Merge tag 'for-5.4/io_uring-2019-09-24' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / fs / kernfs / dir.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
b8441ed2
TH
2/*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
b8441ed2 8 */
fd7b9f7b 9
abd54f02 10#include <linux/sched.h>
fd7b9f7b
TH
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
a797bfc3 20DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
21static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
7d35079f 23static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
17627157
KK
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
46
3eef34ad
TH
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48}
49
9f6df573
AK
50/* kernfs_node_depth - compute depth from @from to @to */
51static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
3eef34ad 52{
9f6df573 53 size_t depth = 0;
3eef34ad 54
9f6df573
AK
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
58 }
59 return depth;
60}
3eef34ad 61
9f6df573
AK
62static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
64{
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67
68 if (ra != rb)
69 return NULL;
70
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
73
74 while (da > db) {
75 a = a->parent;
76 da--;
77 }
78 while (db > da) {
79 b = b->parent;
80 db--;
81 }
82
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
87 }
88
89 return a;
90}
91
92/**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
99 *
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
105 *
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
115 *
17627157
KK
116 * [3] when @kn_to is NULL result will be "(null)"
117 *
3abb1d90
TH
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
9f6df573
AK
121 */
122static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
125{
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
3abb1d90
TH
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
9f6df573 130
17627157
KK
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
133
9f6df573
AK
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
136
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
139
bbe70e4e
JJB
140 if (!buf)
141 return -EINVAL;
142
9f6df573
AK
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
3abb1d90 145 return -EINVAL;
9f6df573
AK
146
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
149
bbe70e4e 150 buf[0] = '\0';
9f6df573
AK
151
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
155
156 /* Calculate how many bytes we need for the rest */
3abb1d90
TH
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
159 kn = kn->parent;
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
9f6df573 164 }
3eef34ad 165
3abb1d90 166 return len;
3eef34ad
TH
167}
168
169/**
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
174 *
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 *
17627157
KK
179 * Fills buffer with "(null)" if @kn is NULL.
180 *
3eef34ad
TH
181 * This function can be called from any context.
182 */
183int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184{
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 return ret;
192}
193
9f6df573
AK
194/**
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
200 *
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
204 * returned.
205 *
3abb1d90
TH
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
9f6df573
AK
209 */
210int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
212{
213 unsigned long flags;
214 int ret;
215
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 return ret;
220}
221EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222
3eef34ad
TH
223/**
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
226 *
227 * This function can be called from any context.
228 */
229void pr_cont_kernfs_name(struct kernfs_node *kn)
230{
231 unsigned long flags;
232
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
234
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
237
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239}
240
241/**
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
244 *
245 * This function can be called from any context.
246 */
247void pr_cont_kernfs_path(struct kernfs_node *kn)
248{
249 unsigned long flags;
9f6df573 250 int sz;
3eef34ad
TH
251
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
253
9f6df573
AK
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
256 if (sz < 0) {
257 pr_cont("(error)");
258 goto out;
259 }
260
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
263 goto out;
264 }
265
266 pr_cont("%s", kernfs_pr_cont_buf);
3eef34ad 267
9f6df573 268out:
3eef34ad
TH
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270}
271
272/**
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
275 *
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
278 */
279struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280{
281 struct kernfs_node *parent;
282 unsigned long flags;
283
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 parent = kn->parent;
286 kernfs_get(parent);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288
289 return parent;
290}
291
fd7b9f7b 292/**
c637b8ac 293 * kernfs_name_hash
fd7b9f7b
TH
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
296 *
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 */
c637b8ac 299static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b 300{
8387ff25 301 unsigned long hash = init_name_hash(ns);
fd7b9f7b
TH
302 unsigned int len = strlen(name);
303 while (len--)
304 hash = partial_name_hash(*name++, hash);
8387ff25 305 hash = end_name_hash(hash);
fd7b9f7b
TH
306 hash &= 0x7fffffffU;
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 308 if (hash < 2)
fd7b9f7b
TH
309 hash += 2;
310 if (hash >= INT_MAX)
311 hash = INT_MAX - 1;
312 return hash;
313}
314
c637b8ac
TH
315static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 317{
72392ed0
RV
318 if (hash < kn->hash)
319 return -1;
320 if (hash > kn->hash)
321 return 1;
322 if (ns < kn->ns)
323 return -1;
324 if (ns > kn->ns)
325 return 1;
adc5e8b5 326 return strcmp(name, kn->name);
fd7b9f7b
TH
327}
328
c637b8ac
TH
329static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
fd7b9f7b 331{
c637b8ac 332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
333}
334
335/**
c637b8ac 336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 337 * @kn: kernfs_node of interest
fd7b9f7b 338 *
324a56e1 339 * Link @kn into its sibling rbtree which starts from
adc5e8b5 340 * @kn->parent->dir.children.
fd7b9f7b
TH
341 *
342 * Locking:
a797bfc3 343 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
344 *
345 * RETURNS:
346 * 0 on susccess -EEXIST on failure.
347 */
c637b8ac 348static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 349{
adc5e8b5 350 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
351 struct rb_node *parent = NULL;
352
fd7b9f7b 353 while (*node) {
324a56e1 354 struct kernfs_node *pos;
fd7b9f7b
TH
355 int result;
356
324a56e1 357 pos = rb_to_kn(*node);
fd7b9f7b 358 parent = *node;
c637b8ac 359 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 360 if (result < 0)
adc5e8b5 361 node = &pos->rb.rb_left;
fd7b9f7b 362 else if (result > 0)
adc5e8b5 363 node = &pos->rb.rb_right;
fd7b9f7b
TH
364 else
365 return -EEXIST;
366 }
c1befb88 367
fd7b9f7b 368 /* add new node and rebalance the tree */
adc5e8b5
TH
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
371
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
375
fd7b9f7b
TH
376 return 0;
377}
378
379/**
c637b8ac 380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 381 * @kn: kernfs_node of interest
fd7b9f7b 382 *
35beab06
TH
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
386 *
387 * Locking:
a797bfc3 388 * mutex_lock(kernfs_mutex)
fd7b9f7b 389 */
35beab06 390static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 391{
35beab06
TH
392 if (RB_EMPTY_NODE(&kn->rb))
393 return false;
394
df23fc39 395 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 396 kn->parent->dir.subdirs--;
fd7b9f7b 397
adc5e8b5 398 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
399 RB_CLEAR_NODE(&kn->rb);
400 return true;
fd7b9f7b
TH
401}
402
403/**
c637b8ac 404 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 405 * @kn: kernfs_node to get an active reference to
fd7b9f7b 406 *
324a56e1 407 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
408 * is NULL.
409 *
410 * RETURNS:
324a56e1 411 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 412 */
c637b8ac 413struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 414{
324a56e1 415 if (unlikely(!kn))
fd7b9f7b
TH
416 return NULL;
417
f4b3e631
GKH
418 if (!atomic_inc_unless_negative(&kn->active))
419 return NULL;
895a068a 420
182fd64b 421 if (kernfs_lockdep(kn))
f4b3e631
GKH
422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 return kn;
fd7b9f7b
TH
424}
425
426/**
c637b8ac 427 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 428 * @kn: kernfs_node to put an active reference to
fd7b9f7b 429 *
324a56e1 430 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
431 * is NULL.
432 */
c637b8ac 433void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b
TH
434{
435 int v;
436
324a56e1 437 if (unlikely(!kn))
fd7b9f7b
TH
438 return;
439
182fd64b 440 if (kernfs_lockdep(kn))
324a56e1 441 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 442 v = atomic_dec_return(&kn->active);
df23fc39 443 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
444 return;
445
2fd60da4 446 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
fd7b9f7b
TH
447}
448
449/**
81c173cb
TH
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
fd7b9f7b 452 *
81c173cb
TH
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
fd7b9f7b 456 */
81c173cb 457static void kernfs_drain(struct kernfs_node *kn)
35beab06 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 459{
abd54f02 460 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 461
35beab06 462 lockdep_assert_held(&kernfs_mutex);
81c173cb 463 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 464
35beab06 465 mutex_unlock(&kernfs_mutex);
abd54f02 466
182fd64b 467 if (kernfs_lockdep(kn)) {
35beab06
TH
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
abd54f02 472
35beab06 473 /* but everyone should wait for draining */
abd54f02
TH
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 476
182fd64b 477 if (kernfs_lockdep(kn)) {
a6607930
TH
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 }
35beab06 481
0e67db2f 482 kernfs_drain_open_files(kn);
ccf02aaf 483
35beab06 484 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
485}
486
fd7b9f7b 487/**
324a56e1
TH
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
fd7b9f7b 490 */
324a56e1 491void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 492{
324a56e1 493 if (kn) {
adc5e8b5
TH
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
fd7b9f7b
TH
496 }
497}
498EXPORT_SYMBOL_GPL(kernfs_get);
499
500/**
324a56e1
TH
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
fd7b9f7b 503 *
324a56e1 504 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 505 */
324a56e1 506void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 507{
324a56e1 508 struct kernfs_node *parent;
ba7443bc 509 struct kernfs_root *root;
fd7b9f7b 510
ba16b284
SL
511 /*
512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 * depends on this to filter reused stale node
514 */
adc5e8b5 515 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 516 return;
324a56e1 517 root = kernfs_root(kn);
fd7b9f7b 518 repeat:
81c173cb
TH
519 /*
520 * Moving/renaming is always done while holding reference.
adc5e8b5 521 * kn->parent won't change beneath us.
fd7b9f7b 522 */
adc5e8b5 523 parent = kn->parent;
fd7b9f7b 524
81c173cb
TH
525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 528
df23fc39 529 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 530 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
531
532 kfree_const(kn->name);
533
adc5e8b5 534 if (kn->iattr) {
adc5e8b5 535 simple_xattrs_free(&kn->iattr->xattrs);
26e28d68 536 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
2322392b 537 }
7d35079f 538 spin_lock(&kernfs_idr_lock);
c53cd490 539 idr_remove(&root->ino_idr, kn->id.ino);
7d35079f 540 spin_unlock(&kernfs_idr_lock);
a797bfc3 541 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 542
324a56e1
TH
543 kn = parent;
544 if (kn) {
adc5e8b5 545 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
546 goto repeat;
547 } else {
324a56e1 548 /* just released the root kn, free @root too */
7d35079f 549 idr_destroy(&root->ino_idr);
ba7443bc
TH
550 kfree(root);
551 }
fd7b9f7b
TH
552}
553EXPORT_SYMBOL_GPL(kernfs_put);
554
c637b8ac 555static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 556{
324a56e1 557 struct kernfs_node *kn;
fd7b9f7b
TH
558
559 if (flags & LOOKUP_RCU)
560 return -ECHILD;
561
19bbb926 562 /* Always perform fresh lookup for negatives */
2b0143b5 563 if (d_really_is_negative(dentry))
19bbb926
TH
564 goto out_bad_unlocked;
565
319ba91d 566 kn = kernfs_dentry_node(dentry);
a797bfc3 567 mutex_lock(&kernfs_mutex);
fd7b9f7b 568
81c173cb
TH
569 /* The kernfs node has been deactivated */
570 if (!kernfs_active(kn))
fd7b9f7b
TH
571 goto out_bad;
572
c637b8ac 573 /* The kernfs node has been moved? */
319ba91d 574 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
fd7b9f7b
TH
575 goto out_bad;
576
c637b8ac 577 /* The kernfs node has been renamed */
adc5e8b5 578 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
579 goto out_bad;
580
c637b8ac 581 /* The kernfs node has been moved to a different namespace */
adc5e8b5 582 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 583 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
584 goto out_bad;
585
a797bfc3 586 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
587 return 1;
588out_bad:
a797bfc3 589 mutex_unlock(&kernfs_mutex);
19bbb926 590out_bad_unlocked:
fd7b9f7b
TH
591 return 0;
592}
593
a797bfc3 594const struct dentry_operations kernfs_dops = {
c637b8ac 595 .d_revalidate = kernfs_dop_revalidate,
fd7b9f7b
TH
596};
597
0c23b225
TH
598/**
599 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
600 * @dentry: the dentry in question
601 *
602 * Return the kernfs_node associated with @dentry. If @dentry is not a
603 * kernfs one, %NULL is returned.
604 *
605 * While the returned kernfs_node will stay accessible as long as @dentry
606 * is accessible, the returned node can be in any state and the caller is
607 * fully responsible for determining what's accessible.
608 */
609struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
610{
319ba91d
SL
611 if (dentry->d_sb->s_op == &kernfs_sops &&
612 !d_really_is_negative(dentry))
613 return kernfs_dentry_node(dentry);
0c23b225
TH
614 return NULL;
615}
616
db4aad20 617static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
e19dfdc8 618 struct kernfs_node *parent,
db4aad20 619 const char *name, umode_t mode,
488dee96 620 kuid_t uid, kgid_t gid,
db4aad20 621 unsigned flags)
fd7b9f7b 622{
324a56e1 623 struct kernfs_node *kn;
4a3ef68a
SL
624 u32 gen;
625 int cursor;
bc755553 626 int ret;
fd7b9f7b 627
dfeb0750
TH
628 name = kstrdup_const(name, GFP_KERNEL);
629 if (!name)
630 return NULL;
fd7b9f7b 631
a797bfc3 632 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 633 if (!kn)
fd7b9f7b
TH
634 goto err_out1;
635
7d35079f
SL
636 idr_preload(GFP_KERNEL);
637 spin_lock(&kernfs_idr_lock);
4a3ef68a
SL
638 cursor = idr_get_cursor(&root->ino_idr);
639 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
640 if (ret >= 0 && ret < cursor)
641 root->next_generation++;
642 gen = root->next_generation;
7d35079f
SL
643 spin_unlock(&kernfs_idr_lock);
644 idr_preload_end();
bc755553 645 if (ret < 0)
fd7b9f7b 646 goto err_out2;
c53cd490
SL
647 kn->id.ino = ret;
648 kn->id.generation = gen;
fd7b9f7b 649
ba16b284 650 /*
99826790 651 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
ba16b284
SL
652 * kernfs_find_and_get_node_by_ino
653 */
99826790 654 atomic_set_release(&kn->count, 1);
81c173cb 655 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 656 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 657
adc5e8b5
TH
658 kn->name = name;
659 kn->mode = mode;
81c173cb 660 kn->flags = flags;
fd7b9f7b 661
488dee96
DT
662 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
663 struct iattr iattr = {
664 .ia_valid = ATTR_UID | ATTR_GID,
665 .ia_uid = uid,
666 .ia_gid = gid,
667 };
668
669 ret = __kernfs_setattr(kn, &iattr);
670 if (ret < 0)
671 goto err_out3;
672 }
673
e19dfdc8
OM
674 if (parent) {
675 ret = security_kernfs_init_security(parent, kn);
676 if (ret)
677 goto err_out3;
678 }
679
324a56e1 680 return kn;
fd7b9f7b 681
488dee96
DT
682 err_out3:
683 idr_remove(&root->ino_idr, kn->id.ino);
fd7b9f7b 684 err_out2:
a797bfc3 685 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 686 err_out1:
dfeb0750 687 kfree_const(name);
fd7b9f7b
TH
688 return NULL;
689}
690
db4aad20
TH
691struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
692 const char *name, umode_t mode,
488dee96 693 kuid_t uid, kgid_t gid,
db4aad20
TH
694 unsigned flags)
695{
696 struct kernfs_node *kn;
697
e19dfdc8 698 kn = __kernfs_new_node(kernfs_root(parent), parent,
488dee96 699 name, mode, uid, gid, flags);
db4aad20
TH
700 if (kn) {
701 kernfs_get(parent);
702 kn->parent = parent;
703 }
704 return kn;
705}
706
ba16b284
SL
707/*
708 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
709 * @root: the kernfs root
710 * @ino: inode number
711 *
712 * RETURNS:
713 * NULL on failure. Return a kernfs node with reference counter incremented
714 */
715struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
716 unsigned int ino)
717{
718 struct kernfs_node *kn;
719
720 rcu_read_lock();
721 kn = idr_find(&root->ino_idr, ino);
722 if (!kn)
723 goto out;
724
725 /*
726 * Since kernfs_node is freed in RCU, it's possible an old node for ino
727 * is freed, but reused before RCU grace period. But a freed node (see
728 * kernfs_put) or an incompletedly initialized node (see
729 * __kernfs_new_node) should have 'count' 0. We can use this fact to
730 * filter out such node.
731 */
732 if (!atomic_inc_not_zero(&kn->count)) {
733 kn = NULL;
734 goto out;
735 }
736
737 /*
738 * The node could be a new node or a reused node. If it's a new node,
739 * we are ok. If it's reused because of RCU (because of
740 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
741 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
742 * hence we can use 'ino' to filter stale node.
743 */
c53cd490 744 if (kn->id.ino != ino)
ba16b284
SL
745 goto out;
746 rcu_read_unlock();
747
748 return kn;
749out:
750 rcu_read_unlock();
751 kernfs_put(kn);
752 return NULL;
753}
754
fd7b9f7b 755/**
c637b8ac 756 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 757 * @kn: kernfs_node to be added
fd7b9f7b 758 *
db4aad20
TH
759 * The caller must already have initialized @kn->parent. This
760 * function increments nlink of the parent's inode if @kn is a
761 * directory and link into the children list of the parent.
fd7b9f7b 762 *
fd7b9f7b
TH
763 * RETURNS:
764 * 0 on success, -EEXIST if entry with the given name already
765 * exists.
766 */
988cd7af 767int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 768{
db4aad20 769 struct kernfs_node *parent = kn->parent;
c525aadd 770 struct kernfs_iattrs *ps_iattr;
988cd7af 771 bool has_ns;
fd7b9f7b
TH
772 int ret;
773
988cd7af
TH
774 mutex_lock(&kernfs_mutex);
775
776 ret = -EINVAL;
777 has_ns = kernfs_ns_enabled(parent);
778 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
779 has_ns ? "required" : "invalid", parent->name, kn->name))
780 goto out_unlock;
fd7b9f7b 781
df23fc39 782 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 783 goto out_unlock;
fd7b9f7b 784
988cd7af 785 ret = -ENOENT;
ea015218
EB
786 if (parent->flags & KERNFS_EMPTY_DIR)
787 goto out_unlock;
788
d35258ef 789 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 790 goto out_unlock;
798c75a0 791
c637b8ac 792 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 793
c637b8ac 794 ret = kernfs_link_sibling(kn);
fd7b9f7b 795 if (ret)
988cd7af 796 goto out_unlock;
fd7b9f7b
TH
797
798 /* Update timestamps on the parent */
adc5e8b5 799 ps_iattr = parent->iattr;
fd7b9f7b 800 if (ps_iattr) {
05895219
OM
801 ktime_get_real_ts64(&ps_iattr->ia_ctime);
802 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
fd7b9f7b
TH
803 }
804
d35258ef
TH
805 mutex_unlock(&kernfs_mutex);
806
807 /*
808 * Activate the new node unless CREATE_DEACTIVATED is requested.
809 * If not activated here, the kernfs user is responsible for
810 * activating the node with kernfs_activate(). A node which hasn't
811 * been activated is not visible to userland and its removal won't
812 * trigger deactivation.
813 */
814 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
815 kernfs_activate(kn);
816 return 0;
817
988cd7af 818out_unlock:
a797bfc3 819 mutex_unlock(&kernfs_mutex);
988cd7af 820 return ret;
fd7b9f7b
TH
821}
822
823/**
324a56e1
TH
824 * kernfs_find_ns - find kernfs_node with the given name
825 * @parent: kernfs_node to search under
fd7b9f7b
TH
826 * @name: name to look for
827 * @ns: the namespace tag to use
828 *
324a56e1
TH
829 * Look for kernfs_node with name @name under @parent. Returns pointer to
830 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 831 */
324a56e1
TH
832static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
833 const unsigned char *name,
834 const void *ns)
fd7b9f7b 835{
adc5e8b5 836 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 837 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
838 unsigned int hash;
839
a797bfc3 840 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
841
842 if (has_ns != (bool)ns) {
c637b8ac 843 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 844 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
845 return NULL;
846 }
847
c637b8ac 848 hash = kernfs_name_hash(name, ns);
fd7b9f7b 849 while (node) {
324a56e1 850 struct kernfs_node *kn;
fd7b9f7b
TH
851 int result;
852
324a56e1 853 kn = rb_to_kn(node);
c637b8ac 854 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
855 if (result < 0)
856 node = node->rb_left;
857 else if (result > 0)
858 node = node->rb_right;
859 else
324a56e1 860 return kn;
fd7b9f7b
TH
861 }
862 return NULL;
863}
864
bd96f76a
TH
865static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
866 const unsigned char *path,
867 const void *ns)
868{
e56ed358
TH
869 size_t len;
870 char *p, *name;
bd96f76a
TH
871
872 lockdep_assert_held(&kernfs_mutex);
873
e56ed358
TH
874 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
875 spin_lock_irq(&kernfs_rename_lock);
876
877 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
878
879 if (len >= sizeof(kernfs_pr_cont_buf)) {
880 spin_unlock_irq(&kernfs_rename_lock);
bd96f76a 881 return NULL;
e56ed358
TH
882 }
883
884 p = kernfs_pr_cont_buf;
bd96f76a
TH
885
886 while ((name = strsep(&p, "/")) && parent) {
887 if (*name == '\0')
888 continue;
889 parent = kernfs_find_ns(parent, name, ns);
890 }
891
e56ed358
TH
892 spin_unlock_irq(&kernfs_rename_lock);
893
bd96f76a
TH
894 return parent;
895}
896
fd7b9f7b 897/**
324a56e1
TH
898 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
899 * @parent: kernfs_node to search under
fd7b9f7b
TH
900 * @name: name to look for
901 * @ns: the namespace tag to use
902 *
324a56e1 903 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 904 * if found. This function may sleep and returns pointer to the found
324a56e1 905 * kernfs_node on success, %NULL on failure.
fd7b9f7b 906 */
324a56e1
TH
907struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
908 const char *name, const void *ns)
fd7b9f7b 909{
324a56e1 910 struct kernfs_node *kn;
fd7b9f7b 911
a797bfc3 912 mutex_lock(&kernfs_mutex);
324a56e1
TH
913 kn = kernfs_find_ns(parent, name, ns);
914 kernfs_get(kn);
a797bfc3 915 mutex_unlock(&kernfs_mutex);
fd7b9f7b 916
324a56e1 917 return kn;
fd7b9f7b
TH
918}
919EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
920
bd96f76a
TH
921/**
922 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
923 * @parent: kernfs_node to search under
924 * @path: path to look for
925 * @ns: the namespace tag to use
926 *
927 * Look for kernfs_node with path @path under @parent and get a reference
928 * if found. This function may sleep and returns pointer to the found
929 * kernfs_node on success, %NULL on failure.
930 */
931struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
932 const char *path, const void *ns)
933{
934 struct kernfs_node *kn;
935
936 mutex_lock(&kernfs_mutex);
937 kn = kernfs_walk_ns(parent, path, ns);
938 kernfs_get(kn);
939 mutex_unlock(&kernfs_mutex);
940
941 return kn;
942}
943
ba7443bc
TH
944/**
945 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 946 * @scops: optional syscall operations for the hierarchy
d35258ef 947 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
948 * @priv: opaque data associated with the new directory
949 *
950 * Returns the root of the new hierarchy on success, ERR_PTR() value on
951 * failure.
952 */
90c07c89 953struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 954 unsigned int flags, void *priv)
ba7443bc
TH
955{
956 struct kernfs_root *root;
324a56e1 957 struct kernfs_node *kn;
ba7443bc
TH
958
959 root = kzalloc(sizeof(*root), GFP_KERNEL);
960 if (!root)
961 return ERR_PTR(-ENOMEM);
962
7d35079f 963 idr_init(&root->ino_idr);
7d568a83 964 INIT_LIST_HEAD(&root->supers);
4a3ef68a 965 root->next_generation = 1;
bc755553 966
e19dfdc8 967 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
488dee96 968 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
db4aad20 969 KERNFS_DIR);
324a56e1 970 if (!kn) {
7d35079f 971 idr_destroy(&root->ino_idr);
ba7443bc
TH
972 kfree(root);
973 return ERR_PTR(-ENOMEM);
974 }
975
324a56e1 976 kn->priv = priv;
adc5e8b5 977 kn->dir.root = root;
ba7443bc 978
90c07c89 979 root->syscall_ops = scops;
d35258ef 980 root->flags = flags;
324a56e1 981 root->kn = kn;
abd54f02 982 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 983
d35258ef
TH
984 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
985 kernfs_activate(kn);
986
ba7443bc
TH
987 return root;
988}
989
990/**
991 * kernfs_destroy_root - destroy a kernfs hierarchy
992 * @root: root of the hierarchy to destroy
993 *
994 * Destroy the hierarchy anchored at @root by removing all existing
995 * directories and destroying @root.
996 */
997void kernfs_destroy_root(struct kernfs_root *root)
998{
324a56e1 999 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
1000}
1001
fd7b9f7b
TH
1002/**
1003 * kernfs_create_dir_ns - create a directory
1004 * @parent: parent in which to create a new directory
1005 * @name: name of the new directory
bb8b9d09 1006 * @mode: mode of the new directory
488dee96
DT
1007 * @uid: uid of the new directory
1008 * @gid: gid of the new directory
fd7b9f7b
TH
1009 * @priv: opaque data associated with the new directory
1010 * @ns: optional namespace tag of the directory
1011 *
1012 * Returns the created node on success, ERR_PTR() value on failure.
1013 */
324a56e1 1014struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09 1015 const char *name, umode_t mode,
488dee96 1016 kuid_t uid, kgid_t gid,
bb8b9d09 1017 void *priv, const void *ns)
fd7b9f7b 1018{
324a56e1 1019 struct kernfs_node *kn;
fd7b9f7b
TH
1020 int rc;
1021
1022 /* allocate */
488dee96
DT
1023 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1024 uid, gid, KERNFS_DIR);
324a56e1 1025 if (!kn)
fd7b9f7b
TH
1026 return ERR_PTR(-ENOMEM);
1027
adc5e8b5
TH
1028 kn->dir.root = parent->dir.root;
1029 kn->ns = ns;
324a56e1 1030 kn->priv = priv;
fd7b9f7b
TH
1031
1032 /* link in */
988cd7af 1033 rc = kernfs_add_one(kn);
fd7b9f7b 1034 if (!rc)
324a56e1 1035 return kn;
fd7b9f7b 1036
324a56e1 1037 kernfs_put(kn);
fd7b9f7b
TH
1038 return ERR_PTR(rc);
1039}
1040
ea015218
EB
1041/**
1042 * kernfs_create_empty_dir - create an always empty directory
1043 * @parent: parent in which to create a new directory
1044 * @name: name of the new directory
1045 *
1046 * Returns the created node on success, ERR_PTR() value on failure.
1047 */
1048struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1049 const char *name)
1050{
1051 struct kernfs_node *kn;
1052 int rc;
1053
1054 /* allocate */
488dee96
DT
1055 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1056 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
ea015218
EB
1057 if (!kn)
1058 return ERR_PTR(-ENOMEM);
1059
1060 kn->flags |= KERNFS_EMPTY_DIR;
1061 kn->dir.root = parent->dir.root;
1062 kn->ns = NULL;
1063 kn->priv = NULL;
1064
1065 /* link in */
1066 rc = kernfs_add_one(kn);
1067 if (!rc)
1068 return kn;
1069
1070 kernfs_put(kn);
1071 return ERR_PTR(rc);
1072}
1073
c637b8ac
TH
1074static struct dentry *kernfs_iop_lookup(struct inode *dir,
1075 struct dentry *dentry,
1076 unsigned int flags)
fd7b9f7b 1077{
19bbb926 1078 struct dentry *ret;
319ba91d 1079 struct kernfs_node *parent = dir->i_private;
324a56e1 1080 struct kernfs_node *kn;
fd7b9f7b
TH
1081 struct inode *inode;
1082 const void *ns = NULL;
1083
a797bfc3 1084 mutex_lock(&kernfs_mutex);
fd7b9f7b 1085
324a56e1 1086 if (kernfs_ns_enabled(parent))
c525aadd 1087 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 1088
324a56e1 1089 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
1090
1091 /* no such entry */
b9c9dad0 1092 if (!kn || !kernfs_active(kn)) {
19bbb926 1093 ret = NULL;
fd7b9f7b
TH
1094 goto out_unlock;
1095 }
fd7b9f7b
TH
1096
1097 /* attach dentry and inode */
c637b8ac 1098 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
1099 if (!inode) {
1100 ret = ERR_PTR(-ENOMEM);
1101 goto out_unlock;
1102 }
1103
1104 /* instantiate and hash dentry */
41d28bca 1105 ret = d_splice_alias(inode, dentry);
fd7b9f7b 1106 out_unlock:
a797bfc3 1107 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1108 return ret;
1109}
1110
80b9bbef
TH
1111static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1112 umode_t mode)
1113{
1114 struct kernfs_node *parent = dir->i_private;
90c07c89 1115 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 1116 int ret;
80b9bbef 1117
90c07c89 1118 if (!scops || !scops->mkdir)
80b9bbef
TH
1119 return -EPERM;
1120
07c7530d
TH
1121 if (!kernfs_get_active(parent))
1122 return -ENODEV;
1123
90c07c89 1124 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
1125
1126 kernfs_put_active(parent);
1127 return ret;
80b9bbef
TH
1128}
1129
1130static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1131{
319ba91d 1132 struct kernfs_node *kn = kernfs_dentry_node(dentry);
90c07c89 1133 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1134 int ret;
80b9bbef 1135
90c07c89 1136 if (!scops || !scops->rmdir)
80b9bbef
TH
1137 return -EPERM;
1138
07c7530d
TH
1139 if (!kernfs_get_active(kn))
1140 return -ENODEV;
1141
90c07c89 1142 ret = scops->rmdir(kn);
07c7530d
TH
1143
1144 kernfs_put_active(kn);
1145 return ret;
80b9bbef
TH
1146}
1147
1148static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1cd66c93
MS
1149 struct inode *new_dir, struct dentry *new_dentry,
1150 unsigned int flags)
80b9bbef 1151{
319ba91d 1152 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
80b9bbef 1153 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 1154 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1155 int ret;
80b9bbef 1156
1cd66c93
MS
1157 if (flags)
1158 return -EINVAL;
1159
90c07c89 1160 if (!scops || !scops->rename)
80b9bbef
TH
1161 return -EPERM;
1162
07c7530d
TH
1163 if (!kernfs_get_active(kn))
1164 return -ENODEV;
1165
1166 if (!kernfs_get_active(new_parent)) {
1167 kernfs_put_active(kn);
1168 return -ENODEV;
1169 }
1170
90c07c89 1171 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
1172
1173 kernfs_put_active(new_parent);
1174 kernfs_put_active(kn);
1175 return ret;
80b9bbef
TH
1176}
1177
a797bfc3 1178const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
1179 .lookup = kernfs_iop_lookup,
1180 .permission = kernfs_iop_permission,
1181 .setattr = kernfs_iop_setattr,
1182 .getattr = kernfs_iop_getattr,
c637b8ac 1183 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
1184
1185 .mkdir = kernfs_iop_mkdir,
1186 .rmdir = kernfs_iop_rmdir,
1187 .rename = kernfs_iop_rename,
fd7b9f7b
TH
1188};
1189
c637b8ac 1190static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 1191{
324a56e1 1192 struct kernfs_node *last;
fd7b9f7b
TH
1193
1194 while (true) {
1195 struct rb_node *rbn;
1196
1197 last = pos;
1198
df23fc39 1199 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
1200 break;
1201
adc5e8b5 1202 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
1203 if (!rbn)
1204 break;
1205
324a56e1 1206 pos = rb_to_kn(rbn);
fd7b9f7b
TH
1207 }
1208
1209 return last;
1210}
1211
1212/**
c637b8ac 1213 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 1214 * @pos: the current position (%NULL to initiate traversal)
324a56e1 1215 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
1216 *
1217 * Find the next descendant to visit for post-order traversal of @root's
1218 * descendants. @root is included in the iteration and the last node to be
1219 * visited.
1220 */
c637b8ac
TH
1221static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1222 struct kernfs_node *root)
fd7b9f7b
TH
1223{
1224 struct rb_node *rbn;
1225
a797bfc3 1226 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
1227
1228 /* if first iteration, visit leftmost descendant which may be root */
1229 if (!pos)
c637b8ac 1230 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
1231
1232 /* if we visited @root, we're done */
1233 if (pos == root)
1234 return NULL;
1235
1236 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 1237 rbn = rb_next(&pos->rb);
fd7b9f7b 1238 if (rbn)
c637b8ac 1239 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
1240
1241 /* no sibling left, visit parent */
adc5e8b5 1242 return pos->parent;
fd7b9f7b
TH
1243}
1244
d35258ef
TH
1245/**
1246 * kernfs_activate - activate a node which started deactivated
1247 * @kn: kernfs_node whose subtree is to be activated
1248 *
1249 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1250 * needs to be explicitly activated. A node which hasn't been activated
1251 * isn't visible to userland and deactivation is skipped during its
1252 * removal. This is useful to construct atomic init sequences where
1253 * creation of multiple nodes should either succeed or fail atomically.
1254 *
1255 * The caller is responsible for ensuring that this function is not called
1256 * after kernfs_remove*() is invoked on @kn.
1257 */
1258void kernfs_activate(struct kernfs_node *kn)
1259{
1260 struct kernfs_node *pos;
1261
1262 mutex_lock(&kernfs_mutex);
1263
1264 pos = NULL;
1265 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1266 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1267 continue;
1268
1269 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1270 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1271
1272 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1273 pos->flags |= KERNFS_ACTIVATED;
1274 }
1275
1276 mutex_unlock(&kernfs_mutex);
1277}
1278
988cd7af 1279static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1280{
35beab06
TH
1281 struct kernfs_node *pos;
1282
1283 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 1284
6b0afc2a
TH
1285 /*
1286 * Short-circuit if non-root @kn has already finished removal.
1287 * This is for kernfs_remove_self() which plays with active ref
1288 * after removal.
1289 */
1290 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1291 return;
1292
c637b8ac 1293 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1294
81c173cb 1295 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1296 pos = NULL;
1297 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1298 if (kernfs_active(pos))
1299 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1300
1301 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1302 do {
35beab06
TH
1303 pos = kernfs_leftmost_descendant(kn);
1304
1305 /*
81c173cb
TH
1306 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1307 * base ref could have been put by someone else by the time
1308 * the function returns. Make sure it doesn't go away
1309 * underneath us.
35beab06
TH
1310 */
1311 kernfs_get(pos);
1312
d35258ef
TH
1313 /*
1314 * Drain iff @kn was activated. This avoids draining and
1315 * its lockdep annotations for nodes which have never been
1316 * activated and allows embedding kernfs_remove() in create
1317 * error paths without worrying about draining.
1318 */
1319 if (kn->flags & KERNFS_ACTIVATED)
1320 kernfs_drain(pos);
1321 else
1322 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1323
1324 /*
1325 * kernfs_unlink_sibling() succeeds once per node. Use it
1326 * to decide who's responsible for cleanups.
1327 */
1328 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1329 struct kernfs_iattrs *ps_iattr =
1330 pos->parent ? pos->parent->iattr : NULL;
1331
1332 /* update timestamps on the parent */
1333 if (ps_iattr) {
05895219
OM
1334 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1335 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
35beab06
TH
1336 }
1337
988cd7af 1338 kernfs_put(pos);
35beab06
TH
1339 }
1340
1341 kernfs_put(pos);
1342 } while (pos != kn);
fd7b9f7b
TH
1343}
1344
1345/**
324a56e1
TH
1346 * kernfs_remove - remove a kernfs_node recursively
1347 * @kn: the kernfs_node to remove
fd7b9f7b 1348 *
324a56e1 1349 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1350 */
324a56e1 1351void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1352{
988cd7af
TH
1353 mutex_lock(&kernfs_mutex);
1354 __kernfs_remove(kn);
1355 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1356}
1357
6b0afc2a
TH
1358/**
1359 * kernfs_break_active_protection - break out of active protection
1360 * @kn: the self kernfs_node
1361 *
1362 * The caller must be running off of a kernfs operation which is invoked
1363 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1364 * this function must also be matched with an invocation of
1365 * kernfs_unbreak_active_protection().
1366 *
1367 * This function releases the active reference of @kn the caller is
1368 * holding. Once this function is called, @kn may be removed at any point
1369 * and the caller is solely responsible for ensuring that the objects it
1370 * dereferences are accessible.
1371 */
1372void kernfs_break_active_protection(struct kernfs_node *kn)
1373{
1374 /*
1375 * Take out ourself out of the active ref dependency chain. If
1376 * we're called without an active ref, lockdep will complain.
1377 */
1378 kernfs_put_active(kn);
1379}
1380
1381/**
1382 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1383 * @kn: the self kernfs_node
1384 *
1385 * If kernfs_break_active_protection() was called, this function must be
1386 * invoked before finishing the kernfs operation. Note that while this
1387 * function restores the active reference, it doesn't and can't actually
1388 * restore the active protection - @kn may already or be in the process of
1389 * being removed. Once kernfs_break_active_protection() is invoked, that
1390 * protection is irreversibly gone for the kernfs operation instance.
1391 *
1392 * While this function may be called at any point after
1393 * kernfs_break_active_protection() is invoked, its most useful location
1394 * would be right before the enclosing kernfs operation returns.
1395 */
1396void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1397{
1398 /*
1399 * @kn->active could be in any state; however, the increment we do
1400 * here will be undone as soon as the enclosing kernfs operation
1401 * finishes and this temporary bump can't break anything. If @kn
1402 * is alive, nothing changes. If @kn is being deactivated, the
1403 * soon-to-follow put will either finish deactivation or restore
1404 * deactivated state. If @kn is already removed, the temporary
1405 * bump is guaranteed to be gone before @kn is released.
1406 */
1407 atomic_inc(&kn->active);
1408 if (kernfs_lockdep(kn))
1409 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1410}
1411
1412/**
1413 * kernfs_remove_self - remove a kernfs_node from its own method
1414 * @kn: the self kernfs_node to remove
1415 *
1416 * The caller must be running off of a kernfs operation which is invoked
1417 * with an active reference - e.g. one of kernfs_ops. This can be used to
1418 * implement a file operation which deletes itself.
1419 *
1420 * For example, the "delete" file for a sysfs device directory can be
1421 * implemented by invoking kernfs_remove_self() on the "delete" file
1422 * itself. This function breaks the circular dependency of trying to
1423 * deactivate self while holding an active ref itself. It isn't necessary
1424 * to modify the usual removal path to use kernfs_remove_self(). The
1425 * "delete" implementation can simply invoke kernfs_remove_self() on self
1426 * before proceeding with the usual removal path. kernfs will ignore later
1427 * kernfs_remove() on self.
1428 *
1429 * kernfs_remove_self() can be called multiple times concurrently on the
1430 * same kernfs_node. Only the first one actually performs removal and
1431 * returns %true. All others will wait until the kernfs operation which
1432 * won self-removal finishes and return %false. Note that the losers wait
1433 * for the completion of not only the winning kernfs_remove_self() but also
1434 * the whole kernfs_ops which won the arbitration. This can be used to
1435 * guarantee, for example, all concurrent writes to a "delete" file to
1436 * finish only after the whole operation is complete.
1437 */
1438bool kernfs_remove_self(struct kernfs_node *kn)
1439{
1440 bool ret;
1441
1442 mutex_lock(&kernfs_mutex);
1443 kernfs_break_active_protection(kn);
1444
1445 /*
1446 * SUICIDAL is used to arbitrate among competing invocations. Only
1447 * the first one will actually perform removal. When the removal
1448 * is complete, SUICIDED is set and the active ref is restored
1449 * while holding kernfs_mutex. The ones which lost arbitration
1450 * waits for SUICDED && drained which can happen only after the
1451 * enclosing kernfs operation which executed the winning instance
1452 * of kernfs_remove_self() finished.
1453 */
1454 if (!(kn->flags & KERNFS_SUICIDAL)) {
1455 kn->flags |= KERNFS_SUICIDAL;
1456 __kernfs_remove(kn);
1457 kn->flags |= KERNFS_SUICIDED;
1458 ret = true;
1459 } else {
1460 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1461 DEFINE_WAIT(wait);
1462
1463 while (true) {
1464 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1465
1466 if ((kn->flags & KERNFS_SUICIDED) &&
1467 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1468 break;
1469
1470 mutex_unlock(&kernfs_mutex);
1471 schedule();
1472 mutex_lock(&kernfs_mutex);
1473 }
1474 finish_wait(waitq, &wait);
1475 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1476 ret = false;
1477 }
1478
1479 /*
1480 * This must be done while holding kernfs_mutex; otherwise, waiting
1481 * for SUICIDED && deactivated could finish prematurely.
1482 */
1483 kernfs_unbreak_active_protection(kn);
1484
1485 mutex_unlock(&kernfs_mutex);
1486 return ret;
1487}
1488
fd7b9f7b 1489/**
324a56e1
TH
1490 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1491 * @parent: parent of the target
1492 * @name: name of the kernfs_node to remove
1493 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1494 *
324a56e1
TH
1495 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1496 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1497 */
324a56e1 1498int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1499 const void *ns)
1500{
324a56e1 1501 struct kernfs_node *kn;
fd7b9f7b 1502
324a56e1 1503 if (!parent) {
c637b8ac 1504 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1505 name);
1506 return -ENOENT;
1507 }
1508
988cd7af 1509 mutex_lock(&kernfs_mutex);
fd7b9f7b 1510
324a56e1
TH
1511 kn = kernfs_find_ns(parent, name, ns);
1512 if (kn)
988cd7af 1513 __kernfs_remove(kn);
fd7b9f7b 1514
988cd7af 1515 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1516
324a56e1 1517 if (kn)
fd7b9f7b
TH
1518 return 0;
1519 else
1520 return -ENOENT;
1521}
1522
1523/**
1524 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1525 * @kn: target node
fd7b9f7b
TH
1526 * @new_parent: new parent to put @sd under
1527 * @new_name: new name
1528 * @new_ns: new namespace tag
1529 */
324a56e1 1530int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1531 const char *new_name, const void *new_ns)
1532{
3eef34ad
TH
1533 struct kernfs_node *old_parent;
1534 const char *old_name = NULL;
fd7b9f7b
TH
1535 int error;
1536
3eef34ad
TH
1537 /* can't move or rename root */
1538 if (!kn->parent)
1539 return -EINVAL;
1540
798c75a0
GKH
1541 mutex_lock(&kernfs_mutex);
1542
d0ae3d43 1543 error = -ENOENT;
ea015218
EB
1544 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1545 (new_parent->flags & KERNFS_EMPTY_DIR))
d0ae3d43
TH
1546 goto out;
1547
fd7b9f7b 1548 error = 0;
adc5e8b5
TH
1549 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1550 (strcmp(kn->name, new_name) == 0))
798c75a0 1551 goto out; /* nothing to rename */
fd7b9f7b
TH
1552
1553 error = -EEXIST;
1554 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1555 goto out;
fd7b9f7b 1556
324a56e1 1557 /* rename kernfs_node */
adc5e8b5 1558 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1559 error = -ENOMEM;
75287a67 1560 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1561 if (!new_name)
798c75a0 1562 goto out;
3eef34ad
TH
1563 } else {
1564 new_name = NULL;
fd7b9f7b
TH
1565 }
1566
1567 /*
1568 * Move to the appropriate place in the appropriate directories rbtree.
1569 */
c637b8ac 1570 kernfs_unlink_sibling(kn);
fd7b9f7b 1571 kernfs_get(new_parent);
3eef34ad
TH
1572
1573 /* rename_lock protects ->parent and ->name accessors */
1574 spin_lock_irq(&kernfs_rename_lock);
1575
1576 old_parent = kn->parent;
adc5e8b5 1577 kn->parent = new_parent;
3eef34ad
TH
1578
1579 kn->ns = new_ns;
1580 if (new_name) {
dfeb0750 1581 old_name = kn->name;
3eef34ad
TH
1582 kn->name = new_name;
1583 }
1584
1585 spin_unlock_irq(&kernfs_rename_lock);
1586
9561a896 1587 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1588 kernfs_link_sibling(kn);
fd7b9f7b 1589
3eef34ad 1590 kernfs_put(old_parent);
75287a67 1591 kfree_const(old_name);
3eef34ad 1592
fd7b9f7b 1593 error = 0;
798c75a0 1594 out:
a797bfc3 1595 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1596 return error;
1597}
1598
fd7b9f7b 1599/* Relationship between s_mode and the DT_xxx types */
324a56e1 1600static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1601{
adc5e8b5 1602 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1603}
1604
c637b8ac 1605static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1606{
1607 kernfs_put(filp->private_data);
1608 return 0;
1609}
1610
c637b8ac 1611static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1612 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1613{
1614 if (pos) {
81c173cb 1615 int valid = kernfs_active(pos) &&
798c75a0 1616 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1617 kernfs_put(pos);
1618 if (!valid)
1619 pos = NULL;
1620 }
1621 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1622 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1623 while (node) {
324a56e1 1624 pos = rb_to_kn(node);
fd7b9f7b 1625
adc5e8b5 1626 if (hash < pos->hash)
fd7b9f7b 1627 node = node->rb_left;
adc5e8b5 1628 else if (hash > pos->hash)
fd7b9f7b
TH
1629 node = node->rb_right;
1630 else
1631 break;
1632 }
1633 }
b9c9dad0
TH
1634 /* Skip over entries which are dying/dead or in the wrong namespace */
1635 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1636 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1637 if (!node)
1638 pos = NULL;
1639 else
324a56e1 1640 pos = rb_to_kn(node);
fd7b9f7b
TH
1641 }
1642 return pos;
1643}
1644
c637b8ac 1645static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1646 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1647{
c637b8ac 1648 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1649 if (pos) {
fd7b9f7b 1650 do {
adc5e8b5 1651 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1652 if (!node)
1653 pos = NULL;
1654 else
324a56e1 1655 pos = rb_to_kn(node);
b9c9dad0
TH
1656 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1657 }
fd7b9f7b
TH
1658 return pos;
1659}
1660
c637b8ac 1661static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1662{
1663 struct dentry *dentry = file->f_path.dentry;
319ba91d 1664 struct kernfs_node *parent = kernfs_dentry_node(dentry);
324a56e1 1665 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1666 const void *ns = NULL;
1667
1668 if (!dir_emit_dots(file, ctx))
1669 return 0;
a797bfc3 1670 mutex_lock(&kernfs_mutex);
fd7b9f7b 1671
324a56e1 1672 if (kernfs_ns_enabled(parent))
c525aadd 1673 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1674
c637b8ac 1675 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1676 pos;
c637b8ac 1677 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1678 const char *name = pos->name;
fd7b9f7b
TH
1679 unsigned int type = dt_type(pos);
1680 int len = strlen(name);
c53cd490 1681 ino_t ino = pos->id.ino;
fd7b9f7b 1682
adc5e8b5 1683 ctx->pos = pos->hash;
fd7b9f7b
TH
1684 file->private_data = pos;
1685 kernfs_get(pos);
1686
a797bfc3 1687 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1688 if (!dir_emit(ctx, name, len, ino, type))
1689 return 0;
a797bfc3 1690 mutex_lock(&kernfs_mutex);
fd7b9f7b 1691 }
a797bfc3 1692 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1693 file->private_data = NULL;
1694 ctx->pos = INT_MAX;
1695 return 0;
1696}
1697
a797bfc3 1698const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1699 .read = generic_read_dir,
8cb0d2c1 1700 .iterate_shared = kernfs_fop_readdir,
c637b8ac 1701 .release = kernfs_dir_fop_release,
8cb0d2c1 1702 .llseek = generic_file_llseek,
fd7b9f7b 1703};