[MTD] DiskOnChip: big endian fix for NFTL devices
[linux-2.6-block.git] / fs / jffs2 / wbuf.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
9b88f473 12 * $Id: wbuf.c,v 1.84 2005/01/25 20:11:11 hammache Exp $
1da177e4
LT
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/slab.h>
18#include <linux/mtd/mtd.h>
19#include <linux/crc32.h>
20#include <linux/mtd/nand.h>
21#include "nodelist.h"
22
23/* For testing write failures */
24#undef BREAKME
25#undef BREAKMEHEADER
26
27#ifdef BREAKME
28static unsigned char *brokenbuf;
29#endif
30
31/* max. erase failures before we mark a block bad */
32#define MAX_ERASE_FAILURES 2
33
34/* two seconds timeout for timed wbuf-flushing */
35#define WBUF_FLUSH_TIMEOUT 2 * HZ
36
37struct jffs2_inodirty {
38 uint32_t ino;
39 struct jffs2_inodirty *next;
40};
41
42static struct jffs2_inodirty inodirty_nomem;
43
44static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
45{
46 struct jffs2_inodirty *this = c->wbuf_inodes;
47
48 /* If a malloc failed, consider _everything_ dirty */
49 if (this == &inodirty_nomem)
50 return 1;
51
52 /* If ino == 0, _any_ non-GC writes mean 'yes' */
53 if (this && !ino)
54 return 1;
55
56 /* Look to see if the inode in question is pending in the wbuf */
57 while (this) {
58 if (this->ino == ino)
59 return 1;
60 this = this->next;
61 }
62 return 0;
63}
64
65static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
66{
67 struct jffs2_inodirty *this;
68
69 this = c->wbuf_inodes;
70
71 if (this != &inodirty_nomem) {
72 while (this) {
73 struct jffs2_inodirty *next = this->next;
74 kfree(this);
75 this = next;
76 }
77 }
78 c->wbuf_inodes = NULL;
79}
80
81static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
82{
83 struct jffs2_inodirty *new;
84
85 /* Mark the superblock dirty so that kupdated will flush... */
86 OFNI_BS_2SFFJ(c)->s_dirt = 1;
87
88 if (jffs2_wbuf_pending_for_ino(c, ino))
89 return;
90
91 new = kmalloc(sizeof(*new), GFP_KERNEL);
92 if (!new) {
93 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
94 jffs2_clear_wbuf_ino_list(c);
95 c->wbuf_inodes = &inodirty_nomem;
96 return;
97 }
98 new->ino = ino;
99 new->next = c->wbuf_inodes;
100 c->wbuf_inodes = new;
101 return;
102}
103
104static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
105{
106 struct list_head *this, *next;
107 static int n;
108
109 if (list_empty(&c->erasable_pending_wbuf_list))
110 return;
111
112 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
113 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
114
115 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
116 list_del(this);
117 if ((jiffies + (n++)) & 127) {
118 /* Most of the time, we just erase it immediately. Otherwise we
119 spend ages scanning it on mount, etc. */
120 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
121 list_add_tail(&jeb->list, &c->erase_pending_list);
122 c->nr_erasing_blocks++;
123 jffs2_erase_pending_trigger(c);
124 } else {
125 /* Sometimes, however, we leave it elsewhere so it doesn't get
126 immediately reused, and we spread the load a bit. */
127 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
128 list_add_tail(&jeb->list, &c->erasable_list);
129 }
130 }
131}
132
7f716cf3
EH
133#define REFILE_NOTEMPTY 0
134#define REFILE_ANYWAY 1
135
136static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
1da177e4
LT
137{
138 D1(printk("About to refile bad block at %08x\n", jeb->offset));
139
140 D2(jffs2_dump_block_lists(c));
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
9b88f473 150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
1da177e4
LT
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
155 jffs2_erase_pending_trigger(c);
156 }
157 D2(jffs2_dump_block_lists(c));
158
159 /* Adjust its size counts accordingly */
160 c->wasted_size += jeb->free_size;
161 c->free_size -= jeb->free_size;
162 jeb->wasted_size += jeb->free_size;
163 jeb->free_size = 0;
164
165 ACCT_SANITY_CHECK(c,jeb);
166 D1(ACCT_PARANOIA_CHECK(jeb));
167}
168
169/* Recover from failure to write wbuf. Recover the nodes up to the
170 * wbuf, not the one which we were starting to try to write. */
171
172static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
173{
174 struct jffs2_eraseblock *jeb, *new_jeb;
175 struct jffs2_raw_node_ref **first_raw, **raw;
176 size_t retlen;
177 int ret;
178 unsigned char *buf;
179 uint32_t start, end, ofs, len;
180
181 spin_lock(&c->erase_completion_lock);
182
183 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
184
7f716cf3 185 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
1da177e4
LT
186
187 /* Find the first node to be recovered, by skipping over every
188 node which ends before the wbuf starts, or which is obsolete. */
189 first_raw = &jeb->first_node;
190 while (*first_raw &&
191 (ref_obsolete(*first_raw) ||
192 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
193 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
194 ref_offset(*first_raw), ref_flags(*first_raw),
195 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
196 c->wbuf_ofs));
197 first_raw = &(*first_raw)->next_phys;
198 }
199
200 if (!*first_raw) {
201 /* All nodes were obsolete. Nothing to recover. */
202 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
203 spin_unlock(&c->erase_completion_lock);
204 return;
205 }
206
207 start = ref_offset(*first_raw);
208 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
209
210 /* Find the last node to be recovered */
211 raw = first_raw;
212 while ((*raw)) {
213 if (!ref_obsolete(*raw))
214 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
215
216 raw = &(*raw)->next_phys;
217 }
218 spin_unlock(&c->erase_completion_lock);
219
220 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
221
222 buf = NULL;
223 if (start < c->wbuf_ofs) {
224 /* First affected node was already partially written.
225 * Attempt to reread the old data into our buffer. */
226
227 buf = kmalloc(end - start, GFP_KERNEL);
228 if (!buf) {
229 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
230
231 goto read_failed;
232 }
233
234 /* Do the read... */
235 if (jffs2_cleanmarker_oob(c))
236 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
237 else
238 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
239
240 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
241 /* ECC recovered */
242 ret = 0;
243 }
244 if (ret || retlen != c->wbuf_ofs - start) {
245 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
246
247 kfree(buf);
248 buf = NULL;
249 read_failed:
250 first_raw = &(*first_raw)->next_phys;
251 /* If this was the only node to be recovered, give up */
252 if (!(*first_raw))
253 return;
254
255 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
256 start = ref_offset(*first_raw);
257 } else {
258 /* Read succeeded. Copy the remaining data from the wbuf */
259 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
260 }
261 }
262 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
263 Either 'buf' contains the data, or we find it in the wbuf */
264
265
266 /* ... and get an allocation of space from a shiny new block instead */
267 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
268 if (ret) {
269 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
9b88f473 270 kfree(buf);
1da177e4
LT
271 return;
272 }
273 if (end-start >= c->wbuf_pagesize) {
7f716cf3 274 /* Need to do another write immediately, but it's possible
9b88f473
EH
275 that this is just because the wbuf itself is completely
276 full, and there's nothing earlier read back from the
277 flash. Hence 'buf' isn't necessarily what we're writing
278 from. */
7f716cf3 279 unsigned char *rewrite_buf = buf?:c->wbuf;
1da177e4
LT
280 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
281
282 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
283 towrite, ofs));
284
285#ifdef BREAKMEHEADER
286 static int breakme;
287 if (breakme++ == 20) {
288 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
289 breakme = 0;
290 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
291 brokenbuf, NULL, c->oobinfo);
292 ret = -EIO;
293 } else
294#endif
295 if (jffs2_cleanmarker_oob(c))
296 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
7f716cf3 297 rewrite_buf, NULL, c->oobinfo);
1da177e4 298 else
7f716cf3 299 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
1da177e4
LT
300
301 if (ret || retlen != towrite) {
302 /* Argh. We tried. Really we did. */
303 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
9b88f473 304 kfree(buf);
1da177e4
LT
305
306 if (retlen) {
307 struct jffs2_raw_node_ref *raw2;
308
309 raw2 = jffs2_alloc_raw_node_ref();
310 if (!raw2)
311 return;
312
313 raw2->flash_offset = ofs | REF_OBSOLETE;
314 raw2->__totlen = ref_totlen(c, jeb, *first_raw);
315 raw2->next_phys = NULL;
316 raw2->next_in_ino = NULL;
317
318 jffs2_add_physical_node_ref(c, raw2);
319 }
320 return;
321 }
322 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
323
324 c->wbuf_len = (end - start) - towrite;
325 c->wbuf_ofs = ofs + towrite;
7f716cf3 326 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
1da177e4 327 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
7f716cf3
EH
328 if (buf)
329 kfree(buf);
1da177e4
LT
330 } else {
331 /* OK, now we're left with the dregs in whichever buffer we're using */
332 if (buf) {
333 memcpy(c->wbuf, buf, end-start);
334 kfree(buf);
335 } else {
336 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
337 }
338 c->wbuf_ofs = ofs;
339 c->wbuf_len = end - start;
340 }
341
342 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
343 new_jeb = &c->blocks[ofs / c->sector_size];
344
345 spin_lock(&c->erase_completion_lock);
346 if (new_jeb->first_node) {
347 /* Odd, but possible with ST flash later maybe */
348 new_jeb->last_node->next_phys = *first_raw;
349 } else {
350 new_jeb->first_node = *first_raw;
351 }
352
353 raw = first_raw;
354 while (*raw) {
355 uint32_t rawlen = ref_totlen(c, jeb, *raw);
356
357 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
358 rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
359
360 if (ref_obsolete(*raw)) {
361 /* Shouldn't really happen much */
362 new_jeb->dirty_size += rawlen;
363 new_jeb->free_size -= rawlen;
364 c->dirty_size += rawlen;
365 } else {
366 new_jeb->used_size += rawlen;
367 new_jeb->free_size -= rawlen;
368 jeb->dirty_size += rawlen;
369 jeb->used_size -= rawlen;
370 c->dirty_size += rawlen;
371 }
372 c->free_size -= rawlen;
373 (*raw)->flash_offset = ofs | ref_flags(*raw);
374 ofs += rawlen;
375 new_jeb->last_node = *raw;
376
377 raw = &(*raw)->next_phys;
378 }
379
380 /* Fix up the original jeb now it's on the bad_list */
381 *first_raw = NULL;
382 if (first_raw == &jeb->first_node) {
383 jeb->last_node = NULL;
384 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
385 list_del(&jeb->list);
386 list_add(&jeb->list, &c->erase_pending_list);
387 c->nr_erasing_blocks++;
388 jffs2_erase_pending_trigger(c);
389 }
390 else
391 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
392
393 ACCT_SANITY_CHECK(c,jeb);
394 D1(ACCT_PARANOIA_CHECK(jeb));
395
396 ACCT_SANITY_CHECK(c,new_jeb);
397 D1(ACCT_PARANOIA_CHECK(new_jeb));
398
399 spin_unlock(&c->erase_completion_lock);
400
401 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
402}
403
404/* Meaning of pad argument:
405 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
406 1: Pad, do not adjust nextblock free_size
407 2: Pad, adjust nextblock free_size
408*/
409#define NOPAD 0
410#define PAD_NOACCOUNT 1
411#define PAD_ACCOUNTING 2
412
413static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
414{
415 int ret;
416 size_t retlen;
417
418 /* Nothing to do if not NAND flash. In particular, we shouldn't
419 del_timer() the timer we never initialised. */
420 if (jffs2_can_mark_obsolete(c))
421 return 0;
422
423 if (!down_trylock(&c->alloc_sem)) {
424 up(&c->alloc_sem);
425 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
426 BUG();
427 }
428
429 if(!c->wbuf || !c->wbuf_len)
430 return 0;
431
432 /* claim remaining space on the page
433 this happens, if we have a change to a new block,
434 or if fsync forces us to flush the writebuffer.
435 if we have a switch to next page, we will not have
436 enough remaining space for this.
437 */
438 if (pad) {
439 c->wbuf_len = PAD(c->wbuf_len);
440
441 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
442 with 8 byte page size */
443 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
444
445 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
446 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
447 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
448 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
449 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
450 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
451 }
452 }
453 /* else jffs2_flash_writev has actually filled in the rest of the
454 buffer for us, and will deal with the node refs etc. later. */
455
456#ifdef BREAKME
457 static int breakme;
458 if (breakme++ == 20) {
459 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
460 breakme = 0;
461 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
462 &retlen, brokenbuf, NULL, c->oobinfo);
463 ret = -EIO;
464 } else
465#endif
466
467 if (jffs2_cleanmarker_oob(c))
468 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
469 else
470 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
471
472 if (ret || retlen != c->wbuf_pagesize) {
473 if (ret)
474 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
475 else {
476 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
477 retlen, c->wbuf_pagesize);
478 ret = -EIO;
479 }
480
481 jffs2_wbuf_recover(c);
482
483 return ret;
484 }
485
486 spin_lock(&c->erase_completion_lock);
487
488 /* Adjust free size of the block if we padded. */
489 if (pad) {
490 struct jffs2_eraseblock *jeb;
491
492 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
493
494 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
495 (jeb==c->nextblock)?"next":"", jeb->offset));
496
497 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
498 padded. If there is less free space in the block than that,
499 something screwed up */
500 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
501 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
502 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
503 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
504 jeb->offset, jeb->free_size);
505 BUG();
506 }
507 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
508 c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
509 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
510 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
511 }
512
513 /* Stick any now-obsoleted blocks on the erase_pending_list */
514 jffs2_refile_wbuf_blocks(c);
515 jffs2_clear_wbuf_ino_list(c);
516 spin_unlock(&c->erase_completion_lock);
517
518 memset(c->wbuf,0xff,c->wbuf_pagesize);
519 /* adjust write buffer offset, else we get a non contiguous write bug */
520 c->wbuf_ofs += c->wbuf_pagesize;
521 c->wbuf_len = 0;
522 return 0;
523}
524
525/* Trigger garbage collection to flush the write-buffer.
526 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
527 outstanding. If ino arg non-zero, do it only if a write for the
528 given inode is outstanding. */
529int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
530{
531 uint32_t old_wbuf_ofs;
532 uint32_t old_wbuf_len;
533 int ret = 0;
534
535 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
536
537 down(&c->alloc_sem);
538 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
539 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
540 up(&c->alloc_sem);
541 return 0;
542 }
543
544 old_wbuf_ofs = c->wbuf_ofs;
545 old_wbuf_len = c->wbuf_len;
546
547 if (c->unchecked_size) {
548 /* GC won't make any progress for a while */
549 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
550 down_write(&c->wbuf_sem);
551 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
552 /* retry flushing wbuf in case jffs2_wbuf_recover
553 left some data in the wbuf */
554 if (ret)
7f716cf3 555 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
556 up_write(&c->wbuf_sem);
557 } else while (old_wbuf_len &&
558 old_wbuf_ofs == c->wbuf_ofs) {
559
560 up(&c->alloc_sem);
561
562 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
563
564 ret = jffs2_garbage_collect_pass(c);
565 if (ret) {
566 /* GC failed. Flush it with padding instead */
567 down(&c->alloc_sem);
568 down_write(&c->wbuf_sem);
569 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
570 /* retry flushing wbuf in case jffs2_wbuf_recover
571 left some data in the wbuf */
572 if (ret)
7f716cf3 573 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
574 up_write(&c->wbuf_sem);
575 break;
576 }
577 down(&c->alloc_sem);
578 }
579
580 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
581
582 up(&c->alloc_sem);
583 return ret;
584}
585
586/* Pad write-buffer to end and write it, wasting space. */
587int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
588{
589 int ret;
590
591 down_write(&c->wbuf_sem);
592 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
7f716cf3
EH
593 /* retry - maybe wbuf recover left some data in wbuf. */
594 if (ret)
595 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
1da177e4
LT
596 up_write(&c->wbuf_sem);
597
598 return ret;
599}
600
601#define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
602#define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
603int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
604{
605 struct kvec outvecs[3];
606 uint32_t totlen = 0;
607 uint32_t split_ofs = 0;
608 uint32_t old_totlen;
609 int ret, splitvec = -1;
610 int invec, outvec;
611 size_t wbuf_retlen;
612 unsigned char *wbuf_ptr;
613 size_t donelen = 0;
614 uint32_t outvec_to = to;
615
616 /* If not NAND flash, don't bother */
617 if (!c->wbuf)
618 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
619
620 down_write(&c->wbuf_sem);
621
622 /* If wbuf_ofs is not initialized, set it to target address */
623 if (c->wbuf_ofs == 0xFFFFFFFF) {
624 c->wbuf_ofs = PAGE_DIV(to);
625 c->wbuf_len = PAGE_MOD(to);
626 memset(c->wbuf,0xff,c->wbuf_pagesize);
627 }
628
629 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below
630 fail for ECC'd NOR because cleanmarker == 16, so a block starts at
631 xxx0010. */
632 if (jffs2_nor_ecc(c)) {
633 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
634 c->wbuf_ofs = PAGE_DIV(to);
635 c->wbuf_len = PAGE_MOD(to);
636 memset(c->wbuf,0xff,c->wbuf_pagesize);
637 }
638 }
639
640 /* Sanity checks on target address.
641 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
642 and it's permitted to write at the beginning of a new
643 erase block. Anything else, and you die.
644 New block starts at xxx000c (0-b = block header)
645 */
646 if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) {
647 /* It's a write to a new block */
648 if (c->wbuf_len) {
649 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
650 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
651 if (ret) {
652 /* the underlying layer has to check wbuf_len to do the cleanup */
653 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
654 *retlen = 0;
655 goto exit;
656 }
657 }
658 /* set pointer to new block */
659 c->wbuf_ofs = PAGE_DIV(to);
660 c->wbuf_len = PAGE_MOD(to);
661 }
662
663 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
664 /* We're not writing immediately after the writebuffer. Bad. */
665 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
666 if (c->wbuf_len)
667 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
668 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
669 BUG();
670 }
671
672 /* Note outvecs[3] above. We know count is never greater than 2 */
673 if (count > 2) {
674 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
675 BUG();
676 }
677
678 invec = 0;
679 outvec = 0;
680
681 /* Fill writebuffer first, if already in use */
682 if (c->wbuf_len) {
683 uint32_t invec_ofs = 0;
684
685 /* adjust alignment offset */
686 if (c->wbuf_len != PAGE_MOD(to)) {
687 c->wbuf_len = PAGE_MOD(to);
688 /* take care of alignment to next page */
689 if (!c->wbuf_len)
690 c->wbuf_len = c->wbuf_pagesize;
691 }
692
693 while(c->wbuf_len < c->wbuf_pagesize) {
694 uint32_t thislen;
695
696 if (invec == count)
697 goto alldone;
698
699 thislen = c->wbuf_pagesize - c->wbuf_len;
700
701 if (thislen >= invecs[invec].iov_len)
702 thislen = invecs[invec].iov_len;
703
704 invec_ofs = thislen;
705
706 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
707 c->wbuf_len += thislen;
708 donelen += thislen;
709 /* Get next invec, if actual did not fill the buffer */
710 if (c->wbuf_len < c->wbuf_pagesize)
711 invec++;
712 }
713
714 /* write buffer is full, flush buffer */
715 ret = __jffs2_flush_wbuf(c, NOPAD);
716 if (ret) {
717 /* the underlying layer has to check wbuf_len to do the cleanup */
718 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
719 /* Retlen zero to make sure our caller doesn't mark the space dirty.
720 We've already done everything that's necessary */
721 *retlen = 0;
722 goto exit;
723 }
724 outvec_to += donelen;
725 c->wbuf_ofs = outvec_to;
726
727 /* All invecs done ? */
728 if (invec == count)
729 goto alldone;
730
731 /* Set up the first outvec, containing the remainder of the
732 invec we partially used */
733 if (invecs[invec].iov_len > invec_ofs) {
734 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
735 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
736 if (totlen > c->wbuf_pagesize) {
737 splitvec = outvec;
738 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
739 }
740 outvec++;
741 }
742 invec++;
743 }
744
745 /* OK, now we've flushed the wbuf and the start of the bits
746 we have been asked to write, now to write the rest.... */
747
748 /* totlen holds the amount of data still to be written */
749 old_totlen = totlen;
750 for ( ; invec < count; invec++,outvec++ ) {
751 outvecs[outvec].iov_base = invecs[invec].iov_base;
752 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
753 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
754 splitvec = outvec;
755 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
756 old_totlen = totlen;
757 }
758 }
759
760 /* Now the outvecs array holds all the remaining data to write */
761 /* Up to splitvec,split_ofs is to be written immediately. The rest
762 goes into the (now-empty) wbuf */
763
764 if (splitvec != -1) {
765 uint32_t remainder;
766
767 remainder = outvecs[splitvec].iov_len - split_ofs;
768 outvecs[splitvec].iov_len = split_ofs;
769
770 /* We did cross a page boundary, so we write some now */
771 if (jffs2_cleanmarker_oob(c))
772 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
773 else
774 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
775
776 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
777 /* At this point we have no problem,
7f716cf3
EH
778 c->wbuf is empty. However refile nextblock to avoid
779 writing again to same address.
1da177e4 780 */
7f716cf3
EH
781 struct jffs2_eraseblock *jeb;
782
783 spin_lock(&c->erase_completion_lock);
784
785 jeb = &c->blocks[outvec_to / c->sector_size];
786 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
787
788 *retlen = 0;
789 spin_unlock(&c->erase_completion_lock);
1da177e4
LT
790 goto exit;
791 }
792
793 donelen += wbuf_retlen;
794 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
795
796 if (remainder) {
797 outvecs[splitvec].iov_base += split_ofs;
798 outvecs[splitvec].iov_len = remainder;
799 } else {
800 splitvec++;
801 }
802
803 } else {
804 splitvec = 0;
805 }
806
807 /* Now splitvec points to the start of the bits we have to copy
808 into the wbuf */
809 wbuf_ptr = c->wbuf;
810
811 for ( ; splitvec < outvec; splitvec++) {
812 /* Don't copy the wbuf into itself */
813 if (outvecs[splitvec].iov_base == c->wbuf)
814 continue;
815 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
816 wbuf_ptr += outvecs[splitvec].iov_len;
817 donelen += outvecs[splitvec].iov_len;
818 }
819 c->wbuf_len = wbuf_ptr - c->wbuf;
820
821 /* If there's a remainder in the wbuf and it's a non-GC write,
822 remember that the wbuf affects this ino */
823alldone:
824 *retlen = donelen;
825
826 if (c->wbuf_len && ino)
827 jffs2_wbuf_dirties_inode(c, ino);
828
829 ret = 0;
830
831exit:
832 up_write(&c->wbuf_sem);
833 return ret;
834}
835
836/*
837 * This is the entry for flash write.
838 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
839*/
840int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
841{
842 struct kvec vecs[1];
843
844 if (jffs2_can_mark_obsolete(c))
845 return c->mtd->write(c->mtd, ofs, len, retlen, buf);
846
847 vecs[0].iov_base = (unsigned char *) buf;
848 vecs[0].iov_len = len;
849 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
850}
851
852/*
853 Handle readback from writebuffer and ECC failure return
854*/
855int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
856{
857 loff_t orbf = 0, owbf = 0, lwbf = 0;
858 int ret;
859
860 /* Read flash */
861 if (!jffs2_can_mark_obsolete(c)) {
862 down_read(&c->wbuf_sem);
863
864 if (jffs2_cleanmarker_oob(c))
865 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
866 else
867 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
868
869 if ( (ret == -EBADMSG) && (*retlen == len) ) {
870 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
871 len, ofs);
872 /*
873 * We have the raw data without ECC correction in the buffer, maybe
874 * we are lucky and all data or parts are correct. We check the node.
875 * If data are corrupted node check will sort it out.
876 * We keep this block, it will fail on write or erase and the we
877 * mark it bad. Or should we do that now? But we should give him a chance.
878 * Maybe we had a system crash or power loss before the ecc write or
879 * a erase was completed.
880 * So we return success. :)
881 */
882 ret = 0;
883 }
884 } else
885 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
886
887 /* if no writebuffer available or write buffer empty, return */
888 if (!c->wbuf_pagesize || !c->wbuf_len)
889 goto exit;
890
891 /* if we read in a different block, return */
892 if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) )
893 goto exit;
894
895 if (ofs >= c->wbuf_ofs) {
896 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
897 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
898 goto exit;
899 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
900 if (lwbf > len)
901 lwbf = len;
902 } else {
903 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
904 if (orbf > len) /* is write beyond write buffer ? */
905 goto exit;
906 lwbf = len - orbf; /* number of bytes to copy */
907 if (lwbf > c->wbuf_len)
908 lwbf = c->wbuf_len;
909 }
910 if (lwbf > 0)
911 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
912
913exit:
914 up_read(&c->wbuf_sem);
915 return ret;
916}
917
918/*
919 * Check, if the out of band area is empty
920 */
921int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
922{
923 unsigned char *buf;
924 int ret = 0;
925 int i,len,page;
926 size_t retlen;
927 int oob_size;
928
929 /* allocate a buffer for all oob data in this sector */
930 oob_size = c->mtd->oobsize;
931 len = 4 * oob_size;
932 buf = kmalloc(len, GFP_KERNEL);
933 if (!buf) {
934 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
935 return -ENOMEM;
936 }
937 /*
938 * if mode = 0, we scan for a total empty oob area, else we have
939 * to take care of the cleanmarker in the first page of the block
940 */
941 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
942 if (ret) {
943 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
944 goto out;
945 }
946
947 if (retlen < len) {
948 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
949 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
950 ret = -EIO;
951 goto out;
952 }
953
954 /* Special check for first page */
955 for(i = 0; i < oob_size ; i++) {
956 /* Yeah, we know about the cleanmarker. */
957 if (mode && i >= c->fsdata_pos &&
958 i < c->fsdata_pos + c->fsdata_len)
959 continue;
960
961 if (buf[i] != 0xFF) {
962 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
963 buf[page+i], page+i, jeb->offset));
964 ret = 1;
965 goto out;
966 }
967 }
968
969 /* we know, we are aligned :) */
970 for (page = oob_size; page < len; page += sizeof(long)) {
971 unsigned long dat = *(unsigned long *)(&buf[page]);
972 if(dat != -1) {
973 ret = 1;
974 goto out;
975 }
976 }
977
978out:
979 kfree(buf);
980
981 return ret;
982}
983
984/*
985* Scan for a valid cleanmarker and for bad blocks
986* For virtual blocks (concatenated physical blocks) check the cleanmarker
987* only in the first page of the first physical block, but scan for bad blocks in all
988* physical blocks
989*/
990int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
991{
992 struct jffs2_unknown_node n;
993 unsigned char buf[2 * NAND_MAX_OOBSIZE];
994 unsigned char *p;
995 int ret, i, cnt, retval = 0;
996 size_t retlen, offset;
997 int oob_size;
998
999 offset = jeb->offset;
1000 oob_size = c->mtd->oobsize;
1001
1002 /* Loop through the physical blocks */
1003 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1004 /* Check first if the block is bad. */
1005 if (c->mtd->block_isbad (c->mtd, offset)) {
1006 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1007 return 2;
1008 }
1009 /*
1010 * We read oob data from page 0 and 1 of the block.
1011 * page 0 contains cleanmarker and badblock info
1012 * page 1 contains failure count of this block
1013 */
1014 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1015
1016 if (ret) {
1017 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1018 return ret;
1019 }
1020 if (retlen < (oob_size << 1)) {
1021 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1022 return -EIO;
1023 }
1024
1025 /* Check cleanmarker only on the first physical block */
1026 if (!cnt) {
1027 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1028 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1029 n.totlen = cpu_to_je32 (8);
1030 p = (unsigned char *) &n;
1031
1032 for (i = 0; i < c->fsdata_len; i++) {
1033 if (buf[c->fsdata_pos + i] != p[i]) {
1034 retval = 1;
1035 }
1036 }
1037 D1(if (retval == 1) {
1038 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1039 printk(KERN_WARNING "OOB at %08x was ", offset);
1040 for (i=0; i < oob_size; i++) {
1041 printk("%02x ", buf[i]);
1042 }
1043 printk("\n");
1044 })
1045 }
1046 offset += c->mtd->erasesize;
1047 }
1048 return retval;
1049}
1050
1051int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1052{
1053 struct jffs2_unknown_node n;
1054 int ret;
1055 size_t retlen;
1056
1057 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1058 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1059 n.totlen = cpu_to_je32(8);
1060
1061 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1062
1063 if (ret) {
1064 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1065 return ret;
1066 }
1067 if (retlen != c->fsdata_len) {
1068 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1069 return ret;
1070 }
1071 return 0;
1072}
1073
1074/*
1075 * On NAND we try to mark this block bad. If the block was erased more
1076 * than MAX_ERASE_FAILURES we mark it finaly bad.
1077 * Don't care about failures. This block remains on the erase-pending
1078 * or badblock list as long as nobody manipulates the flash with
1079 * a bootloader or something like that.
1080 */
1081
1082int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1083{
1084 int ret;
1085
1086 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1087 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1088 return 0;
1089
1090 if (!c->mtd->block_markbad)
1091 return 1; // What else can we do?
1092
1093 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1094 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1095
1096 if (ret) {
1097 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1098 return ret;
1099 }
1100 return 1;
1101}
1102
1103#define NAND_JFFS2_OOB16_FSDALEN 8
1104
1105static struct nand_oobinfo jffs2_oobinfo_docecc = {
1106 .useecc = MTD_NANDECC_PLACE,
1107 .eccbytes = 6,
1108 .eccpos = {0,1,2,3,4,5}
1109};
1110
1111
1112static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1113{
1114 struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
1115
1116 /* Do this only, if we have an oob buffer */
1117 if (!c->mtd->oobsize)
1118 return 0;
1119
1120 /* Cleanmarker is out-of-band, so inline size zero */
1121 c->cleanmarker_size = 0;
1122
1123 /* Should we use autoplacement ? */
1124 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
1125 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1126 /* Get the position of the free bytes */
1127 if (!oinfo->oobfree[0][1]) {
1128 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1129 return -ENOSPC;
1130 }
1131 c->fsdata_pos = oinfo->oobfree[0][0];
1132 c->fsdata_len = oinfo->oobfree[0][1];
1133 if (c->fsdata_len > 8)
1134 c->fsdata_len = 8;
1135 } else {
1136 /* This is just a legacy fallback and should go away soon */
1137 switch(c->mtd->ecctype) {
1138 case MTD_ECC_RS_DiskOnChip:
1139 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1140 c->oobinfo = &jffs2_oobinfo_docecc;
1141 c->fsdata_pos = 6;
1142 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
1143 c->badblock_pos = 15;
1144 break;
1145
1146 default:
1147 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1148 return -EINVAL;
1149 }
1150 }
1151 return 0;
1152}
1153
1154int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1155{
1156 int res;
1157
1158 /* Initialise write buffer */
1159 init_rwsem(&c->wbuf_sem);
1160 c->wbuf_pagesize = c->mtd->oobblock;
1161 c->wbuf_ofs = 0xFFFFFFFF;
1162
1163 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1164 if (!c->wbuf)
1165 return -ENOMEM;
1166
1167 res = jffs2_nand_set_oobinfo(c);
1168
1169#ifdef BREAKME
1170 if (!brokenbuf)
1171 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1172 if (!brokenbuf) {
1173 kfree(c->wbuf);
1174 return -ENOMEM;
1175 }
1176 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1177#endif
1178 return res;
1179}
1180
1181void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1182{
1183 kfree(c->wbuf);
1184}
1185
1186#ifdef CONFIG_JFFS2_FS_NOR_ECC
1187int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
1188 /* Cleanmarker is actually larger on the flashes */
1189 c->cleanmarker_size = 16;
1190
1191 /* Initialize write buffer */
1192 init_rwsem(&c->wbuf_sem);
1193 c->wbuf_pagesize = c->mtd->eccsize;
1194 c->wbuf_ofs = 0xFFFFFFFF;
1195
1196 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1197 if (!c->wbuf)
1198 return -ENOMEM;
1199
1200 return 0;
1201}
1202
1203void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
1204 kfree(c->wbuf);
1205}
1206#endif