH
1550 goto out;
1551
fd7b9f7b 1552 error = 0;
adc5e8b5
TH
1553 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1554 (strcmp(kn->name, new_name) == 0))
798c75a0 1555 goto out; /* nothing to rename */
fd7b9f7b
TH
1556
1557 error = -EEXIST;
1558 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1559 goto out;
fd7b9f7b 1560
324a56e1 1561 /* rename kernfs_node */
adc5e8b5 1562 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1563 error = -ENOMEM;
75287a67 1564 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1565 if (!new_name)
798c75a0 1566 goto out;
3eef34ad
TH
1567 } else {
1568 new_name = NULL;
fd7b9f7b
TH
1569 }
1570
1571 /*
1572 * Move to the appropriate place in the appropriate directories rbtree.
1573 */
c637b8ac 1574 kernfs_unlink_sibling(kn);
fd7b9f7b 1575 kernfs_get(new_parent);
3eef34ad
TH
1576
1577 /* rename_lock protects ->parent and ->name accessors */
1578 spin_lock_irq(&kernfs_rename_lock);
1579
1580 old_parent = kn->parent;
adc5e8b5 1581 kn->parent = new_parent;
3eef34ad
TH
1582
1583 kn->ns = new_ns;
1584 if (new_name) {
dfeb0750 1585 old_name = kn->name;
3eef34ad
TH
1586 kn->name = new_name;
1587 }
1588
1589 spin_unlock_irq(&kernfs_rename_lock);
1590
9561a896 1591 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1592 kernfs_link_sibling(kn);
fd7b9f7b 1593
3eef34ad 1594 kernfs_put(old_parent);
75287a67 1595 kfree_const(old_name);
3eef34ad 1596
fd7b9f7b 1597 error = 0;
798c75a0 1598 out:
a797bfc3 1599 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1600 return error;
1601}
1602
21774fd8 1603/* Relationship between mode and the DT_xxx types */
324a56e1 1604static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1605{
adc5e8b5 1606 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1607}
1608
c637b8ac 1609static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1610{
1611 kernfs_put(filp->private_data);
1612 return 0;
1613}
1614
c637b8ac 1615static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1616 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1617{
1618 if (pos) {
81c173cb 1619 int valid = kernfs_active(pos) &&
798c75a0 1620 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1621 kernfs_put(pos);
1622 if (!valid)
1623 pos = NULL;
1624 }
1625 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1626 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1627 while (node) {
324a56e1 1628 pos = rb_to_kn(node);
fd7b9f7b 1629
adc5e8b5 1630 if (hash < pos->hash)
fd7b9f7b 1631 node = node->rb_left;
adc5e8b5 1632 else if (hash > pos->hash)
fd7b9f7b
TH
1633 node = node->rb_right;
1634 else
1635 break;
1636 }
1637 }
b9c9dad0
TH
1638 /* Skip over entries which are dying/dead or in the wrong namespace */
1639 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1640 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1641 if (!node)
1642 pos = NULL;
1643 else
324a56e1 1644 pos = rb_to_kn(node);
fd7b9f7b
TH
1645 }
1646 return pos;
1647}
1648
c637b8ac 1649static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1650 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1651{
c637b8ac 1652 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1653 if (pos) {
fd7b9f7b 1654 do {
adc5e8b5 1655 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1656 if (!node)
1657 pos = NULL;
1658 else
324a56e1 1659 pos = rb_to_kn(node);
b9c9dad0
TH
1660 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1661 }
fd7b9f7b
TH
1662 return pos;
1663}
1664
c637b8ac 1665static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1666{
1667 struct dentry *dentry = file->f_path.dentry;
319ba91d 1668 struct kernfs_node *parent = kernfs_dentry_node(dentry);
324a56e1 1669 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1670 const void *ns = NULL;
1671
1672 if (!dir_emit_dots(file, ctx))
1673 return 0;
a797bfc3 1674 mutex_lock(&kernfs_mutex);
fd7b9f7b 1675
324a56e1 1676 if (kernfs_ns_enabled(parent))
c525aadd 1677 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1678
c637b8ac 1679 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1680 pos;
c637b8ac 1681 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1682 const char *name = pos->name;
fd7b9f7b
TH
1683 unsigned int type = dt_type(pos);
1684 int len = strlen(name);
67c0496e 1685 ino_t ino = kernfs_ino(pos);
fd7b9f7b 1686
adc5e8b5 1687 ctx->pos = pos->hash;
fd7b9f7b
TH
1688 file->private_data = pos;
1689 kernfs_get(pos);
1690
a797bfc3 1691 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1692 if (!dir_emit(ctx, name, len, ino, type))
1693 return 0;
a797bfc3 1694 mutex_lock(&kernfs_mutex);
fd7b9f7b 1695 }
a797bfc3 1696 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1697 file->private_data = NULL;
1698 ctx->pos = INT_MAX;
1699 return 0;
1700}
1701
a797bfc3 1702const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1703 .read = generic_read_dir,
8cb0d2c1 1704 .iterate_shared = kernfs_fop_readdir,
c637b8ac 1705 .release = kernfs_dir_fop_release,
8cb0d2c1 1706 .llseek = generic_file_llseek,
fd7b9f7b 1707};