Pull acpi-produce-consume into release branch
[linux-2.6-block.git] / fs / jffs / jffs_fm.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS -- Journaling Flash File System, Linux implementation.
3 *
4 * Copyright (C) 1999, 2000 Axis Communications AB.
5 *
6 * Created by Finn Hakansson <finn@axis.com>.
7 *
8 * This is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * $Id: jffs_fm.c,v 1.27 2001/09/20 12:29:47 dwmw2 Exp $
14 *
15 * Ported to Linux 2.3.x and MTD:
16 * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB
17 *
18 */
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/jffs.h>
22#include "jffs_fm.h"
23
24#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
25static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset);
26#endif
27
28static struct jffs_fm *jffs_alloc_fm(void);
29static void jffs_free_fm(struct jffs_fm *n);
30
31extern kmem_cache_t *fm_cache;
32extern kmem_cache_t *node_cache;
33
94c9eca2
AB
34#if CONFIG_JFFS_FS_VERBOSE > 0
35void
36jffs_print_fmcontrol(struct jffs_fmcontrol *fmc)
37{
38 D(printk("struct jffs_fmcontrol: 0x%p\n", fmc));
39 D(printk("{\n"));
40 D(printk(" %u, /* flash_size */\n", fmc->flash_size));
41 D(printk(" %u, /* used_size */\n", fmc->used_size));
42 D(printk(" %u, /* dirty_size */\n", fmc->dirty_size));
43 D(printk(" %u, /* free_size */\n", fmc->free_size));
44 D(printk(" %u, /* sector_size */\n", fmc->sector_size));
45 D(printk(" %u, /* min_free_size */\n", fmc->min_free_size));
46 D(printk(" %u, /* max_chunk_size */\n", fmc->max_chunk_size));
47 D(printk(" 0x%p, /* mtd */\n", fmc->mtd));
48 D(printk(" 0x%p, /* head */ "
49 "(head->offset = 0x%08x)\n",
50 fmc->head, (fmc->head ? fmc->head->offset : 0)));
51 D(printk(" 0x%p, /* tail */ "
52 "(tail->offset + tail->size = 0x%08x)\n",
53 fmc->tail,
54 (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0)));
55 D(printk(" 0x%p, /* head_extra */\n", fmc->head_extra));
56 D(printk(" 0x%p, /* tail_extra */\n", fmc->tail_extra));
57 D(printk("}\n"));
58}
59#endif /* CONFIG_JFFS_FS_VERBOSE > 0 */
60
61#if CONFIG_JFFS_FS_VERBOSE > 2
62static void
63jffs_print_fm(struct jffs_fm *fm)
64{
65 D(printk("struct jffs_fm: 0x%p\n", fm));
66 D(printk("{\n"));
67 D(printk(" 0x%08x, /* offset */\n", fm->offset));
68 D(printk(" %u, /* size */\n", fm->size));
69 D(printk(" 0x%p, /* prev */\n", fm->prev));
70 D(printk(" 0x%p, /* next */\n", fm->next));
71 D(printk(" 0x%p, /* nodes */\n", fm->nodes));
72 D(printk("}\n"));
73}
74#endif /* CONFIG_JFFS_FS_VERBOSE > 2 */
75
76#if 0
77void
78jffs_print_node_ref(struct jffs_node_ref *ref)
79{
80 D(printk("struct jffs_node_ref: 0x%p\n", ref));
81 D(printk("{\n"));
82 D(printk(" 0x%p, /* node */\n", ref->node));
83 D(printk(" 0x%p, /* next */\n", ref->next));
84 D(printk("}\n"));
85}
86#endif /* 0 */
87
1da177e4
LT
88/* This function creates a new shiny flash memory control structure. */
89struct jffs_fmcontrol *
90jffs_build_begin(struct jffs_control *c, int unit)
91{
92 struct jffs_fmcontrol *fmc;
93 struct mtd_info *mtd;
94
95 D3(printk("jffs_build_begin()\n"));
96 fmc = (struct jffs_fmcontrol *)kmalloc(sizeof(struct jffs_fmcontrol),
97 GFP_KERNEL);
98 if (!fmc) {
99 D(printk("jffs_build_begin(): Allocation of "
100 "struct jffs_fmcontrol failed!\n"));
101 return (struct jffs_fmcontrol *)0;
102 }
103 DJM(no_jffs_fmcontrol++);
104
105 mtd = get_mtd_device(NULL, unit);
106
107 if (!mtd) {
108 kfree(fmc);
109 DJM(no_jffs_fmcontrol--);
110 return NULL;
111 }
112
113 /* Retrieve the size of the flash memory. */
114 fmc->flash_size = mtd->size;
115 D3(printk(" fmc->flash_size = %d bytes\n", fmc->flash_size));
116
117 fmc->used_size = 0;
118 fmc->dirty_size = 0;
119 fmc->free_size = mtd->size;
120 fmc->sector_size = mtd->erasesize;
121 fmc->max_chunk_size = fmc->sector_size >> 1;
122 /* min_free_size:
123 1 sector, obviously.
124 + 1 x max_chunk_size, for when a nodes overlaps the end of a sector
125 + 1 x max_chunk_size again, which ought to be enough to handle
126 the case where a rename causes a name to grow, and GC has
127 to write out larger nodes than the ones it's obsoleting.
128 We should fix it so it doesn't have to write the name
129 _every_ time. Later.
130 + another 2 sectors because people keep getting GC stuck and
131 we don't know why. This scares me - I want formal proof
132 of correctness of whatever number we put here. dwmw2.
133 */
134 fmc->min_free_size = fmc->sector_size << 2;
135 fmc->mtd = mtd;
136 fmc->c = c;
137 fmc->head = NULL;
138 fmc->tail = NULL;
139 fmc->head_extra = NULL;
140 fmc->tail_extra = NULL;
141 init_MUTEX(&fmc->biglock);
142 return fmc;
143}
144
145
146/* When the flash memory scan has completed, this function should be called
147 before use of the control structure. */
148void
149jffs_build_end(struct jffs_fmcontrol *fmc)
150{
151 D3(printk("jffs_build_end()\n"));
152
153 if (!fmc->head) {
154 fmc->head = fmc->head_extra;
155 fmc->tail = fmc->tail_extra;
156 }
157 else if (fmc->head_extra) {
158 fmc->tail_extra->next = fmc->head;
159 fmc->head->prev = fmc->tail_extra;
160 fmc->head = fmc->head_extra;
161 }
162 fmc->head_extra = NULL; /* These two instructions should be omitted. */
163 fmc->tail_extra = NULL;
164 D3(jffs_print_fmcontrol(fmc));
165}
166
167
168/* Call this function when the file system is unmounted. This function
169 frees all memory used by this module. */
170void
171jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc)
172{
173 if (fmc) {
174 struct jffs_fm *next = fmc->head;
175 while (next) {
176 struct jffs_fm *cur = next;
177 next = next->next;
178 jffs_free_fm(cur);
179 }
180 put_mtd_device(fmc->mtd);
181 kfree(fmc);
182 DJM(no_jffs_fmcontrol--);
183 }
184}
185
186
187/* This function returns the size of the first chunk of free space on the
188 flash memory. This function will return something nonzero if the flash
189 memory contains any free space. */
190__u32
191jffs_free_size1(struct jffs_fmcontrol *fmc)
192{
193 __u32 head;
194 __u32 tail;
195 __u32 end = fmc->flash_size;
196
197 if (!fmc->head) {
198 /* There is nothing on the flash. */
199 return fmc->flash_size;
200 }
201
202 /* Compute the beginning and ending of the contents of the flash. */
203 head = fmc->head->offset;
204 tail = fmc->tail->offset + fmc->tail->size;
205 if (tail == end) {
206 tail = 0;
207 }
208 ASSERT(else if (tail > end) {
209 printk(KERN_WARNING "jffs_free_size1(): tail > end\n");
210 tail = 0;
211 });
212
213 if (head <= tail) {
214 return end - tail;
215 }
216 else {
217 return head - tail;
218 }
219}
220
221/* This function will return something nonzero in case there are two free
222 areas on the flash. Like this:
223
224 +----------------+------------------+----------------+
225 | FREE 1 | USED / DIRTY | FREE 2 |
226 +----------------+------------------+----------------+
227 fmc->head -----^
228 fmc->tail ------------------------^
229
230 The value returned, will be the size of the first empty area on the
231 flash, in this case marked "FREE 1". */
232__u32
233jffs_free_size2(struct jffs_fmcontrol *fmc)
234{
235 if (fmc->head) {
236 __u32 head = fmc->head->offset;
237 __u32 tail = fmc->tail->offset + fmc->tail->size;
238 if (tail == fmc->flash_size) {
239 tail = 0;
240 }
241
242 if (tail >= head) {
243 return head;
244 }
245 }
246 return 0;
247}
248
249
250/* Allocate a chunk of flash memory. If there is enough space on the
251 device, a reference to the associated node is stored in the jffs_fm
252 struct. */
253int
254jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node,
255 struct jffs_fm **result)
256{
257 struct jffs_fm *fm;
258 __u32 free_chunk_size1;
259 __u32 free_chunk_size2;
260
261 D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, "
262 "node = 0x%p\n", fmc, size, node));
263
264 *result = NULL;
265
266 if (!(fm = jffs_alloc_fm())) {
267 D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n"));
268 return -ENOMEM;
269 }
270
271 free_chunk_size1 = jffs_free_size1(fmc);
272 free_chunk_size2 = jffs_free_size2(fmc);
273 if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) {
274 printk(KERN_WARNING "Free size accounting screwed\n");
275 printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", free_chunk_size1, free_chunk_size2, fmc->free_size);
276 }
277
278 D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, "
279 "free_chunk_size2 = %u\n",
280 free_chunk_size1, free_chunk_size2));
281
282 if (size <= free_chunk_size1) {
283 if (!(fm->nodes = (struct jffs_node_ref *)
284 kmalloc(sizeof(struct jffs_node_ref),
285 GFP_KERNEL))) {
286 D(printk("jffs_fmalloc(): kmalloc() failed! "
287 "(node_ref)\n"));
288 jffs_free_fm(fm);
289 return -ENOMEM;
290 }
291 DJM(no_jffs_node_ref++);
292 fm->nodes->node = node;
293 fm->nodes->next = NULL;
294 if (fmc->tail) {
295 fm->offset = fmc->tail->offset + fmc->tail->size;
296 if (fm->offset == fmc->flash_size) {
297 fm->offset = 0;
298 }
299 ASSERT(else if (fm->offset > fmc->flash_size) {
300 printk(KERN_WARNING "jffs_fmalloc(): "
301 "offset > flash_end\n");
302 fm->offset = 0;
303 });
304 }
305 else {
306 /* There don't have to be files in the file
307 system yet. */
308 fm->offset = 0;
309 }
310 fm->size = size;
311 fmc->free_size -= size;
312 fmc->used_size += size;
313 }
314 else if (size > free_chunk_size2) {
315 printk(KERN_WARNING "JFFS: Tried to allocate a too "
316 "large flash memory chunk. (size = %u)\n", size);
317 jffs_free_fm(fm);
318 return -ENOSPC;
319 }
320 else {
321 fm->offset = fmc->tail->offset + fmc->tail->size;
322 fm->size = free_chunk_size1;
323 fm->nodes = NULL;
324 fmc->free_size -= fm->size;
325 fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a
326 bug that caused infinite garbage collection.
327 It previously set fmc->dirty_size to size (which is the
328 size of the requested chunk).
329 */
330 }
331
332 fm->next = NULL;
333 if (!fmc->head) {
334 fm->prev = NULL;
335 fmc->head = fm;
336 fmc->tail = fm;
337 }
338 else {
339 fm->prev = fmc->tail;
340 fmc->tail->next = fm;
341 fmc->tail = fm;
342 }
343
344 D3(jffs_print_fmcontrol(fmc));
345 D3(jffs_print_fm(fm));
346 *result = fm;
347 return 0;
348}
349
350
351/* The on-flash space is not needed anymore by the passed node. Remove
352 the reference to the node from the node list. If the data chunk in
353 the flash memory isn't used by any more nodes anymore (fm->nodes == 0),
354 then mark that chunk as dirty. */
355int
356jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node)
357{
358 struct jffs_node_ref *ref;
359 struct jffs_node_ref *prev;
360 ASSERT(int del = 0);
361
362 D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n",
363 node->ino, node->version));
364
365 ASSERT(if (!fmc || !fm || !fm->nodes) {
366 printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, "
367 "fm->nodes: 0x%p\n",
368 fmc, fm, (fm ? fm->nodes : NULL));
369 return -1;
370 });
371
372 /* Find the reference to the node that is going to be removed
373 and remove it. */
374 for (ref = fm->nodes, prev = NULL; ref; ref = ref->next) {
375 if (ref->node == node) {
376 if (prev) {
377 prev->next = ref->next;
378 }
379 else {
380 fm->nodes = ref->next;
381 }
382 kfree(ref);
383 DJM(no_jffs_node_ref--);
384 ASSERT(del = 1);
385 break;
386 }
387 prev = ref;
388 }
389
390 /* If the data chunk in the flash memory isn't used anymore
391 just mark it as obsolete. */
392 if (!fm->nodes) {
393 /* No node uses this chunk so let's remove it. */
394 fmc->used_size -= fm->size;
395 fmc->dirty_size += fm->size;
396#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
397 if (jffs_mark_obsolete(fmc, fm->offset) < 0) {
398 D1(printk("jffs_fmfree(): Failed to mark an on-flash "
399 "node obsolete!\n"));
400 return -1;
401 }
402#endif
403 }
404
405 ASSERT(if (!del) {
406 printk(KERN_WARNING "***jffs_fmfree(): "
407 "Didn't delete any node reference!\n");
408 });
409
410 return 0;
411}
412
413
414/* This allocation function is used during the initialization of
415 the file system. */
416struct jffs_fm *
417jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size,
418 struct jffs_node *node)
419{
420 struct jffs_fm *fm;
421
422 D3(printk("jffs_fmalloced()\n"));
423
424 if (!(fm = jffs_alloc_fm())) {
425 D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n",
426 fmc, offset, size, node));
427 return NULL;
428 }
429 fm->offset = offset;
430 fm->size = size;
431 fm->prev = NULL;
432 fm->next = NULL;
433 fm->nodes = NULL;
434 if (node) {
435 /* `node' exists and it should be associated with the
436 jffs_fm structure `fm'. */
437 if (!(fm->nodes = (struct jffs_node_ref *)
438 kmalloc(sizeof(struct jffs_node_ref),
439 GFP_KERNEL))) {
440 D(printk("jffs_fmalloced(): !fm->nodes\n"));
441 jffs_free_fm(fm);
442 return NULL;
443 }
444 DJM(no_jffs_node_ref++);
445 fm->nodes->node = node;
446 fm->nodes->next = NULL;
447 fmc->used_size += size;
448 fmc->free_size -= size;
449 }
450 else {
451 /* If there is no node, then this is just a chunk of dirt. */
452 fmc->dirty_size += size;
453 fmc->free_size -= size;
454 }
455
456 if (fmc->head_extra) {
457 fm->prev = fmc->tail_extra;
458 fmc->tail_extra->next = fm;
459 fmc->tail_extra = fm;
460 }
461 else if (!fmc->head) {
462 fmc->head = fm;
463 fmc->tail = fm;
464 }
465 else if (fmc->tail->offset + fmc->tail->size < offset) {
466 fmc->head_extra = fm;
467 fmc->tail_extra = fm;
468 }
469 else {
470 fm->prev = fmc->tail;
471 fmc->tail->next = fm;
472 fmc->tail = fm;
473 }
474 D3(jffs_print_fmcontrol(fmc));
475 D3(jffs_print_fm(fm));
476 return fm;
477}
478
479
480/* Add a new node to an already existing jffs_fm struct. */
481int
482jffs_add_node(struct jffs_node *node)
483{
484 struct jffs_node_ref *ref;
485
486 D3(printk("jffs_add_node(): ino = %u\n", node->ino));
487
488 ref = (struct jffs_node_ref *)kmalloc(sizeof(struct jffs_node_ref),
489 GFP_KERNEL);
490 if (!ref)
491 return -ENOMEM;
492
493 DJM(no_jffs_node_ref++);
494 ref->node = node;
495 ref->next = node->fm->nodes;
496 node->fm->nodes = ref;
497 return 0;
498}
499
500
501/* Free a part of some allocated space. */
502void
503jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size)
504{
505 D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, "
506 "fm->nodes->node->ino = %u, size = %u\n",
507 fm, (fm ? fm->nodes : 0),
508 (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size));
509
510 if (fm->nodes) {
511 kfree(fm->nodes);
512 DJM(no_jffs_node_ref--);
513 fm->nodes = NULL;
514 }
515 fmc->used_size -= fm->size;
516 if (fm == fmc->tail) {
517 fm->size -= size;
518 fmc->free_size += size;
519 }
520 fmc->dirty_size += fm->size;
521}
522
523
524/* Find the jffs_fm struct that contains the end of the data chunk that
525 begins at the logical beginning of the flash memory and spans `size'
526 bytes. If we want to erase a sector of the flash memory, we use this
527 function to find where the sector limit cuts a chunk of data. */
528struct jffs_fm *
529jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size)
530{
531 struct jffs_fm *fm;
532 __u32 pos = 0;
533
534 if (size == 0) {
535 return NULL;
536 }
537
538 ASSERT(if (!fmc) {
539 printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n");
540 return NULL;
541 });
542
543 fm = fmc->head;
544
545 while (fm) {
546 pos += fm->size;
547 if (pos < size) {
548 fm = fm->next;
549 }
550 else if (pos > size) {
551 break;
552 }
553 else {
554 fm = NULL;
555 break;
556 }
557 }
558
559 return fm;
560}
561
562
563/* Move the head of the fmc structures and delete the obsolete parts. */
564void
565jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size)
566{
567 struct jffs_fm *fm;
568 struct jffs_fm *del;
569
570 ASSERT(if (!fmc) {
571 printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n");
572 return;
573 });
574
575 fmc->dirty_size -= erased_size;
576 fmc->free_size += erased_size;
577
578 for (fm = fmc->head; fm && (erased_size > 0);) {
579 if (erased_size >= fm->size) {
580 erased_size -= fm->size;
581 del = fm;
582 fm = fm->next;
583 fm->prev = NULL;
584 fmc->head = fm;
585 jffs_free_fm(del);
586 }
587 else {
588 fm->size -= erased_size;
589 fm->offset += erased_size;
590 break;
591 }
592 }
593}
594
595
596/* Return the oldest used node in the flash memory. */
597struct jffs_node *
598jffs_get_oldest_node(struct jffs_fmcontrol *fmc)
599{
600 struct jffs_fm *fm;
601 struct jffs_node_ref *nref;
602 struct jffs_node *node = NULL;
603
604 ASSERT(if (!fmc) {
605 printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n");
606 return NULL;
607 });
608
609 for (fm = fmc->head; fm && !fm->nodes; fm = fm->next);
610
611 if (!fm) {
612 return NULL;
613 }
614
615 /* The oldest node is the last one in the reference list. This list
616 shouldn't be too long; just one or perhaps two elements. */
617 for (nref = fm->nodes; nref; nref = nref->next) {
618 node = nref->node;
619 }
620
621 D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n",
622 (node ? node->ino : 0), (node ? node->version : 0)));
623
624 return node;
625}
626
627
628#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
629
630/* Mark an on-flash node as obsolete.
631
632 Note that this is just an optimization that isn't necessary for the
633 filesystem to work. */
634
635static int
636jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset)
637{
638 /* The `accurate_pos' holds the position of the accurate byte
639 in the jffs_raw_inode structure that we are going to mark
640 as obsolete. */
641 __u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET;
642 unsigned char zero = 0x00;
643 size_t len;
644
645 D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos));
646 ASSERT(if (!fmc) {
647 printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n");
648 return -1;
649 });
650
651 /* Write 0x00 to the raw inode's accurate member. Don't care
652 about the return value. */
653 MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero);
654 return 0;
655}
656
657#endif /* JFFS_MARK_OBSOLETE */
658
659/* check if it's possible to erase the wanted range, and if not, return
660 * the range that IS erasable, or a negative error code.
661 */
662static long
663jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size)
664{
665 u_long ssize;
666
667 /* assume that sector size for a partition is constant even
668 * if it spans more than one chip (you usually put the same
669 * type of chips in a system)
670 */
671
672 ssize = mtd->erasesize;
673
674 if (offset % ssize) {
675 printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)\n", offset, ssize);
676 /* The offset is not sector size aligned. */
677 return -1;
678 }
679 else if (offset > mtd->size) {
680 printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)\n", offset, mtd->size);
681 return -2;
682 }
683 else if (offset + size > mtd->size) {
684 printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)\n", offset,size, offset+size, mtd->size);
685 return -3;
686 }
687
688 return (size / ssize) * ssize;
689}
690
691
692/* How much dirty flash memory is possible to erase at the moment? */
693long
694jffs_erasable_size(struct jffs_fmcontrol *fmc)
695{
696 struct jffs_fm *fm;
697 __u32 size = 0;
698 long ret;
699
700 ASSERT(if (!fmc) {
701 printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n");
702 return -1;
703 });
704
705 if (!fmc->head) {
706 /* The flash memory is totally empty. No nodes. No dirt.
707 Just return. */
708 return 0;
709 }
710
711 /* Calculate how much space that is dirty. */
712 for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) {
713 if (size && fm->offset == 0) {
714 /* We have reached the beginning of the flash. */
715 break;
716 }
717 size += fm->size;
718 }
719
720 /* Someone's signature contained this:
721 There's a fine line between fishing and just standing on
722 the shore like an idiot... */
723 ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size);
724
725 ASSERT(if (ret < 0) {
726 printk("jffs_erasable_size: flash_erasable_size() "
727 "returned something less than zero (%ld).\n", ret);
728 printk("jffs_erasable_size: offset = 0x%08x\n",
729 fmc->head->offset);
730 });
731
732 /* If there is dirt on the flash (which is the reason to why
733 this function was called in the first place) but no space is
734 possible to erase right now, the initial part of the list of
735 jffs_fm structs, that hold place for dirty space, could perhaps
736 be shortened. The list's initial "dirty" elements are merged
737 into just one large dirty jffs_fm struct. This operation must
738 only be performed if nothing is possible to erase. Otherwise,
739 jffs_clear_end_of_node() won't work as expected. */
740 if (ret == 0) {
741 struct jffs_fm *head = fmc->head;
742 struct jffs_fm *del;
743 /* While there are two dirty nodes beside each other.*/
744 while (head->nodes == 0
745 && head->next
746 && head->next->nodes == 0) {
747 del = head->next;
748 head->size += del->size;
749 head->next = del->next;
750 if (del->next) {
751 del->next->prev = head;
752 }
753 jffs_free_fm(del);
754 }
755 }
756
757 return (ret >= 0 ? ret : 0);
758}
759
760static struct jffs_fm *jffs_alloc_fm(void)
761{
762 struct jffs_fm *fm;
763
764 fm = kmem_cache_alloc(fm_cache,GFP_KERNEL);
765 DJM(if (fm) no_jffs_fm++;);
766
767 return fm;
768}
769
770static void jffs_free_fm(struct jffs_fm *n)
771{
772 kmem_cache_free(fm_cache,n);
773 DJM(no_jffs_fm--);
774}
775
776
777
778struct jffs_node *jffs_alloc_node(void)
779{
780 struct jffs_node *n;
781
782 n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL);
783 if(n != NULL)
784 no_jffs_node++;
785 return n;
786}
787
788void jffs_free_node(struct jffs_node *n)
789{
790 kmem_cache_free(node_cache,n);
791 no_jffs_node--;
792}
793
794
795int jffs_get_node_inuse(void)
796{
797 return no_jffs_node;
798}