Merge tag 'audit-pr-20220321' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[linux-2.6-block.git] / fs / jfs / jfs_dmap.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Copyright (C) International Business Machines Corp., 2000-2004
b40c2e66 4 * Portions Copyright (C) Tino Reichardt, 2012
1da177e4
LT
5 */
6
7#include <linux/fs.h>
5a0e3ad6 8#include <linux/slab.h>
1da177e4
LT
9#include "jfs_incore.h"
10#include "jfs_superblock.h"
11#include "jfs_dmap.h"
12#include "jfs_imap.h"
13#include "jfs_lock.h"
14#include "jfs_metapage.h"
15#include "jfs_debug.h"
b40c2e66 16#include "jfs_discard.h"
1da177e4 17
1da177e4
LT
18/*
19 * SERIALIZATION of the Block Allocation Map.
20 *
21 * the working state of the block allocation map is accessed in
22 * two directions:
63f83c9f 23 *
1da177e4
LT
24 * 1) allocation and free requests that start at the dmap
25 * level and move up through the dmap control pages (i.e.
26 * the vast majority of requests).
63f83c9f
DK
27 *
28 * 2) allocation requests that start at dmap control page
1da177e4 29 * level and work down towards the dmaps.
1da177e4 30 *
63f83c9f
DK
31 * the serialization scheme used here is as follows.
32 *
33 * requests which start at the bottom are serialized against each
34 * other through buffers and each requests holds onto its buffers
35 * as it works it way up from a single dmap to the required level
1da177e4
LT
36 * of dmap control page.
37 * requests that start at the top are serialized against each other
38 * and request that start from the bottom by the multiple read/single
39 * write inode lock of the bmap inode. requests starting at the top
40 * take this lock in write mode while request starting at the bottom
41 * take the lock in read mode. a single top-down request may proceed
63f83c9f
DK
42 * exclusively while multiple bottoms-up requests may proceed
43 * simultaneously (under the protection of busy buffers).
44 *
1da177e4
LT
45 * in addition to information found in dmaps and dmap control pages,
46 * the working state of the block allocation map also includes read/
47 * write information maintained in the bmap descriptor (i.e. total
48 * free block count, allocation group level free block counts).
49 * a single exclusive lock (BMAP_LOCK) is used to guard this information
50 * in the face of multiple-bottoms up requests.
51 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
63f83c9f 52 *
1da177e4
LT
53 * accesses to the persistent state of the block allocation map (limited
54 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55 */
56
1de87444
IM
57#define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
58#define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
59#define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
1da177e4
LT
60
61/*
62 * forward references
63 */
64static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 int nblocks);
66static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
b6a47fd8 67static int dbBackSplit(dmtree_t * tp, int leafno);
56d12549 68static int dbJoin(dmtree_t * tp, int leafno, int newval);
1da177e4
LT
69static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
70static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 int level);
72static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 int nblocks);
75static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 int nblocks,
77 int l2nb, s64 * results);
78static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 int nblocks);
80static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 int l2nb,
82 s64 * results);
83static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 s64 * results);
85static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 s64 * results);
87static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88static int dbFindBits(u32 word, int l2nb);
89static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
56d12549
DK
91static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 int nblocks);
1da177e4
LT
93static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 int nblocks);
95static int dbMaxBud(u8 * cp);
1da177e4
LT
96static int blkstol2(s64 nb);
97
98static int cntlz(u32 value);
99static int cnttz(u32 word);
100
101static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 int nblocks);
103static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104static int dbInitDmapTree(struct dmap * dp);
105static int dbInitTree(struct dmaptree * dtp);
106static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107static int dbGetL2AGSize(s64 nblocks);
108
109/*
110 * buddy table
111 *
63f83c9f 112 * table used for determining buddy sizes within characters of
1da177e4
LT
113 * dmap bitmap words. the characters themselves serve as indexes
114 * into the table, with the table elements yielding the maximum
115 * binary buddy of free bits within the character.
116 */
4d5dbd09 117static const s8 budtab[256] = {
1da177e4
LT
118 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134};
135
1da177e4 136/*
63f83c9f 137 * NAME: dbMount()
1da177e4
LT
138 *
139 * FUNCTION: initializate the block allocation map.
140 *
141 * memory is allocated for the in-core bmap descriptor and
142 * the in-core descriptor is initialized from disk.
143 *
144 * PARAMETERS:
f720e3ba 145 * ipbmap - pointer to in-core inode for the block map.
1da177e4
LT
146 *
147 * RETURN VALUES:
f720e3ba
DK
148 * 0 - success
149 * -ENOMEM - insufficient memory
150 * -EIO - i/o error
1da177e4
LT
151 */
152int dbMount(struct inode *ipbmap)
153{
154 struct bmap *bmp;
155 struct dbmap_disk *dbmp_le;
156 struct metapage *mp;
157 int i;
158
159 /*
160 * allocate/initialize the in-memory bmap descriptor
161 */
162 /* allocate memory for the in-memory bmap descriptor */
163 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
164 if (bmp == NULL)
165 return -ENOMEM;
166
167 /* read the on-disk bmap descriptor. */
168 mp = read_metapage(ipbmap,
169 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
170 PSIZE, 0);
171 if (mp == NULL) {
172 kfree(bmp);
173 return -EIO;
174 }
175
176 /* copy the on-disk bmap descriptor to its in-memory version. */
177 dbmp_le = (struct dbmap_disk *) mp->data;
178 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
179 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
180 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
181 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
182 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
183 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
184 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
185 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
d7eecb48 186 bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
1da177e4
LT
187 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
188 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
189 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
190 for (i = 0; i < MAXAG; i++)
191 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
192 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
193 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
194
195 /* release the buffer. */
196 release_metapage(mp);
197
198 /* bind the bmap inode and the bmap descriptor to each other. */
199 bmp->db_ipbmap = ipbmap;
200 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
201
202 memset(bmp->db_active, 0, sizeof(bmp->db_active));
1da177e4
LT
203
204 /*
205 * allocate/initialize the bmap lock
206 */
207 BMAP_LOCK_INIT(bmp);
208
209 return (0);
210}
211
212
213/*
63f83c9f 214 * NAME: dbUnmount()
1da177e4
LT
215 *
216 * FUNCTION: terminate the block allocation map in preparation for
217 * file system unmount.
218 *
63f83c9f 219 * the in-core bmap descriptor is written to disk and
1da177e4
LT
220 * the memory for this descriptor is freed.
221 *
222 * PARAMETERS:
f720e3ba 223 * ipbmap - pointer to in-core inode for the block map.
1da177e4
LT
224 *
225 * RETURN VALUES:
f720e3ba
DK
226 * 0 - success
227 * -EIO - i/o error
1da177e4
LT
228 */
229int dbUnmount(struct inode *ipbmap, int mounterror)
230{
231 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
1da177e4
LT
232
233 if (!(mounterror || isReadOnly(ipbmap)))
234 dbSync(ipbmap);
235
236 /*
237 * Invalidate the page cache buffers
238 */
239 truncate_inode_pages(ipbmap->i_mapping, 0);
240
1da177e4
LT
241 /* free the memory for the in-memory bmap. */
242 kfree(bmp);
243
244 return (0);
245}
246
247/*
248 * dbSync()
249 */
250int dbSync(struct inode *ipbmap)
251{
252 struct dbmap_disk *dbmp_le;
253 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
254 struct metapage *mp;
255 int i;
256
257 /*
258 * write bmap global control page
259 */
260 /* get the buffer for the on-disk bmap descriptor. */
261 mp = read_metapage(ipbmap,
262 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
263 PSIZE, 0);
264 if (mp == NULL) {
265 jfs_err("dbSync: read_metapage failed!");
266 return -EIO;
267 }
268 /* copy the in-memory version of the bmap to the on-disk version */
269 dbmp_le = (struct dbmap_disk *) mp->data;
270 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
271 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
272 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
273 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
274 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
275 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
276 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
277 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
d7eecb48 278 dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
1da177e4
LT
279 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
280 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
281 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
282 for (i = 0; i < MAXAG; i++)
283 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
284 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
285 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
286
287 /* write the buffer */
288 write_metapage(mp);
289
290 /*
291 * write out dirty pages of bmap
292 */
28fd1298 293 filemap_write_and_wait(ipbmap->i_mapping);
1da177e4 294
1da177e4
LT
295 diWriteSpecial(ipbmap, 0);
296
297 return (0);
298}
299
1da177e4 300/*
63f83c9f 301 * NAME: dbFree()
1da177e4
LT
302 *
303 * FUNCTION: free the specified block range from the working block
304 * allocation map.
305 *
306 * the blocks will be free from the working map one dmap
307 * at a time.
308 *
309 * PARAMETERS:
f720e3ba
DK
310 * ip - pointer to in-core inode;
311 * blkno - starting block number to be freed.
312 * nblocks - number of blocks to be freed.
1da177e4
LT
313 *
314 * RETURN VALUES:
f720e3ba
DK
315 * 0 - success
316 * -EIO - i/o error
1da177e4
LT
317 */
318int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
319{
320 struct metapage *mp;
321 struct dmap *dp;
322 int nb, rc;
323 s64 lblkno, rem;
324 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
325 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
b40c2e66 326 struct super_block *sb = ipbmap->i_sb;
1da177e4 327
82d5b9a7 328 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1da177e4
LT
329
330 /* block to be freed better be within the mapsize. */
331 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
332 IREAD_UNLOCK(ipbmap);
333 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
334 (unsigned long long) blkno,
335 (unsigned long long) nblocks);
eb8630d7 336 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
1da177e4
LT
337 return -EIO;
338 }
339
b40c2e66
TR
340 /**
341 * TRIM the blocks, when mounted with discard option
342 */
343 if (JFS_SBI(sb)->flag & JFS_DISCARD)
344 if (JFS_SBI(sb)->minblks_trim <= nblocks)
345 jfs_issue_discard(ipbmap, blkno, nblocks);
346
1da177e4
LT
347 /*
348 * free the blocks a dmap at a time.
349 */
350 mp = NULL;
351 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
352 /* release previous dmap if any */
353 if (mp) {
354 write_metapage(mp);
355 }
356
357 /* get the buffer for the current dmap. */
358 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
359 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
360 if (mp == NULL) {
361 IREAD_UNLOCK(ipbmap);
362 return -EIO;
363 }
364 dp = (struct dmap *) mp->data;
365
366 /* determine the number of blocks to be freed from
367 * this dmap.
368 */
369 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
370
1da177e4
LT
371 /* free the blocks. */
372 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
eb8630d7 373 jfs_error(ip->i_sb, "error in block map\n");
1da177e4
LT
374 release_metapage(mp);
375 IREAD_UNLOCK(ipbmap);
376 return (rc);
377 }
1da177e4
LT
378 }
379
380 /* write the last buffer. */
381 write_metapage(mp);
382
383 IREAD_UNLOCK(ipbmap);
384
385 return (0);
386}
387
388
389/*
390 * NAME: dbUpdatePMap()
391 *
f720e3ba 392 * FUNCTION: update the allocation state (free or allocate) of the
1da177e4 393 * specified block range in the persistent block allocation map.
63f83c9f 394 *
1da177e4
LT
395 * the blocks will be updated in the persistent map one
396 * dmap at a time.
397 *
398 * PARAMETERS:
f720e3ba
DK
399 * ipbmap - pointer to in-core inode for the block map.
400 * free - 'true' if block range is to be freed from the persistent
401 * map; 'false' if it is to be allocated.
402 * blkno - starting block number of the range.
403 * nblocks - number of contiguous blocks in the range.
404 * tblk - transaction block;
1da177e4
LT
405 *
406 * RETURN VALUES:
f720e3ba
DK
407 * 0 - success
408 * -EIO - i/o error
1da177e4
LT
409 */
410int
411dbUpdatePMap(struct inode *ipbmap,
412 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
413{
414 int nblks, dbitno, wbitno, rbits;
415 int word, nbits, nwords;
416 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
417 s64 lblkno, rem, lastlblkno;
418 u32 mask;
419 struct dmap *dp;
420 struct metapage *mp;
421 struct jfs_log *log;
422 int lsn, difft, diffp;
7fab479b 423 unsigned long flags;
1da177e4
LT
424
425 /* the blocks better be within the mapsize. */
426 if (blkno + nblocks > bmp->db_mapsize) {
427 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
428 (unsigned long long) blkno,
429 (unsigned long long) nblocks);
eb8630d7 430 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
1da177e4
LT
431 return -EIO;
432 }
433
434 /* compute delta of transaction lsn from log syncpt */
435 lsn = tblk->lsn;
436 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
437 logdiff(difft, lsn, log);
438
439 /*
440 * update the block state a dmap at a time.
441 */
442 mp = NULL;
443 lastlblkno = 0;
444 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
445 /* get the buffer for the current dmap. */
446 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
447 if (lblkno != lastlblkno) {
448 if (mp) {
449 write_metapage(mp);
450 }
451
452 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
453 0);
454 if (mp == NULL)
455 return -EIO;
7fab479b 456 metapage_wait_for_io(mp);
1da177e4
LT
457 }
458 dp = (struct dmap *) mp->data;
459
460 /* determine the bit number and word within the dmap of
461 * the starting block. also determine how many blocks
462 * are to be updated within this dmap.
463 */
464 dbitno = blkno & (BPERDMAP - 1);
465 word = dbitno >> L2DBWORD;
466 nblks = min(rem, (s64)BPERDMAP - dbitno);
467
468 /* update the bits of the dmap words. the first and last
469 * words may only have a subset of their bits updated. if
470 * this is the case, we'll work against that word (i.e.
63f83c9f 471 * partial first and/or last) only in a single pass. a
1da177e4
LT
472 * single pass will also be used to update all words that
473 * are to have all their bits updated.
474 */
475 for (rbits = nblks; rbits > 0;
476 rbits -= nbits, dbitno += nbits) {
477 /* determine the bit number within the word and
478 * the number of bits within the word.
479 */
480 wbitno = dbitno & (DBWORD - 1);
481 nbits = min(rbits, DBWORD - wbitno);
482
483 /* check if only part of the word is to be updated. */
484 if (nbits < DBWORD) {
485 /* update (free or allocate) the bits
486 * in this word.
487 */
488 mask =
489 (ONES << (DBWORD - nbits) >> wbitno);
490 if (free)
491 dp->pmap[word] &=
492 cpu_to_le32(~mask);
493 else
494 dp->pmap[word] |=
495 cpu_to_le32(mask);
496
497 word += 1;
498 } else {
499 /* one or more words are to have all
500 * their bits updated. determine how
501 * many words and how many bits.
502 */
503 nwords = rbits >> L2DBWORD;
504 nbits = nwords << L2DBWORD;
505
506 /* update (free or allocate) the bits
507 * in these words.
508 */
509 if (free)
510 memset(&dp->pmap[word], 0,
511 nwords * 4);
512 else
513 memset(&dp->pmap[word], (int) ONES,
514 nwords * 4);
515
516 word += nwords;
517 }
518 }
519
520 /*
521 * update dmap lsn
522 */
523 if (lblkno == lastlblkno)
524 continue;
525
526 lastlblkno = lblkno;
527
be0bf7da 528 LOGSYNC_LOCK(log, flags);
1da177e4
LT
529 if (mp->lsn != 0) {
530 /* inherit older/smaller lsn */
531 logdiff(diffp, mp->lsn, log);
532 if (difft < diffp) {
533 mp->lsn = lsn;
534
535 /* move bp after tblock in logsync list */
1da177e4 536 list_move(&mp->synclist, &tblk->synclist);
1da177e4
LT
537 }
538
539 /* inherit younger/larger clsn */
1da177e4
LT
540 logdiff(difft, tblk->clsn, log);
541 logdiff(diffp, mp->clsn, log);
542 if (difft > diffp)
543 mp->clsn = tblk->clsn;
1da177e4
LT
544 } else {
545 mp->log = log;
546 mp->lsn = lsn;
547
548 /* insert bp after tblock in logsync list */
1da177e4
LT
549 log->count++;
550 list_add(&mp->synclist, &tblk->synclist);
551
552 mp->clsn = tblk->clsn;
1da177e4 553 }
be0bf7da 554 LOGSYNC_UNLOCK(log, flags);
1da177e4
LT
555 }
556
557 /* write the last buffer. */
558 if (mp) {
559 write_metapage(mp);
560 }
561
562 return (0);
563}
564
565
566/*
567 * NAME: dbNextAG()
568 *
f720e3ba 569 * FUNCTION: find the preferred allocation group for new allocations.
1da177e4
LT
570 *
571 * Within the allocation groups, we maintain a preferred
572 * allocation group which consists of a group with at least
573 * average free space. It is the preferred group that we target
574 * new inode allocation towards. The tie-in between inode
575 * allocation and block allocation occurs as we allocate the
576 * first (data) block of an inode and specify the inode (block)
577 * as the allocation hint for this block.
578 *
579 * We try to avoid having more than one open file growing in
580 * an allocation group, as this will lead to fragmentation.
581 * This differs from the old OS/2 method of trying to keep
582 * empty ags around for large allocations.
583 *
584 * PARAMETERS:
f720e3ba 585 * ipbmap - pointer to in-core inode for the block map.
1da177e4
LT
586 *
587 * RETURN VALUES:
f720e3ba 588 * the preferred allocation group number.
1da177e4
LT
589 */
590int dbNextAG(struct inode *ipbmap)
591{
592 s64 avgfree;
593 int agpref;
594 s64 hwm = 0;
595 int i;
596 int next_best = -1;
597 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
598
599 BMAP_LOCK(bmp);
600
601 /* determine the average number of free blocks within the ags. */
602 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
603
604 /*
605 * if the current preferred ag does not have an active allocator
606 * and has at least average freespace, return it
607 */
608 agpref = bmp->db_agpref;
609 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
610 (bmp->db_agfree[agpref] >= avgfree))
611 goto unlock;
612
613 /* From the last preferred ag, find the next one with at least
614 * average free space.
615 */
616 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
617 if (agpref == bmp->db_numag)
618 agpref = 0;
619
620 if (atomic_read(&bmp->db_active[agpref]))
621 /* open file is currently growing in this ag */
622 continue;
623 if (bmp->db_agfree[agpref] >= avgfree) {
624 /* Return this one */
625 bmp->db_agpref = agpref;
626 goto unlock;
627 } else if (bmp->db_agfree[agpref] > hwm) {
628 /* Less than avg. freespace, but best so far */
629 hwm = bmp->db_agfree[agpref];
630 next_best = agpref;
631 }
632 }
633
634 /*
635 * If no inactive ag was found with average freespace, use the
636 * next best
637 */
638 if (next_best != -1)
639 bmp->db_agpref = next_best;
640 /* else leave db_agpref unchanged */
641unlock:
642 BMAP_UNLOCK(bmp);
643
644 /* return the preferred group.
645 */
646 return (bmp->db_agpref);
647}
648
649/*
650 * NAME: dbAlloc()
651 *
f720e3ba 652 * FUNCTION: attempt to allocate a specified number of contiguous free
1da177e4
LT
653 * blocks from the working allocation block map.
654 *
655 * the block allocation policy uses hints and a multi-step
656 * approach.
657 *
63f83c9f 658 * for allocation requests smaller than the number of blocks
1da177e4
LT
659 * per dmap, we first try to allocate the new blocks
660 * immediately following the hint. if these blocks are not
661 * available, we try to allocate blocks near the hint. if
63f83c9f 662 * no blocks near the hint are available, we next try to
1da177e4
LT
663 * allocate within the same dmap as contains the hint.
664 *
665 * if no blocks are available in the dmap or the allocation
666 * request is larger than the dmap size, we try to allocate
667 * within the same allocation group as contains the hint. if
668 * this does not succeed, we finally try to allocate anywhere
669 * within the aggregate.
670 *
ed1c9a7a 671 * we also try to allocate anywhere within the aggregate
1da177e4
LT
672 * for allocation requests larger than the allocation group
673 * size or requests that specify no hint value.
674 *
675 * PARAMETERS:
f720e3ba
DK
676 * ip - pointer to in-core inode;
677 * hint - allocation hint.
678 * nblocks - number of contiguous blocks in the range.
679 * results - on successful return, set to the starting block number
1da177e4
LT
680 * of the newly allocated contiguous range.
681 *
682 * RETURN VALUES:
f720e3ba
DK
683 * 0 - success
684 * -ENOSPC - insufficient disk resources
685 * -EIO - i/o error
1da177e4
LT
686 */
687int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
688{
689 int rc, agno;
690 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
691 struct bmap *bmp;
692 struct metapage *mp;
693 s64 lblkno, blkno;
694 struct dmap *dp;
695 int l2nb;
696 s64 mapSize;
697 int writers;
698
699 /* assert that nblocks is valid */
700 assert(nblocks > 0);
701
1da177e4 702 /* get the log2 number of blocks to be allocated.
63f83c9f 703 * if the number of blocks is not a log2 multiple,
1da177e4
LT
704 * it will be rounded up to the next log2 multiple.
705 */
706 l2nb = BLKSTOL2(nblocks);
707
708 bmp = JFS_SBI(ip->i_sb)->bmap;
709
1da177e4
LT
710 mapSize = bmp->db_mapsize;
711
712 /* the hint should be within the map */
713 if (hint >= mapSize) {
eb8630d7 714 jfs_error(ip->i_sb, "the hint is outside the map\n");
1da177e4
LT
715 return -EIO;
716 }
717
718 /* if the number of blocks to be allocated is greater than the
719 * allocation group size, try to allocate anywhere.
720 */
721 if (l2nb > bmp->db_agl2size) {
82d5b9a7 722 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1da177e4
LT
723
724 rc = dbAllocAny(bmp, nblocks, l2nb, results);
1da177e4
LT
725
726 goto write_unlock;
727 }
728
729 /*
730 * If no hint, let dbNextAG recommend an allocation group
731 */
732 if (hint == 0)
733 goto pref_ag;
734
735 /* we would like to allocate close to the hint. adjust the
736 * hint to the block following the hint since the allocators
737 * will start looking for free space starting at this point.
738 */
739 blkno = hint + 1;
740
741 if (blkno >= bmp->db_mapsize)
742 goto pref_ag;
743
744 agno = blkno >> bmp->db_agl2size;
745
746 /* check if blkno crosses over into a new allocation group.
747 * if so, check if we should allow allocations within this
748 * allocation group.
749 */
750 if ((blkno & (bmp->db_agsize - 1)) == 0)
af901ca1 751 /* check if the AG is currently being written to.
1da177e4
LT
752 * if so, call dbNextAG() to find a non-busy
753 * AG with sufficient free space.
754 */
755 if (atomic_read(&bmp->db_active[agno]))
756 goto pref_ag;
757
758 /* check if the allocation request size can be satisfied from a
759 * single dmap. if so, try to allocate from the dmap containing
760 * the hint using a tiered strategy.
761 */
762 if (nblocks <= BPERDMAP) {
82d5b9a7 763 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1da177e4
LT
764
765 /* get the buffer for the dmap containing the hint.
766 */
767 rc = -EIO;
768 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
769 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
770 if (mp == NULL)
771 goto read_unlock;
772
773 dp = (struct dmap *) mp->data;
774
775 /* first, try to satisfy the allocation request with the
776 * blocks beginning at the hint.
777 */
778 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
779 != -ENOSPC) {
780 if (rc == 0) {
781 *results = blkno;
1da177e4
LT
782 mark_metapage_dirty(mp);
783 }
784
785 release_metapage(mp);
786 goto read_unlock;
787 }
788
789 writers = atomic_read(&bmp->db_active[agno]);
790 if ((writers > 1) ||
791 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
792 /*
793 * Someone else is writing in this allocation
794 * group. To avoid fragmenting, try another ag
795 */
796 release_metapage(mp);
797 IREAD_UNLOCK(ipbmap);
798 goto pref_ag;
799 }
800
801 /* next, try to satisfy the allocation request with blocks
802 * near the hint.
803 */
804 if ((rc =
805 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
806 != -ENOSPC) {
b38a3ab3 807 if (rc == 0)
1da177e4 808 mark_metapage_dirty(mp);
1da177e4
LT
809
810 release_metapage(mp);
811 goto read_unlock;
812 }
813
814 /* try to satisfy the allocation request with blocks within
815 * the same dmap as the hint.
816 */
817 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
818 != -ENOSPC) {
b38a3ab3 819 if (rc == 0)
1da177e4 820 mark_metapage_dirty(mp);
1da177e4
LT
821
822 release_metapage(mp);
823 goto read_unlock;
824 }
825
826 release_metapage(mp);
827 IREAD_UNLOCK(ipbmap);
828 }
829
830 /* try to satisfy the allocation request with blocks within
831 * the same allocation group as the hint.
832 */
82d5b9a7 833 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
b38a3ab3 834 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
1da177e4 835 goto write_unlock;
b38a3ab3 836
1da177e4
LT
837 IWRITE_UNLOCK(ipbmap);
838
839
840 pref_ag:
841 /*
842 * Let dbNextAG recommend a preferred allocation group
843 */
844 agno = dbNextAG(ipbmap);
82d5b9a7 845 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1da177e4
LT
846
847 /* Try to allocate within this allocation group. if that fails, try to
848 * allocate anywhere in the map.
849 */
850 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
851 rc = dbAllocAny(bmp, nblocks, l2nb, results);
1da177e4
LT
852
853 write_unlock:
854 IWRITE_UNLOCK(ipbmap);
855
856 return (rc);
857
858 read_unlock:
859 IREAD_UNLOCK(ipbmap);
860
861 return (rc);
862}
863
864#ifdef _NOTYET
865/*
866 * NAME: dbAllocExact()
867 *
f720e3ba 868 * FUNCTION: try to allocate the requested extent;
1da177e4
LT
869 *
870 * PARAMETERS:
f720e3ba
DK
871 * ip - pointer to in-core inode;
872 * blkno - extent address;
873 * nblocks - extent length;
1da177e4
LT
874 *
875 * RETURN VALUES:
f720e3ba
DK
876 * 0 - success
877 * -ENOSPC - insufficient disk resources
878 * -EIO - i/o error
1da177e4
LT
879 */
880int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
881{
882 int rc;
883 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
884 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
885 struct dmap *dp;
886 s64 lblkno;
887 struct metapage *mp;
888
82d5b9a7 889 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1da177e4
LT
890
891 /*
892 * validate extent request:
893 *
894 * note: defragfs policy:
63f83c9f 895 * max 64 blocks will be moved.
1da177e4
LT
896 * allocation request size must be satisfied from a single dmap.
897 */
898 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
899 IREAD_UNLOCK(ipbmap);
900 return -EINVAL;
901 }
902
903 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
904 /* the free space is no longer available */
905 IREAD_UNLOCK(ipbmap);
906 return -ENOSPC;
907 }
908
909 /* read in the dmap covering the extent */
910 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
911 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
912 if (mp == NULL) {
913 IREAD_UNLOCK(ipbmap);
914 return -EIO;
915 }
916 dp = (struct dmap *) mp->data;
917
918 /* try to allocate the requested extent */
919 rc = dbAllocNext(bmp, dp, blkno, nblocks);
920
921 IREAD_UNLOCK(ipbmap);
922
b38a3ab3 923 if (rc == 0)
1da177e4 924 mark_metapage_dirty(mp);
b38a3ab3 925
1da177e4
LT
926 release_metapage(mp);
927
928 return (rc);
929}
930#endif /* _NOTYET */
931
932/*
933 * NAME: dbReAlloc()
934 *
f720e3ba 935 * FUNCTION: attempt to extend a current allocation by a specified
1da177e4
LT
936 * number of blocks.
937 *
938 * this routine attempts to satisfy the allocation request
939 * by first trying to extend the existing allocation in
940 * place by allocating the additional blocks as the blocks
941 * immediately following the current allocation. if these
942 * blocks are not available, this routine will attempt to
943 * allocate a new set of contiguous blocks large enough
944 * to cover the existing allocation plus the additional
945 * number of blocks required.
946 *
947 * PARAMETERS:
f720e3ba
DK
948 * ip - pointer to in-core inode requiring allocation.
949 * blkno - starting block of the current allocation.
950 * nblocks - number of contiguous blocks within the current
1da177e4 951 * allocation.
f720e3ba
DK
952 * addnblocks - number of blocks to add to the allocation.
953 * results - on successful return, set to the starting block number
1da177e4
LT
954 * of the existing allocation if the existing allocation
955 * was extended in place or to a newly allocated contiguous
956 * range if the existing allocation could not be extended
957 * in place.
958 *
959 * RETURN VALUES:
f720e3ba
DK
960 * 0 - success
961 * -ENOSPC - insufficient disk resources
962 * -EIO - i/o error
1da177e4
LT
963 */
964int
965dbReAlloc(struct inode *ip,
966 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
967{
968 int rc;
969
970 /* try to extend the allocation in place.
971 */
972 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
973 *results = blkno;
974 return (0);
975 } else {
976 if (rc != -ENOSPC)
977 return (rc);
978 }
979
980 /* could not extend the allocation in place, so allocate a
981 * new set of blocks for the entire request (i.e. try to get
982 * a range of contiguous blocks large enough to cover the
983 * existing allocation plus the additional blocks.)
984 */
985 return (dbAlloc
986 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
987}
988
989
990/*
991 * NAME: dbExtend()
992 *
f720e3ba 993 * FUNCTION: attempt to extend a current allocation by a specified
1da177e4
LT
994 * number of blocks.
995 *
996 * this routine attempts to satisfy the allocation request
997 * by first trying to extend the existing allocation in
998 * place by allocating the additional blocks as the blocks
999 * immediately following the current allocation.
1000 *
1001 * PARAMETERS:
f720e3ba
DK
1002 * ip - pointer to in-core inode requiring allocation.
1003 * blkno - starting block of the current allocation.
1004 * nblocks - number of contiguous blocks within the current
1da177e4 1005 * allocation.
f720e3ba 1006 * addnblocks - number of blocks to add to the allocation.
1da177e4
LT
1007 *
1008 * RETURN VALUES:
f720e3ba
DK
1009 * 0 - success
1010 * -ENOSPC - insufficient disk resources
1011 * -EIO - i/o error
1da177e4
LT
1012 */
1013static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1014{
1015 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1016 s64 lblkno, lastblkno, extblkno;
1017 uint rel_block;
1018 struct metapage *mp;
1019 struct dmap *dp;
1020 int rc;
1021 struct inode *ipbmap = sbi->ipbmap;
1022 struct bmap *bmp;
1023
1024 /*
1025 * We don't want a non-aligned extent to cross a page boundary
1026 */
1027 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1028 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1029 return -ENOSPC;
1030
1031 /* get the last block of the current allocation */
1032 lastblkno = blkno + nblocks - 1;
1033
1034 /* determine the block number of the block following
1035 * the existing allocation.
1036 */
1037 extblkno = lastblkno + 1;
1038
82d5b9a7 1039 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1da177e4
LT
1040
1041 /* better be within the file system */
1042 bmp = sbi->bmap;
1043 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1044 IREAD_UNLOCK(ipbmap);
eb8630d7 1045 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1da177e4
LT
1046 return -EIO;
1047 }
1048
1049 /* we'll attempt to extend the current allocation in place by
1050 * allocating the additional blocks as the blocks immediately
1051 * following the current allocation. we only try to extend the
1052 * current allocation in place if the number of additional blocks
1053 * can fit into a dmap, the last block of the current allocation
1054 * is not the last block of the file system, and the start of the
1055 * inplace extension is not on an allocation group boundary.
1056 */
1057 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1058 (extblkno & (bmp->db_agsize - 1)) == 0) {
1059 IREAD_UNLOCK(ipbmap);
1060 return -ENOSPC;
1061 }
1062
1063 /* get the buffer for the dmap containing the first block
1064 * of the extension.
1065 */
1066 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1067 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1068 if (mp == NULL) {
1069 IREAD_UNLOCK(ipbmap);
1070 return -EIO;
1071 }
1072
1da177e4
LT
1073 dp = (struct dmap *) mp->data;
1074
1075 /* try to allocate the blocks immediately following the
1076 * current allocation.
1077 */
1078 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1079
1080 IREAD_UNLOCK(ipbmap);
1081
1082 /* were we successful ? */
b38a3ab3 1083 if (rc == 0)
1da177e4 1084 write_metapage(mp);
b38a3ab3 1085 else
1da177e4
LT
1086 /* we were not successful */
1087 release_metapage(mp);
1088
1da177e4
LT
1089 return (rc);
1090}
1091
1092
1093/*
1094 * NAME: dbAllocNext()
1095 *
f720e3ba 1096 * FUNCTION: attempt to allocate the blocks of the specified block
1da177e4
LT
1097 * range within a dmap.
1098 *
1099 * PARAMETERS:
f720e3ba
DK
1100 * bmp - pointer to bmap descriptor
1101 * dp - pointer to dmap.
1102 * blkno - starting block number of the range.
1103 * nblocks - number of contiguous free blocks of the range.
1da177e4
LT
1104 *
1105 * RETURN VALUES:
f720e3ba
DK
1106 * 0 - success
1107 * -ENOSPC - insufficient disk resources
1108 * -EIO - i/o error
1da177e4
LT
1109 *
1110 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1111 */
1112static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1113 int nblocks)
1114{
1115 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1116 int l2size;
1117 s8 *leaf;
1118 u32 mask;
1119
1120 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
eb8630d7 1121 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1da177e4
LT
1122 return -EIO;
1123 }
1124
1125 /* pick up a pointer to the leaves of the dmap tree.
1126 */
1127 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1128
1129 /* determine the bit number and word within the dmap of the
1130 * starting block.
1131 */
1132 dbitno = blkno & (BPERDMAP - 1);
1133 word = dbitno >> L2DBWORD;
1134
1135 /* check if the specified block range is contained within
1136 * this dmap.
1137 */
1138 if (dbitno + nblocks > BPERDMAP)
1139 return -ENOSPC;
1140
1141 /* check if the starting leaf indicates that anything
1142 * is free.
1143 */
1144 if (leaf[word] == NOFREE)
1145 return -ENOSPC;
1146
1147 /* check the dmaps words corresponding to block range to see
1148 * if the block range is free. not all bits of the first and
1149 * last words may be contained within the block range. if this
1150 * is the case, we'll work against those words (i.e. partial first
1151 * and/or last) on an individual basis (a single pass) and examine
1152 * the actual bits to determine if they are free. a single pass
1153 * will be used for all dmap words fully contained within the
1154 * specified range. within this pass, the leaves of the dmap
1155 * tree will be examined to determine if the blocks are free. a
1156 * single leaf may describe the free space of multiple dmap
1157 * words, so we may visit only a subset of the actual leaves
1158 * corresponding to the dmap words of the block range.
1159 */
1160 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1161 /* determine the bit number within the word and
1162 * the number of bits within the word.
1163 */
1164 wbitno = dbitno & (DBWORD - 1);
1165 nb = min(rembits, DBWORD - wbitno);
1166
1167 /* check if only part of the word is to be examined.
1168 */
1169 if (nb < DBWORD) {
1170 /* check if the bits are free.
1171 */
1172 mask = (ONES << (DBWORD - nb) >> wbitno);
1173 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1174 return -ENOSPC;
1175
1176 word += 1;
1177 } else {
1178 /* one or more dmap words are fully contained
1179 * within the block range. determine how many
1180 * words and how many bits.
1181 */
1182 nwords = rembits >> L2DBWORD;
1183 nb = nwords << L2DBWORD;
1184
1185 /* now examine the appropriate leaves to determine
1186 * if the blocks are free.
1187 */
1188 while (nwords > 0) {
1189 /* does the leaf describe any free space ?
1190 */
1191 if (leaf[word] < BUDMIN)
1192 return -ENOSPC;
1193
1194 /* determine the l2 number of bits provided
1195 * by this leaf.
1196 */
1197 l2size =
4f65b6db 1198 min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1da177e4
LT
1199
1200 /* determine how many words were handled.
1201 */
1202 nw = BUDSIZE(l2size, BUDMIN);
1203
1204 nwords -= nw;
1205 word += nw;
1206 }
1207 }
1208 }
1209
1210 /* allocate the blocks.
1211 */
1212 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1213}
1214
1215
1216/*
1217 * NAME: dbAllocNear()
1218 *
f720e3ba 1219 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1da177e4
LT
1220 * a specified block (hint) within a dmap.
1221 *
1222 * starting with the dmap leaf that covers the hint, we'll
1223 * check the next four contiguous leaves for sufficient free
1224 * space. if sufficient free space is found, we'll allocate
1225 * the desired free space.
1226 *
1227 * PARAMETERS:
f720e3ba
DK
1228 * bmp - pointer to bmap descriptor
1229 * dp - pointer to dmap.
1230 * blkno - block number to allocate near.
1231 * nblocks - actual number of contiguous free blocks desired.
1232 * l2nb - log2 number of contiguous free blocks desired.
1233 * results - on successful return, set to the starting block number
1da177e4
LT
1234 * of the newly allocated range.
1235 *
1236 * RETURN VALUES:
f720e3ba
DK
1237 * 0 - success
1238 * -ENOSPC - insufficient disk resources
1239 * -EIO - i/o error
1da177e4
LT
1240 *
1241 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1242 */
1243static int
1244dbAllocNear(struct bmap * bmp,
1245 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1246{
1247 int word, lword, rc;
1248 s8 *leaf;
1249
1250 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
eb8630d7 1251 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1da177e4
LT
1252 return -EIO;
1253 }
1254
1255 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1256
1257 /* determine the word within the dmap that holds the hint
1258 * (i.e. blkno). also, determine the last word in the dmap
1259 * that we'll include in our examination.
1260 */
1261 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1262 lword = min(word + 4, LPERDMAP);
1263
1264 /* examine the leaves for sufficient free space.
1265 */
1266 for (; word < lword; word++) {
1267 /* does the leaf describe sufficient free space ?
1268 */
1269 if (leaf[word] < l2nb)
1270 continue;
1271
1272 /* determine the block number within the file system
1273 * of the first block described by this dmap word.
1274 */
1275 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1276
1277 /* if not all bits of the dmap word are free, get the
1278 * starting bit number within the dmap word of the required
1279 * string of free bits and adjust the block number with the
1280 * value.
1281 */
1282 if (leaf[word] < BUDMIN)
1283 blkno +=
1284 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1285
1286 /* allocate the blocks.
1287 */
1288 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1289 *results = blkno;
1290
1291 return (rc);
1292 }
1293
1294 return -ENOSPC;
1295}
1296
1297
1298/*
1299 * NAME: dbAllocAG()
1300 *
f720e3ba 1301 * FUNCTION: attempt to allocate the specified number of contiguous
1da177e4
LT
1302 * free blocks within the specified allocation group.
1303 *
1304 * unless the allocation group size is equal to the number
1305 * of blocks per dmap, the dmap control pages will be used to
1306 * find the required free space, if available. we start the
1307 * search at the highest dmap control page level which
1308 * distinctly describes the allocation group's free space
1309 * (i.e. the highest level at which the allocation group's
1310 * free space is not mixed in with that of any other group).
1311 * in addition, we start the search within this level at a
1312 * height of the dmapctl dmtree at which the nodes distinctly
1313 * describe the allocation group's free space. at this height,
1314 * the allocation group's free space may be represented by 1
1315 * or two sub-trees, depending on the allocation group size.
1316 * we search the top nodes of these subtrees left to right for
1317 * sufficient free space. if sufficient free space is found,
63f83c9f 1318 * the subtree is searched to find the leftmost leaf that
1da177e4
LT
1319 * has free space. once we have made it to the leaf, we
1320 * move the search to the next lower level dmap control page
1321 * corresponding to this leaf. we continue down the dmap control
1322 * pages until we find the dmap that contains or starts the
1323 * sufficient free space and we allocate at this dmap.
1324 *
1325 * if the allocation group size is equal to the dmap size,
1326 * we'll start at the dmap corresponding to the allocation
1327 * group and attempt the allocation at this level.
1328 *
1329 * the dmap control page search is also not performed if the
1330 * allocation group is completely free and we go to the first
1331 * dmap of the allocation group to do the allocation. this is
1332 * done because the allocation group may be part (not the first
1333 * part) of a larger binary buddy system, causing the dmap
1334 * control pages to indicate no free space (NOFREE) within
1335 * the allocation group.
1336 *
1337 * PARAMETERS:
f720e3ba 1338 * bmp - pointer to bmap descriptor
1da177e4 1339 * agno - allocation group number.
f720e3ba
DK
1340 * nblocks - actual number of contiguous free blocks desired.
1341 * l2nb - log2 number of contiguous free blocks desired.
1342 * results - on successful return, set to the starting block number
1da177e4
LT
1343 * of the newly allocated range.
1344 *
1345 * RETURN VALUES:
f720e3ba
DK
1346 * 0 - success
1347 * -ENOSPC - insufficient disk resources
1348 * -EIO - i/o error
1da177e4
LT
1349 *
1350 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1351 */
1352static int
1353dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1354{
1355 struct metapage *mp;
1356 struct dmapctl *dcp;
1357 int rc, ti, i, k, m, n, agperlev;
1358 s64 blkno, lblkno;
1359 int budmin;
1360
1361 /* allocation request should not be for more than the
1362 * allocation group size.
1363 */
1364 if (l2nb > bmp->db_agl2size) {
1365 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1366 "allocation request is larger than the allocation group size\n");
1da177e4
LT
1367 return -EIO;
1368 }
1369
1370 /* determine the starting block number of the allocation
1371 * group.
1372 */
1373 blkno = (s64) agno << bmp->db_agl2size;
1374
1375 /* check if the allocation group size is the minimum allocation
1376 * group size or if the allocation group is completely free. if
1377 * the allocation group size is the minimum size of BPERDMAP (i.e.
1378 * 1 dmap), there is no need to search the dmap control page (below)
1379 * that fully describes the allocation group since the allocation
1380 * group is already fully described by a dmap. in this case, we
1381 * just call dbAllocCtl() to search the dmap tree and allocate the
63f83c9f 1382 * required space if available.
1da177e4
LT
1383 *
1384 * if the allocation group is completely free, dbAllocCtl() is
1385 * also called to allocate the required space. this is done for
1386 * two reasons. first, it makes no sense searching the dmap control
1387 * pages for free space when we know that free space exists. second,
1388 * the dmap control pages may indicate that the allocation group
1389 * has no free space if the allocation group is part (not the first
1390 * part) of a larger binary buddy system.
1391 */
1392 if (bmp->db_agsize == BPERDMAP
1393 || bmp->db_agfree[agno] == bmp->db_agsize) {
1394 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1395 if ((rc == -ENOSPC) &&
1396 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1397 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1398 (unsigned long long) blkno,
1399 (unsigned long long) nblocks);
1400 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1401 "dbAllocCtl failed in free AG\n");
1da177e4
LT
1402 }
1403 return (rc);
1404 }
1405
1406 /* the buffer for the dmap control page that fully describes the
1407 * allocation group.
1408 */
1409 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1410 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1411 if (mp == NULL)
1412 return -EIO;
1413 dcp = (struct dmapctl *) mp->data;
1414 budmin = dcp->budmin;
1415
1416 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
eb8630d7 1417 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1da177e4
LT
1418 release_metapage(mp);
1419 return -EIO;
1420 }
1421
1422 /* search the subtree(s) of the dmap control page that describes
1423 * the allocation group, looking for sufficient free space. to begin,
1424 * determine how many allocation groups are represented in a dmap
1425 * control page at the control page level (i.e. L0, L1, L2) that
1426 * fully describes an allocation group. next, determine the starting
1427 * tree index of this allocation group within the control page.
1428 */
1429 agperlev =
d7eecb48 1430 (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1da177e4
LT
1431 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1432
63f83c9f 1433 /* dmap control page trees fan-out by 4 and a single allocation
1da177e4
LT
1434 * group may be described by 1 or 2 subtrees within the ag level
1435 * dmap control page, depending upon the ag size. examine the ag's
1436 * subtrees for sufficient free space, starting with the leftmost
1437 * subtree.
1438 */
1439 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1440 /* is there sufficient free space ?
1441 */
1442 if (l2nb > dcp->stree[ti])
1443 continue;
1444
1445 /* sufficient free space found in a subtree. now search down
1446 * the subtree to find the leftmost leaf that describes this
1447 * free space.
1448 */
d7eecb48 1449 for (k = bmp->db_agheight; k > 0; k--) {
1da177e4
LT
1450 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1451 if (l2nb <= dcp->stree[m + n]) {
1452 ti = m + n;
1453 break;
1454 }
1455 }
1456 if (n == 4) {
1457 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1458 "failed descending stree\n");
1da177e4
LT
1459 release_metapage(mp);
1460 return -EIO;
1461 }
1462 }
1463
1464 /* determine the block number within the file system
1465 * that corresponds to this leaf.
1466 */
1467 if (bmp->db_aglevel == 2)
1468 blkno = 0;
1469 else if (bmp->db_aglevel == 1)
1470 blkno &= ~(MAXL1SIZE - 1);
1471 else /* bmp->db_aglevel == 0 */
1472 blkno &= ~(MAXL0SIZE - 1);
1473
1474 blkno +=
1475 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1476
1477 /* release the buffer in preparation for going down
1478 * the next level of dmap control pages.
1479 */
1480 release_metapage(mp);
1481
1482 /* check if we need to continue to search down the lower
1483 * level dmap control pages. we need to if the number of
1484 * blocks required is less than maximum number of blocks
1485 * described at the next lower level.
1486 */
1487 if (l2nb < budmin) {
1488
1489 /* search the lower level dmap control pages to get
59c51591 1490 * the starting block number of the dmap that
1da177e4
LT
1491 * contains or starts off the free space.
1492 */
1493 if ((rc =
1494 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1495 &blkno))) {
1496 if (rc == -ENOSPC) {
1497 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1498 "control page inconsistent\n");
1da177e4
LT
1499 return -EIO;
1500 }
1501 return (rc);
1502 }
1503 }
1504
1505 /* allocate the blocks.
1506 */
1507 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1508 if (rc == -ENOSPC) {
1509 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1510 "unable to allocate blocks\n");
1da177e4
LT
1511 rc = -EIO;
1512 }
1513 return (rc);
1514 }
1515
1516 /* no space in the allocation group. release the buffer and
1517 * return -ENOSPC.
1518 */
1519 release_metapage(mp);
1520
1521 return -ENOSPC;
1522}
1523
1524
1525/*
1526 * NAME: dbAllocAny()
1527 *
f720e3ba 1528 * FUNCTION: attempt to allocate the specified number of contiguous
1da177e4
LT
1529 * free blocks anywhere in the file system.
1530 *
1531 * dbAllocAny() attempts to find the sufficient free space by
1532 * searching down the dmap control pages, starting with the
1533 * highest level (i.e. L0, L1, L2) control page. if free space
1534 * large enough to satisfy the desired free space is found, the
1535 * desired free space is allocated.
1536 *
1537 * PARAMETERS:
f720e3ba
DK
1538 * bmp - pointer to bmap descriptor
1539 * nblocks - actual number of contiguous free blocks desired.
1540 * l2nb - log2 number of contiguous free blocks desired.
1541 * results - on successful return, set to the starting block number
1da177e4
LT
1542 * of the newly allocated range.
1543 *
1544 * RETURN VALUES:
f720e3ba
DK
1545 * 0 - success
1546 * -ENOSPC - insufficient disk resources
1547 * -EIO - i/o error
1da177e4
LT
1548 *
1549 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1550 */
1551static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1552{
1553 int rc;
1554 s64 blkno = 0;
1555
1556 /* starting with the top level dmap control page, search
1557 * down the dmap control levels for sufficient free space.
1558 * if free space is found, dbFindCtl() returns the starting
1559 * block number of the dmap that contains or starts off the
1560 * range of free space.
1561 */
1562 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1563 return (rc);
1564
1565 /* allocate the blocks.
1566 */
1567 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1568 if (rc == -ENOSPC) {
eb8630d7 1569 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1da177e4
LT
1570 return -EIO;
1571 }
1572 return (rc);
1573}
1574
1575
b40c2e66
TR
1576/*
1577 * NAME: dbDiscardAG()
1578 *
1579 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1580 *
1581 * algorithm:
1582 * 1) allocate blocks, as large as possible and save them
1583 * while holding IWRITE_LOCK on ipbmap
1584 * 2) trim all these saved block/length values
1585 * 3) mark the blocks free again
1586 *
1587 * benefit:
1588 * - we work only on one ag at some time, minimizing how long we
1589 * need to lock ipbmap
1590 * - reading / writing the fs is possible most time, even on
1591 * trimming
1592 *
1593 * downside:
1594 * - we write two times to the dmapctl and dmap pages
1595 * - but for me, this seems the best way, better ideas?
1596 * /TR 2012
1597 *
1598 * PARAMETERS:
1599 * ip - pointer to in-core inode
1600 * agno - ag to trim
1601 * minlen - minimum value of contiguous blocks
1602 *
1603 * RETURN VALUES:
1604 * s64 - actual number of blocks trimmed
1605 */
1606s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1607{
1608 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1609 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1610 s64 nblocks, blkno;
1611 u64 trimmed = 0;
1612 int rc, l2nb;
1613 struct super_block *sb = ipbmap->i_sb;
1614
1615 struct range2trim {
1616 u64 blkno;
1617 u64 nblocks;
1618 } *totrim, *tt;
1619
1620 /* max blkno / nblocks pairs to trim */
1621 int count = 0, range_cnt;
84f4141e 1622 u64 max_ranges;
b40c2e66
TR
1623
1624 /* prevent others from writing new stuff here, while trimming */
1625 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1626
1627 nblocks = bmp->db_agfree[agno];
84f4141e
DK
1628 max_ranges = nblocks;
1629 do_div(max_ranges, minlen);
1630 range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
6da2ec56 1631 totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
b40c2e66 1632 if (totrim == NULL) {
eb8630d7 1633 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
b40c2e66
TR
1634 IWRITE_UNLOCK(ipbmap);
1635 return 0;
1636 }
1637
1638 tt = totrim;
1639 while (nblocks >= minlen) {
1640 l2nb = BLKSTOL2(nblocks);
1641
1642 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1643 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1644 if (rc == 0) {
1645 tt->blkno = blkno;
1646 tt->nblocks = nblocks;
1647 tt++; count++;
1648
1649 /* the whole ag is free, trim now */
1650 if (bmp->db_agfree[agno] == 0)
1651 break;
1652
1653 /* give a hint for the next while */
1654 nblocks = bmp->db_agfree[agno];
1655 continue;
1656 } else if (rc == -ENOSPC) {
1657 /* search for next smaller log2 block */
1658 l2nb = BLKSTOL2(nblocks) - 1;
4208c398 1659 nblocks = 1LL << l2nb;
b40c2e66
TR
1660 } else {
1661 /* Trim any already allocated blocks */
eb8630d7 1662 jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
b40c2e66
TR
1663 break;
1664 }
1665
1666 /* check, if our trim array is full */
1667 if (unlikely(count >= range_cnt - 1))
1668 break;
1669 }
1670 IWRITE_UNLOCK(ipbmap);
1671
1672 tt->nblocks = 0; /* mark the current end */
1673 for (tt = totrim; tt->nblocks != 0; tt++) {
1674 /* when mounted with online discard, dbFree() will
1675 * call jfs_issue_discard() itself */
1676 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1677 jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1678 dbFree(ip, tt->blkno, tt->nblocks);
1679 trimmed += tt->nblocks;
1680 }
1681 kfree(totrim);
1682
1683 return trimmed;
1684}
1685
1da177e4
LT
1686/*
1687 * NAME: dbFindCtl()
1688 *
f720e3ba 1689 * FUNCTION: starting at a specified dmap control page level and block
1da177e4 1690 * number, search down the dmap control levels for a range of
f720e3ba 1691 * contiguous free blocks large enough to satisfy an allocation
1da177e4
LT
1692 * request for the specified number of free blocks.
1693 *
1694 * if sufficient contiguous free blocks are found, this routine
1695 * returns the starting block number within a dmap page that
1696 * contains or starts a range of contiqious free blocks that
1697 * is sufficient in size.
1698 *
1699 * PARAMETERS:
f720e3ba
DK
1700 * bmp - pointer to bmap descriptor
1701 * level - starting dmap control page level.
1702 * l2nb - log2 number of contiguous free blocks desired.
1703 * *blkno - on entry, starting block number for conducting the search.
1da177e4
LT
1704 * on successful return, the first block within a dmap page
1705 * that contains or starts a range of contiguous free blocks.
1706 *
1707 * RETURN VALUES:
f720e3ba
DK
1708 * 0 - success
1709 * -ENOSPC - insufficient disk resources
1710 * -EIO - i/o error
1da177e4
LT
1711 *
1712 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1713 */
1714static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1715{
1716 int rc, leafidx, lev;
1717 s64 b, lblkno;
1718 struct dmapctl *dcp;
1719 int budmin;
1720 struct metapage *mp;
1721
1722 /* starting at the specified dmap control page level and block
1723 * number, search down the dmap control levels for the starting
63f83c9f 1724 * block number of a dmap page that contains or starts off
1da177e4
LT
1725 * sufficient free blocks.
1726 */
1727 for (lev = level, b = *blkno; lev >= 0; lev--) {
1728 /* get the buffer of the dmap control page for the block
1729 * number and level (i.e. L0, L1, L2).
1730 */
1731 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1732 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1733 if (mp == NULL)
1734 return -EIO;
1735 dcp = (struct dmapctl *) mp->data;
1736 budmin = dcp->budmin;
1737
1738 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1739 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1740 "Corrupt dmapctl page\n");
1da177e4
LT
1741 release_metapage(mp);
1742 return -EIO;
1743 }
1744
1745 /* search the tree within the dmap control page for
25985edc 1746 * sufficient free space. if sufficient free space is found,
1da177e4
LT
1747 * dbFindLeaf() returns the index of the leaf at which
1748 * free space was found.
1749 */
1750 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1751
1752 /* release the buffer.
1753 */
1754 release_metapage(mp);
1755
1756 /* space found ?
1757 */
1758 if (rc) {
1759 if (lev != level) {
1760 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1761 "dmap inconsistent\n");
1da177e4
LT
1762 return -EIO;
1763 }
1764 return -ENOSPC;
1765 }
1766
1767 /* adjust the block number to reflect the location within
63f83c9f 1768 * the dmap control page (i.e. the leaf) at which free
1da177e4
LT
1769 * space was found.
1770 */
1771 b += (((s64) leafidx) << budmin);
1772
1773 /* we stop the search at this dmap control page level if
1774 * the number of blocks required is greater than or equal
1775 * to the maximum number of blocks described at the next
1776 * (lower) level.
1777 */
1778 if (l2nb >= budmin)
1779 break;
1780 }
1781
1782 *blkno = b;
1783 return (0);
1784}
1785
1786
1787/*
1788 * NAME: dbAllocCtl()
1789 *
f720e3ba 1790 * FUNCTION: attempt to allocate a specified number of contiguous
63f83c9f
DK
1791 * blocks starting within a specific dmap.
1792 *
1da177e4
LT
1793 * this routine is called by higher level routines that search
1794 * the dmap control pages above the actual dmaps for contiguous
1795 * free space. the result of successful searches by these
63f83c9f 1796 * routines are the starting block numbers within dmaps, with
1da177e4
LT
1797 * the dmaps themselves containing the desired contiguous free
1798 * space or starting a contiguous free space of desired size
1799 * that is made up of the blocks of one or more dmaps. these
1800 * calls should not fail due to insufficent resources.
1801 *
1802 * this routine is called in some cases where it is not known
1803 * whether it will fail due to insufficient resources. more
1804 * specifically, this occurs when allocating from an allocation
1805 * group whose size is equal to the number of blocks per dmap.
1806 * in this case, the dmap control pages are not examined prior
1807 * to calling this routine (to save pathlength) and the call
1808 * might fail.
1809 *
1810 * for a request size that fits within a dmap, this routine relies
1811 * upon the dmap's dmtree to find the requested contiguous free
1812 * space. for request sizes that are larger than a dmap, the
1813 * requested free space will start at the first block of the
1814 * first dmap (i.e. blkno).
1815 *
1816 * PARAMETERS:
f720e3ba
DK
1817 * bmp - pointer to bmap descriptor
1818 * nblocks - actual number of contiguous free blocks to allocate.
1819 * l2nb - log2 number of contiguous free blocks to allocate.
1820 * blkno - starting block number of the dmap to start the allocation
1da177e4 1821 * from.
f720e3ba 1822 * results - on successful return, set to the starting block number
1da177e4
LT
1823 * of the newly allocated range.
1824 *
1825 * RETURN VALUES:
f720e3ba
DK
1826 * 0 - success
1827 * -ENOSPC - insufficient disk resources
1828 * -EIO - i/o error
1da177e4
LT
1829 *
1830 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1831 */
1832static int
1833dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1834{
1835 int rc, nb;
1836 s64 b, lblkno, n;
1837 struct metapage *mp;
1838 struct dmap *dp;
1839
1840 /* check if the allocation request is confined to a single dmap.
1841 */
1842 if (l2nb <= L2BPERDMAP) {
1843 /* get the buffer for the dmap.
1844 */
1845 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1846 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1847 if (mp == NULL)
1848 return -EIO;
1849 dp = (struct dmap *) mp->data;
1850
1851 /* try to allocate the blocks.
1852 */
1853 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1854 if (rc == 0)
1855 mark_metapage_dirty(mp);
1856
1857 release_metapage(mp);
1858
1859 return (rc);
1860 }
1861
1862 /* allocation request involving multiple dmaps. it must start on
1863 * a dmap boundary.
1864 */
1865 assert((blkno & (BPERDMAP - 1)) == 0);
1866
1867 /* allocate the blocks dmap by dmap.
1868 */
1869 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1870 /* get the buffer for the dmap.
1871 */
1872 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1873 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1874 if (mp == NULL) {
1875 rc = -EIO;
1876 goto backout;
1877 }
1878 dp = (struct dmap *) mp->data;
1879
1880 /* the dmap better be all free.
1881 */
1882 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1883 release_metapage(mp);
1884 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1885 "the dmap is not all free\n");
1da177e4
LT
1886 rc = -EIO;
1887 goto backout;
1888 }
1889
1890 /* determine how many blocks to allocate from this dmap.
1891 */
4f65b6db 1892 nb = min_t(s64, n, BPERDMAP);
1da177e4
LT
1893
1894 /* allocate the blocks from the dmap.
1895 */
1896 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1897 release_metapage(mp);
1898 goto backout;
1899 }
1900
1901 /* write the buffer.
1902 */
1903 write_metapage(mp);
1904 }
1905
1906 /* set the results (starting block number) and return.
1907 */
1908 *results = blkno;
1909 return (0);
1910
1911 /* something failed in handling an allocation request involving
1912 * multiple dmaps. we'll try to clean up by backing out any
1913 * allocation that has already happened for this request. if
1914 * we fail in backing out the allocation, we'll mark the file
1915 * system to indicate that blocks have been leaked.
1916 */
1917 backout:
1918
1919 /* try to backout the allocations dmap by dmap.
1920 */
1921 for (n = nblocks - n, b = blkno; n > 0;
1922 n -= BPERDMAP, b += BPERDMAP) {
1923 /* get the buffer for this dmap.
1924 */
1925 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1926 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1927 if (mp == NULL) {
1928 /* could not back out. mark the file system
1929 * to indicate that we have leaked blocks.
1930 */
1931 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 1932 "I/O Error: Block Leakage\n");
1da177e4
LT
1933 continue;
1934 }
1935 dp = (struct dmap *) mp->data;
1936
1937 /* free the blocks is this dmap.
1938 */
1939 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1940 /* could not back out. mark the file system
1941 * to indicate that we have leaked blocks.
1942 */
1943 release_metapage(mp);
eb8630d7 1944 jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1da177e4
LT
1945 continue;
1946 }
1947
1948 /* write the buffer.
1949 */
1950 write_metapage(mp);
1951 }
1952
1953 return (rc);
1954}
1955
1956
1957/*
1958 * NAME: dbAllocDmapLev()
1959 *
f720e3ba 1960 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1da177e4 1961 * from a specified dmap.
63f83c9f 1962 *
1da177e4
LT
1963 * this routine checks if the contiguous blocks are available.
1964 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1965 * returned.
1966 *
1967 * PARAMETERS:
f720e3ba
DK
1968 * mp - pointer to bmap descriptor
1969 * dp - pointer to dmap to attempt to allocate blocks from.
1970 * l2nb - log2 number of contiguous block desired.
1971 * nblocks - actual number of contiguous block desired.
1972 * results - on successful return, set to the starting block number
1da177e4
LT
1973 * of the newly allocated range.
1974 *
1975 * RETURN VALUES:
f720e3ba
DK
1976 * 0 - success
1977 * -ENOSPC - insufficient disk resources
1978 * -EIO - i/o error
1da177e4 1979 *
63f83c9f 1980 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1da177e4
LT
1981 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1982 */
1983static int
1984dbAllocDmapLev(struct bmap * bmp,
1985 struct dmap * dp, int nblocks, int l2nb, s64 * results)
1986{
1987 s64 blkno;
1988 int leafidx, rc;
1989
1990 /* can't be more than a dmaps worth of blocks */
1991 assert(l2nb <= L2BPERDMAP);
1992
1993 /* search the tree within the dmap page for sufficient
1994 * free space. if sufficient free space is found, dbFindLeaf()
1995 * returns the index of the leaf at which free space was found.
1996 */
1997 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1998 return -ENOSPC;
1999
2000 /* determine the block number within the file system corresponding
2001 * to the leaf at which free space was found.
2002 */
2003 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2004
2005 /* if not all bits of the dmap word are free, get the starting
2006 * bit number within the dmap word of the required string of free
2007 * bits and adjust the block number with this value.
2008 */
2009 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2010 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2011
2012 /* allocate the blocks */
2013 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2014 *results = blkno;
2015
2016 return (rc);
2017}
2018
2019
2020/*
2021 * NAME: dbAllocDmap()
2022 *
f720e3ba 2023 * FUNCTION: adjust the disk allocation map to reflect the allocation
1da177e4
LT
2024 * of a specified block range within a dmap.
2025 *
2026 * this routine allocates the specified blocks from the dmap
2027 * through a call to dbAllocBits(). if the allocation of the
2028 * block range causes the maximum string of free blocks within
2029 * the dmap to change (i.e. the value of the root of the dmap's
2030 * dmtree), this routine will cause this change to be reflected
2031 * up through the appropriate levels of the dmap control pages
2032 * by a call to dbAdjCtl() for the L0 dmap control page that
2033 * covers this dmap.
2034 *
2035 * PARAMETERS:
f720e3ba
DK
2036 * bmp - pointer to bmap descriptor
2037 * dp - pointer to dmap to allocate the block range from.
2038 * blkno - starting block number of the block to be allocated.
2039 * nblocks - number of blocks to be allocated.
1da177e4
LT
2040 *
2041 * RETURN VALUES:
f720e3ba
DK
2042 * 0 - success
2043 * -EIO - i/o error
1da177e4
LT
2044 *
2045 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2046 */
2047static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2048 int nblocks)
2049{
2050 s8 oldroot;
2051 int rc;
2052
2053 /* save the current value of the root (i.e. maximum free string)
2054 * of the dmap tree.
2055 */
2056 oldroot = dp->tree.stree[ROOT];
2057
2058 /* allocate the specified (blocks) bits */
2059 dbAllocBits(bmp, dp, blkno, nblocks);
2060
2061 /* if the root has not changed, done. */
2062 if (dp->tree.stree[ROOT] == oldroot)
2063 return (0);
2064
2065 /* root changed. bubble the change up to the dmap control pages.
2066 * if the adjustment of the upper level control pages fails,
2067 * backout the bit allocation (thus making everything consistent).
2068 */
2069 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2070 dbFreeBits(bmp, dp, blkno, nblocks);
2071
2072 return (rc);
2073}
2074
2075
2076/*
2077 * NAME: dbFreeDmap()
2078 *
f720e3ba 2079 * FUNCTION: adjust the disk allocation map to reflect the allocation
1da177e4
LT
2080 * of a specified block range within a dmap.
2081 *
2082 * this routine frees the specified blocks from the dmap through
2083 * a call to dbFreeBits(). if the deallocation of the block range
2084 * causes the maximum string of free blocks within the dmap to
2085 * change (i.e. the value of the root of the dmap's dmtree), this
2086 * routine will cause this change to be reflected up through the
f720e3ba 2087 * appropriate levels of the dmap control pages by a call to
1da177e4
LT
2088 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2089 *
2090 * PARAMETERS:
f720e3ba
DK
2091 * bmp - pointer to bmap descriptor
2092 * dp - pointer to dmap to free the block range from.
2093 * blkno - starting block number of the block to be freed.
2094 * nblocks - number of blocks to be freed.
1da177e4
LT
2095 *
2096 * RETURN VALUES:
f720e3ba
DK
2097 * 0 - success
2098 * -EIO - i/o error
1da177e4
LT
2099 *
2100 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2101 */
2102static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2103 int nblocks)
2104{
2105 s8 oldroot;
56d12549 2106 int rc = 0, word;
1da177e4
LT
2107
2108 /* save the current value of the root (i.e. maximum free string)
2109 * of the dmap tree.
2110 */
2111 oldroot = dp->tree.stree[ROOT];
2112
2113 /* free the specified (blocks) bits */
56d12549 2114 rc = dbFreeBits(bmp, dp, blkno, nblocks);
1da177e4 2115
56d12549
DK
2116 /* if error or the root has not changed, done. */
2117 if (rc || (dp->tree.stree[ROOT] == oldroot))
2118 return (rc);
1da177e4
LT
2119
2120 /* root changed. bubble the change up to the dmap control pages.
2121 * if the adjustment of the upper level control pages fails,
63f83c9f 2122 * backout the deallocation.
1da177e4
LT
2123 */
2124 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2125 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2126
2127 /* as part of backing out the deallocation, we will have
2128 * to back split the dmap tree if the deallocation caused
2129 * the freed blocks to become part of a larger binary buddy
2130 * system.
2131 */
2132 if (dp->tree.stree[word] == NOFREE)
2133 dbBackSplit((dmtree_t *) & dp->tree, word);
2134
2135 dbAllocBits(bmp, dp, blkno, nblocks);
2136 }
2137
2138 return (rc);
2139}
2140
2141
2142/*
2143 * NAME: dbAllocBits()
2144 *
f720e3ba 2145 * FUNCTION: allocate a specified block range from a dmap.
1da177e4
LT
2146 *
2147 * this routine updates the dmap to reflect the working
2148 * state allocation of the specified block range. it directly
2149 * updates the bits of the working map and causes the adjustment
2150 * of the binary buddy system described by the dmap's dmtree
2151 * leaves to reflect the bits allocated. it also causes the
2152 * dmap's dmtree, as a whole, to reflect the allocated range.
2153 *
2154 * PARAMETERS:
f720e3ba
DK
2155 * bmp - pointer to bmap descriptor
2156 * dp - pointer to dmap to allocate bits from.
2157 * blkno - starting block number of the bits to be allocated.
2158 * nblocks - number of bits to be allocated.
1da177e4
LT
2159 *
2160 * RETURN VALUES: none
2161 *
2162 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2163 */
2164static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2165 int nblocks)
2166{
2167 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2168 dmtree_t *tp = (dmtree_t *) & dp->tree;
2169 int size;
2170 s8 *leaf;
2171
2172 /* pick up a pointer to the leaves of the dmap tree */
2173 leaf = dp->tree.stree + LEAFIND;
2174
2175 /* determine the bit number and word within the dmap of the
2176 * starting block.
2177 */
2178 dbitno = blkno & (BPERDMAP - 1);
2179 word = dbitno >> L2DBWORD;
2180
2181 /* block range better be within the dmap */
2182 assert(dbitno + nblocks <= BPERDMAP);
2183
2184 /* allocate the bits of the dmap's words corresponding to the block
2185 * range. not all bits of the first and last words may be contained
2186 * within the block range. if this is the case, we'll work against
2187 * those words (i.e. partial first and/or last) on an individual basis
2188 * (a single pass), allocating the bits of interest by hand and
2189 * updating the leaf corresponding to the dmap word. a single pass
2190 * will be used for all dmap words fully contained within the
2191 * specified range. within this pass, the bits of all fully contained
2192 * dmap words will be marked as free in a single shot and the leaves
2193 * will be updated. a single leaf may describe the free space of
2194 * multiple dmap words, so we may update only a subset of the actual
2195 * leaves corresponding to the dmap words of the block range.
2196 */
2197 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2198 /* determine the bit number within the word and
2199 * the number of bits within the word.
2200 */
2201 wbitno = dbitno & (DBWORD - 1);
2202 nb = min(rembits, DBWORD - wbitno);
2203
2204 /* check if only part of a word is to be allocated.
2205 */
2206 if (nb < DBWORD) {
2207 /* allocate (set to 1) the appropriate bits within
2208 * this dmap word.
2209 */
2210 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2211 >> wbitno);
2212
2213 /* update the leaf for this dmap word. in addition
2214 * to setting the leaf value to the binary buddy max
2215 * of the updated dmap word, dbSplit() will split
2216 * the binary system of the leaves if need be.
2217 */
2218 dbSplit(tp, word, BUDMIN,
2219 dbMaxBud((u8 *) & dp->wmap[word]));
2220
2221 word += 1;
2222 } else {
2223 /* one or more dmap words are fully contained
2224 * within the block range. determine how many
2225 * words and allocate (set to 1) the bits of these
2226 * words.
2227 */
2228 nwords = rembits >> L2DBWORD;
2229 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2230
2231 /* determine how many bits.
2232 */
2233 nb = nwords << L2DBWORD;
2234
2235 /* now update the appropriate leaves to reflect
2236 * the allocated words.
2237 */
2238 for (; nwords > 0; nwords -= nw) {
f720e3ba 2239 if (leaf[word] < BUDMIN) {
1da177e4 2240 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 2241 "leaf page corrupt\n");
1da177e4
LT
2242 break;
2243 }
2244
2245 /* determine what the leaf value should be
2246 * updated to as the minimum of the l2 number
2247 * of bits being allocated and the l2 number
2248 * of bits currently described by this leaf.
2249 */
4f65b6db
FF
2250 size = min_t(int, leaf[word],
2251 NLSTOL2BSZ(nwords));
1da177e4
LT
2252
2253 /* update the leaf to reflect the allocation.
2254 * in addition to setting the leaf value to
2255 * NOFREE, dbSplit() will split the binary
2256 * system of the leaves to reflect the current
2257 * allocation (size).
2258 */
2259 dbSplit(tp, word, size, NOFREE);
2260
2261 /* get the number of dmap words handled */
2262 nw = BUDSIZE(size, BUDMIN);
2263 word += nw;
2264 }
2265 }
2266 }
2267
2268 /* update the free count for this dmap */
89145622 2269 le32_add_cpu(&dp->nfree, -nblocks);
1da177e4
LT
2270
2271 BMAP_LOCK(bmp);
2272
2273 /* if this allocation group is completely free,
2274 * update the maximum allocation group number if this allocation
2275 * group is the new max.
2276 */
2277 agno = blkno >> bmp->db_agl2size;
2278 if (agno > bmp->db_maxag)
2279 bmp->db_maxag = agno;
2280
2281 /* update the free count for the allocation group and map */
2282 bmp->db_agfree[agno] -= nblocks;
2283 bmp->db_nfree -= nblocks;
2284
2285 BMAP_UNLOCK(bmp);
2286}
2287
2288
2289/*
2290 * NAME: dbFreeBits()
2291 *
f720e3ba 2292 * FUNCTION: free a specified block range from a dmap.
1da177e4
LT
2293 *
2294 * this routine updates the dmap to reflect the working
2295 * state allocation of the specified block range. it directly
2296 * updates the bits of the working map and causes the adjustment
2297 * of the binary buddy system described by the dmap's dmtree
2298 * leaves to reflect the bits freed. it also causes the dmap's
2299 * dmtree, as a whole, to reflect the deallocated range.
2300 *
2301 * PARAMETERS:
f720e3ba
DK
2302 * bmp - pointer to bmap descriptor
2303 * dp - pointer to dmap to free bits from.
2304 * blkno - starting block number of the bits to be freed.
2305 * nblocks - number of bits to be freed.
1da177e4 2306 *
56d12549 2307 * RETURN VALUES: 0 for success
1da177e4
LT
2308 *
2309 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2310 */
56d12549 2311static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
1da177e4
LT
2312 int nblocks)
2313{
2314 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2315 dmtree_t *tp = (dmtree_t *) & dp->tree;
56d12549 2316 int rc = 0;
1da177e4
LT
2317 int size;
2318
2319 /* determine the bit number and word within the dmap of the
2320 * starting block.
2321 */
2322 dbitno = blkno & (BPERDMAP - 1);
2323 word = dbitno >> L2DBWORD;
2324
2325 /* block range better be within the dmap.
2326 */
2327 assert(dbitno + nblocks <= BPERDMAP);
2328
2329 /* free the bits of the dmaps words corresponding to the block range.
2330 * not all bits of the first and last words may be contained within
2331 * the block range. if this is the case, we'll work against those
2332 * words (i.e. partial first and/or last) on an individual basis
2333 * (a single pass), freeing the bits of interest by hand and updating
2334 * the leaf corresponding to the dmap word. a single pass will be used
63f83c9f 2335 * for all dmap words fully contained within the specified range.
1da177e4
LT
2336 * within this pass, the bits of all fully contained dmap words will
2337 * be marked as free in a single shot and the leaves will be updated. a
2338 * single leaf may describe the free space of multiple dmap words,
2339 * so we may update only a subset of the actual leaves corresponding
2340 * to the dmap words of the block range.
2341 *
2342 * dbJoin() is used to update leaf values and will join the binary
2343 * buddy system of the leaves if the new leaf values indicate this
2344 * should be done.
2345 */
2346 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2347 /* determine the bit number within the word and
2348 * the number of bits within the word.
2349 */
2350 wbitno = dbitno & (DBWORD - 1);
2351 nb = min(rembits, DBWORD - wbitno);
2352
2353 /* check if only part of a word is to be freed.
2354 */
2355 if (nb < DBWORD) {
2356 /* free (zero) the appropriate bits within this
63f83c9f 2357 * dmap word.
1da177e4
LT
2358 */
2359 dp->wmap[word] &=
2360 cpu_to_le32(~(ONES << (DBWORD - nb)
2361 >> wbitno));
2362
2363 /* update the leaf for this dmap word.
2364 */
56d12549
DK
2365 rc = dbJoin(tp, word,
2366 dbMaxBud((u8 *) & dp->wmap[word]));
2367 if (rc)
2368 return rc;
1da177e4
LT
2369
2370 word += 1;
2371 } else {
2372 /* one or more dmap words are fully contained
2373 * within the block range. determine how many
2374 * words and free (zero) the bits of these words.
2375 */
2376 nwords = rembits >> L2DBWORD;
2377 memset(&dp->wmap[word], 0, nwords * 4);
2378
2379 /* determine how many bits.
2380 */
2381 nb = nwords << L2DBWORD;
2382
2383 /* now update the appropriate leaves to reflect
2384 * the freed words.
2385 */
2386 for (; nwords > 0; nwords -= nw) {
2387 /* determine what the leaf value should be
2388 * updated to as the minimum of the l2 number
2389 * of bits being freed and the l2 (max) number
2390 * of bits that can be described by this leaf.
2391 */
2392 size =
2393 min(LITOL2BSZ
2394 (word, L2LPERDMAP, BUDMIN),
2395 NLSTOL2BSZ(nwords));
2396
2397 /* update the leaf.
2398 */
56d12549
DK
2399 rc = dbJoin(tp, word, size);
2400 if (rc)
2401 return rc;
1da177e4
LT
2402
2403 /* get the number of dmap words handled.
2404 */
2405 nw = BUDSIZE(size, BUDMIN);
2406 word += nw;
2407 }
2408 }
2409 }
2410
2411 /* update the free count for this dmap.
2412 */
89145622 2413 le32_add_cpu(&dp->nfree, nblocks);
1da177e4
LT
2414
2415 BMAP_LOCK(bmp);
2416
63f83c9f 2417 /* update the free count for the allocation group and
1da177e4
LT
2418 * map.
2419 */
2420 agno = blkno >> bmp->db_agl2size;
2421 bmp->db_nfree += nblocks;
2422 bmp->db_agfree[agno] += nblocks;
2423
2424 /* check if this allocation group is not completely free and
2425 * if it is currently the maximum (rightmost) allocation group.
2426 * if so, establish the new maximum allocation group number by
2427 * searching left for the first allocation group with allocation.
2428 */
2429 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2430 (agno == bmp->db_numag - 1 &&
2431 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2432 while (bmp->db_maxag > 0) {
2433 bmp->db_maxag -= 1;
2434 if (bmp->db_agfree[bmp->db_maxag] !=
2435 bmp->db_agsize)
2436 break;
2437 }
2438
2439 /* re-establish the allocation group preference if the
2440 * current preference is right of the maximum allocation
2441 * group.
2442 */
2443 if (bmp->db_agpref > bmp->db_maxag)
2444 bmp->db_agpref = bmp->db_maxag;
2445 }
2446
2447 BMAP_UNLOCK(bmp);
56d12549
DK
2448
2449 return 0;
1da177e4
LT
2450}
2451
2452
2453/*
2454 * NAME: dbAdjCtl()
2455 *
2456 * FUNCTION: adjust a dmap control page at a specified level to reflect
2457 * the change in a lower level dmap or dmap control page's
2458 * maximum string of free blocks (i.e. a change in the root
2459 * of the lower level object's dmtree) due to the allocation
2460 * or deallocation of a range of blocks with a single dmap.
2461 *
2462 * on entry, this routine is provided with the new value of
2463 * the lower level dmap or dmap control page root and the
2464 * starting block number of the block range whose allocation
2465 * or deallocation resulted in the root change. this range
2466 * is respresented by a single leaf of the current dmapctl
2467 * and the leaf will be updated with this value, possibly
63f83c9f 2468 * causing a binary buddy system within the leaves to be
1da177e4
LT
2469 * split or joined. the update may also cause the dmapctl's
2470 * dmtree to be updated.
2471 *
2472 * if the adjustment of the dmap control page, itself, causes its
2473 * root to change, this change will be bubbled up to the next dmap
2474 * control level by a recursive call to this routine, specifying
2475 * the new root value and the next dmap control page level to
2476 * be adjusted.
2477 * PARAMETERS:
f720e3ba
DK
2478 * bmp - pointer to bmap descriptor
2479 * blkno - the first block of a block range within a dmap. it is
1da177e4
LT
2480 * the allocation or deallocation of this block range that
2481 * requires the dmap control page to be adjusted.
f720e3ba 2482 * newval - the new value of the lower level dmap or dmap control
1da177e4 2483 * page root.
f720e3ba
DK
2484 * alloc - 'true' if adjustment is due to an allocation.
2485 * level - current level of dmap control page (i.e. L0, L1, L2) to
1da177e4
LT
2486 * be adjusted.
2487 *
2488 * RETURN VALUES:
f720e3ba
DK
2489 * 0 - success
2490 * -EIO - i/o error
1da177e4
LT
2491 *
2492 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2493 */
2494static int
2495dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2496{
2497 struct metapage *mp;
2498 s8 oldroot;
2499 int oldval;
2500 s64 lblkno;
2501 struct dmapctl *dcp;
2502 int rc, leafno, ti;
2503
2504 /* get the buffer for the dmap control page for the specified
2505 * block number and control page level.
2506 */
2507 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2508 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2509 if (mp == NULL)
2510 return -EIO;
2511 dcp = (struct dmapctl *) mp->data;
2512
2513 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
eb8630d7 2514 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1da177e4
LT
2515 release_metapage(mp);
2516 return -EIO;
2517 }
2518
2519 /* determine the leaf number corresponding to the block and
2520 * the index within the dmap control tree.
2521 */
2522 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2523 ti = leafno + le32_to_cpu(dcp->leafidx);
2524
2525 /* save the current leaf value and the current root level (i.e.
2526 * maximum l2 free string described by this dmapctl).
2527 */
2528 oldval = dcp->stree[ti];
2529 oldroot = dcp->stree[ROOT];
2530
2531 /* check if this is a control page update for an allocation.
2532 * if so, update the leaf to reflect the new leaf value using
88393161 2533 * dbSplit(); otherwise (deallocation), use dbJoin() to update
1da177e4
LT
2534 * the leaf with the new value. in addition to updating the
2535 * leaf, dbSplit() will also split the binary buddy system of
2536 * the leaves, if required, and bubble new values within the
2537 * dmapctl tree, if required. similarly, dbJoin() will join
2538 * the binary buddy system of leaves and bubble new values up
2539 * the dmapctl tree as required by the new leaf value.
2540 */
2541 if (alloc) {
2542 /* check if we are in the middle of a binary buddy
2543 * system. this happens when we are performing the
2544 * first allocation out of an allocation group that
2545 * is part (not the first part) of a larger binary
2546 * buddy system. if we are in the middle, back split
2547 * the system prior to calling dbSplit() which assumes
2548 * that it is at the front of a binary buddy system.
2549 */
2550 if (oldval == NOFREE) {
b6a47fd8 2551 rc = dbBackSplit((dmtree_t *) dcp, leafno);
751341b4
DL
2552 if (rc) {
2553 release_metapage(mp);
b6a47fd8 2554 return rc;
751341b4 2555 }
1da177e4
LT
2556 oldval = dcp->stree[ti];
2557 }
2558 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2559 } else {
56d12549 2560 rc = dbJoin((dmtree_t *) dcp, leafno, newval);
751341b4
DL
2561 if (rc) {
2562 release_metapage(mp);
56d12549 2563 return rc;
751341b4 2564 }
1da177e4
LT
2565 }
2566
2567 /* check if the root of the current dmap control page changed due
2568 * to the update and if the current dmap control page is not at
2569 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2570 * root changed and this is not the top level), call this routine
2571 * again (recursion) for the next higher level of the mapping to
2572 * reflect the change in root for the current dmap control page.
2573 */
2574 if (dcp->stree[ROOT] != oldroot) {
2575 /* are we below the top level of the map. if so,
2576 * bubble the root up to the next higher level.
2577 */
2578 if (level < bmp->db_maxlevel) {
2579 /* bubble up the new root of this dmap control page to
2580 * the next level.
2581 */
2582 if ((rc =
2583 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2584 level + 1))) {
2585 /* something went wrong in bubbling up the new
2586 * root value, so backout the changes to the
2587 * current dmap control page.
2588 */
2589 if (alloc) {
2590 dbJoin((dmtree_t *) dcp, leafno,
2591 oldval);
2592 } else {
2593 /* the dbJoin() above might have
2594 * caused a larger binary buddy system
2595 * to form and we may now be in the
2596 * middle of it. if this is the case,
2597 * back split the buddies.
2598 */
2599 if (dcp->stree[ti] == NOFREE)
2600 dbBackSplit((dmtree_t *)
2601 dcp, leafno);
2602 dbSplit((dmtree_t *) dcp, leafno,
2603 dcp->budmin, oldval);
2604 }
2605
2606 /* release the buffer and return the error.
2607 */
2608 release_metapage(mp);
2609 return (rc);
2610 }
2611 } else {
2612 /* we're at the top level of the map. update
2613 * the bmap control page to reflect the size
2614 * of the maximum free buddy system.
2615 */
2616 assert(level == bmp->db_maxlevel);
2617 if (bmp->db_maxfreebud != oldroot) {
2618 jfs_error(bmp->db_ipbmap->i_sb,
eb8630d7 2619 "the maximum free buddy is not the old root\n");
1da177e4
LT
2620 }
2621 bmp->db_maxfreebud = dcp->stree[ROOT];
2622 }
2623 }
2624
2625 /* write the buffer.
2626 */
2627 write_metapage(mp);
2628
2629 return (0);
2630}
2631
2632
2633/*
2634 * NAME: dbSplit()
2635 *
f720e3ba 2636 * FUNCTION: update the leaf of a dmtree with a new value, splitting
1da177e4
LT
2637 * the leaf from the binary buddy system of the dmtree's
2638 * leaves, as required.
2639 *
2640 * PARAMETERS:
f720e3ba
DK
2641 * tp - pointer to the tree containing the leaf.
2642 * leafno - the number of the leaf to be updated.
2643 * splitsz - the size the binary buddy system starting at the leaf
1da177e4 2644 * must be split to, specified as the log2 number of blocks.
f720e3ba 2645 * newval - the new value for the leaf.
1da177e4
LT
2646 *
2647 * RETURN VALUES: none
2648 *
2649 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2650 */
2651static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2652{
2653 int budsz;
2654 int cursz;
2655 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2656
2657 /* check if the leaf needs to be split.
2658 */
2659 if (leaf[leafno] > tp->dmt_budmin) {
2660 /* the split occurs by cutting the buddy system in half
2661 * at the specified leaf until we reach the specified
2662 * size. pick up the starting split size (current size
2663 * - 1 in l2) and the corresponding buddy size.
2664 */
2665 cursz = leaf[leafno] - 1;
2666 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2667
2668 /* split until we reach the specified size.
2669 */
2670 while (cursz >= splitsz) {
2671 /* update the buddy's leaf with its new value.
2672 */
2673 dbAdjTree(tp, leafno ^ budsz, cursz);
2674
2675 /* on to the next size and buddy.
2676 */
2677 cursz -= 1;
2678 budsz >>= 1;
2679 }
2680 }
2681
63f83c9f 2682 /* adjust the dmap tree to reflect the specified leaf's new
1da177e4
LT
2683 * value.
2684 */
2685 dbAdjTree(tp, leafno, newval);
2686}
2687
2688
2689/*
2690 * NAME: dbBackSplit()
2691 *
f720e3ba 2692 * FUNCTION: back split the binary buddy system of dmtree leaves
1da177e4
LT
2693 * that hold a specified leaf until the specified leaf
2694 * starts its own binary buddy system.
2695 *
2696 * the allocators typically perform allocations at the start
2697 * of binary buddy systems and dbSplit() is used to accomplish
2698 * any required splits. in some cases, however, allocation
2699 * may occur in the middle of a binary system and requires a
2700 * back split, with the split proceeding out from the middle of
2701 * the system (less efficient) rather than the start of the
2702 * system (more efficient). the cases in which a back split
2703 * is required are rare and are limited to the first allocation
2704 * within an allocation group which is a part (not first part)
2705 * of a larger binary buddy system and a few exception cases
2706 * in which a previous join operation must be backed out.
2707 *
2708 * PARAMETERS:
f720e3ba
DK
2709 * tp - pointer to the tree containing the leaf.
2710 * leafno - the number of the leaf to be updated.
1da177e4
LT
2711 *
2712 * RETURN VALUES: none
2713 *
2714 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2715 */
b6a47fd8 2716static int dbBackSplit(dmtree_t * tp, int leafno)
1da177e4
LT
2717{
2718 int budsz, bud, w, bsz, size;
2719 int cursz;
2720 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2721
2722 /* leaf should be part (not first part) of a binary
2723 * buddy system.
2724 */
2725 assert(leaf[leafno] == NOFREE);
2726
2727 /* the back split is accomplished by iteratively finding the leaf
2728 * that starts the buddy system that contains the specified leaf and
2729 * splitting that system in two. this iteration continues until
63f83c9f 2730 * the specified leaf becomes the start of a buddy system.
1da177e4
LT
2731 *
2732 * determine maximum possible l2 size for the specified leaf.
2733 */
2734 size =
2735 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2736 tp->dmt_budmin);
2737
2738 /* determine the number of leaves covered by this size. this
2739 * is the buddy size that we will start with as we search for
2740 * the buddy system that contains the specified leaf.
2741 */
2742 budsz = BUDSIZE(size, tp->dmt_budmin);
2743
2744 /* back split.
2745 */
2746 while (leaf[leafno] == NOFREE) {
2747 /* find the leftmost buddy leaf.
2748 */
2749 for (w = leafno, bsz = budsz;; bsz <<= 1,
2750 w = (w < bud) ? w : bud) {
b6a47fd8
DK
2751 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2752 jfs_err("JFS: block map error in dbBackSplit");
2753 return -EIO;
2754 }
1da177e4
LT
2755
2756 /* determine the buddy.
2757 */
2758 bud = w ^ bsz;
2759
2760 /* check if this buddy is the start of the system.
2761 */
2762 if (leaf[bud] != NOFREE) {
2763 /* split the leaf at the start of the
2764 * system in two.
2765 */
2766 cursz = leaf[bud] - 1;
2767 dbSplit(tp, bud, cursz, cursz);
2768 break;
2769 }
2770 }
2771 }
2772
b6a47fd8
DK
2773 if (leaf[leafno] != size) {
2774 jfs_err("JFS: wrong leaf value in dbBackSplit");
2775 return -EIO;
2776 }
2777 return 0;
1da177e4
LT
2778}
2779
2780
2781/*
2782 * NAME: dbJoin()
2783 *
f720e3ba 2784 * FUNCTION: update the leaf of a dmtree with a new value, joining
1da177e4
LT
2785 * the leaf with other leaves of the dmtree into a multi-leaf
2786 * binary buddy system, as required.
2787 *
2788 * PARAMETERS:
f720e3ba
DK
2789 * tp - pointer to the tree containing the leaf.
2790 * leafno - the number of the leaf to be updated.
2791 * newval - the new value for the leaf.
1da177e4
LT
2792 *
2793 * RETURN VALUES: none
2794 */
56d12549 2795static int dbJoin(dmtree_t * tp, int leafno, int newval)
1da177e4
LT
2796{
2797 int budsz, buddy;
2798 s8 *leaf;
2799
2800 /* can the new leaf value require a join with other leaves ?
2801 */
2802 if (newval >= tp->dmt_budmin) {
2803 /* pickup a pointer to the leaves of the tree.
2804 */
2805 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2806
2807 /* try to join the specified leaf into a large binary
2808 * buddy system. the join proceeds by attempting to join
2809 * the specified leafno with its buddy (leaf) at new value.
2810 * if the join occurs, we attempt to join the left leaf
2811 * of the joined buddies with its buddy at new value + 1.
2812 * we continue to join until we find a buddy that cannot be
2813 * joined (does not have a value equal to the size of the
2814 * last join) or until all leaves have been joined into a
2815 * single system.
2816 *
2817 * get the buddy size (number of words covered) of
2818 * the new value.
2819 */
2820 budsz = BUDSIZE(newval, tp->dmt_budmin);
2821
2822 /* try to join.
2823 */
2824 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2825 /* get the buddy leaf.
2826 */
2827 buddy = leafno ^ budsz;
2828
2829 /* if the leaf's new value is greater than its
2830 * buddy's value, we join no more.
2831 */
2832 if (newval > leaf[buddy])
2833 break;
2834
56d12549
DK
2835 /* It shouldn't be less */
2836 if (newval < leaf[buddy])
2837 return -EIO;
1da177e4
LT
2838
2839 /* check which (leafno or buddy) is the left buddy.
2840 * the left buddy gets to claim the blocks resulting
2841 * from the join while the right gets to claim none.
25985edc 2842 * the left buddy is also eligible to participate in
1da177e4
LT
2843 * a join at the next higher level while the right
2844 * is not.
2845 *
2846 */
2847 if (leafno < buddy) {
2848 /* leafno is the left buddy.
2849 */
2850 dbAdjTree(tp, buddy, NOFREE);
2851 } else {
2852 /* buddy is the left buddy and becomes
2853 * leafno.
2854 */
2855 dbAdjTree(tp, leafno, NOFREE);
2856 leafno = buddy;
2857 }
2858
2859 /* on to try the next join.
2860 */
2861 newval += 1;
2862 budsz <<= 1;
2863 }
2864 }
2865
2866 /* update the leaf value.
2867 */
2868 dbAdjTree(tp, leafno, newval);
56d12549
DK
2869
2870 return 0;
1da177e4
LT
2871}
2872
2873
2874/*
2875 * NAME: dbAdjTree()
2876 *
f720e3ba 2877 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
1da177e4
LT
2878 * the dmtree, as required, to reflect the new leaf value.
2879 * the combination of any buddies must already be done before
2880 * this is called.
2881 *
2882 * PARAMETERS:
f720e3ba
DK
2883 * tp - pointer to the tree to be adjusted.
2884 * leafno - the number of the leaf to be updated.
2885 * newval - the new value for the leaf.
1da177e4
LT
2886 *
2887 * RETURN VALUES: none
2888 */
2889static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2890{
2891 int lp, pp, k;
2892 int max;
2893
2894 /* pick up the index of the leaf for this leafno.
2895 */
2896 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2897
2898 /* is the current value the same as the old value ? if so,
2899 * there is nothing to do.
2900 */
2901 if (tp->dmt_stree[lp] == newval)
2902 return;
2903
2904 /* set the new value.
2905 */
2906 tp->dmt_stree[lp] = newval;
2907
2908 /* bubble the new value up the tree as required.
2909 */
2910 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2911 /* get the index of the first leaf of the 4 leaf
2912 * group containing the specified leaf (leafno).
2913 */
2914 lp = ((lp - 1) & ~0x03) + 1;
2915
2916 /* get the index of the parent of this 4 leaf group.
2917 */
2918 pp = (lp - 1) >> 2;
2919
2920 /* determine the maximum of the 4 leaves.
2921 */
2922 max = TREEMAX(&tp->dmt_stree[lp]);
2923
2924 /* if the maximum of the 4 is the same as the
2925 * parent's value, we're done.
2926 */
2927 if (tp->dmt_stree[pp] == max)
2928 break;
2929
2930 /* parent gets new value.
2931 */
2932 tp->dmt_stree[pp] = max;
2933
2934 /* parent becomes leaf for next go-round.
2935 */
2936 lp = pp;
2937 }
2938}
2939
2940
2941/*
2942 * NAME: dbFindLeaf()
2943 *
f720e3ba 2944 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
63f83c9f 2945 * the index of a leaf describing the free blocks if
1da177e4
LT
2946 * sufficient free blocks are found.
2947 *
2948 * the search starts at the top of the dmtree_t tree and
2949 * proceeds down the tree to the leftmost leaf with sufficient
2950 * free space.
2951 *
2952 * PARAMETERS:
f720e3ba
DK
2953 * tp - pointer to the tree to be searched.
2954 * l2nb - log2 number of free blocks to search for.
1da177e4
LT
2955 * leafidx - return pointer to be set to the index of the leaf
2956 * describing at least l2nb free blocks if sufficient
2957 * free blocks are found.
2958 *
2959 * RETURN VALUES:
f720e3ba
DK
2960 * 0 - success
2961 * -ENOSPC - insufficient free blocks.
1da177e4
LT
2962 */
2963static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2964{
2965 int ti, n = 0, k, x = 0;
2966
2967 /* first check the root of the tree to see if there is
2968 * sufficient free space.
2969 */
2970 if (l2nb > tp->dmt_stree[ROOT])
2971 return -ENOSPC;
2972
2973 /* sufficient free space available. now search down the tree
2974 * starting at the next level for the leftmost leaf that
2975 * describes sufficient free space.
2976 */
2977 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2978 k > 0; k--, ti = ((ti + n) << 2) + 1) {
2979 /* search the four nodes at this level, starting from
2980 * the left.
2981 */
2982 for (x = ti, n = 0; n < 4; n++) {
2983 /* sufficient free space found. move to the next
2984 * level (or quit if this is the last level).
2985 */
2986 if (l2nb <= tp->dmt_stree[x + n])
2987 break;
2988 }
2989
2990 /* better have found something since the higher
2991 * levels of the tree said it was here.
2992 */
2993 assert(n < 4);
2994 }
2995
2996 /* set the return to the leftmost leaf describing sufficient
2997 * free space.
2998 */
2999 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3000
3001 return (0);
3002}
3003
3004
3005/*
3006 * NAME: dbFindBits()
3007 *
f720e3ba 3008 * FUNCTION: find a specified number of binary buddy free bits within a
1da177e4
LT
3009 * dmap bitmap word value.
3010 *
3011 * this routine searches the bitmap value for (1 << l2nb) free
3012 * bits at (1 << l2nb) alignments within the value.
3013 *
3014 * PARAMETERS:
f720e3ba
DK
3015 * word - dmap bitmap word value.
3016 * l2nb - number of free bits specified as a log2 number.
1da177e4
LT
3017 *
3018 * RETURN VALUES:
f720e3ba 3019 * starting bit number of free bits.
1da177e4
LT
3020 */
3021static int dbFindBits(u32 word, int l2nb)
3022{
3023 int bitno, nb;
3024 u32 mask;
3025
3026 /* get the number of bits.
3027 */
3028 nb = 1 << l2nb;
3029 assert(nb <= DBWORD);
3030
3031 /* complement the word so we can use a mask (i.e. 0s represent
3032 * free bits) and compute the mask.
3033 */
3034 word = ~word;
3035 mask = ONES << (DBWORD - nb);
3036
3037 /* scan the word for nb free bits at nb alignments.
3038 */
3039 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3040 if ((mask & word) == mask)
3041 break;
3042 }
3043
3044 ASSERT(bitno < 32);
3045
3046 /* return the bit number.
3047 */
3048 return (bitno);
3049}
3050
3051
3052/*
3053 * NAME: dbMaxBud(u8 *cp)
3054 *
f720e3ba 3055 * FUNCTION: determine the largest binary buddy string of free
1da177e4
LT
3056 * bits within 32-bits of the map.
3057 *
3058 * PARAMETERS:
f720e3ba 3059 * cp - pointer to the 32-bit value.
1da177e4
LT
3060 *
3061 * RETURN VALUES:
f720e3ba 3062 * largest binary buddy of free bits within a dmap word.
1da177e4
LT
3063 */
3064static int dbMaxBud(u8 * cp)
3065{
3066 signed char tmp1, tmp2;
3067
3068 /* check if the wmap word is all free. if so, the
3069 * free buddy size is BUDMIN.
3070 */
3071 if (*((uint *) cp) == 0)
3072 return (BUDMIN);
3073
3074 /* check if the wmap word is half free. if so, the
3075 * free buddy size is BUDMIN-1.
3076 */
3077 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3078 return (BUDMIN - 1);
3079
3080 /* not all free or half free. determine the free buddy
3081 * size thru table lookup using quarters of the wmap word.
3082 */
3083 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3084 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3085 return (max(tmp1, tmp2));
3086}
3087
3088
3089/*
3090 * NAME: cnttz(uint word)
3091 *
f720e3ba 3092 * FUNCTION: determine the number of trailing zeros within a 32-bit
1da177e4
LT
3093 * value.
3094 *
3095 * PARAMETERS:
f720e3ba 3096 * value - 32-bit value to be examined.
1da177e4
LT
3097 *
3098 * RETURN VALUES:
f720e3ba 3099 * count of trailing zeros
1da177e4
LT
3100 */
3101static int cnttz(u32 word)
3102{
3103 int n;
3104
3105 for (n = 0; n < 32; n++, word >>= 1) {
3106 if (word & 0x01)
3107 break;
3108 }
3109
3110 return (n);
3111}
3112
3113
3114/*
3115 * NAME: cntlz(u32 value)
3116 *
f720e3ba 3117 * FUNCTION: determine the number of leading zeros within a 32-bit
1da177e4
LT
3118 * value.
3119 *
3120 * PARAMETERS:
f720e3ba 3121 * value - 32-bit value to be examined.
1da177e4
LT
3122 *
3123 * RETURN VALUES:
f720e3ba 3124 * count of leading zeros
1da177e4
LT
3125 */
3126static int cntlz(u32 value)
3127{
3128 int n;
3129
3130 for (n = 0; n < 32; n++, value <<= 1) {
3131 if (value & HIGHORDER)
3132 break;
3133 }
3134 return (n);
3135}
3136
3137
3138/*
3139 * NAME: blkstol2(s64 nb)
3140 *
3141 * FUNCTION: convert a block count to its log2 value. if the block
f720e3ba 3142 * count is not a l2 multiple, it is rounded up to the next
1da177e4
LT
3143 * larger l2 multiple.
3144 *
3145 * PARAMETERS:
f720e3ba 3146 * nb - number of blocks
1da177e4
LT
3147 *
3148 * RETURN VALUES:
f720e3ba 3149 * log2 number of blocks
1da177e4 3150 */
6cb1269b 3151static int blkstol2(s64 nb)
1da177e4
LT
3152{
3153 int l2nb;
3154 s64 mask; /* meant to be signed */
3155
3156 mask = (s64) 1 << (64 - 1);
3157
3158 /* count the leading bits.
3159 */
3160 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3161 /* leading bit found.
3162 */
3163 if (nb & mask) {
3164 /* determine the l2 value.
3165 */
3166 l2nb = (64 - 1) - l2nb;
3167
3168 /* check if we need to round up.
3169 */
3170 if (~mask & nb)
3171 l2nb++;
3172
3173 return (l2nb);
3174 }
3175 }
3176 assert(0);
3177 return 0; /* fix compiler warning */
3178}
3179
3180
3181/*
63f83c9f 3182 * NAME: dbAllocBottomUp()
1da177e4
LT
3183 *
3184 * FUNCTION: alloc the specified block range from the working block
3185 * allocation map.
3186 *
3187 * the blocks will be alloc from the working map one dmap
3188 * at a time.
3189 *
3190 * PARAMETERS:
f720e3ba
DK
3191 * ip - pointer to in-core inode;
3192 * blkno - starting block number to be freed.
3193 * nblocks - number of blocks to be freed.
1da177e4
LT
3194 *
3195 * RETURN VALUES:
f720e3ba
DK
3196 * 0 - success
3197 * -EIO - i/o error
1da177e4
LT
3198 */
3199int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3200{
3201 struct metapage *mp;
3202 struct dmap *dp;
3203 int nb, rc;
3204 s64 lblkno, rem;
3205 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3206 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3207
82d5b9a7 3208 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1da177e4
LT
3209
3210 /* block to be allocated better be within the mapsize. */
3211 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3212
3213 /*
3214 * allocate the blocks a dmap at a time.
3215 */
3216 mp = NULL;
3217 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3218 /* release previous dmap if any */
3219 if (mp) {
3220 write_metapage(mp);
3221 }
3222
3223 /* get the buffer for the current dmap. */
3224 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3225 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3226 if (mp == NULL) {
3227 IREAD_UNLOCK(ipbmap);
3228 return -EIO;
3229 }
3230 dp = (struct dmap *) mp->data;
3231
3232 /* determine the number of blocks to be allocated from
3233 * this dmap.
3234 */
3235 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3236
1da177e4
LT
3237 /* allocate the blocks. */
3238 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3239 release_metapage(mp);
3240 IREAD_UNLOCK(ipbmap);
3241 return (rc);
3242 }
1da177e4
LT
3243 }
3244
3245 /* write the last buffer. */
3246 write_metapage(mp);
3247
3248 IREAD_UNLOCK(ipbmap);
3249
3250 return (0);
3251}
3252
3253
3254static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3255 int nblocks)
3256{
3257 int rc;
3258 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3c2c2262 3259 s8 oldroot;
1da177e4
LT
3260 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3261
3262 /* save the current value of the root (i.e. maximum free string)
3263 * of the dmap tree.
3264 */
3265 oldroot = tp->stree[ROOT];
3266
1da177e4
LT
3267 /* determine the bit number and word within the dmap of the
3268 * starting block.
3269 */
3270 dbitno = blkno & (BPERDMAP - 1);
3271 word = dbitno >> L2DBWORD;
3272
3273 /* block range better be within the dmap */
3274 assert(dbitno + nblocks <= BPERDMAP);
3275
3276 /* allocate the bits of the dmap's words corresponding to the block
3277 * range. not all bits of the first and last words may be contained
3278 * within the block range. if this is the case, we'll work against
3279 * those words (i.e. partial first and/or last) on an individual basis
3280 * (a single pass), allocating the bits of interest by hand and
3281 * updating the leaf corresponding to the dmap word. a single pass
3282 * will be used for all dmap words fully contained within the
3283 * specified range. within this pass, the bits of all fully contained
3284 * dmap words will be marked as free in a single shot and the leaves
3285 * will be updated. a single leaf may describe the free space of
3286 * multiple dmap words, so we may update only a subset of the actual
3287 * leaves corresponding to the dmap words of the block range.
3288 */
3289 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3290 /* determine the bit number within the word and
3291 * the number of bits within the word.
3292 */
3293 wbitno = dbitno & (DBWORD - 1);
3294 nb = min(rembits, DBWORD - wbitno);
3295
3296 /* check if only part of a word is to be allocated.
3297 */
3298 if (nb < DBWORD) {
3299 /* allocate (set to 1) the appropriate bits within
3300 * this dmap word.
3301 */
3302 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3303 >> wbitno);
3304
3305 word++;
3306 } else {
3307 /* one or more dmap words are fully contained
3308 * within the block range. determine how many
3309 * words and allocate (set to 1) the bits of these
3310 * words.
3311 */
3312 nwords = rembits >> L2DBWORD;
3313 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3314
3315 /* determine how many bits */
3316 nb = nwords << L2DBWORD;
3317 word += nwords;
3318 }
3319 }
3320
3321 /* update the free count for this dmap */
89145622 3322 le32_add_cpu(&dp->nfree, -nblocks);
1da177e4
LT
3323
3324 /* reconstruct summary tree */
3325 dbInitDmapTree(dp);
3326
3327 BMAP_LOCK(bmp);
3328
3329 /* if this allocation group is completely free,
63f83c9f 3330 * update the highest active allocation group number
1da177e4
LT
3331 * if this allocation group is the new max.
3332 */
3333 agno = blkno >> bmp->db_agl2size;
3334 if (agno > bmp->db_maxag)
3335 bmp->db_maxag = agno;
3336
3337 /* update the free count for the allocation group and map */
3338 bmp->db_agfree[agno] -= nblocks;
3339 bmp->db_nfree -= nblocks;
3340
3341 BMAP_UNLOCK(bmp);
3342
3343 /* if the root has not changed, done. */
3344 if (tp->stree[ROOT] == oldroot)
3345 return (0);
3346
3347 /* root changed. bubble the change up to the dmap control pages.
3348 * if the adjustment of the upper level control pages fails,
3349 * backout the bit allocation (thus making everything consistent).
3350 */
3351 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3352 dbFreeBits(bmp, dp, blkno, nblocks);
3353
3354 return (rc);
3355}
3356
3357
3358/*
3359 * NAME: dbExtendFS()
3360 *
3361 * FUNCTION: extend bmap from blkno for nblocks;
63f83c9f 3362 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
1da177e4
LT
3363 *
3364 * L2
3365 * |
3366 * L1---------------------------------L1
f720e3ba
DK
3367 * | |
3368 * L0---------L0---------L0 L0---------L0---------L0
3369 * | | | | | |
3370 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
1da177e4
LT
3371 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3372 *
63f83c9f 3373 * <---old---><----------------------------extend----------------------->
1da177e4
LT
3374 */
3375int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3376{
3377 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3378 int nbperpage = sbi->nbperpage;
4d81715f 3379 int i, i0 = true, j, j0 = true, k, n;
1da177e4
LT
3380 s64 newsize;
3381 s64 p;
3382 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3383 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3384 struct dmap *dp;
3385 s8 *l0leaf, *l1leaf, *l2leaf;
3386 struct bmap *bmp = sbi->bmap;
3387 int agno, l2agsize, oldl2agsize;
3388 s64 ag_rem;
3389
3390 newsize = blkno + nblocks;
3391
3392 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3393 (long long) blkno, (long long) nblocks, (long long) newsize);
3394
3395 /*
f720e3ba 3396 * initialize bmap control page.
1da177e4
LT
3397 *
3398 * all the data in bmap control page should exclude
3399 * the mkfs hidden dmap page.
3400 */
3401
3402 /* update mapsize */
3403 bmp->db_mapsize = newsize;
3404 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3405
3406 /* compute new AG size */
3407 l2agsize = dbGetL2AGSize(newsize);
3408 oldl2agsize = bmp->db_agl2size;
3409
3410 bmp->db_agl2size = l2agsize;
3411 bmp->db_agsize = 1 << l2agsize;
3412
3413 /* compute new number of AG */
3414 agno = bmp->db_numag;
3415 bmp->db_numag = newsize >> l2agsize;
3416 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3417
3418 /*
f720e3ba 3419 * reconfigure db_agfree[]
1da177e4
LT
3420 * from old AG configuration to new AG configuration;
3421 *
3422 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3423 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3424 * note: new AG size = old AG size * (2**x).
3425 */
3426 if (l2agsize == oldl2agsize)
3427 goto extend;
3428 k = 1 << (l2agsize - oldl2agsize);
3429 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3430 for (i = 0, n = 0; i < agno; n++) {
3431 bmp->db_agfree[n] = 0; /* init collection point */
3432
af901ca1 3433 /* coalesce contiguous k AGs; */
1da177e4
LT
3434 for (j = 0; j < k && i < agno; j++, i++) {
3435 /* merge AGi to AGn */
3436 bmp->db_agfree[n] += bmp->db_agfree[i];
3437 }
3438 }
3439 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3440
3441 for (; n < MAXAG; n++)
3442 bmp->db_agfree[n] = 0;
3443
3444 /*
3445 * update highest active ag number
3446 */
3447
3448 bmp->db_maxag = bmp->db_maxag / k;
3449
3450 /*
f720e3ba 3451 * extend bmap
1da177e4
LT
3452 *
3453 * update bit maps and corresponding level control pages;
3454 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3455 */
3456 extend:
3457 /* get L2 page */
3458 p = BMAPBLKNO + nbperpage; /* L2 page */
3459 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3460 if (!l2mp) {
eb8630d7 3461 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
1da177e4
LT
3462 return -EIO;
3463 }
3464 l2dcp = (struct dmapctl *) l2mp->data;
3465
3466 /* compute start L1 */
3467 k = blkno >> L2MAXL1SIZE;
3468 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3469 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3470
3471 /*
3472 * extend each L1 in L2
3473 */
3474 for (; k < LPERCTL; k++, p += nbperpage) {
3475 /* get L1 page */
3476 if (j0) {
3477 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3478 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3479 if (l1mp == NULL)
3480 goto errout;
3481 l1dcp = (struct dmapctl *) l1mp->data;
3482
3483 /* compute start L0 */
3484 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3485 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3486 p = BLKTOL0(blkno, sbi->l2nbperpage);
4d81715f 3487 j0 = false;
1da177e4
LT
3488 } else {
3489 /* assign/init L1 page */
3490 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3491 if (l1mp == NULL)
3492 goto errout;
3493
3494 l1dcp = (struct dmapctl *) l1mp->data;
3495
3496 /* compute start L0 */
3497 j = 0;
3498 l1leaf = l1dcp->stree + CTLLEAFIND;
f720e3ba 3499 p += nbperpage; /* 1st L0 of L1.k */
1da177e4
LT
3500 }
3501
3502 /*
3503 * extend each L0 in L1
3504 */
3505 for (; j < LPERCTL; j++) {
3506 /* get L0 page */
3507 if (i0) {
3508 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3509
3510 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3511 if (l0mp == NULL)
3512 goto errout;
3513 l0dcp = (struct dmapctl *) l0mp->data;
3514
3515 /* compute start dmap */
3516 i = (blkno & (MAXL0SIZE - 1)) >>
3517 L2BPERDMAP;
3518 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3519 p = BLKTODMAP(blkno,
3520 sbi->l2nbperpage);
4d81715f 3521 i0 = false;
1da177e4
LT
3522 } else {
3523 /* assign/init L0 page */
3524 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3525 if (l0mp == NULL)
3526 goto errout;
3527
3528 l0dcp = (struct dmapctl *) l0mp->data;
3529
3530 /* compute start dmap */
3531 i = 0;
3532 l0leaf = l0dcp->stree + CTLLEAFIND;
3533 p += nbperpage; /* 1st dmap of L0.j */
3534 }
3535
3536 /*
3537 * extend each dmap in L0
3538 */
3539 for (; i < LPERCTL; i++) {
3540 /*
3541 * reconstruct the dmap page, and
3542 * initialize corresponding parent L0 leaf
3543 */
3544 if ((n = blkno & (BPERDMAP - 1))) {
3545 /* read in dmap page: */
3546 mp = read_metapage(ipbmap, p,
3547 PSIZE, 0);
3548 if (mp == NULL)
3549 goto errout;
3550 n = min(nblocks, (s64)BPERDMAP - n);
3551 } else {
3552 /* assign/init dmap page */
3553 mp = read_metapage(ipbmap, p,
3554 PSIZE, 0);
3555 if (mp == NULL)
3556 goto errout;
3557
4f65b6db 3558 n = min_t(s64, nblocks, BPERDMAP);
1da177e4
LT
3559 }
3560
3561 dp = (struct dmap *) mp->data;
3562 *l0leaf = dbInitDmap(dp, blkno, n);
3563
3564 bmp->db_nfree += n;
3565 agno = le64_to_cpu(dp->start) >> l2agsize;
3566 bmp->db_agfree[agno] += n;
3567
3568 write_metapage(mp);
3569
3570 l0leaf++;
3571 p += nbperpage;
3572
3573 blkno += n;
3574 nblocks -= n;
3575 if (nblocks == 0)
3576 break;
3577 } /* for each dmap in a L0 */
3578
3579 /*
63f83c9f 3580 * build current L0 page from its leaves, and
1da177e4
LT
3581 * initialize corresponding parent L1 leaf
3582 */
3583 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3584 write_metapage(l0mp);
3585 l0mp = NULL;
3586
3587 if (nblocks)
3588 l1leaf++; /* continue for next L0 */
3589 else {
3590 /* more than 1 L0 ? */
3591 if (j > 0)
3592 break; /* build L1 page */
3593 else {
3594 /* summarize in global bmap page */
3595 bmp->db_maxfreebud = *l1leaf;
3596 release_metapage(l1mp);
3597 release_metapage(l2mp);
3598 goto finalize;
3599 }
3600 }
3601 } /* for each L0 in a L1 */
3602
3603 /*
63f83c9f 3604 * build current L1 page from its leaves, and
1da177e4
LT
3605 * initialize corresponding parent L2 leaf
3606 */
3607 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3608 write_metapage(l1mp);
3609 l1mp = NULL;
3610
3611 if (nblocks)
3612 l2leaf++; /* continue for next L1 */
3613 else {
3614 /* more than 1 L1 ? */
3615 if (k > 0)
3616 break; /* build L2 page */
3617 else {
3618 /* summarize in global bmap page */
3619 bmp->db_maxfreebud = *l2leaf;
3620 release_metapage(l2mp);
3621 goto finalize;
3622 }
3623 }
3624 } /* for each L1 in a L2 */
3625
eb8630d7 3626 jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
1da177e4
LT
3627errout:
3628 if (l0mp)
3629 release_metapage(l0mp);
3630 if (l1mp)
3631 release_metapage(l1mp);
3632 release_metapage(l2mp);
3633 return -EIO;
3634
3635 /*
f720e3ba 3636 * finalize bmap control page
1da177e4
LT
3637 */
3638finalize:
3639
3640 return 0;
3641}
3642
3643
3644/*
3645 * dbFinalizeBmap()
3646 */
3647void dbFinalizeBmap(struct inode *ipbmap)
3648{
3649 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3650 int actags, inactags, l2nl;
3651 s64 ag_rem, actfree, inactfree, avgfree;
3652 int i, n;
3653
3654 /*
f720e3ba 3655 * finalize bmap control page
1da177e4
LT
3656 */
3657//finalize:
63f83c9f 3658 /*
1da177e4
LT
3659 * compute db_agpref: preferred ag to allocate from
3660 * (the leftmost ag with average free space in it);
3661 */
3662//agpref:
577ebd19 3663 /* get the number of active ags and inactive ags */
1da177e4
LT
3664 actags = bmp->db_maxag + 1;
3665 inactags = bmp->db_numag - actags;
3666 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3667
3668 /* determine how many blocks are in the inactive allocation
3669 * groups. in doing this, we must account for the fact that
3670 * the rightmost group might be a partial group (i.e. file
3671 * system size is not a multiple of the group size).
3672 */
3673 inactfree = (inactags && ag_rem) ?
3674 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3675 : inactags << bmp->db_agl2size;
3676
3677 /* determine how many free blocks are in the active
3678 * allocation groups plus the average number of free blocks
3679 * within the active ags.
3680 */
3681 actfree = bmp->db_nfree - inactfree;
3682 avgfree = (u32) actfree / (u32) actags;
3683
3684 /* if the preferred allocation group has not average free space.
3685 * re-establish the preferred group as the leftmost
3686 * group with average free space.
3687 */
3688 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3689 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3690 bmp->db_agpref++) {
3691 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3692 break;
3693 }
3694 if (bmp->db_agpref >= bmp->db_numag) {
3695 jfs_error(ipbmap->i_sb,
eb8630d7 3696 "cannot find ag with average freespace\n");
1da177e4
LT
3697 }
3698 }
3699
3700 /*
d7eecb48 3701 * compute db_aglevel, db_agheight, db_width, db_agstart:
63f83c9f
DK
3702 * an ag is covered in aglevel dmapctl summary tree,
3703 * at agheight level height (from leaf) with agwidth number of nodes
3704 * each, which starts at agstart index node of the smmary tree node
1da177e4
LT
3705 * array;
3706 */
3707 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3708 l2nl =
3709 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
d7eecb48
DM
3710 bmp->db_agheight = l2nl >> 1;
3711 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3712 for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
1da177e4
LT
3713 i--) {
3714 bmp->db_agstart += n;
3715 n <<= 2;
3716 }
3717
3718}
3719
3720
3721/*
3722 * NAME: dbInitDmap()/ujfs_idmap_page()
63f83c9f 3723 *
1da177e4
LT
3724 * FUNCTION: initialize working/persistent bitmap of the dmap page
3725 * for the specified number of blocks:
63f83c9f 3726 *
1da177e4 3727 * at entry, the bitmaps had been initialized as free (ZEROS);
63f83c9f
DK
3728 * The number of blocks will only account for the actually
3729 * existing blocks. Blocks which don't actually exist in
1da177e4
LT
3730 * the aggregate will be marked as allocated (ONES);
3731 *
3732 * PARAMETERS:
3733 * dp - pointer to page of map
3734 * nblocks - number of blocks this page
3735 *
3736 * RETURNS: NONE
3737 */
3738static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3739{
3740 int blkno, w, b, r, nw, nb, i;
3741
3742 /* starting block number within the dmap */
3743 blkno = Blkno & (BPERDMAP - 1);
3744
3745 if (blkno == 0) {
3746 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3747 dp->start = cpu_to_le64(Blkno);
3748
3749 if (nblocks == BPERDMAP) {
3750 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3751 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3752 goto initTree;
3753 }
3754 } else {
89145622
MS
3755 le32_add_cpu(&dp->nblocks, nblocks);
3756 le32_add_cpu(&dp->nfree, nblocks);
1da177e4
LT
3757 }
3758
3759 /* word number containing start block number */
3760 w = blkno >> L2DBWORD;
3761
3762 /*
3763 * free the bits corresponding to the block range (ZEROS):
63f83c9f 3764 * note: not all bits of the first and last words may be contained
1da177e4
LT
3765 * within the block range.
3766 */
3767 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3768 /* number of bits preceding range to be freed in the word */
3769 b = blkno & (DBWORD - 1);
3770 /* number of bits to free in the word */
3771 nb = min(r, DBWORD - b);
3772
3773 /* is partial word to be freed ? */
3774 if (nb < DBWORD) {
3775 /* free (set to 0) from the bitmap word */
3776 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3777 >> b));
3778 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3779 >> b));
3780
3781 /* skip the word freed */
3782 w++;
3783 } else {
3784 /* free (set to 0) contiguous bitmap words */
3785 nw = r >> L2DBWORD;
3786 memset(&dp->wmap[w], 0, nw * 4);
3787 memset(&dp->pmap[w], 0, nw * 4);
3788
3789 /* skip the words freed */
3790 nb = nw << L2DBWORD;
3791 w += nw;
3792 }
3793 }
3794
3795 /*
63f83c9f 3796 * mark bits following the range to be freed (non-existing
1da177e4
LT
3797 * blocks) as allocated (ONES)
3798 */
3799
3800 if (blkno == BPERDMAP)
3801 goto initTree;
3802
3803 /* the first word beyond the end of existing blocks */
3804 w = blkno >> L2DBWORD;
3805
3806 /* does nblocks fall on a 32-bit boundary ? */
3807 b = blkno & (DBWORD - 1);
3808 if (b) {
3809 /* mark a partial word allocated */
3810 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3811 w++;
3812 }
3813
3814 /* set the rest of the words in the page to allocated (ONES) */
3815 for (i = w; i < LPERDMAP; i++)
3816 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3817
3818 /*
3819 * init tree
3820 */
3821 initTree:
3822 return (dbInitDmapTree(dp));
3823}
3824
3825
3826/*
3827 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
63f83c9f 3828 *
1da177e4
LT
3829 * FUNCTION: initialize summary tree of the specified dmap:
3830 *
3831 * at entry, bitmap of the dmap has been initialized;
63f83c9f 3832 *
1da177e4
LT
3833 * PARAMETERS:
3834 * dp - dmap to complete
3835 * blkno - starting block number for this dmap
3836 * treemax - will be filled in with max free for this dmap
3837 *
3838 * RETURNS: max free string at the root of the tree
3839 */
3840static int dbInitDmapTree(struct dmap * dp)
3841{
3842 struct dmaptree *tp;
3843 s8 *cp;
3844 int i;
3845
3846 /* init fixed info of tree */
3847 tp = &dp->tree;
3848 tp->nleafs = cpu_to_le32(LPERDMAP);
3849 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3850 tp->leafidx = cpu_to_le32(LEAFIND);
3851 tp->height = cpu_to_le32(4);
3852 tp->budmin = BUDMIN;
3853
3854 /* init each leaf from corresponding wmap word:
3855 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
63f83c9f 3856 * bitmap word are allocated.
1da177e4
LT
3857 */
3858 cp = tp->stree + le32_to_cpu(tp->leafidx);
3859 for (i = 0; i < LPERDMAP; i++)
3860 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3861
3862 /* build the dmap's binary buddy summary tree */
3863 return (dbInitTree(tp));
3864}
3865
3866
3867/*
3868 * NAME: dbInitTree()/ujfs_adjtree()
63f83c9f 3869 *
1da177e4
LT
3870 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3871 *
63f83c9f 3872 * at entry, the leaves of the tree has been initialized
1da177e4
LT
3873 * from corresponding bitmap word or root of summary tree
3874 * of the child control page;
3875 * configure binary buddy system at the leaf level, then
3876 * bubble up the values of the leaf nodes up the tree.
3877 *
3878 * PARAMETERS:
3879 * cp - Pointer to the root of the tree
3880 * l2leaves- Number of leaf nodes as a power of 2
3881 * l2min - Number of blocks that can be covered by a leaf
3882 * as a power of 2
3883 *
3884 * RETURNS: max free string at the root of the tree
3885 */
3886static int dbInitTree(struct dmaptree * dtp)
3887{
3888 int l2max, l2free, bsize, nextb, i;
3889 int child, parent, nparent;
3890 s8 *tp, *cp, *cp1;
3891
3892 tp = dtp->stree;
3893
3894 /* Determine the maximum free string possible for the leaves */
3895 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3896
3897 /*
3898 * configure the leaf levevl into binary buddy system
3899 *
63f83c9f
DK
3900 * Try to combine buddies starting with a buddy size of 1
3901 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3902 * can be combined if both buddies have a maximum free of l2min;
3903 * the combination will result in the left-most buddy leaf having
3904 * a maximum free of l2min+1.
3905 * After processing all buddies for a given size, process buddies
3906 * at the next higher buddy size (i.e. current size * 2) and
3907 * the next maximum free (current free + 1).
3908 * This continues until the maximum possible buddy combination
1da177e4
LT
3909 * yields maximum free.
3910 */
3911 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3912 l2free++, bsize = nextb) {
3913 /* get next buddy size == current buddy pair size */
3914 nextb = bsize << 1;
3915
3916 /* scan each adjacent buddy pair at current buddy size */
3917 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3918 i < le32_to_cpu(dtp->nleafs);
3919 i += nextb, cp += nextb) {
3920 /* coalesce if both adjacent buddies are max free */
3921 if (*cp == l2free && *(cp + bsize) == l2free) {
3922 *cp = l2free + 1; /* left take right */
3923 *(cp + bsize) = -1; /* right give left */
3924 }
3925 }
3926 }
3927
3928 /*
3929 * bubble summary information of leaves up the tree.
3930 *
3931 * Starting at the leaf node level, the four nodes described by
63f83c9f
DK
3932 * the higher level parent node are compared for a maximum free and
3933 * this maximum becomes the value of the parent node.
3934 * when all lower level nodes are processed in this fashion then
3935 * move up to the next level (parent becomes a lower level node) and
1da177e4
LT
3936 * continue the process for that level.
3937 */
3938 for (child = le32_to_cpu(dtp->leafidx),
3939 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3940 nparent > 0; nparent >>= 2, child = parent) {
3941 /* get index of 1st node of parent level */
3942 parent = (child - 1) >> 2;
3943
63f83c9f 3944 /* set the value of the parent node as the maximum
1da177e4
LT
3945 * of the four nodes of the current level.
3946 */
3947 for (i = 0, cp = tp + child, cp1 = tp + parent;
3948 i < nparent; i++, cp += 4, cp1++)
3949 *cp1 = TREEMAX(cp);
3950 }
3951
3952 return (*tp);
3953}
3954
3955
3956/*
3957 * dbInitDmapCtl()
3958 *
3959 * function: initialize dmapctl page
3960 */
3961static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3962{ /* start leaf index not covered by range */
3963 s8 *cp;
3964
3965 dcp->nleafs = cpu_to_le32(LPERCTL);
3966 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3967 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3968 dcp->height = cpu_to_le32(5);
3969 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3970
3971 /*
63f83c9f
DK
3972 * initialize the leaves of current level that were not covered
3973 * by the specified input block range (i.e. the leaves have no
1da177e4
LT
3974 * low level dmapctl or dmap).
3975 */
3976 cp = &dcp->stree[CTLLEAFIND + i];
3977 for (; i < LPERCTL; i++)
3978 *cp++ = NOFREE;
3979
3980 /* build the dmap's binary buddy summary tree */
3981 return (dbInitTree((struct dmaptree *) dcp));
3982}
3983
3984
3985/*
3986 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
63f83c9f 3987 *
1da177e4 3988 * FUNCTION: Determine log2(allocation group size) from aggregate size
63f83c9f 3989 *
1da177e4
LT
3990 * PARAMETERS:
3991 * nblocks - Number of blocks in aggregate
3992 *
3993 * RETURNS: log2(allocation group size) in aggregate blocks
3994 */
3995static int dbGetL2AGSize(s64 nblocks)
3996{
3997 s64 sz;
3998 s64 m;
3999 int l2sz;
4000
4001 if (nblocks < BPERDMAP * MAXAG)
4002 return (L2BPERDMAP);
4003
4004 /* round up aggregate size to power of 2 */
4005 m = ((u64) 1 << (64 - 1));
4006 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4007 if (m & nblocks)
4008 break;
4009 }
4010
4011 sz = (s64) 1 << l2sz;
4012 if (sz < nblocks)
4013 l2sz += 1;
4014
4015 /* agsize = roundupSize/max_number_of_ag */
4016 return (l2sz - L2MAXAG);
4017}
4018
4019
4020/*
4021 * NAME: dbMapFileSizeToMapSize()
63f83c9f
DK
4022 *
4023 * FUNCTION: compute number of blocks the block allocation map file
1da177e4
LT
4024 * can cover from the map file size;
4025 *
4026 * RETURNS: Number of blocks which can be covered by this block map file;
4027 */
4028
4029/*
4030 * maximum number of map pages at each level including control pages
4031 */
4032#define MAXL0PAGES (1 + LPERCTL)
4033#define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
1da177e4
LT
4034
4035/*
4036 * convert number of map pages to the zero origin top dmapctl level
4037 */
4038#define BMAPPGTOLEV(npages) \
f720e3ba
DK
4039 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4040 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
1da177e4
LT
4041
4042s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4043{
4044 struct super_block *sb = ipbmap->i_sb;
4045 s64 nblocks;
4046 s64 npages, ndmaps;
4047 int level, i;
4048 int complete, factor;
4049
4050 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4051 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4052 level = BMAPPGTOLEV(npages);
4053
63f83c9f 4054 /* At each level, accumulate the number of dmap pages covered by
1da177e4
LT
4055 * the number of full child levels below it;
4056 * repeat for the last incomplete child level.
4057 */
4058 ndmaps = 0;
4059 npages--; /* skip the first global control page */
4060 /* skip higher level control pages above top level covered by map */
4061 npages -= (2 - level);
4062 npages--; /* skip top level's control page */
4063 for (i = level; i >= 0; i--) {
4064 factor =
4065 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4066 complete = (u32) npages / factor;
f720e3ba
DK
4067 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4068 ((i == 1) ? LPERCTL : 1));
1da177e4
LT
4069
4070 /* pages in last/incomplete child */
4071 npages = (u32) npages % factor;
4072 /* skip incomplete child's level control page */
4073 npages--;
4074 }
4075
63f83c9f 4076 /* convert the number of dmaps into the number of blocks
1da177e4
LT
4077 * which can be covered by the dmaps;
4078 */
4079 nblocks = ndmaps << L2BPERDMAP;
4080
4081 return (nblocks);
4082}