[JFFS2] Use a single config option for write buffer support
[linux-2.6-block.git] / fs / jffs2 / wbuf.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
2f82ce1e 12 * $Id: wbuf.c,v 1.89 2005/02/09 09:23:54 pavlov Exp $
1da177e4
LT
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/slab.h>
18#include <linux/mtd/mtd.h>
19#include <linux/crc32.h>
20#include <linux/mtd/nand.h>
21#include "nodelist.h"
22
23/* For testing write failures */
24#undef BREAKME
25#undef BREAKMEHEADER
26
27#ifdef BREAKME
28static unsigned char *brokenbuf;
29#endif
30
31/* max. erase failures before we mark a block bad */
32#define MAX_ERASE_FAILURES 2
33
34/* two seconds timeout for timed wbuf-flushing */
35#define WBUF_FLUSH_TIMEOUT 2 * HZ
36
37struct jffs2_inodirty {
38 uint32_t ino;
39 struct jffs2_inodirty *next;
40};
41
42static struct jffs2_inodirty inodirty_nomem;
43
44static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
45{
46 struct jffs2_inodirty *this = c->wbuf_inodes;
47
48 /* If a malloc failed, consider _everything_ dirty */
49 if (this == &inodirty_nomem)
50 return 1;
51
52 /* If ino == 0, _any_ non-GC writes mean 'yes' */
53 if (this && !ino)
54 return 1;
55
56 /* Look to see if the inode in question is pending in the wbuf */
57 while (this) {
58 if (this->ino == ino)
59 return 1;
60 this = this->next;
61 }
62 return 0;
63}
64
65static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
66{
67 struct jffs2_inodirty *this;
68
69 this = c->wbuf_inodes;
70
71 if (this != &inodirty_nomem) {
72 while (this) {
73 struct jffs2_inodirty *next = this->next;
74 kfree(this);
75 this = next;
76 }
77 }
78 c->wbuf_inodes = NULL;
79}
80
81static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
82{
83 struct jffs2_inodirty *new;
84
85 /* Mark the superblock dirty so that kupdated will flush... */
86 OFNI_BS_2SFFJ(c)->s_dirt = 1;
87
88 if (jffs2_wbuf_pending_for_ino(c, ino))
89 return;
90
91 new = kmalloc(sizeof(*new), GFP_KERNEL);
92 if (!new) {
93 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
94 jffs2_clear_wbuf_ino_list(c);
95 c->wbuf_inodes = &inodirty_nomem;
96 return;
97 }
98 new->ino = ino;
99 new->next = c->wbuf_inodes;
100 c->wbuf_inodes = new;
101 return;
102}
103
104static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
105{
106 struct list_head *this, *next;
107 static int n;
108
109 if (list_empty(&c->erasable_pending_wbuf_list))
110 return;
111
112 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
113 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
114
115 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
116 list_del(this);
117 if ((jiffies + (n++)) & 127) {
118 /* Most of the time, we just erase it immediately. Otherwise we
119 spend ages scanning it on mount, etc. */
120 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
121 list_add_tail(&jeb->list, &c->erase_pending_list);
122 c->nr_erasing_blocks++;
123 jffs2_erase_pending_trigger(c);
124 } else {
125 /* Sometimes, however, we leave it elsewhere so it doesn't get
126 immediately reused, and we spread the load a bit. */
127 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
128 list_add_tail(&jeb->list, &c->erasable_list);
129 }
130 }
131}
132
7f716cf3
EH
133#define REFILE_NOTEMPTY 0
134#define REFILE_ANYWAY 1
135
136static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
1da177e4
LT
137{
138 D1(printk("About to refile bad block at %08x\n", jeb->offset));
139
140 D2(jffs2_dump_block_lists(c));
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
9b88f473 150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
1da177e4
LT
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
155 jffs2_erase_pending_trigger(c);
156 }
157 D2(jffs2_dump_block_lists(c));
158
159 /* Adjust its size counts accordingly */
160 c->wasted_size += jeb->free_size;
161 c->free_size -= jeb->free_size;
162 jeb->wasted_size += jeb->free_size;
163 jeb->free_size = 0;
164
165 ACCT_SANITY_CHECK(c,jeb);
166 D1(ACCT_PARANOIA_CHECK(jeb));
167}
168
169/* Recover from failure to write wbuf. Recover the nodes up to the
170 * wbuf, not the one which we were starting to try to write. */
171
172static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
173{
174 struct jffs2_eraseblock *jeb, *new_jeb;
175 struct jffs2_raw_node_ref **first_raw, **raw;
176 size_t retlen;
177 int ret;
178 unsigned char *buf;
179 uint32_t start, end, ofs, len;
180
181 spin_lock(&c->erase_completion_lock);
182
183 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
184
7f716cf3 185 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
1da177e4
LT
186
187 /* Find the first node to be recovered, by skipping over every
188 node which ends before the wbuf starts, or which is obsolete. */
189 first_raw = &jeb->first_node;
190 while (*first_raw &&
191 (ref_obsolete(*first_raw) ||
192 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
193 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
194 ref_offset(*first_raw), ref_flags(*first_raw),
195 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
196 c->wbuf_ofs));
197 first_raw = &(*first_raw)->next_phys;
198 }
199
200 if (!*first_raw) {
201 /* All nodes were obsolete. Nothing to recover. */
202 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
203 spin_unlock(&c->erase_completion_lock);
204 return;
205 }
206
207 start = ref_offset(*first_raw);
208 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
209
210 /* Find the last node to be recovered */
211 raw = first_raw;
212 while ((*raw)) {
213 if (!ref_obsolete(*raw))
214 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
215
216 raw = &(*raw)->next_phys;
217 }
218 spin_unlock(&c->erase_completion_lock);
219
220 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
221
222 buf = NULL;
223 if (start < c->wbuf_ofs) {
224 /* First affected node was already partially written.
225 * Attempt to reread the old data into our buffer. */
226
227 buf = kmalloc(end - start, GFP_KERNEL);
228 if (!buf) {
229 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
230
231 goto read_failed;
232 }
233
234 /* Do the read... */
235 if (jffs2_cleanmarker_oob(c))
236 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
237 else
238 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
239
240 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
241 /* ECC recovered */
242 ret = 0;
243 }
244 if (ret || retlen != c->wbuf_ofs - start) {
245 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
246
247 kfree(buf);
248 buf = NULL;
249 read_failed:
250 first_raw = &(*first_raw)->next_phys;
251 /* If this was the only node to be recovered, give up */
252 if (!(*first_raw))
253 return;
254
255 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
256 start = ref_offset(*first_raw);
257 } else {
258 /* Read succeeded. Copy the remaining data from the wbuf */
259 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
260 }
261 }
262 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
263 Either 'buf' contains the data, or we find it in the wbuf */
264
265
266 /* ... and get an allocation of space from a shiny new block instead */
267 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
268 if (ret) {
269 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
9b88f473 270 kfree(buf);
1da177e4
LT
271 return;
272 }
273 if (end-start >= c->wbuf_pagesize) {
7f716cf3 274 /* Need to do another write immediately, but it's possible
9b88f473
EH
275 that this is just because the wbuf itself is completely
276 full, and there's nothing earlier read back from the
277 flash. Hence 'buf' isn't necessarily what we're writing
278 from. */
7f716cf3 279 unsigned char *rewrite_buf = buf?:c->wbuf;
1da177e4
LT
280 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
281
282 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
283 towrite, ofs));
284
285#ifdef BREAKMEHEADER
286 static int breakme;
287 if (breakme++ == 20) {
288 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
289 breakme = 0;
290 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
291 brokenbuf, NULL, c->oobinfo);
292 ret = -EIO;
293 } else
294#endif
295 if (jffs2_cleanmarker_oob(c))
296 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
7f716cf3 297 rewrite_buf, NULL, c->oobinfo);
1da177e4 298 else
7f716cf3 299 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
1da177e4
LT
300
301 if (ret || retlen != towrite) {
302 /* Argh. We tried. Really we did. */
303 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
9b88f473 304 kfree(buf);
1da177e4
LT
305
306 if (retlen) {
307 struct jffs2_raw_node_ref *raw2;
308
309 raw2 = jffs2_alloc_raw_node_ref();
310 if (!raw2)
311 return;
312
313 raw2->flash_offset = ofs | REF_OBSOLETE;
314 raw2->__totlen = ref_totlen(c, jeb, *first_raw);
315 raw2->next_phys = NULL;
316 raw2->next_in_ino = NULL;
317
318 jffs2_add_physical_node_ref(c, raw2);
319 }
320 return;
321 }
322 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
323
324 c->wbuf_len = (end - start) - towrite;
325 c->wbuf_ofs = ofs + towrite;
7f716cf3 326 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
1da177e4 327 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
7f716cf3
EH
328 if (buf)
329 kfree(buf);
1da177e4
LT
330 } else {
331 /* OK, now we're left with the dregs in whichever buffer we're using */
332 if (buf) {
333 memcpy(c->wbuf, buf, end-start);
334 kfree(buf);
335 } else {
336 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
337 }
338 c->wbuf_ofs = ofs;
339 c->wbuf_len = end - start;
340 }
341
342 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
343 new_jeb = &c->blocks[ofs / c->sector_size];
344
345 spin_lock(&c->erase_completion_lock);
346 if (new_jeb->first_node) {
347 /* Odd, but possible with ST flash later maybe */
348 new_jeb->last_node->next_phys = *first_raw;
349 } else {
350 new_jeb->first_node = *first_raw;
351 }
352
353 raw = first_raw;
354 while (*raw) {
355 uint32_t rawlen = ref_totlen(c, jeb, *raw);
356
357 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
358 rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
359
360 if (ref_obsolete(*raw)) {
361 /* Shouldn't really happen much */
362 new_jeb->dirty_size += rawlen;
363 new_jeb->free_size -= rawlen;
364 c->dirty_size += rawlen;
365 } else {
366 new_jeb->used_size += rawlen;
367 new_jeb->free_size -= rawlen;
368 jeb->dirty_size += rawlen;
369 jeb->used_size -= rawlen;
370 c->dirty_size += rawlen;
371 }
372 c->free_size -= rawlen;
373 (*raw)->flash_offset = ofs | ref_flags(*raw);
374 ofs += rawlen;
375 new_jeb->last_node = *raw;
376
377 raw = &(*raw)->next_phys;
378 }
379
380 /* Fix up the original jeb now it's on the bad_list */
381 *first_raw = NULL;
382 if (first_raw == &jeb->first_node) {
383 jeb->last_node = NULL;
384 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
385 list_del(&jeb->list);
386 list_add(&jeb->list, &c->erase_pending_list);
387 c->nr_erasing_blocks++;
388 jffs2_erase_pending_trigger(c);
389 }
390 else
391 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
392
393 ACCT_SANITY_CHECK(c,jeb);
394 D1(ACCT_PARANOIA_CHECK(jeb));
395
396 ACCT_SANITY_CHECK(c,new_jeb);
397 D1(ACCT_PARANOIA_CHECK(new_jeb));
398
399 spin_unlock(&c->erase_completion_lock);
400
401 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
402}
403
404/* Meaning of pad argument:
405 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
406 1: Pad, do not adjust nextblock free_size
407 2: Pad, adjust nextblock free_size
408*/
409#define NOPAD 0
410#define PAD_NOACCOUNT 1
411#define PAD_ACCOUNTING 2
412
413static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
414{
415 int ret;
416 size_t retlen;
417
3be36675 418 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
1da177e4 419 del_timer() the timer we never initialised. */
3be36675 420 if (!jffs2_is_writebuffered(c))
1da177e4
LT
421 return 0;
422
423 if (!down_trylock(&c->alloc_sem)) {
424 up(&c->alloc_sem);
425 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
426 BUG();
427 }
428
3be36675 429 if (!c->wbuf_len) /* already checked c->wbuf above */
1da177e4
LT
430 return 0;
431
432 /* claim remaining space on the page
433 this happens, if we have a change to a new block,
434 or if fsync forces us to flush the writebuffer.
435 if we have a switch to next page, we will not have
436 enough remaining space for this.
437 */
8f15fd55 438 if (pad && !jffs2_dataflash(c)) {
1da177e4
LT
439 c->wbuf_len = PAD(c->wbuf_len);
440
441 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
442 with 8 byte page size */
443 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
444
445 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
446 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
447 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
448 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
449 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
450 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
451 }
452 }
453 /* else jffs2_flash_writev has actually filled in the rest of the
454 buffer for us, and will deal with the node refs etc. later. */
455
456#ifdef BREAKME
457 static int breakme;
458 if (breakme++ == 20) {
459 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
460 breakme = 0;
461 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
462 &retlen, brokenbuf, NULL, c->oobinfo);
463 ret = -EIO;
464 } else
465#endif
466
467 if (jffs2_cleanmarker_oob(c))
468 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
469 else
470 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
471
472 if (ret || retlen != c->wbuf_pagesize) {
473 if (ret)
474 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
475 else {
476 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
477 retlen, c->wbuf_pagesize);
478 ret = -EIO;
479 }
480
481 jffs2_wbuf_recover(c);
482
483 return ret;
484 }
485
486 spin_lock(&c->erase_completion_lock);
487
488 /* Adjust free size of the block if we padded. */
8f15fd55 489 if (pad && !jffs2_dataflash(c)) {
1da177e4
LT
490 struct jffs2_eraseblock *jeb;
491
492 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
493
494 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
495 (jeb==c->nextblock)?"next":"", jeb->offset));
496
497 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
498 padded. If there is less free space in the block than that,
499 something screwed up */
500 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
501 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
502 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
503 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
504 jeb->offset, jeb->free_size);
505 BUG();
506 }
507 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
508 c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
509 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
510 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
511 }
512
513 /* Stick any now-obsoleted blocks on the erase_pending_list */
514 jffs2_refile_wbuf_blocks(c);
515 jffs2_clear_wbuf_ino_list(c);
516 spin_unlock(&c->erase_completion_lock);
517
518 memset(c->wbuf,0xff,c->wbuf_pagesize);
519 /* adjust write buffer offset, else we get a non contiguous write bug */
520 c->wbuf_ofs += c->wbuf_pagesize;
521 c->wbuf_len = 0;
522 return 0;
523}
524
525/* Trigger garbage collection to flush the write-buffer.
526 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
527 outstanding. If ino arg non-zero, do it only if a write for the
528 given inode is outstanding. */
529int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
530{
531 uint32_t old_wbuf_ofs;
532 uint32_t old_wbuf_len;
533 int ret = 0;
534
535 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
536
8aee6ac1
DW
537 if (!c->wbuf)
538 return 0;
539
1da177e4
LT
540 down(&c->alloc_sem);
541 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
542 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
543 up(&c->alloc_sem);
544 return 0;
545 }
546
547 old_wbuf_ofs = c->wbuf_ofs;
548 old_wbuf_len = c->wbuf_len;
549
550 if (c->unchecked_size) {
551 /* GC won't make any progress for a while */
552 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
553 down_write(&c->wbuf_sem);
554 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
555 /* retry flushing wbuf in case jffs2_wbuf_recover
556 left some data in the wbuf */
557 if (ret)
7f716cf3 558 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
559 up_write(&c->wbuf_sem);
560 } else while (old_wbuf_len &&
561 old_wbuf_ofs == c->wbuf_ofs) {
562
563 up(&c->alloc_sem);
564
565 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
566
567 ret = jffs2_garbage_collect_pass(c);
568 if (ret) {
569 /* GC failed. Flush it with padding instead */
570 down(&c->alloc_sem);
571 down_write(&c->wbuf_sem);
572 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
573 /* retry flushing wbuf in case jffs2_wbuf_recover
574 left some data in the wbuf */
575 if (ret)
7f716cf3 576 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
577 up_write(&c->wbuf_sem);
578 break;
579 }
580 down(&c->alloc_sem);
581 }
582
583 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
584
585 up(&c->alloc_sem);
586 return ret;
587}
588
589/* Pad write-buffer to end and write it, wasting space. */
590int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
591{
592 int ret;
593
8aee6ac1
DW
594 if (!c->wbuf)
595 return 0;
596
1da177e4
LT
597 down_write(&c->wbuf_sem);
598 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
7f716cf3
EH
599 /* retry - maybe wbuf recover left some data in wbuf. */
600 if (ret)
601 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
1da177e4
LT
602 up_write(&c->wbuf_sem);
603
604 return ret;
605}
606
2f82ce1e 607#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
8f15fd55
AV
608#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
609#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
610#else
1da177e4
LT
611#define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
612#define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
8f15fd55
AV
613#endif
614
1da177e4
LT
615int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
616{
617 struct kvec outvecs[3];
618 uint32_t totlen = 0;
619 uint32_t split_ofs = 0;
620 uint32_t old_totlen;
621 int ret, splitvec = -1;
622 int invec, outvec;
623 size_t wbuf_retlen;
624 unsigned char *wbuf_ptr;
625 size_t donelen = 0;
626 uint32_t outvec_to = to;
627
628 /* If not NAND flash, don't bother */
3be36675 629 if (!jffs2_is_writebuffered(c))
1da177e4
LT
630 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
631
632 down_write(&c->wbuf_sem);
633
634 /* If wbuf_ofs is not initialized, set it to target address */
635 if (c->wbuf_ofs == 0xFFFFFFFF) {
636 c->wbuf_ofs = PAGE_DIV(to);
637 c->wbuf_len = PAGE_MOD(to);
638 memset(c->wbuf,0xff,c->wbuf_pagesize);
639 }
640
641 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below
642 fail for ECC'd NOR because cleanmarker == 16, so a block starts at
643 xxx0010. */
644 if (jffs2_nor_ecc(c)) {
645 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
646 c->wbuf_ofs = PAGE_DIV(to);
647 c->wbuf_len = PAGE_MOD(to);
648 memset(c->wbuf,0xff,c->wbuf_pagesize);
649 }
650 }
651
652 /* Sanity checks on target address.
653 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
654 and it's permitted to write at the beginning of a new
655 erase block. Anything else, and you die.
656 New block starts at xxx000c (0-b = block header)
657 */
3be36675 658 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
1da177e4
LT
659 /* It's a write to a new block */
660 if (c->wbuf_len) {
661 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
662 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
663 if (ret) {
664 /* the underlying layer has to check wbuf_len to do the cleanup */
665 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
666 *retlen = 0;
667 goto exit;
668 }
669 }
670 /* set pointer to new block */
671 c->wbuf_ofs = PAGE_DIV(to);
672 c->wbuf_len = PAGE_MOD(to);
673 }
674
675 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
676 /* We're not writing immediately after the writebuffer. Bad. */
677 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
678 if (c->wbuf_len)
679 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
680 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
681 BUG();
682 }
683
684 /* Note outvecs[3] above. We know count is never greater than 2 */
685 if (count > 2) {
686 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
687 BUG();
688 }
689
690 invec = 0;
691 outvec = 0;
692
693 /* Fill writebuffer first, if already in use */
694 if (c->wbuf_len) {
695 uint32_t invec_ofs = 0;
696
697 /* adjust alignment offset */
698 if (c->wbuf_len != PAGE_MOD(to)) {
699 c->wbuf_len = PAGE_MOD(to);
700 /* take care of alignment to next page */
701 if (!c->wbuf_len)
702 c->wbuf_len = c->wbuf_pagesize;
703 }
704
705 while(c->wbuf_len < c->wbuf_pagesize) {
706 uint32_t thislen;
707
708 if (invec == count)
709 goto alldone;
710
711 thislen = c->wbuf_pagesize - c->wbuf_len;
712
713 if (thislen >= invecs[invec].iov_len)
714 thislen = invecs[invec].iov_len;
715
716 invec_ofs = thislen;
717
718 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
719 c->wbuf_len += thislen;
720 donelen += thislen;
721 /* Get next invec, if actual did not fill the buffer */
722 if (c->wbuf_len < c->wbuf_pagesize)
723 invec++;
724 }
725
726 /* write buffer is full, flush buffer */
727 ret = __jffs2_flush_wbuf(c, NOPAD);
728 if (ret) {
729 /* the underlying layer has to check wbuf_len to do the cleanup */
730 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
731 /* Retlen zero to make sure our caller doesn't mark the space dirty.
732 We've already done everything that's necessary */
733 *retlen = 0;
734 goto exit;
735 }
736 outvec_to += donelen;
737 c->wbuf_ofs = outvec_to;
738
739 /* All invecs done ? */
740 if (invec == count)
741 goto alldone;
742
743 /* Set up the first outvec, containing the remainder of the
744 invec we partially used */
745 if (invecs[invec].iov_len > invec_ofs) {
746 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
747 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
748 if (totlen > c->wbuf_pagesize) {
749 splitvec = outvec;
750 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
751 }
752 outvec++;
753 }
754 invec++;
755 }
756
757 /* OK, now we've flushed the wbuf and the start of the bits
758 we have been asked to write, now to write the rest.... */
759
760 /* totlen holds the amount of data still to be written */
761 old_totlen = totlen;
762 for ( ; invec < count; invec++,outvec++ ) {
763 outvecs[outvec].iov_base = invecs[invec].iov_base;
764 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
765 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
766 splitvec = outvec;
767 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
768 old_totlen = totlen;
769 }
770 }
771
772 /* Now the outvecs array holds all the remaining data to write */
773 /* Up to splitvec,split_ofs is to be written immediately. The rest
774 goes into the (now-empty) wbuf */
775
776 if (splitvec != -1) {
777 uint32_t remainder;
778
779 remainder = outvecs[splitvec].iov_len - split_ofs;
780 outvecs[splitvec].iov_len = split_ofs;
781
782 /* We did cross a page boundary, so we write some now */
783 if (jffs2_cleanmarker_oob(c))
784 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
785 else
786 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
787
788 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
789 /* At this point we have no problem,
7f716cf3
EH
790 c->wbuf is empty. However refile nextblock to avoid
791 writing again to same address.
1da177e4 792 */
7f716cf3
EH
793 struct jffs2_eraseblock *jeb;
794
795 spin_lock(&c->erase_completion_lock);
796
797 jeb = &c->blocks[outvec_to / c->sector_size];
798 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
799
800 *retlen = 0;
801 spin_unlock(&c->erase_completion_lock);
1da177e4
LT
802 goto exit;
803 }
804
805 donelen += wbuf_retlen;
806 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
807
808 if (remainder) {
809 outvecs[splitvec].iov_base += split_ofs;
810 outvecs[splitvec].iov_len = remainder;
811 } else {
812 splitvec++;
813 }
814
815 } else {
816 splitvec = 0;
817 }
818
819 /* Now splitvec points to the start of the bits we have to copy
820 into the wbuf */
821 wbuf_ptr = c->wbuf;
822
823 for ( ; splitvec < outvec; splitvec++) {
824 /* Don't copy the wbuf into itself */
825 if (outvecs[splitvec].iov_base == c->wbuf)
826 continue;
827 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
828 wbuf_ptr += outvecs[splitvec].iov_len;
829 donelen += outvecs[splitvec].iov_len;
830 }
831 c->wbuf_len = wbuf_ptr - c->wbuf;
832
833 /* If there's a remainder in the wbuf and it's a non-GC write,
834 remember that the wbuf affects this ino */
835alldone:
836 *retlen = donelen;
837
838 if (c->wbuf_len && ino)
839 jffs2_wbuf_dirties_inode(c, ino);
840
841 ret = 0;
842
843exit:
844 up_write(&c->wbuf_sem);
845 return ret;
846}
847
848/*
849 * This is the entry for flash write.
850 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
851*/
852int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
853{
854 struct kvec vecs[1];
855
3be36675 856 if (!jffs2_is_writebuffered(c))
1da177e4
LT
857 return c->mtd->write(c->mtd, ofs, len, retlen, buf);
858
859 vecs[0].iov_base = (unsigned char *) buf;
860 vecs[0].iov_len = len;
861 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
862}
863
864/*
865 Handle readback from writebuffer and ECC failure return
866*/
867int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
868{
869 loff_t orbf = 0, owbf = 0, lwbf = 0;
870 int ret;
871
3be36675 872 if (!jffs2_is_writebuffered(c))
1da177e4
LT
873 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
874
3be36675
AV
875 /* Read flash */
876 if (jffs2_cleanmarker_oob(c))
877 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
878 else
879 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
880
881 if ( (ret == -EBADMSG) && (*retlen == len) ) {
882 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
883 len, ofs);
884 /*
885 * We have the raw data without ECC correction in the buffer, maybe
886 * we are lucky and all data or parts are correct. We check the node.
887 * If data are corrupted node check will sort it out.
888 * We keep this block, it will fail on write or erase and the we
889 * mark it bad. Or should we do that now? But we should give him a chance.
890 * Maybe we had a system crash or power loss before the ecc write or
891 * a erase was completed.
892 * So we return success. :)
893 */
894 ret = 0;
895 }
896
1da177e4
LT
897 /* if no writebuffer available or write buffer empty, return */
898 if (!c->wbuf_pagesize || !c->wbuf_len)
67d9e95c 899 return ret;;
1da177e4
LT
900
901 /* if we read in a different block, return */
3be36675 902 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
67d9e95c
EH
903 return ret;
904
905 /* Lock only if we have reason to believe wbuf contains relevant data,
906 so that checking an erased block during wbuf recovery space allocation
907 does not deadlock. */
908 down_read(&c->wbuf_sem);
1da177e4
LT
909
910 if (ofs >= c->wbuf_ofs) {
911 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
912 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
913 goto exit;
914 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
915 if (lwbf > len)
916 lwbf = len;
917 } else {
918 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
919 if (orbf > len) /* is write beyond write buffer ? */
920 goto exit;
921 lwbf = len - orbf; /* number of bytes to copy */
922 if (lwbf > c->wbuf_len)
923 lwbf = c->wbuf_len;
924 }
925 if (lwbf > 0)
926 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
927
928exit:
929 up_read(&c->wbuf_sem);
930 return ret;
931}
932
933/*
934 * Check, if the out of band area is empty
935 */
936int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
937{
938 unsigned char *buf;
939 int ret = 0;
940 int i,len,page;
941 size_t retlen;
942 int oob_size;
943
944 /* allocate a buffer for all oob data in this sector */
945 oob_size = c->mtd->oobsize;
946 len = 4 * oob_size;
947 buf = kmalloc(len, GFP_KERNEL);
948 if (!buf) {
949 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
950 return -ENOMEM;
951 }
952 /*
953 * if mode = 0, we scan for a total empty oob area, else we have
954 * to take care of the cleanmarker in the first page of the block
955 */
956 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
957 if (ret) {
958 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
959 goto out;
960 }
961
962 if (retlen < len) {
963 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
964 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
965 ret = -EIO;
966 goto out;
967 }
968
969 /* Special check for first page */
970 for(i = 0; i < oob_size ; i++) {
971 /* Yeah, we know about the cleanmarker. */
972 if (mode && i >= c->fsdata_pos &&
973 i < c->fsdata_pos + c->fsdata_len)
974 continue;
975
976 if (buf[i] != 0xFF) {
977 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
978 buf[page+i], page+i, jeb->offset));
979 ret = 1;
980 goto out;
981 }
982 }
983
984 /* we know, we are aligned :) */
985 for (page = oob_size; page < len; page += sizeof(long)) {
986 unsigned long dat = *(unsigned long *)(&buf[page]);
987 if(dat != -1) {
988 ret = 1;
989 goto out;
990 }
991 }
992
993out:
994 kfree(buf);
995
996 return ret;
997}
998
999/*
1000* Scan for a valid cleanmarker and for bad blocks
1001* For virtual blocks (concatenated physical blocks) check the cleanmarker
1002* only in the first page of the first physical block, but scan for bad blocks in all
1003* physical blocks
1004*/
1005int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1006{
1007 struct jffs2_unknown_node n;
1008 unsigned char buf[2 * NAND_MAX_OOBSIZE];
1009 unsigned char *p;
1010 int ret, i, cnt, retval = 0;
1011 size_t retlen, offset;
1012 int oob_size;
1013
1014 offset = jeb->offset;
1015 oob_size = c->mtd->oobsize;
1016
1017 /* Loop through the physical blocks */
1018 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1019 /* Check first if the block is bad. */
1020 if (c->mtd->block_isbad (c->mtd, offset)) {
1021 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1022 return 2;
1023 }
1024 /*
1025 * We read oob data from page 0 and 1 of the block.
1026 * page 0 contains cleanmarker and badblock info
1027 * page 1 contains failure count of this block
1028 */
1029 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1030
1031 if (ret) {
1032 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1033 return ret;
1034 }
1035 if (retlen < (oob_size << 1)) {
1036 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1037 return -EIO;
1038 }
1039
1040 /* Check cleanmarker only on the first physical block */
1041 if (!cnt) {
1042 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1043 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1044 n.totlen = cpu_to_je32 (8);
1045 p = (unsigned char *) &n;
1046
1047 for (i = 0; i < c->fsdata_len; i++) {
1048 if (buf[c->fsdata_pos + i] != p[i]) {
1049 retval = 1;
1050 }
1051 }
1052 D1(if (retval == 1) {
1053 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1054 printk(KERN_WARNING "OOB at %08x was ", offset);
1055 for (i=0; i < oob_size; i++) {
1056 printk("%02x ", buf[i]);
1057 }
1058 printk("\n");
1059 })
1060 }
1061 offset += c->mtd->erasesize;
1062 }
1063 return retval;
1064}
1065
1066int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1067{
1068 struct jffs2_unknown_node n;
1069 int ret;
1070 size_t retlen;
1071
1072 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1073 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1074 n.totlen = cpu_to_je32(8);
1075
1076 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1077
1078 if (ret) {
1079 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1080 return ret;
1081 }
1082 if (retlen != c->fsdata_len) {
1083 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1084 return ret;
1085 }
1086 return 0;
1087}
1088
1089/*
1090 * On NAND we try to mark this block bad. If the block was erased more
1091 * than MAX_ERASE_FAILURES we mark it finaly bad.
1092 * Don't care about failures. This block remains on the erase-pending
1093 * or badblock list as long as nobody manipulates the flash with
1094 * a bootloader or something like that.
1095 */
1096
1097int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1098{
1099 int ret;
1100
1101 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1102 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1103 return 0;
1104
1105 if (!c->mtd->block_markbad)
1106 return 1; // What else can we do?
1107
1108 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1109 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1110
1111 if (ret) {
1112 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1113 return ret;
1114 }
1115 return 1;
1116}
1117
1118#define NAND_JFFS2_OOB16_FSDALEN 8
1119
1120static struct nand_oobinfo jffs2_oobinfo_docecc = {
1121 .useecc = MTD_NANDECC_PLACE,
1122 .eccbytes = 6,
1123 .eccpos = {0,1,2,3,4,5}
1124};
1125
1126
1127static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1128{
1129 struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
1130
1131 /* Do this only, if we have an oob buffer */
1132 if (!c->mtd->oobsize)
1133 return 0;
1134
1135 /* Cleanmarker is out-of-band, so inline size zero */
1136 c->cleanmarker_size = 0;
1137
1138 /* Should we use autoplacement ? */
1139 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
1140 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1141 /* Get the position of the free bytes */
1142 if (!oinfo->oobfree[0][1]) {
1143 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1144 return -ENOSPC;
1145 }
1146 c->fsdata_pos = oinfo->oobfree[0][0];
1147 c->fsdata_len = oinfo->oobfree[0][1];
1148 if (c->fsdata_len > 8)
1149 c->fsdata_len = 8;
1150 } else {
1151 /* This is just a legacy fallback and should go away soon */
1152 switch(c->mtd->ecctype) {
1153 case MTD_ECC_RS_DiskOnChip:
1154 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1155 c->oobinfo = &jffs2_oobinfo_docecc;
1156 c->fsdata_pos = 6;
1157 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
1158 c->badblock_pos = 15;
1159 break;
1160
1161 default:
1162 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1163 return -EINVAL;
1164 }
1165 }
1166 return 0;
1167}
1168
1169int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1170{
1171 int res;
1172
1173 /* Initialise write buffer */
1174 init_rwsem(&c->wbuf_sem);
1175 c->wbuf_pagesize = c->mtd->oobblock;
1176 c->wbuf_ofs = 0xFFFFFFFF;
1177
1178 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1179 if (!c->wbuf)
1180 return -ENOMEM;
1181
1182 res = jffs2_nand_set_oobinfo(c);
1183
1184#ifdef BREAKME
1185 if (!brokenbuf)
1186 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1187 if (!brokenbuf) {
1188 kfree(c->wbuf);
1189 return -ENOMEM;
1190 }
1191 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1192#endif
1193 return res;
1194}
1195
1196void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1197{
1198 kfree(c->wbuf);
1199}
1200
8f15fd55
AV
1201int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1202 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1203
1204 /* Initialize write buffer */
1205 init_rwsem(&c->wbuf_sem);
1206 c->wbuf_pagesize = c->sector_size;
1207 c->wbuf_ofs = 0xFFFFFFFF;
1208
1209 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1210 if (!c->wbuf)
1211 return -ENOMEM;
1212
1213 printk(KERN_INFO "JFFS2 write-buffering enabled (%i)\n", c->wbuf_pagesize);
1214
1215 return 0;
1216}
1217
1218void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1219 kfree(c->wbuf);
1220}
8f15fd55 1221
1da177e4
LT
1222int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
1223 /* Cleanmarker is actually larger on the flashes */
1224 c->cleanmarker_size = 16;
1225
1226 /* Initialize write buffer */
1227 init_rwsem(&c->wbuf_sem);
1228 c->wbuf_pagesize = c->mtd->eccsize;
1229 c->wbuf_ofs = 0xFFFFFFFF;
1230
1231 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1232 if (!c->wbuf)
1233 return -ENOMEM;
1234
1235 return 0;
1236}
1237
1238void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
1239 kfree(c->wbuf);
1240}