ext4: fix up remaining files with SPDX cleanups
[linux-2.6-block.git] / fs / jbd2 / transaction.c
CommitLineData
f5166768 1// SPDX-License-Identifier: GPL-2.0+
470decc6 2/*
58862699 3 * linux/fs/jbd2/transaction.c
470decc6
DK
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
470decc6
DK
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17#include <linux/time.h>
18#include <linux/fs.h>
f7f4bccb 19#include <linux/jbd2.h>
470decc6
DK
20#include <linux/errno.h>
21#include <linux/slab.h>
22#include <linux/timer.h>
470decc6
DK
23#include <linux/mm.h>
24#include <linux/highmem.h>
e07f7183 25#include <linux/hrtimer.h>
47def826 26#include <linux/backing-dev.h>
44705754 27#include <linux/bug.h>
47def826 28#include <linux/module.h>
81378da6 29#include <linux/sched/mm.h>
470decc6 30
343d9c28
TT
31#include <trace/events/jbd2.h>
32
7ddae860 33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
de1b7941 34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
7ddae860 35
0c2022ec
YY
36static struct kmem_cache *transaction_cache;
37int __init jbd2_journal_init_transaction_cache(void)
38{
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (transaction_cache)
46 return 0;
47 return -ENOMEM;
48}
49
50void jbd2_journal_destroy_transaction_cache(void)
51{
52 if (transaction_cache) {
53 kmem_cache_destroy(transaction_cache);
54 transaction_cache = NULL;
55 }
56}
57
58void jbd2_journal_free_transaction(transaction_t *transaction)
59{
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(transaction_cache, transaction);
63}
64
470decc6 65/*
f7f4bccb 66 * jbd2_get_transaction: obtain a new transaction_t object.
470decc6
DK
67 *
68 * Simply allocate and initialise a new transaction. Create it in
69 * RUNNING state and add it to the current journal (which should not
70 * have an existing running transaction: we only make a new transaction
71 * once we have started to commit the old one).
72 *
73 * Preconditions:
74 * The journal MUST be locked. We don't perform atomic mallocs on the
75 * new transaction and we can't block without protecting against other
76 * processes trying to touch the journal while it is in transition.
77 *
470decc6
DK
78 */
79
80static transaction_t *
f7f4bccb 81jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
470decc6
DK
82{
83 transaction->t_journal = journal;
84 transaction->t_state = T_RUNNING;
e07f7183 85 transaction->t_start_time = ktime_get();
470decc6
DK
86 transaction->t_tid = journal->j_transaction_sequence++;
87 transaction->t_expires = jiffies + journal->j_commit_interval;
88 spin_lock_init(&transaction->t_handle_lock);
a51dca9c 89 atomic_set(&transaction->t_updates, 0);
8f7d89f3
JK
90 atomic_set(&transaction->t_outstanding_credits,
91 atomic_read(&journal->j_reserved_credits));
8dd42046 92 atomic_set(&transaction->t_handle_count, 0);
c851ed54 93 INIT_LIST_HEAD(&transaction->t_inode_list);
3e624fc7 94 INIT_LIST_HEAD(&transaction->t_private_list);
470decc6
DK
95
96 /* Set up the commit timer for the new transaction. */
b1f485f2 97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
470decc6
DK
98 add_timer(&journal->j_commit_timer);
99
100 J_ASSERT(journal->j_running_transaction == NULL);
101 journal->j_running_transaction = transaction;
8e85fb3f
JL
102 transaction->t_max_wait = 0;
103 transaction->t_start = jiffies;
9fff24aa 104 transaction->t_requested = 0;
470decc6
DK
105
106 return transaction;
107}
108
109/*
110 * Handle management.
111 *
112 * A handle_t is an object which represents a single atomic update to a
113 * filesystem, and which tracks all of the modifications which form part
114 * of that one update.
115 */
116
6d0bf005 117/*
28e35e42 118 * Update transaction's maximum wait time, if debugging is enabled.
6d0bf005
TT
119 *
120 * In order for t_max_wait to be reliable, it must be protected by a
121 * lock. But doing so will mean that start_this_handle() can not be
122 * run in parallel on SMP systems, which limits our scalability. So
123 * unless debugging is enabled, we no longer update t_max_wait, which
124 * means that maximum wait time reported by the jbd2_run_stats
125 * tracepoint will always be zero.
126 */
28e35e42
TM
127static inline void update_t_max_wait(transaction_t *transaction,
128 unsigned long ts)
6d0bf005
TT
129{
130#ifdef CONFIG_JBD2_DEBUG
6d0bf005
TT
131 if (jbd2_journal_enable_debug &&
132 time_after(transaction->t_start, ts)) {
133 ts = jbd2_time_diff(ts, transaction->t_start);
134 spin_lock(&transaction->t_handle_lock);
135 if (ts > transaction->t_max_wait)
136 transaction->t_max_wait = ts;
137 spin_unlock(&transaction->t_handle_lock);
138 }
139#endif
140}
141
8f7d89f3
JK
142/*
143 * Wait until running transaction passes T_LOCKED state. Also starts the commit
144 * if needed. The function expects running transaction to exist and releases
145 * j_state_lock.
146 */
147static void wait_transaction_locked(journal_t *journal)
148 __releases(journal->j_state_lock)
149{
150 DEFINE_WAIT(wait);
151 int need_to_start;
152 tid_t tid = journal->j_running_transaction->t_tid;
153
154 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
155 TASK_UNINTERRUPTIBLE);
156 need_to_start = !tid_geq(journal->j_commit_request, tid);
157 read_unlock(&journal->j_state_lock);
158 if (need_to_start)
159 jbd2_log_start_commit(journal, tid);
e03a9976 160 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
161 schedule();
162 finish_wait(&journal->j_wait_transaction_locked, &wait);
163}
164
165static void sub_reserved_credits(journal_t *journal, int blocks)
166{
167 atomic_sub(blocks, &journal->j_reserved_credits);
168 wake_up(&journal->j_wait_reserved);
169}
170
171/*
172 * Wait until we can add credits for handle to the running transaction. Called
173 * with j_state_lock held for reading. Returns 0 if handle joined the running
174 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
175 * caller must retry.
176 */
177static int add_transaction_credits(journal_t *journal, int blocks,
178 int rsv_blocks)
179{
180 transaction_t *t = journal->j_running_transaction;
181 int needed;
182 int total = blocks + rsv_blocks;
183
184 /*
185 * If the current transaction is locked down for commit, wait
186 * for the lock to be released.
187 */
188 if (t->t_state == T_LOCKED) {
189 wait_transaction_locked(journal);
190 return 1;
191 }
192
193 /*
194 * If there is not enough space left in the log to write all
195 * potential buffers requested by this operation, we need to
196 * stall pending a log checkpoint to free some more log space.
197 */
198 needed = atomic_add_return(total, &t->t_outstanding_credits);
199 if (needed > journal->j_max_transaction_buffers) {
200 /*
201 * If the current transaction is already too large,
202 * then start to commit it: we can then go back and
203 * attach this handle to a new transaction.
204 */
205 atomic_sub(total, &t->t_outstanding_credits);
6d3ec14d
LC
206
207 /*
208 * Is the number of reserved credits in the current transaction too
209 * big to fit this handle? Wait until reserved credits are freed.
210 */
211 if (atomic_read(&journal->j_reserved_credits) + total >
212 journal->j_max_transaction_buffers) {
213 read_unlock(&journal->j_state_lock);
e03a9976 214 jbd2_might_wait_for_commit(journal);
6d3ec14d
LC
215 wait_event(journal->j_wait_reserved,
216 atomic_read(&journal->j_reserved_credits) + total <=
217 journal->j_max_transaction_buffers);
218 return 1;
219 }
220
8f7d89f3
JK
221 wait_transaction_locked(journal);
222 return 1;
223 }
224
225 /*
226 * The commit code assumes that it can get enough log space
227 * without forcing a checkpoint. This is *critical* for
228 * correctness: a checkpoint of a buffer which is also
229 * associated with a committing transaction creates a deadlock,
230 * so commit simply cannot force through checkpoints.
231 *
232 * We must therefore ensure the necessary space in the journal
233 * *before* starting to dirty potentially checkpointed buffers
234 * in the new transaction.
235 */
236 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 atomic_sub(total, &t->t_outstanding_credits);
238 read_unlock(&journal->j_state_lock);
e03a9976 239 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
240 write_lock(&journal->j_state_lock);
241 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
242 __jbd2_log_wait_for_space(journal);
243 write_unlock(&journal->j_state_lock);
244 return 1;
245 }
246
247 /* No reservation? We are done... */
248 if (!rsv_blocks)
249 return 0;
250
251 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
252 /* We allow at most half of a transaction to be reserved */
253 if (needed > journal->j_max_transaction_buffers / 2) {
254 sub_reserved_credits(journal, rsv_blocks);
255 atomic_sub(total, &t->t_outstanding_credits);
256 read_unlock(&journal->j_state_lock);
e03a9976 257 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
258 wait_event(journal->j_wait_reserved,
259 atomic_read(&journal->j_reserved_credits) + rsv_blocks
260 <= journal->j_max_transaction_buffers / 2);
261 return 1;
262 }
263 return 0;
264}
265
470decc6
DK
266/*
267 * start_this_handle: Given a handle, deal with any locking or stalling
268 * needed to make sure that there is enough journal space for the handle
269 * to begin. Attach the handle to a transaction and set up the
270 * transaction's buffer credits.
271 */
272
47def826 273static int start_this_handle(journal_t *journal, handle_t *handle,
d2159fb7 274 gfp_t gfp_mask)
470decc6 275{
e4471831 276 transaction_t *transaction, *new_transaction = NULL;
8f7d89f3
JK
277 int blocks = handle->h_buffer_credits;
278 int rsv_blocks = 0;
28e35e42 279 unsigned long ts = jiffies;
470decc6 280
6d3ec14d
LC
281 if (handle->h_rsv_handle)
282 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
283
8f7d89f3 284 /*
6d3ec14d
LC
285 * Limit the number of reserved credits to 1/2 of maximum transaction
286 * size and limit the number of total credits to not exceed maximum
287 * transaction size per operation.
8f7d89f3 288 */
6d3ec14d
LC
289 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
290 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
291 printk(KERN_ERR "JBD2: %s wants too many credits "
292 "credits:%d rsv_credits:%d max:%d\n",
293 current->comm, blocks, rsv_blocks,
294 journal->j_max_transaction_buffers);
295 WARN_ON(1);
47def826 296 return -ENOSPC;
470decc6
DK
297 }
298
299alloc_transaction:
300 if (!journal->j_running_transaction) {
6ccaf3e2
MH
301 /*
302 * If __GFP_FS is not present, then we may be being called from
303 * inside the fs writeback layer, so we MUST NOT fail.
304 */
305 if ((gfp_mask & __GFP_FS) == 0)
306 gfp_mask |= __GFP_NOFAIL;
b2f4edb3
WG
307 new_transaction = kmem_cache_zalloc(transaction_cache,
308 gfp_mask);
6ccaf3e2 309 if (!new_transaction)
47def826 310 return -ENOMEM;
470decc6
DK
311 }
312
313 jbd_debug(3, "New handle %p going live.\n", handle);
314
470decc6
DK
315 /*
316 * We need to hold j_state_lock until t_updates has been incremented,
317 * for proper journal barrier handling
318 */
a931da6a
TT
319repeat:
320 read_lock(&journal->j_state_lock);
5c2178e7 321 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
470decc6 322 if (is_journal_aborted(journal) ||
f7f4bccb 323 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
a931da6a 324 read_unlock(&journal->j_state_lock);
0c2022ec 325 jbd2_journal_free_transaction(new_transaction);
47def826 326 return -EROFS;
470decc6
DK
327 }
328
8f7d89f3
JK
329 /*
330 * Wait on the journal's transaction barrier if necessary. Specifically
331 * we allow reserved handles to proceed because otherwise commit could
332 * deadlock on page writeback not being able to complete.
333 */
334 if (!handle->h_reserved && journal->j_barrier_count) {
a931da6a 335 read_unlock(&journal->j_state_lock);
470decc6
DK
336 wait_event(journal->j_wait_transaction_locked,
337 journal->j_barrier_count == 0);
338 goto repeat;
339 }
340
341 if (!journal->j_running_transaction) {
a931da6a
TT
342 read_unlock(&journal->j_state_lock);
343 if (!new_transaction)
470decc6 344 goto alloc_transaction;
a931da6a 345 write_lock(&journal->j_state_lock);
d7961c7f 346 if (!journal->j_running_transaction &&
8f7d89f3 347 (handle->h_reserved || !journal->j_barrier_count)) {
a931da6a
TT
348 jbd2_get_transaction(journal, new_transaction);
349 new_transaction = NULL;
470decc6 350 }
a931da6a
TT
351 write_unlock(&journal->j_state_lock);
352 goto repeat;
470decc6
DK
353 }
354
355 transaction = journal->j_running_transaction;
356
8f7d89f3
JK
357 if (!handle->h_reserved) {
358 /* We may have dropped j_state_lock - restart in that case */
359 if (add_transaction_credits(journal, blocks, rsv_blocks))
360 goto repeat;
361 } else {
470decc6 362 /*
8f7d89f3
JK
363 * We have handle reserved so we are allowed to join T_LOCKED
364 * transaction and we don't have to check for transaction size
365 * and journal space.
470decc6 366 */
8f7d89f3
JK
367 sub_reserved_credits(journal, blocks);
368 handle->h_reserved = 0;
470decc6
DK
369 }
370
371 /* OK, account for the buffers that this operation expects to
8dd42046 372 * use and add the handle to the running transaction.
8dd42046 373 */
28e35e42 374 update_t_max_wait(transaction, ts);
470decc6 375 handle->h_transaction = transaction;
8f7d89f3 376 handle->h_requested_credits = blocks;
343d9c28 377 handle->h_start_jiffies = jiffies;
a51dca9c 378 atomic_inc(&transaction->t_updates);
8dd42046 379 atomic_inc(&transaction->t_handle_count);
8f7d89f3
JK
380 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
381 handle, blocks,
a51dca9c 382 atomic_read(&transaction->t_outstanding_credits),
76c39904 383 jbd2_log_space_left(journal));
a931da6a 384 read_unlock(&journal->j_state_lock);
41a5b913 385 current->journal_info = handle;
9599b0e5 386
ab714aff 387 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
0c2022ec 388 jbd2_journal_free_transaction(new_transaction);
81378da6
MH
389 /*
390 * Ensure that no allocations done while the transaction is open are
391 * going to recurse back to the fs layer.
392 */
393 handle->saved_alloc_context = memalloc_nofs_save();
47def826 394 return 0;
470decc6
DK
395}
396
397/* Allocate a new handle. This should probably be in a slab... */
398static handle_t *new_handle(int nblocks)
399{
af1e76d6 400 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
470decc6
DK
401 if (!handle)
402 return NULL;
470decc6
DK
403 handle->h_buffer_credits = nblocks;
404 handle->h_ref = 1;
405
406 return handle;
407}
408
8f7d89f3
JK
409handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
410 gfp_t gfp_mask, unsigned int type,
411 unsigned int line_no)
470decc6
DK
412{
413 handle_t *handle = journal_current_handle();
414 int err;
415
416 if (!journal)
417 return ERR_PTR(-EROFS);
418
419 if (handle) {
420 J_ASSERT(handle->h_transaction->t_journal == journal);
421 handle->h_ref++;
422 return handle;
423 }
424
425 handle = new_handle(nblocks);
426 if (!handle)
427 return ERR_PTR(-ENOMEM);
8f7d89f3
JK
428 if (rsv_blocks) {
429 handle_t *rsv_handle;
430
431 rsv_handle = new_handle(rsv_blocks);
432 if (!rsv_handle) {
433 jbd2_free_handle(handle);
434 return ERR_PTR(-ENOMEM);
435 }
436 rsv_handle->h_reserved = 1;
437 rsv_handle->h_journal = journal;
438 handle->h_rsv_handle = rsv_handle;
439 }
470decc6 440
47def826 441 err = start_this_handle(journal, handle, gfp_mask);
470decc6 442 if (err < 0) {
8f7d89f3
JK
443 if (handle->h_rsv_handle)
444 jbd2_free_handle(handle->h_rsv_handle);
af1e76d6 445 jbd2_free_handle(handle);
df05c1b8 446 return ERR_PTR(err);
470decc6 447 }
343d9c28
TT
448 handle->h_type = type;
449 handle->h_line_no = line_no;
450 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
451 handle->h_transaction->t_tid, type,
452 line_no, nblocks);
81378da6 453
470decc6
DK
454 return handle;
455}
47def826
TT
456EXPORT_SYMBOL(jbd2__journal_start);
457
458
91e4775d
MCC
459/**
460 * handle_t *jbd2_journal_start() - Obtain a new handle.
461 * @journal: Journal to start transaction on.
462 * @nblocks: number of block buffer we might modify
463 *
464 * We make sure that the transaction can guarantee at least nblocks of
465 * modified buffers in the log. We block until the log can guarantee
466 * that much space. Additionally, if rsv_blocks > 0, we also create another
467 * handle with rsv_blocks reserved blocks in the journal. This handle is
468 * is stored in h_rsv_handle. It is not attached to any particular transaction
469 * and thus doesn't block transaction commit. If the caller uses this reserved
470 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
471 * on the parent handle will dispose the reserved one. Reserved handle has to
472 * be converted to a normal handle using jbd2_journal_start_reserved() before
473 * it can be used.
474 *
475 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
476 * on failure.
477 */
47def826
TT
478handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
479{
8f7d89f3 480 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
47def826
TT
481}
482EXPORT_SYMBOL(jbd2_journal_start);
483
8f7d89f3
JK
484void jbd2_journal_free_reserved(handle_t *handle)
485{
486 journal_t *journal = handle->h_journal;
487
488 WARN_ON(!handle->h_reserved);
489 sub_reserved_credits(journal, handle->h_buffer_credits);
490 jbd2_free_handle(handle);
491}
492EXPORT_SYMBOL(jbd2_journal_free_reserved);
493
494/**
495 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
496 * @handle: handle to start
497 *
498 * Start handle that has been previously reserved with jbd2_journal_reserve().
499 * This attaches @handle to the running transaction (or creates one if there's
500 * not transaction running). Unlike jbd2_journal_start() this function cannot
501 * block on journal commit, checkpointing, or similar stuff. It can block on
502 * memory allocation or frozen journal though.
503 *
504 * Return 0 on success, non-zero on error - handle is freed in that case.
505 */
506int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
507 unsigned int line_no)
508{
509 journal_t *journal = handle->h_journal;
510 int ret = -EIO;
511
512 if (WARN_ON(!handle->h_reserved)) {
513 /* Someone passed in normal handle? Just stop it. */
514 jbd2_journal_stop(handle);
515 return ret;
516 }
517 /*
518 * Usefulness of mixing of reserved and unreserved handles is
519 * questionable. So far nobody seems to need it so just error out.
520 */
521 if (WARN_ON(current->journal_info)) {
522 jbd2_journal_free_reserved(handle);
523 return ret;
524 }
525
526 handle->h_journal = NULL;
8f7d89f3
JK
527 /*
528 * GFP_NOFS is here because callers are likely from writeback or
529 * similarly constrained call sites
530 */
531 ret = start_this_handle(journal, handle, GFP_NOFS);
92e3b405 532 if (ret < 0) {
8f7d89f3 533 jbd2_journal_free_reserved(handle);
92e3b405
DC
534 return ret;
535 }
8f7d89f3
JK
536 handle->h_type = type;
537 handle->h_line_no = line_no;
92e3b405 538 return 0;
8f7d89f3
JK
539}
540EXPORT_SYMBOL(jbd2_journal_start_reserved);
470decc6
DK
541
542/**
f7f4bccb 543 * int jbd2_journal_extend() - extend buffer credits.
470decc6
DK
544 * @handle: handle to 'extend'
545 * @nblocks: nr blocks to try to extend by.
546 *
547 * Some transactions, such as large extends and truncates, can be done
548 * atomically all at once or in several stages. The operation requests
bd7ced98 549 * a credit for a number of buffer modifications in advance, but can
470decc6
DK
550 * extend its credit if it needs more.
551 *
f7f4bccb 552 * jbd2_journal_extend tries to give the running handle more buffer credits.
470decc6
DK
553 * It does not guarantee that allocation - this is a best-effort only.
554 * The calling process MUST be able to deal cleanly with a failure to
555 * extend here.
556 *
557 * Return 0 on success, non-zero on failure.
558 *
559 * return code < 0 implies an error
560 * return code > 0 implies normal transaction-full status.
561 */
f7f4bccb 562int jbd2_journal_extend(handle_t *handle, int nblocks)
470decc6
DK
563{
564 transaction_t *transaction = handle->h_transaction;
41a5b913 565 journal_t *journal;
470decc6
DK
566 int result;
567 int wanted;
568
470decc6 569 if (is_handle_aborted(handle))
41a5b913
TT
570 return -EROFS;
571 journal = transaction->t_journal;
470decc6
DK
572
573 result = 1;
574
a931da6a 575 read_lock(&journal->j_state_lock);
470decc6
DK
576
577 /* Don't extend a locked-down transaction! */
41a5b913 578 if (transaction->t_state != T_RUNNING) {
470decc6
DK
579 jbd_debug(3, "denied handle %p %d blocks: "
580 "transaction not running\n", handle, nblocks);
581 goto error_out;
582 }
583
584 spin_lock(&transaction->t_handle_lock);
fe1e8db5
JK
585 wanted = atomic_add_return(nblocks,
586 &transaction->t_outstanding_credits);
470decc6
DK
587
588 if (wanted > journal->j_max_transaction_buffers) {
589 jbd_debug(3, "denied handle %p %d blocks: "
590 "transaction too large\n", handle, nblocks);
fe1e8db5 591 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
592 goto unlock;
593 }
594
76c39904
JK
595 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
596 jbd2_log_space_left(journal)) {
470decc6
DK
597 jbd_debug(3, "denied handle %p %d blocks: "
598 "insufficient log space\n", handle, nblocks);
fe1e8db5 599 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
600 goto unlock;
601 }
602
343d9c28 603 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
41a5b913 604 transaction->t_tid,
343d9c28
TT
605 handle->h_type, handle->h_line_no,
606 handle->h_buffer_credits,
607 nblocks);
608
470decc6 609 handle->h_buffer_credits += nblocks;
343d9c28 610 handle->h_requested_credits += nblocks;
470decc6
DK
611 result = 0;
612
613 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
614unlock:
615 spin_unlock(&transaction->t_handle_lock);
616error_out:
a931da6a 617 read_unlock(&journal->j_state_lock);
470decc6
DK
618 return result;
619}
620
621
622/**
f7f4bccb 623 * int jbd2_journal_restart() - restart a handle .
470decc6
DK
624 * @handle: handle to restart
625 * @nblocks: nr credits requested
626 *
627 * Restart a handle for a multi-transaction filesystem
628 * operation.
629 *
f7f4bccb
MC
630 * If the jbd2_journal_extend() call above fails to grant new buffer credits
631 * to a running handle, a call to jbd2_journal_restart will commit the
470decc6 632 * handle's transaction so far and reattach the handle to a new
bd7ced98 633 * transaction capable of guaranteeing the requested number of
8f7d89f3
JK
634 * credits. We preserve reserved handle if there's any attached to the
635 * passed in handle.
470decc6 636 */
d2159fb7 637int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
470decc6
DK
638{
639 transaction_t *transaction = handle->h_transaction;
41a5b913 640 journal_t *journal;
e4471831
TT
641 tid_t tid;
642 int need_to_start, ret;
470decc6
DK
643
644 /* If we've had an abort of any type, don't even think about
645 * actually doing the restart! */
646 if (is_handle_aborted(handle))
647 return 0;
41a5b913 648 journal = transaction->t_journal;
470decc6
DK
649
650 /*
651 * First unlink the handle from its current transaction, and start the
652 * commit on that.
653 */
a51dca9c 654 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
655 J_ASSERT(journal_current_handle() == handle);
656
a931da6a 657 read_lock(&journal->j_state_lock);
470decc6 658 spin_lock(&transaction->t_handle_lock);
a51dca9c
TT
659 atomic_sub(handle->h_buffer_credits,
660 &transaction->t_outstanding_credits);
8f7d89f3
JK
661 if (handle->h_rsv_handle) {
662 sub_reserved_credits(journal,
663 handle->h_rsv_handle->h_buffer_credits);
664 }
a51dca9c 665 if (atomic_dec_and_test(&transaction->t_updates))
470decc6 666 wake_up(&journal->j_wait_updates);
39c04153 667 tid = transaction->t_tid;
470decc6 668 spin_unlock(&transaction->t_handle_lock);
41a5b913
TT
669 handle->h_transaction = NULL;
670 current->journal_info = NULL;
470decc6
DK
671
672 jbd_debug(2, "restarting handle %p\n", handle);
e4471831 673 need_to_start = !tid_geq(journal->j_commit_request, tid);
a931da6a 674 read_unlock(&journal->j_state_lock);
e4471831
TT
675 if (need_to_start)
676 jbd2_log_start_commit(journal, tid);
470decc6 677
ab714aff 678 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
470decc6 679 handle->h_buffer_credits = nblocks;
b4709067
TE
680 /*
681 * Restore the original nofs context because the journal restart
682 * is basically the same thing as journal stop and start.
683 * start_this_handle will start a new nofs context.
684 */
685 memalloc_nofs_restore(handle->saved_alloc_context);
47def826 686 ret = start_this_handle(journal, handle, gfp_mask);
470decc6
DK
687 return ret;
688}
47def826 689EXPORT_SYMBOL(jbd2__journal_restart);
470decc6
DK
690
691
47def826
TT
692int jbd2_journal_restart(handle_t *handle, int nblocks)
693{
694 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
695}
696EXPORT_SYMBOL(jbd2_journal_restart);
697
470decc6 698/**
f7f4bccb 699 * void jbd2_journal_lock_updates () - establish a transaction barrier.
470decc6
DK
700 * @journal: Journal to establish a barrier on.
701 *
702 * This locks out any further updates from being started, and blocks
703 * until all existing updates have completed, returning only once the
704 * journal is in a quiescent state with no updates running.
705 *
706 * The journal lock should not be held on entry.
707 */
f7f4bccb 708void jbd2_journal_lock_updates(journal_t *journal)
470decc6
DK
709{
710 DEFINE_WAIT(wait);
711
1eaa566d
JK
712 jbd2_might_wait_for_commit(journal);
713
a931da6a 714 write_lock(&journal->j_state_lock);
470decc6
DK
715 ++journal->j_barrier_count;
716
8f7d89f3
JK
717 /* Wait until there are no reserved handles */
718 if (atomic_read(&journal->j_reserved_credits)) {
719 write_unlock(&journal->j_state_lock);
720 wait_event(journal->j_wait_reserved,
721 atomic_read(&journal->j_reserved_credits) == 0);
722 write_lock(&journal->j_state_lock);
723 }
724
470decc6
DK
725 /* Wait until there are no running updates */
726 while (1) {
727 transaction_t *transaction = journal->j_running_transaction;
728
729 if (!transaction)
730 break;
731
732 spin_lock(&transaction->t_handle_lock);
9837d8e9
JK
733 prepare_to_wait(&journal->j_wait_updates, &wait,
734 TASK_UNINTERRUPTIBLE);
a51dca9c 735 if (!atomic_read(&transaction->t_updates)) {
470decc6 736 spin_unlock(&transaction->t_handle_lock);
9837d8e9 737 finish_wait(&journal->j_wait_updates, &wait);
470decc6
DK
738 break;
739 }
470decc6 740 spin_unlock(&transaction->t_handle_lock);
a931da6a 741 write_unlock(&journal->j_state_lock);
470decc6
DK
742 schedule();
743 finish_wait(&journal->j_wait_updates, &wait);
a931da6a 744 write_lock(&journal->j_state_lock);
470decc6 745 }
a931da6a 746 write_unlock(&journal->j_state_lock);
470decc6
DK
747
748 /*
749 * We have now established a barrier against other normal updates, but
f7f4bccb 750 * we also need to barrier against other jbd2_journal_lock_updates() calls
470decc6
DK
751 * to make sure that we serialise special journal-locked operations
752 * too.
753 */
754 mutex_lock(&journal->j_barrier);
755}
756
757/**
f7f4bccb 758 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
470decc6
DK
759 * @journal: Journal to release the barrier on.
760 *
f7f4bccb 761 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
470decc6
DK
762 *
763 * Should be called without the journal lock held.
764 */
f7f4bccb 765void jbd2_journal_unlock_updates (journal_t *journal)
470decc6
DK
766{
767 J_ASSERT(journal->j_barrier_count != 0);
768
769 mutex_unlock(&journal->j_barrier);
a931da6a 770 write_lock(&journal->j_state_lock);
470decc6 771 --journal->j_barrier_count;
a931da6a 772 write_unlock(&journal->j_state_lock);
470decc6
DK
773 wake_up(&journal->j_wait_transaction_locked);
774}
775
f91d1d04 776static void warn_dirty_buffer(struct buffer_head *bh)
470decc6 777{
f91d1d04 778 printk(KERN_WARNING
a1c6f057 779 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
f91d1d04
JK
780 "There's a risk of filesystem corruption in case of system "
781 "crash.\n",
a1c6f057 782 bh->b_bdev, (unsigned long long)bh->b_blocknr);
470decc6
DK
783}
784
ee57aba1
JK
785/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
786static void jbd2_freeze_jh_data(struct journal_head *jh)
787{
788 struct page *page;
789 int offset;
790 char *source;
791 struct buffer_head *bh = jh2bh(jh);
792
793 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
794 page = bh->b_page;
795 offset = offset_in_page(bh->b_data);
796 source = kmap_atomic(page);
797 /* Fire data frozen trigger just before we copy the data */
798 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
799 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
800 kunmap_atomic(source);
801
802 /*
803 * Now that the frozen data is saved off, we need to store any matching
804 * triggers.
805 */
806 jh->b_frozen_triggers = jh->b_triggers;
807}
808
470decc6
DK
809/*
810 * If the buffer is already part of the current transaction, then there
811 * is nothing we need to do. If it is already part of a prior
812 * transaction which we are still committing to disk, then we need to
813 * make sure that we do not overwrite the old copy: we do copy-out to
814 * preserve the copy going to disk. We also account the buffer against
815 * the handle's metadata buffer credits (unless the buffer is already
816 * part of the transaction, that is).
817 *
818 */
819static int
820do_get_write_access(handle_t *handle, struct journal_head *jh,
821 int force_copy)
822{
823 struct buffer_head *bh;
41a5b913 824 transaction_t *transaction = handle->h_transaction;
470decc6
DK
825 journal_t *journal;
826 int error;
827 char *frozen_buffer = NULL;
f783f091 828 unsigned long start_lock, time_lock;
470decc6
DK
829
830 if (is_handle_aborted(handle))
831 return -EROFS;
470decc6
DK
832 journal = transaction->t_journal;
833
cfef2c6a 834 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
470decc6
DK
835
836 JBUFFER_TRACE(jh, "entry");
837repeat:
838 bh = jh2bh(jh);
839
840 /* @@@ Need to check for errors here at some point. */
841
f783f091 842 start_lock = jiffies;
470decc6
DK
843 lock_buffer(bh);
844 jbd_lock_bh_state(bh);
845
f783f091
TT
846 /* If it takes too long to lock the buffer, trace it */
847 time_lock = jbd2_time_diff(start_lock, jiffies);
848 if (time_lock > HZ/10)
849 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
850 jiffies_to_msecs(time_lock));
851
470decc6
DK
852 /* We now hold the buffer lock so it is safe to query the buffer
853 * state. Is the buffer dirty?
854 *
855 * If so, there are two possibilities. The buffer may be
856 * non-journaled, and undergoing a quite legitimate writeback.
857 * Otherwise, it is journaled, and we don't expect dirty buffers
858 * in that state (the buffers should be marked JBD_Dirty
859 * instead.) So either the IO is being done under our own
860 * control and this is a bug, or it's a third party IO such as
861 * dump(8) (which may leave the buffer scheduled for read ---
862 * ie. locked but not dirty) or tune2fs (which may actually have
863 * the buffer dirtied, ugh.) */
864
865 if (buffer_dirty(bh)) {
866 /*
867 * First question: is this buffer already part of the current
868 * transaction or the existing committing transaction?
869 */
870 if (jh->b_transaction) {
871 J_ASSERT_JH(jh,
872 jh->b_transaction == transaction ||
873 jh->b_transaction ==
874 journal->j_committing_transaction);
875 if (jh->b_next_transaction)
876 J_ASSERT_JH(jh, jh->b_next_transaction ==
877 transaction);
f91d1d04 878 warn_dirty_buffer(bh);
470decc6
DK
879 }
880 /*
881 * In any case we need to clean the dirty flag and we must
882 * do it under the buffer lock to be sure we don't race
883 * with running write-out.
884 */
f91d1d04
JK
885 JBUFFER_TRACE(jh, "Journalling dirty buffer");
886 clear_buffer_dirty(bh);
887 set_buffer_jbddirty(bh);
470decc6
DK
888 }
889
890 unlock_buffer(bh);
891
892 error = -EROFS;
893 if (is_handle_aborted(handle)) {
894 jbd_unlock_bh_state(bh);
895 goto out;
896 }
897 error = 0;
898
899 /*
900 * The buffer is already part of this transaction if b_transaction or
901 * b_next_transaction points to it
902 */
903 if (jh->b_transaction == transaction ||
904 jh->b_next_transaction == transaction)
905 goto done;
906
9fc7c63a
JB
907 /*
908 * this is the first time this transaction is touching this buffer,
909 * reset the modified flag
910 */
911 jh->b_modified = 0;
912
8b00f400
JK
913 /*
914 * If the buffer is not journaled right now, we need to make sure it
915 * doesn't get written to disk before the caller actually commits the
916 * new data
917 */
918 if (!jh->b_transaction) {
919 JBUFFER_TRACE(jh, "no transaction");
920 J_ASSERT_JH(jh, !jh->b_next_transaction);
921 JBUFFER_TRACE(jh, "file as BJ_Reserved");
de92c8ca
JK
922 /*
923 * Make sure all stores to jh (b_modified, b_frozen_data) are
924 * visible before attaching it to the running transaction.
925 * Paired with barrier in jbd2_write_access_granted()
926 */
927 smp_wmb();
8b00f400
JK
928 spin_lock(&journal->j_list_lock);
929 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
930 spin_unlock(&journal->j_list_lock);
931 goto done;
932 }
470decc6
DK
933 /*
934 * If there is already a copy-out version of this buffer, then we don't
935 * need to make another one
936 */
937 if (jh->b_frozen_data) {
938 JBUFFER_TRACE(jh, "has frozen data");
939 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
de92c8ca 940 goto attach_next;
470decc6
DK
941 }
942
8b00f400
JK
943 JBUFFER_TRACE(jh, "owned by older transaction");
944 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
945 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
470decc6 946
8b00f400
JK
947 /*
948 * There is one case we have to be very careful about. If the
949 * committing transaction is currently writing this buffer out to disk
950 * and has NOT made a copy-out, then we cannot modify the buffer
951 * contents at all right now. The essence of copy-out is that it is
952 * the extra copy, not the primary copy, which gets journaled. If the
953 * primary copy is already going to disk then we cannot do copy-out
954 * here.
955 */
956 if (buffer_shadow(bh)) {
957 JBUFFER_TRACE(jh, "on shadow: sleep");
958 jbd_unlock_bh_state(bh);
959 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
960 goto repeat;
961 }
470decc6 962
8b00f400
JK
963 /*
964 * Only do the copy if the currently-owning transaction still needs it.
965 * If buffer isn't on BJ_Metadata list, the committing transaction is
966 * past that stage (here we use the fact that BH_Shadow is set under
967 * bh_state lock together with refiling to BJ_Shadow list and at this
968 * point we know the buffer doesn't have BH_Shadow set).
969 *
970 * Subtle point, though: if this is a get_undo_access, then we will be
971 * relying on the frozen_data to contain the new value of the
972 * committed_data record after the transaction, so we HAVE to force the
973 * frozen_data copy in that case.
974 */
975 if (jh->b_jlist == BJ_Metadata || force_copy) {
976 JBUFFER_TRACE(jh, "generate frozen data");
977 if (!frozen_buffer) {
978 JBUFFER_TRACE(jh, "allocate memory for buffer");
470decc6 979 jbd_unlock_bh_state(bh);
490c1b44
MH
980 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
981 GFP_NOFS | __GFP_NOFAIL);
8b00f400 982 goto repeat;
470decc6 983 }
8b00f400
JK
984 jh->b_frozen_data = frozen_buffer;
985 frozen_buffer = NULL;
986 jbd2_freeze_jh_data(jh);
470decc6 987 }
de92c8ca
JK
988attach_next:
989 /*
990 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
991 * before attaching it to the running transaction. Paired with barrier
992 * in jbd2_write_access_granted()
993 */
994 smp_wmb();
8b00f400 995 jh->b_next_transaction = transaction;
470decc6
DK
996
997done:
470decc6
DK
998 jbd_unlock_bh_state(bh);
999
1000 /*
1001 * If we are about to journal a buffer, then any revoke pending on it is
1002 * no longer valid
1003 */
f7f4bccb 1004 jbd2_journal_cancel_revoke(handle, jh);
470decc6
DK
1005
1006out:
1007 if (unlikely(frozen_buffer)) /* It's usually NULL */
af1e76d6 1008 jbd2_free(frozen_buffer, bh->b_size);
470decc6
DK
1009
1010 JBUFFER_TRACE(jh, "exit");
1011 return error;
1012}
1013
de92c8ca 1014/* Fast check whether buffer is already attached to the required transaction */
087ffd4e
JB
1015static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1016 bool undo)
de92c8ca
JK
1017{
1018 struct journal_head *jh;
1019 bool ret = false;
1020
1021 /* Dirty buffers require special handling... */
1022 if (buffer_dirty(bh))
1023 return false;
1024
1025 /*
1026 * RCU protects us from dereferencing freed pages. So the checks we do
1027 * are guaranteed not to oops. However the jh slab object can get freed
1028 * & reallocated while we work with it. So we have to be careful. When
1029 * we see jh attached to the running transaction, we know it must stay
1030 * so until the transaction is committed. Thus jh won't be freed and
1031 * will be attached to the same bh while we run. However it can
1032 * happen jh gets freed, reallocated, and attached to the transaction
1033 * just after we get pointer to it from bh. So we have to be careful
1034 * and recheck jh still belongs to our bh before we return success.
1035 */
1036 rcu_read_lock();
1037 if (!buffer_jbd(bh))
1038 goto out;
1039 /* This should be bh2jh() but that doesn't work with inline functions */
1040 jh = READ_ONCE(bh->b_private);
1041 if (!jh)
1042 goto out;
087ffd4e
JB
1043 /* For undo access buffer must have data copied */
1044 if (undo && !jh->b_committed_data)
1045 goto out;
de92c8ca
JK
1046 if (jh->b_transaction != handle->h_transaction &&
1047 jh->b_next_transaction != handle->h_transaction)
1048 goto out;
1049 /*
1050 * There are two reasons for the barrier here:
1051 * 1) Make sure to fetch b_bh after we did previous checks so that we
1052 * detect when jh went through free, realloc, attach to transaction
1053 * while we were checking. Paired with implicit barrier in that path.
1054 * 2) So that access to bh done after jbd2_write_access_granted()
1055 * doesn't get reordered and see inconsistent state of concurrent
1056 * do_get_write_access().
1057 */
1058 smp_mb();
1059 if (unlikely(jh->b_bh != bh))
1060 goto out;
1061 ret = true;
1062out:
1063 rcu_read_unlock();
1064 return ret;
1065}
1066
470decc6 1067/**
f7f4bccb 1068 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
470decc6
DK
1069 * @handle: transaction to add buffer modifications to
1070 * @bh: bh to be used for metadata writes
470decc6 1071 *
df1b560a 1072 * Returns: error code or 0 on success.
470decc6
DK
1073 *
1074 * In full data journalling mode the buffer may be of type BJ_AsyncData,
df1b560a 1075 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
470decc6
DK
1076 */
1077
f7f4bccb 1078int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
470decc6 1079{
de92c8ca 1080 struct journal_head *jh;
470decc6
DK
1081 int rc;
1082
087ffd4e 1083 if (jbd2_write_access_granted(handle, bh, false))
de92c8ca
JK
1084 return 0;
1085
1086 jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1087 /* We do not want to get caught playing with fields which the
1088 * log thread also manipulates. Make sure that the buffer
1089 * completes any outstanding IO before proceeding. */
1090 rc = do_get_write_access(handle, jh, 0);
f7f4bccb 1091 jbd2_journal_put_journal_head(jh);
470decc6
DK
1092 return rc;
1093}
1094
1095
1096/*
1097 * When the user wants to journal a newly created buffer_head
1098 * (ie. getblk() returned a new buffer and we are going to populate it
1099 * manually rather than reading off disk), then we need to keep the
1100 * buffer_head locked until it has been completely filled with new
1101 * data. In this case, we should be able to make the assertion that
1102 * the bh is not already part of an existing transaction.
1103 *
1104 * The buffer should already be locked by the caller by this point.
1105 * There is no lock ranking violation: it was a newly created,
1106 * unlocked buffer beforehand. */
1107
1108/**
f7f4bccb 1109 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
470decc6
DK
1110 * @handle: transaction to new buffer to
1111 * @bh: new buffer.
1112 *
1113 * Call this if you create a new bh.
1114 */
f7f4bccb 1115int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1116{
1117 transaction_t *transaction = handle->h_transaction;
41a5b913 1118 journal_t *journal;
f7f4bccb 1119 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1120 int err;
1121
1122 jbd_debug(5, "journal_head %p\n", jh);
1123 err = -EROFS;
1124 if (is_handle_aborted(handle))
1125 goto out;
41a5b913 1126 journal = transaction->t_journal;
470decc6
DK
1127 err = 0;
1128
1129 JBUFFER_TRACE(jh, "entry");
1130 /*
1131 * The buffer may already belong to this transaction due to pre-zeroing
1132 * in the filesystem's new_block code. It may also be on the previous,
1133 * committing transaction's lists, but it HAS to be in Forget state in
1134 * that case: the transaction must have deleted the buffer for it to be
1135 * reused here.
1136 */
1137 jbd_lock_bh_state(bh);
470decc6
DK
1138 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1139 jh->b_transaction == NULL ||
1140 (jh->b_transaction == journal->j_committing_transaction &&
1141 jh->b_jlist == BJ_Forget)));
1142
1143 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1144 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1145
1146 if (jh->b_transaction == NULL) {
f91d1d04
JK
1147 /*
1148 * Previous jbd2_journal_forget() could have left the buffer
1149 * with jbddirty bit set because it was being committed. When
1150 * the commit finished, we've filed the buffer for
1151 * checkpointing and marked it dirty. Now we are reallocating
1152 * the buffer so the transaction freeing it must have
1153 * committed and so it's safe to clear the dirty bit.
1154 */
1155 clear_buffer_dirty(jh2bh(jh));
9fc7c63a
JB
1156 /* first access by this transaction */
1157 jh->b_modified = 0;
1158
470decc6 1159 JBUFFER_TRACE(jh, "file as BJ_Reserved");
6e4862a5 1160 spin_lock(&journal->j_list_lock);
f7f4bccb 1161 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
559cce69 1162 spin_unlock(&journal->j_list_lock);
470decc6 1163 } else if (jh->b_transaction == journal->j_committing_transaction) {
9fc7c63a
JB
1164 /* first access by this transaction */
1165 jh->b_modified = 0;
1166
470decc6 1167 JBUFFER_TRACE(jh, "set next transaction");
6e4862a5 1168 spin_lock(&journal->j_list_lock);
470decc6 1169 jh->b_next_transaction = transaction;
559cce69 1170 spin_unlock(&journal->j_list_lock);
470decc6 1171 }
470decc6
DK
1172 jbd_unlock_bh_state(bh);
1173
1174 /*
1175 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1176 * blocks which contain freed but then revoked metadata. We need
1177 * to cancel the revoke in case we end up freeing it yet again
1178 * and the reallocating as data - this would cause a second revoke,
1179 * which hits an assertion error.
1180 */
1181 JBUFFER_TRACE(jh, "cancelling revoke");
f7f4bccb 1182 jbd2_journal_cancel_revoke(handle, jh);
470decc6 1183out:
3991b400 1184 jbd2_journal_put_journal_head(jh);
470decc6
DK
1185 return err;
1186}
1187
1188/**
f7f4bccb 1189 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
470decc6
DK
1190 * non-rewindable consequences
1191 * @handle: transaction
1192 * @bh: buffer to undo
470decc6
DK
1193 *
1194 * Sometimes there is a need to distinguish between metadata which has
1195 * been committed to disk and that which has not. The ext3fs code uses
1196 * this for freeing and allocating space, we have to make sure that we
1197 * do not reuse freed space until the deallocation has been committed,
1198 * since if we overwrote that space we would make the delete
1199 * un-rewindable in case of a crash.
1200 *
f7f4bccb 1201 * To deal with that, jbd2_journal_get_undo_access requests write access to a
470decc6
DK
1202 * buffer for parts of non-rewindable operations such as delete
1203 * operations on the bitmaps. The journaling code must keep a copy of
1204 * the buffer's contents prior to the undo_access call until such time
1205 * as we know that the buffer has definitely been committed to disk.
1206 *
1207 * We never need to know which transaction the committed data is part
1208 * of, buffers touched here are guaranteed to be dirtied later and so
1209 * will be committed to a new transaction in due course, at which point
1210 * we can discard the old committed data pointer.
1211 *
1212 * Returns error number or 0 on success.
1213 */
f7f4bccb 1214int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1215{
1216 int err;
de92c8ca 1217 struct journal_head *jh;
470decc6
DK
1218 char *committed_data = NULL;
1219
1220 JBUFFER_TRACE(jh, "entry");
087ffd4e 1221 if (jbd2_write_access_granted(handle, bh, true))
de92c8ca 1222 return 0;
470decc6 1223
de92c8ca 1224 jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1225 /*
1226 * Do this first --- it can drop the journal lock, so we want to
1227 * make sure that obtaining the committed_data is done
1228 * atomically wrt. completion of any outstanding commits.
1229 */
1230 err = do_get_write_access(handle, jh, 1);
1231 if (err)
1232 goto out;
1233
1234repeat:
490c1b44
MH
1235 if (!jh->b_committed_data)
1236 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1237 GFP_NOFS|__GFP_NOFAIL);
470decc6
DK
1238
1239 jbd_lock_bh_state(bh);
1240 if (!jh->b_committed_data) {
1241 /* Copy out the current buffer contents into the
1242 * preserved, committed copy. */
1243 JBUFFER_TRACE(jh, "generate b_committed data");
1244 if (!committed_data) {
1245 jbd_unlock_bh_state(bh);
1246 goto repeat;
1247 }
1248
1249 jh->b_committed_data = committed_data;
1250 committed_data = NULL;
1251 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1252 }
1253 jbd_unlock_bh_state(bh);
1254out:
f7f4bccb 1255 jbd2_journal_put_journal_head(jh);
470decc6 1256 if (unlikely(committed_data))
af1e76d6 1257 jbd2_free(committed_data, bh->b_size);
470decc6
DK
1258 return err;
1259}
1260
e06c8227
JB
1261/**
1262 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1263 * @bh: buffer to trigger on
1264 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1265 *
1266 * Set any triggers on this journal_head. This is always safe, because
1267 * triggers for a committing buffer will be saved off, and triggers for
1268 * a running transaction will match the buffer in that transaction.
1269 *
1270 * Call with NULL to clear the triggers.
1271 */
1272void jbd2_journal_set_triggers(struct buffer_head *bh,
1273 struct jbd2_buffer_trigger_type *type)
1274{
ad56edad 1275 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
e06c8227 1276
ad56edad
JK
1277 if (WARN_ON(!jh))
1278 return;
e06c8227 1279 jh->b_triggers = type;
ad56edad 1280 jbd2_journal_put_journal_head(jh);
e06c8227
JB
1281}
1282
13ceef09 1283void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
e06c8227
JB
1284 struct jbd2_buffer_trigger_type *triggers)
1285{
1286 struct buffer_head *bh = jh2bh(jh);
1287
13ceef09 1288 if (!triggers || !triggers->t_frozen)
e06c8227
JB
1289 return;
1290
13ceef09 1291 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
e06c8227
JB
1292}
1293
1294void jbd2_buffer_abort_trigger(struct journal_head *jh,
1295 struct jbd2_buffer_trigger_type *triggers)
1296{
1297 if (!triggers || !triggers->t_abort)
1298 return;
1299
1300 triggers->t_abort(triggers, jh2bh(jh));
1301}
1302
470decc6 1303/**
f7f4bccb 1304 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
470decc6
DK
1305 * @handle: transaction to add buffer to.
1306 * @bh: buffer to mark
1307 *
1308 * mark dirty metadata which needs to be journaled as part of the current
1309 * transaction.
1310 *
9ea7a0df
TT
1311 * The buffer must have previously had jbd2_journal_get_write_access()
1312 * called so that it has a valid journal_head attached to the buffer
1313 * head.
1314 *
470decc6
DK
1315 * The buffer is placed on the transaction's metadata list and is marked
1316 * as belonging to the transaction.
1317 *
1318 * Returns error number or 0 on success.
1319 *
1320 * Special care needs to be taken if the buffer already belongs to the
1321 * current committing transaction (in which case we should have frozen
1322 * data present for that commit). In that case, we don't relink the
1323 * buffer: that only gets done when the old transaction finally
1324 * completes its commit.
1325 */
f7f4bccb 1326int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1327{
1328 transaction_t *transaction = handle->h_transaction;
41a5b913 1329 journal_t *journal;
ad56edad 1330 struct journal_head *jh;
9ea7a0df 1331 int ret = 0;
470decc6 1332
470decc6 1333 if (is_handle_aborted(handle))
41a5b913 1334 return -EROFS;
6e06ae88 1335 if (!buffer_jbd(bh)) {
9ea7a0df
TT
1336 ret = -EUCLEAN;
1337 goto out;
1338 }
6e06ae88
JK
1339 /*
1340 * We don't grab jh reference here since the buffer must be part
1341 * of the running transaction.
1342 */
1343 jh = bh2jh(bh);
1344 /*
1345 * This and the following assertions are unreliable since we may see jh
1346 * in inconsistent state unless we grab bh_state lock. But this is
1347 * crucial to catch bugs so let's do a reliable check until the
1348 * lockless handling is fully proven.
1349 */
1350 if (jh->b_transaction != transaction &&
1351 jh->b_next_transaction != transaction) {
1352 jbd_lock_bh_state(bh);
1353 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1354 jh->b_next_transaction == transaction);
1355 jbd_unlock_bh_state(bh);
1356 }
1357 if (jh->b_modified == 1) {
1358 /* If it's in our transaction it must be in BJ_Metadata list. */
1359 if (jh->b_transaction == transaction &&
1360 jh->b_jlist != BJ_Metadata) {
1361 jbd_lock_bh_state(bh);
1362 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1363 jh->b_jlist == BJ_Metadata);
1364 jbd_unlock_bh_state(bh);
1365 }
1366 goto out;
1367 }
1368
1369 journal = transaction->t_journal;
ad56edad
JK
1370 jbd_debug(5, "journal_head %p\n", jh);
1371 JBUFFER_TRACE(jh, "entry");
470decc6
DK
1372
1373 jbd_lock_bh_state(bh);
1374
1375 if (jh->b_modified == 0) {
1376 /*
1377 * This buffer's got modified and becoming part
1378 * of the transaction. This needs to be done
1379 * once a transaction -bzzz
1380 */
1381 jh->b_modified = 1;
f6c07cad
TT
1382 if (handle->h_buffer_credits <= 0) {
1383 ret = -ENOSPC;
1384 goto out_unlock_bh;
1385 }
470decc6
DK
1386 handle->h_buffer_credits--;
1387 }
1388
1389 /*
1390 * fastpath, to avoid expensive locking. If this buffer is already
1391 * on the running transaction's metadata list there is nothing to do.
1392 * Nobody can take it off again because there is a handle open.
1393 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1394 * result in this test being false, so we go in and take the locks.
1395 */
1396 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1397 JBUFFER_TRACE(jh, "fastpath");
9ea7a0df
TT
1398 if (unlikely(jh->b_transaction !=
1399 journal->j_running_transaction)) {
a67c848a 1400 printk(KERN_ERR "JBD2: %s: "
9ea7a0df 1401 "jh->b_transaction (%llu, %p, %u) != "
66a4cb18 1402 "journal->j_running_transaction (%p, %u)\n",
9ea7a0df
TT
1403 journal->j_devname,
1404 (unsigned long long) bh->b_blocknr,
1405 jh->b_transaction,
1406 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1407 journal->j_running_transaction,
1408 journal->j_running_transaction ?
1409 journal->j_running_transaction->t_tid : 0);
1410 ret = -EINVAL;
1411 }
470decc6
DK
1412 goto out_unlock_bh;
1413 }
1414
1415 set_buffer_jbddirty(bh);
1416
1417 /*
1418 * Metadata already on the current transaction list doesn't
1419 * need to be filed. Metadata on another transaction's list must
1420 * be committing, and will be refiled once the commit completes:
1421 * leave it alone for now.
1422 */
1423 if (jh->b_transaction != transaction) {
1424 JBUFFER_TRACE(jh, "already on other transaction");
66a4cb18
TT
1425 if (unlikely(((jh->b_transaction !=
1426 journal->j_committing_transaction)) ||
1427 (jh->b_next_transaction != transaction))) {
1428 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1429 "bad jh for block %llu: "
1430 "transaction (%p, %u), "
1431 "jh->b_transaction (%p, %u), "
1432 "jh->b_next_transaction (%p, %u), jlist %u\n",
9ea7a0df
TT
1433 journal->j_devname,
1434 (unsigned long long) bh->b_blocknr,
66a4cb18 1435 transaction, transaction->t_tid,
9ea7a0df 1436 jh->b_transaction,
66a4cb18
TT
1437 jh->b_transaction ?
1438 jh->b_transaction->t_tid : 0,
9ea7a0df
TT
1439 jh->b_next_transaction,
1440 jh->b_next_transaction ?
1441 jh->b_next_transaction->t_tid : 0,
66a4cb18
TT
1442 jh->b_jlist);
1443 WARN_ON(1);
9ea7a0df
TT
1444 ret = -EINVAL;
1445 }
470decc6
DK
1446 /* And this case is illegal: we can't reuse another
1447 * transaction's data buffer, ever. */
1448 goto out_unlock_bh;
1449 }
1450
1451 /* That test should have eliminated the following case: */
4019191b 1452 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
470decc6
DK
1453
1454 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1455 spin_lock(&journal->j_list_lock);
41a5b913 1456 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
470decc6
DK
1457 spin_unlock(&journal->j_list_lock);
1458out_unlock_bh:
1459 jbd_unlock_bh_state(bh);
1460out:
1461 JBUFFER_TRACE(jh, "exit");
9ea7a0df 1462 return ret;
470decc6
DK
1463}
1464
470decc6 1465/**
f7f4bccb 1466 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
470decc6
DK
1467 * @handle: transaction handle
1468 * @bh: bh to 'forget'
1469 *
1470 * We can only do the bforget if there are no commits pending against the
1471 * buffer. If the buffer is dirty in the current running transaction we
1472 * can safely unlink it.
1473 *
1474 * bh may not be a journalled buffer at all - it may be a non-JBD
1475 * buffer which came off the hashtable. Check for this.
1476 *
1477 * Decrements bh->b_count by one.
1478 *
1479 * Allow this call even if the handle has aborted --- it may be part of
1480 * the caller's cleanup after an abort.
1481 */
f7f4bccb 1482int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
470decc6
DK
1483{
1484 transaction_t *transaction = handle->h_transaction;
41a5b913 1485 journal_t *journal;
470decc6
DK
1486 struct journal_head *jh;
1487 int drop_reserve = 0;
1488 int err = 0;
1dfc3220 1489 int was_modified = 0;
470decc6 1490
41a5b913
TT
1491 if (is_handle_aborted(handle))
1492 return -EROFS;
1493 journal = transaction->t_journal;
1494
470decc6
DK
1495 BUFFER_TRACE(bh, "entry");
1496
1497 jbd_lock_bh_state(bh);
470decc6
DK
1498
1499 if (!buffer_jbd(bh))
1500 goto not_jbd;
1501 jh = bh2jh(bh);
1502
1503 /* Critical error: attempting to delete a bitmap buffer, maybe?
1504 * Don't do any jbd operations, and return an error. */
1505 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1506 "inconsistent data on disk")) {
1507 err = -EIO;
1508 goto not_jbd;
1509 }
1510
48fc7f7e 1511 /* keep track of whether or not this transaction modified us */
1dfc3220
JB
1512 was_modified = jh->b_modified;
1513
470decc6
DK
1514 /*
1515 * The buffer's going from the transaction, we must drop
1516 * all references -bzzz
1517 */
1518 jh->b_modified = 0;
1519
41a5b913 1520 if (jh->b_transaction == transaction) {
470decc6
DK
1521 J_ASSERT_JH(jh, !jh->b_frozen_data);
1522
1523 /* If we are forgetting a buffer which is already part
1524 * of this transaction, then we can just drop it from
1525 * the transaction immediately. */
1526 clear_buffer_dirty(bh);
1527 clear_buffer_jbddirty(bh);
1528
1529 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1530
1dfc3220
JB
1531 /*
1532 * we only want to drop a reference if this transaction
1533 * modified the buffer
1534 */
1535 if (was_modified)
1536 drop_reserve = 1;
470decc6
DK
1537
1538 /*
1539 * We are no longer going to journal this buffer.
1540 * However, the commit of this transaction is still
1541 * important to the buffer: the delete that we are now
1542 * processing might obsolete an old log entry, so by
1543 * committing, we can satisfy the buffer's checkpoint.
1544 *
1545 * So, if we have a checkpoint on the buffer, we should
1546 * now refile the buffer on our BJ_Forget list so that
1547 * we know to remove the checkpoint after we commit.
1548 */
1549
0bfea811 1550 spin_lock(&journal->j_list_lock);
470decc6 1551 if (jh->b_cp_transaction) {
f7f4bccb
MC
1552 __jbd2_journal_temp_unlink_buffer(jh);
1553 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6 1554 } else {
f7f4bccb 1555 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1556 if (!buffer_jbd(bh)) {
1557 spin_unlock(&journal->j_list_lock);
1558 jbd_unlock_bh_state(bh);
1559 __bforget(bh);
1560 goto drop;
1561 }
1562 }
0bfea811 1563 spin_unlock(&journal->j_list_lock);
470decc6
DK
1564 } else if (jh->b_transaction) {
1565 J_ASSERT_JH(jh, (jh->b_transaction ==
1566 journal->j_committing_transaction));
1567 /* However, if the buffer is still owned by a prior
1568 * (committing) transaction, we can't drop it yet... */
1569 JBUFFER_TRACE(jh, "belongs to older transaction");
1570 /* ... but we CAN drop it from the new transaction if we
1571 * have also modified it since the original commit. */
1572
1573 if (jh->b_next_transaction) {
1574 J_ASSERT(jh->b_next_transaction == transaction);
0bfea811 1575 spin_lock(&journal->j_list_lock);
470decc6 1576 jh->b_next_transaction = NULL;
0bfea811 1577 spin_unlock(&journal->j_list_lock);
1dfc3220
JB
1578
1579 /*
1580 * only drop a reference if this transaction modified
1581 * the buffer
1582 */
1583 if (was_modified)
1584 drop_reserve = 1;
470decc6
DK
1585 }
1586 }
1587
1588not_jbd:
470decc6
DK
1589 jbd_unlock_bh_state(bh);
1590 __brelse(bh);
1591drop:
1592 if (drop_reserve) {
1593 /* no need to reserve log space for this block -bzzz */
1594 handle->h_buffer_credits++;
1595 }
1596 return err;
1597}
1598
1599/**
f7f4bccb 1600 * int jbd2_journal_stop() - complete a transaction
bd7ced98 1601 * @handle: transaction to complete.
470decc6
DK
1602 *
1603 * All done for a particular handle.
1604 *
1605 * There is not much action needed here. We just return any remaining
1606 * buffer credits to the transaction and remove the handle. The only
1607 * complication is that we need to start a commit operation if the
1608 * filesystem is marked for synchronous update.
1609 *
f7f4bccb 1610 * jbd2_journal_stop itself will not usually return an error, but it may
470decc6 1611 * do so in unusual circumstances. In particular, expect it to
f7f4bccb 1612 * return -EIO if a jbd2_journal_abort has been executed since the
470decc6
DK
1613 * transaction began.
1614 */
f7f4bccb 1615int jbd2_journal_stop(handle_t *handle)
470decc6
DK
1616{
1617 transaction_t *transaction = handle->h_transaction;
41a5b913
TT
1618 journal_t *journal;
1619 int err = 0, wait_for_commit = 0;
a51dca9c 1620 tid_t tid;
470decc6
DK
1621 pid_t pid;
1622
9d506594
LC
1623 if (!transaction) {
1624 /*
1625 * Handle is already detached from the transaction so
1626 * there is nothing to do other than decrease a refcount,
1627 * or free the handle if refcount drops to zero
1628 */
1629 if (--handle->h_ref > 0) {
1630 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1631 handle->h_ref);
1632 return err;
1633 } else {
1634 if (handle->h_rsv_handle)
1635 jbd2_free_handle(handle->h_rsv_handle);
1636 goto free_and_exit;
1637 }
1638 }
41a5b913
TT
1639 journal = transaction->t_journal;
1640
470decc6
DK
1641 J_ASSERT(journal_current_handle() == handle);
1642
1643 if (is_handle_aborted(handle))
1644 err = -EIO;
41a5b913 1645 else
a51dca9c 1646 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
1647
1648 if (--handle->h_ref > 0) {
1649 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1650 handle->h_ref);
1651 return err;
1652 }
1653
1654 jbd_debug(4, "Handle %p going down\n", handle);
343d9c28 1655 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
41a5b913 1656 transaction->t_tid,
343d9c28
TT
1657 handle->h_type, handle->h_line_no,
1658 jiffies - handle->h_start_jiffies,
1659 handle->h_sync, handle->h_requested_credits,
1660 (handle->h_requested_credits -
1661 handle->h_buffer_credits));
470decc6
DK
1662
1663 /*
1664 * Implement synchronous transaction batching. If the handle
1665 * was synchronous, don't force a commit immediately. Let's
e07f7183
JB
1666 * yield and let another thread piggyback onto this
1667 * transaction. Keep doing that while new threads continue to
1668 * arrive. It doesn't cost much - we're about to run a commit
1669 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1670 * operations by 30x or more...
1671 *
1672 * We try and optimize the sleep time against what the
1673 * underlying disk can do, instead of having a static sleep
1674 * time. This is useful for the case where our storage is so
1675 * fast that it is more optimal to go ahead and force a flush
1676 * and wait for the transaction to be committed than it is to
1677 * wait for an arbitrary amount of time for new writers to
1678 * join the transaction. We achieve this by measuring how
1679 * long it takes to commit a transaction, and compare it with
1680 * how long this transaction has been running, and if run time
1681 * < commit time then we sleep for the delta and commit. This
1682 * greatly helps super fast disks that would see slowdowns as
1683 * more threads started doing fsyncs.
470decc6 1684 *
e07f7183
JB
1685 * But don't do this if this process was the most recent one
1686 * to perform a synchronous write. We do this to detect the
1687 * case where a single process is doing a stream of sync
1688 * writes. No point in waiting for joiners in that case.
5dd21424
ES
1689 *
1690 * Setting max_batch_time to 0 disables this completely.
470decc6
DK
1691 */
1692 pid = current->pid;
5dd21424
ES
1693 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1694 journal->j_max_batch_time) {
e07f7183
JB
1695 u64 commit_time, trans_time;
1696
470decc6 1697 journal->j_last_sync_writer = pid;
e07f7183 1698
a931da6a 1699 read_lock(&journal->j_state_lock);
e07f7183 1700 commit_time = journal->j_average_commit_time;
a931da6a 1701 read_unlock(&journal->j_state_lock);
e07f7183
JB
1702
1703 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1704 transaction->t_start_time));
1705
30773840
TT
1706 commit_time = max_t(u64, commit_time,
1707 1000*journal->j_min_batch_time);
e07f7183 1708 commit_time = min_t(u64, commit_time,
30773840 1709 1000*journal->j_max_batch_time);
e07f7183
JB
1710
1711 if (trans_time < commit_time) {
1712 ktime_t expires = ktime_add_ns(ktime_get(),
1713 commit_time);
1714 set_current_state(TASK_UNINTERRUPTIBLE);
1715 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1716 }
470decc6
DK
1717 }
1718
7058548c
TT
1719 if (handle->h_sync)
1720 transaction->t_synchronous_commit = 1;
470decc6 1721 current->journal_info = NULL;
a51dca9c
TT
1722 atomic_sub(handle->h_buffer_credits,
1723 &transaction->t_outstanding_credits);
470decc6
DK
1724
1725 /*
1726 * If the handle is marked SYNC, we need to set another commit
1727 * going! We also want to force a commit if the current
1728 * transaction is occupying too much of the log, or if the
1729 * transaction is too old now.
1730 */
1731 if (handle->h_sync ||
a51dca9c
TT
1732 (atomic_read(&transaction->t_outstanding_credits) >
1733 journal->j_max_transaction_buffers) ||
1734 time_after_eq(jiffies, transaction->t_expires)) {
470decc6
DK
1735 /* Do this even for aborted journals: an abort still
1736 * completes the commit thread, it just doesn't write
1737 * anything to disk. */
470decc6 1738
470decc6
DK
1739 jbd_debug(2, "transaction too old, requesting commit for "
1740 "handle %p\n", handle);
1741 /* This is non-blocking */
c35a56a0 1742 jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
1743
1744 /*
f7f4bccb 1745 * Special case: JBD2_SYNC synchronous updates require us
470decc6
DK
1746 * to wait for the commit to complete.
1747 */
1748 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
a51dca9c 1749 wait_for_commit = 1;
470decc6
DK
1750 }
1751
a51dca9c
TT
1752 /*
1753 * Once we drop t_updates, if it goes to zero the transaction
25985edc 1754 * could start committing on us and eventually disappear. So
a51dca9c
TT
1755 * once we do this, we must not dereference transaction
1756 * pointer again.
1757 */
1758 tid = transaction->t_tid;
1759 if (atomic_dec_and_test(&transaction->t_updates)) {
1760 wake_up(&journal->j_wait_updates);
1761 if (journal->j_barrier_count)
1762 wake_up(&journal->j_wait_transaction_locked);
1763 }
1764
ab714aff 1765 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
7a4b188f 1766
a51dca9c
TT
1767 if (wait_for_commit)
1768 err = jbd2_log_wait_commit(journal, tid);
1769
8f7d89f3
JK
1770 if (handle->h_rsv_handle)
1771 jbd2_journal_free_reserved(handle->h_rsv_handle);
41a5b913 1772free_and_exit:
81378da6
MH
1773 /*
1774 * Scope of the GFP_NOFS context is over here and so we can restore the
1775 * original alloc context.
1776 */
1777 memalloc_nofs_restore(handle->saved_alloc_context);
af1e76d6 1778 jbd2_free_handle(handle);
470decc6
DK
1779 return err;
1780}
1781
470decc6
DK
1782/*
1783 *
1784 * List management code snippets: various functions for manipulating the
1785 * transaction buffer lists.
1786 *
1787 */
1788
1789/*
1790 * Append a buffer to a transaction list, given the transaction's list head
1791 * pointer.
1792 *
1793 * j_list_lock is held.
1794 *
1795 * jbd_lock_bh_state(jh2bh(jh)) is held.
1796 */
1797
1798static inline void
1799__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1800{
1801 if (!*list) {
1802 jh->b_tnext = jh->b_tprev = jh;
1803 *list = jh;
1804 } else {
1805 /* Insert at the tail of the list to preserve order */
1806 struct journal_head *first = *list, *last = first->b_tprev;
1807 jh->b_tprev = last;
1808 jh->b_tnext = first;
1809 last->b_tnext = first->b_tprev = jh;
1810 }
1811}
1812
1813/*
1814 * Remove a buffer from a transaction list, given the transaction's list
1815 * head pointer.
1816 *
1817 * Called with j_list_lock held, and the journal may not be locked.
1818 *
1819 * jbd_lock_bh_state(jh2bh(jh)) is held.
1820 */
1821
1822static inline void
1823__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1824{
1825 if (*list == jh) {
1826 *list = jh->b_tnext;
1827 if (*list == jh)
1828 *list = NULL;
1829 }
1830 jh->b_tprev->b_tnext = jh->b_tnext;
1831 jh->b_tnext->b_tprev = jh->b_tprev;
1832}
1833
1834/*
1835 * Remove a buffer from the appropriate transaction list.
1836 *
1837 * Note that this function can *change* the value of
f5113eff
JK
1838 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1839 * t_reserved_list. If the caller is holding onto a copy of one of these
1840 * pointers, it could go bad. Generally the caller needs to re-read the
1841 * pointer from the transaction_t.
470decc6 1842 *
5bebccf9 1843 * Called under j_list_lock.
470decc6 1844 */
5bebccf9 1845static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
470decc6
DK
1846{
1847 struct journal_head **list = NULL;
1848 transaction_t *transaction;
1849 struct buffer_head *bh = jh2bh(jh);
1850
1851 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1852 transaction = jh->b_transaction;
1853 if (transaction)
1854 assert_spin_locked(&transaction->t_journal->j_list_lock);
1855
1856 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1857 if (jh->b_jlist != BJ_None)
4019191b 1858 J_ASSERT_JH(jh, transaction != NULL);
470decc6
DK
1859
1860 switch (jh->b_jlist) {
1861 case BJ_None:
1862 return;
470decc6
DK
1863 case BJ_Metadata:
1864 transaction->t_nr_buffers--;
1865 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1866 list = &transaction->t_buffers;
1867 break;
1868 case BJ_Forget:
1869 list = &transaction->t_forget;
1870 break;
470decc6
DK
1871 case BJ_Shadow:
1872 list = &transaction->t_shadow_list;
1873 break;
470decc6
DK
1874 case BJ_Reserved:
1875 list = &transaction->t_reserved_list;
1876 break;
470decc6
DK
1877 }
1878
1879 __blist_del_buffer(list, jh);
1880 jh->b_jlist = BJ_None;
e112666b
TT
1881 if (transaction && is_journal_aborted(transaction->t_journal))
1882 clear_buffer_jbddirty(bh);
1883 else if (test_clear_buffer_jbddirty(bh))
470decc6
DK
1884 mark_buffer_dirty(bh); /* Expose it to the VM */
1885}
1886
de1b7941
JK
1887/*
1888 * Remove buffer from all transactions.
1889 *
1890 * Called with bh_state lock and j_list_lock
1891 *
1892 * jh and bh may be already freed when this function returns.
1893 */
1894static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
470decc6 1895{
f7f4bccb 1896 __jbd2_journal_temp_unlink_buffer(jh);
470decc6 1897 jh->b_transaction = NULL;
de1b7941 1898 jbd2_journal_put_journal_head(jh);
470decc6
DK
1899}
1900
f7f4bccb 1901void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
470decc6 1902{
de1b7941
JK
1903 struct buffer_head *bh = jh2bh(jh);
1904
1905 /* Get reference so that buffer cannot be freed before we unlock it */
1906 get_bh(bh);
1907 jbd_lock_bh_state(bh);
470decc6 1908 spin_lock(&journal->j_list_lock);
f7f4bccb 1909 __jbd2_journal_unfile_buffer(jh);
470decc6 1910 spin_unlock(&journal->j_list_lock);
de1b7941
JK
1911 jbd_unlock_bh_state(bh);
1912 __brelse(bh);
470decc6
DK
1913}
1914
1915/*
f7f4bccb 1916 * Called from jbd2_journal_try_to_free_buffers().
470decc6
DK
1917 *
1918 * Called under jbd_lock_bh_state(bh)
1919 */
1920static void
1921__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1922{
1923 struct journal_head *jh;
1924
1925 jh = bh2jh(bh);
1926
1927 if (buffer_locked(bh) || buffer_dirty(bh))
1928 goto out;
1929
d2eb0b99 1930 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
470decc6
DK
1931 goto out;
1932
1933 spin_lock(&journal->j_list_lock);
d2eb0b99 1934 if (jh->b_cp_transaction != NULL) {
470decc6 1935 /* written-back checkpointed metadata buffer */
c254c9ec
JK
1936 JBUFFER_TRACE(jh, "remove from checkpoint list");
1937 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
1938 }
1939 spin_unlock(&journal->j_list_lock);
1940out:
1941 return;
1942}
1943
470decc6 1944/**
f7f4bccb 1945 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
470decc6
DK
1946 * @journal: journal for operation
1947 * @page: to try and free
530576bb 1948 * @gfp_mask: we use the mask to detect how hard should we try to release
d0164adc
MG
1949 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1950 * code to release the buffers.
470decc6
DK
1951 *
1952 *
1953 * For all the buffers on this page,
1954 * if they are fully written out ordered data, move them onto BUF_CLEAN
1955 * so try_to_free_buffers() can reap them.
1956 *
1957 * This function returns non-zero if we wish try_to_free_buffers()
1958 * to be called. We do this if the page is releasable by try_to_free_buffers().
1959 * We also do it if the page has locked or dirty buffers and the caller wants
1960 * us to perform sync or async writeout.
1961 *
1962 * This complicates JBD locking somewhat. We aren't protected by the
1963 * BKL here. We wish to remove the buffer from its committing or
f7f4bccb 1964 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
470decc6
DK
1965 *
1966 * This may *change* the value of transaction_t->t_datalist, so anyone
1967 * who looks at t_datalist needs to lock against this function.
1968 *
f7f4bccb
MC
1969 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1970 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
470decc6
DK
1971 * will come out of the lock with the buffer dirty, which makes it
1972 * ineligible for release here.
1973 *
1974 * Who else is affected by this? hmm... Really the only contender
1975 * is do_get_write_access() - it could be looking at the buffer while
1976 * journal_try_to_free_buffer() is changing its state. But that
1977 * cannot happen because we never reallocate freed data as metadata
1978 * while the data is part of a transaction. Yes?
530576bb
MC
1979 *
1980 * Return 0 on failure, 1 on success
470decc6 1981 */
f7f4bccb 1982int jbd2_journal_try_to_free_buffers(journal_t *journal,
530576bb 1983 struct page *page, gfp_t gfp_mask)
470decc6
DK
1984{
1985 struct buffer_head *head;
1986 struct buffer_head *bh;
1987 int ret = 0;
1988
1989 J_ASSERT(PageLocked(page));
1990
1991 head = page_buffers(page);
1992 bh = head;
1993 do {
1994 struct journal_head *jh;
1995
1996 /*
1997 * We take our own ref against the journal_head here to avoid
1998 * having to add tons of locking around each instance of
530576bb 1999 * jbd2_journal_put_journal_head().
470decc6 2000 */
f7f4bccb 2001 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
2002 if (!jh)
2003 continue;
2004
2005 jbd_lock_bh_state(bh);
2006 __journal_try_to_free_buffer(journal, bh);
f7f4bccb 2007 jbd2_journal_put_journal_head(jh);
470decc6
DK
2008 jbd_unlock_bh_state(bh);
2009 if (buffer_jbd(bh))
2010 goto busy;
2011 } while ((bh = bh->b_this_page) != head);
530576bb 2012
470decc6 2013 ret = try_to_free_buffers(page);
530576bb 2014
470decc6
DK
2015busy:
2016 return ret;
2017}
2018
2019/*
2020 * This buffer is no longer needed. If it is on an older transaction's
2021 * checkpoint list we need to record it on this transaction's forget list
2022 * to pin this buffer (and hence its checkpointing transaction) down until
2023 * this transaction commits. If the buffer isn't on a checkpoint list, we
2024 * release it.
2025 * Returns non-zero if JBD no longer has an interest in the buffer.
2026 *
2027 * Called under j_list_lock.
2028 *
2029 * Called under jbd_lock_bh_state(bh).
2030 */
2031static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2032{
2033 int may_free = 1;
2034 struct buffer_head *bh = jh2bh(jh);
2035
470decc6
DK
2036 if (jh->b_cp_transaction) {
2037 JBUFFER_TRACE(jh, "on running+cp transaction");
de1b7941 2038 __jbd2_journal_temp_unlink_buffer(jh);
f91d1d04
JK
2039 /*
2040 * We don't want to write the buffer anymore, clear the
2041 * bit so that we don't confuse checks in
2042 * __journal_file_buffer
2043 */
2044 clear_buffer_dirty(bh);
f7f4bccb 2045 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6
DK
2046 may_free = 0;
2047 } else {
2048 JBUFFER_TRACE(jh, "on running transaction");
de1b7941 2049 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2050 }
2051 return may_free;
2052}
2053
2054/*
f7f4bccb 2055 * jbd2_journal_invalidatepage
470decc6
DK
2056 *
2057 * This code is tricky. It has a number of cases to deal with.
2058 *
2059 * There are two invariants which this code relies on:
2060 *
2061 * i_size must be updated on disk before we start calling invalidatepage on the
2062 * data.
2063 *
2064 * This is done in ext3 by defining an ext3_setattr method which
2065 * updates i_size before truncate gets going. By maintaining this
2066 * invariant, we can be sure that it is safe to throw away any buffers
2067 * attached to the current transaction: once the transaction commits,
2068 * we know that the data will not be needed.
2069 *
2070 * Note however that we can *not* throw away data belonging to the
2071 * previous, committing transaction!
2072 *
2073 * Any disk blocks which *are* part of the previous, committing
2074 * transaction (and which therefore cannot be discarded immediately) are
2075 * not going to be reused in the new running transaction
2076 *
2077 * The bitmap committed_data images guarantee this: any block which is
2078 * allocated in one transaction and removed in the next will be marked
2079 * as in-use in the committed_data bitmap, so cannot be reused until
2080 * the next transaction to delete the block commits. This means that
2081 * leaving committing buffers dirty is quite safe: the disk blocks
2082 * cannot be reallocated to a different file and so buffer aliasing is
2083 * not possible.
2084 *
2085 *
2086 * The above applies mainly to ordered data mode. In writeback mode we
2087 * don't make guarantees about the order in which data hits disk --- in
2088 * particular we don't guarantee that new dirty data is flushed before
2089 * transaction commit --- so it is always safe just to discard data
2090 * immediately in that mode. --sct
2091 */
2092
2093/*
2094 * The journal_unmap_buffer helper function returns zero if the buffer
2095 * concerned remains pinned as an anonymous buffer belonging to an older
2096 * transaction.
2097 *
2098 * We're outside-transaction here. Either or both of j_running_transaction
2099 * and j_committing_transaction may be NULL.
2100 */
b794e7a6
JK
2101static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2102 int partial_page)
470decc6
DK
2103{
2104 transaction_t *transaction;
2105 struct journal_head *jh;
2106 int may_free = 1;
470decc6
DK
2107
2108 BUFFER_TRACE(bh, "entry");
2109
2110 /*
2111 * It is safe to proceed here without the j_list_lock because the
2112 * buffers cannot be stolen by try_to_free_buffers as long as we are
2113 * holding the page lock. --sct
2114 */
2115
2116 if (!buffer_jbd(bh))
2117 goto zap_buffer_unlocked;
2118
87c89c23 2119 /* OK, we have data buffer in journaled mode */
a931da6a 2120 write_lock(&journal->j_state_lock);
470decc6
DK
2121 jbd_lock_bh_state(bh);
2122 spin_lock(&journal->j_list_lock);
2123
f7f4bccb 2124 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
2125 if (!jh)
2126 goto zap_buffer_no_jh;
2127
ba869023 2128 /*
2129 * We cannot remove the buffer from checkpoint lists until the
2130 * transaction adding inode to orphan list (let's call it T)
2131 * is committed. Otherwise if the transaction changing the
2132 * buffer would be cleaned from the journal before T is
2133 * committed, a crash will cause that the correct contents of
2134 * the buffer will be lost. On the other hand we have to
2135 * clear the buffer dirty bit at latest at the moment when the
2136 * transaction marking the buffer as freed in the filesystem
2137 * structures is committed because from that moment on the
b794e7a6 2138 * block can be reallocated and used by a different page.
ba869023 2139 * Since the block hasn't been freed yet but the inode has
2140 * already been added to orphan list, it is safe for us to add
2141 * the buffer to BJ_Forget list of the newest transaction.
b794e7a6
JK
2142 *
2143 * Also we have to clear buffer_mapped flag of a truncated buffer
2144 * because the buffer_head may be attached to the page straddling
2145 * i_size (can happen only when blocksize < pagesize) and thus the
2146 * buffer_head can be reused when the file is extended again. So we end
2147 * up keeping around invalidated buffers attached to transactions'
2148 * BJ_Forget list just to stop checkpointing code from cleaning up
2149 * the transaction this buffer was modified in.
ba869023 2150 */
470decc6
DK
2151 transaction = jh->b_transaction;
2152 if (transaction == NULL) {
2153 /* First case: not on any transaction. If it
2154 * has no checkpoint link, then we can zap it:
2155 * it's a writeback-mode buffer so we don't care
2156 * if it hits disk safely. */
2157 if (!jh->b_cp_transaction) {
2158 JBUFFER_TRACE(jh, "not on any transaction: zap");
2159 goto zap_buffer;
2160 }
2161
2162 if (!buffer_dirty(bh)) {
2163 /* bdflush has written it. We can drop it now */
bc23f0c8 2164 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
2165 goto zap_buffer;
2166 }
2167
2168 /* OK, it must be in the journal but still not
2169 * written fully to disk: it's metadata or
2170 * journaled data... */
2171
2172 if (journal->j_running_transaction) {
2173 /* ... and once the current transaction has
2174 * committed, the buffer won't be needed any
2175 * longer. */
2176 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
b794e7a6 2177 may_free = __dispose_buffer(jh,
470decc6 2178 journal->j_running_transaction);
b794e7a6 2179 goto zap_buffer;
470decc6
DK
2180 } else {
2181 /* There is no currently-running transaction. So the
2182 * orphan record which we wrote for this file must have
2183 * passed into commit. We must attach this buffer to
2184 * the committing transaction, if it exists. */
2185 if (journal->j_committing_transaction) {
2186 JBUFFER_TRACE(jh, "give to committing trans");
b794e7a6 2187 may_free = __dispose_buffer(jh,
470decc6 2188 journal->j_committing_transaction);
b794e7a6 2189 goto zap_buffer;
470decc6
DK
2190 } else {
2191 /* The orphan record's transaction has
2192 * committed. We can cleanse this buffer */
2193 clear_buffer_jbddirty(bh);
bc23f0c8 2194 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
2195 goto zap_buffer;
2196 }
2197 }
2198 } else if (transaction == journal->j_committing_transaction) {
9b57988d 2199 JBUFFER_TRACE(jh, "on committing transaction");
470decc6 2200 /*
ba869023 2201 * The buffer is committing, we simply cannot touch
b794e7a6
JK
2202 * it. If the page is straddling i_size we have to wait
2203 * for commit and try again.
2204 */
2205 if (partial_page) {
b794e7a6
JK
2206 jbd2_journal_put_journal_head(jh);
2207 spin_unlock(&journal->j_list_lock);
2208 jbd_unlock_bh_state(bh);
2209 write_unlock(&journal->j_state_lock);
53e87268 2210 return -EBUSY;
b794e7a6
JK
2211 }
2212 /*
2213 * OK, buffer won't be reachable after truncate. We just set
2214 * j_next_transaction to the running transaction (if there is
2215 * one) and mark buffer as freed so that commit code knows it
2216 * should clear dirty bits when it is done with the buffer.
ba869023 2217 */
470decc6 2218 set_buffer_freed(bh);
ba869023 2219 if (journal->j_running_transaction && buffer_jbddirty(bh))
2220 jh->b_next_transaction = journal->j_running_transaction;
f7f4bccb 2221 jbd2_journal_put_journal_head(jh);
470decc6
DK
2222 spin_unlock(&journal->j_list_lock);
2223 jbd_unlock_bh_state(bh);
a931da6a 2224 write_unlock(&journal->j_state_lock);
470decc6
DK
2225 return 0;
2226 } else {
2227 /* Good, the buffer belongs to the running transaction.
2228 * We are writing our own transaction's data, not any
2229 * previous one's, so it is safe to throw it away
2230 * (remember that we expect the filesystem to have set
2231 * i_size already for this truncate so recovery will not
2232 * expose the disk blocks we are discarding here.) */
2233 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
9b57988d 2234 JBUFFER_TRACE(jh, "on running transaction");
470decc6
DK
2235 may_free = __dispose_buffer(jh, transaction);
2236 }
2237
2238zap_buffer:
b794e7a6
JK
2239 /*
2240 * This is tricky. Although the buffer is truncated, it may be reused
2241 * if blocksize < pagesize and it is attached to the page straddling
2242 * EOF. Since the buffer might have been added to BJ_Forget list of the
2243 * running transaction, journal_get_write_access() won't clear
2244 * b_modified and credit accounting gets confused. So clear b_modified
2245 * here.
2246 */
2247 jh->b_modified = 0;
f7f4bccb 2248 jbd2_journal_put_journal_head(jh);
470decc6
DK
2249zap_buffer_no_jh:
2250 spin_unlock(&journal->j_list_lock);
2251 jbd_unlock_bh_state(bh);
a931da6a 2252 write_unlock(&journal->j_state_lock);
470decc6
DK
2253zap_buffer_unlocked:
2254 clear_buffer_dirty(bh);
2255 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2256 clear_buffer_mapped(bh);
2257 clear_buffer_req(bh);
2258 clear_buffer_new(bh);
15291164
ES
2259 clear_buffer_delay(bh);
2260 clear_buffer_unwritten(bh);
470decc6
DK
2261 bh->b_bdev = NULL;
2262 return may_free;
2263}
2264
2265/**
f7f4bccb 2266 * void jbd2_journal_invalidatepage()
470decc6
DK
2267 * @journal: journal to use for flush...
2268 * @page: page to flush
259709b0
LC
2269 * @offset: start of the range to invalidate
2270 * @length: length of the range to invalidate
470decc6 2271 *
259709b0
LC
2272 * Reap page buffers containing data after in the specified range in page.
2273 * Can return -EBUSY if buffers are part of the committing transaction and
2274 * the page is straddling i_size. Caller then has to wait for current commit
2275 * and try again.
470decc6 2276 */
53e87268
JK
2277int jbd2_journal_invalidatepage(journal_t *journal,
2278 struct page *page,
259709b0
LC
2279 unsigned int offset,
2280 unsigned int length)
470decc6
DK
2281{
2282 struct buffer_head *head, *bh, *next;
259709b0 2283 unsigned int stop = offset + length;
470decc6 2284 unsigned int curr_off = 0;
09cbfeaf 2285 int partial_page = (offset || length < PAGE_SIZE);
470decc6 2286 int may_free = 1;
53e87268 2287 int ret = 0;
470decc6
DK
2288
2289 if (!PageLocked(page))
2290 BUG();
2291 if (!page_has_buffers(page))
53e87268 2292 return 0;
470decc6 2293
09cbfeaf 2294 BUG_ON(stop > PAGE_SIZE || stop < length);
259709b0 2295
470decc6
DK
2296 /* We will potentially be playing with lists other than just the
2297 * data lists (especially for journaled data mode), so be
2298 * cautious in our locking. */
2299
2300 head = bh = page_buffers(page);
2301 do {
2302 unsigned int next_off = curr_off + bh->b_size;
2303 next = bh->b_this_page;
2304
259709b0
LC
2305 if (next_off > stop)
2306 return 0;
2307
470decc6
DK
2308 if (offset <= curr_off) {
2309 /* This block is wholly outside the truncation point */
2310 lock_buffer(bh);
259709b0 2311 ret = journal_unmap_buffer(journal, bh, partial_page);
470decc6 2312 unlock_buffer(bh);
53e87268
JK
2313 if (ret < 0)
2314 return ret;
2315 may_free &= ret;
470decc6
DK
2316 }
2317 curr_off = next_off;
2318 bh = next;
2319
2320 } while (bh != head);
2321
259709b0 2322 if (!partial_page) {
470decc6
DK
2323 if (may_free && try_to_free_buffers(page))
2324 J_ASSERT(!page_has_buffers(page));
2325 }
53e87268 2326 return 0;
470decc6
DK
2327}
2328
2329/*
2330 * File a buffer on the given transaction list.
2331 */
f7f4bccb 2332void __jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2333 transaction_t *transaction, int jlist)
2334{
2335 struct journal_head **list = NULL;
2336 int was_dirty = 0;
2337 struct buffer_head *bh = jh2bh(jh);
2338
2339 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2340 assert_spin_locked(&transaction->t_journal->j_list_lock);
2341
2342 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2343 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
4019191b 2344 jh->b_transaction == NULL);
470decc6
DK
2345
2346 if (jh->b_transaction && jh->b_jlist == jlist)
2347 return;
2348
470decc6
DK
2349 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2350 jlist == BJ_Shadow || jlist == BJ_Forget) {
f91d1d04
JK
2351 /*
2352 * For metadata buffers, we track dirty bit in buffer_jbddirty
2353 * instead of buffer_dirty. We should not see a dirty bit set
2354 * here because we clear it in do_get_write_access but e.g.
2355 * tune2fs can modify the sb and set the dirty bit at any time
2356 * so we try to gracefully handle that.
2357 */
2358 if (buffer_dirty(bh))
2359 warn_dirty_buffer(bh);
470decc6
DK
2360 if (test_clear_buffer_dirty(bh) ||
2361 test_clear_buffer_jbddirty(bh))
2362 was_dirty = 1;
2363 }
2364
2365 if (jh->b_transaction)
f7f4bccb 2366 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2367 else
2368 jbd2_journal_grab_journal_head(bh);
470decc6
DK
2369 jh->b_transaction = transaction;
2370
2371 switch (jlist) {
2372 case BJ_None:
2373 J_ASSERT_JH(jh, !jh->b_committed_data);
2374 J_ASSERT_JH(jh, !jh->b_frozen_data);
2375 return;
470decc6
DK
2376 case BJ_Metadata:
2377 transaction->t_nr_buffers++;
2378 list = &transaction->t_buffers;
2379 break;
2380 case BJ_Forget:
2381 list = &transaction->t_forget;
2382 break;
470decc6
DK
2383 case BJ_Shadow:
2384 list = &transaction->t_shadow_list;
2385 break;
470decc6
DK
2386 case BJ_Reserved:
2387 list = &transaction->t_reserved_list;
2388 break;
470decc6
DK
2389 }
2390
2391 __blist_add_buffer(list, jh);
2392 jh->b_jlist = jlist;
2393
2394 if (was_dirty)
2395 set_buffer_jbddirty(bh);
2396}
2397
f7f4bccb 2398void jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2399 transaction_t *transaction, int jlist)
2400{
2401 jbd_lock_bh_state(jh2bh(jh));
2402 spin_lock(&transaction->t_journal->j_list_lock);
f7f4bccb 2403 __jbd2_journal_file_buffer(jh, transaction, jlist);
470decc6
DK
2404 spin_unlock(&transaction->t_journal->j_list_lock);
2405 jbd_unlock_bh_state(jh2bh(jh));
2406}
2407
2408/*
2409 * Remove a buffer from its current buffer list in preparation for
2410 * dropping it from its current transaction entirely. If the buffer has
2411 * already started to be used by a subsequent transaction, refile the
2412 * buffer on that transaction's metadata list.
2413 *
de1b7941 2414 * Called under j_list_lock
470decc6 2415 * Called under jbd_lock_bh_state(jh2bh(jh))
de1b7941
JK
2416 *
2417 * jh and bh may be already free when this function returns
470decc6 2418 */
f7f4bccb 2419void __jbd2_journal_refile_buffer(struct journal_head *jh)
470decc6 2420{
ba869023 2421 int was_dirty, jlist;
470decc6
DK
2422 struct buffer_head *bh = jh2bh(jh);
2423
2424 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2425 if (jh->b_transaction)
2426 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2427
2428 /* If the buffer is now unused, just drop it. */
2429 if (jh->b_next_transaction == NULL) {
f7f4bccb 2430 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2431 return;
2432 }
2433
2434 /*
2435 * It has been modified by a later transaction: add it to the new
2436 * transaction's metadata list.
2437 */
2438
2439 was_dirty = test_clear_buffer_jbddirty(bh);
f7f4bccb 2440 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2441 /*
2442 * We set b_transaction here because b_next_transaction will inherit
2443 * our jh reference and thus __jbd2_journal_file_buffer() must not
2444 * take a new one.
2445 */
470decc6
DK
2446 jh->b_transaction = jh->b_next_transaction;
2447 jh->b_next_transaction = NULL;
ba869023 2448 if (buffer_freed(bh))
2449 jlist = BJ_Forget;
2450 else if (jh->b_modified)
2451 jlist = BJ_Metadata;
2452 else
2453 jlist = BJ_Reserved;
2454 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
470decc6
DK
2455 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2456
2457 if (was_dirty)
2458 set_buffer_jbddirty(bh);
2459}
2460
2461/*
de1b7941
JK
2462 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2463 * bh reference so that we can safely unlock bh.
2464 *
2465 * The jh and bh may be freed by this call.
470decc6 2466 */
f7f4bccb 2467void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
470decc6
DK
2468{
2469 struct buffer_head *bh = jh2bh(jh);
2470
de1b7941
JK
2471 /* Get reference so that buffer cannot be freed before we unlock it */
2472 get_bh(bh);
470decc6
DK
2473 jbd_lock_bh_state(bh);
2474 spin_lock(&journal->j_list_lock);
f7f4bccb 2475 __jbd2_journal_refile_buffer(jh);
470decc6 2476 jbd_unlock_bh_state(bh);
470decc6
DK
2477 spin_unlock(&journal->j_list_lock);
2478 __brelse(bh);
2479}
c851ed54
JK
2480
2481/*
2482 * File inode in the inode list of the handle's transaction
2483 */
41617e1a
JK
2484static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2485 unsigned long flags)
c851ed54
JK
2486{
2487 transaction_t *transaction = handle->h_transaction;
41a5b913 2488 journal_t *journal;
c851ed54
JK
2489
2490 if (is_handle_aborted(handle))
41a5b913
TT
2491 return -EROFS;
2492 journal = transaction->t_journal;
c851ed54
JK
2493
2494 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2495 transaction->t_tid);
2496
2497 /*
2498 * First check whether inode isn't already on the transaction's
2499 * lists without taking the lock. Note that this check is safe
2500 * without the lock as we cannot race with somebody removing inode
2501 * from the transaction. The reason is that we remove inode from the
2502 * transaction only in journal_release_jbd_inode() and when we commit
2503 * the transaction. We are guarded from the first case by holding
2504 * a reference to the inode. We are safe against the second case
2505 * because if jinode->i_transaction == transaction, commit code
2506 * cannot touch the transaction because we hold reference to it,
2507 * and if jinode->i_next_transaction == transaction, commit code
2508 * will only file the inode where we want it.
2509 */
41617e1a
JK
2510 if ((jinode->i_transaction == transaction ||
2511 jinode->i_next_transaction == transaction) &&
2512 (jinode->i_flags & flags) == flags)
c851ed54
JK
2513 return 0;
2514
2515 spin_lock(&journal->j_list_lock);
41617e1a
JK
2516 jinode->i_flags |= flags;
2517 /* Is inode already attached where we need it? */
c851ed54
JK
2518 if (jinode->i_transaction == transaction ||
2519 jinode->i_next_transaction == transaction)
2520 goto done;
2521
81be12c8
JK
2522 /*
2523 * We only ever set this variable to 1 so the test is safe. Since
2524 * t_need_data_flush is likely to be set, we do the test to save some
2525 * cacheline bouncing
2526 */
2527 if (!transaction->t_need_data_flush)
2528 transaction->t_need_data_flush = 1;
c851ed54
JK
2529 /* On some different transaction's list - should be
2530 * the committing one */
2531 if (jinode->i_transaction) {
2532 J_ASSERT(jinode->i_next_transaction == NULL);
2533 J_ASSERT(jinode->i_transaction ==
2534 journal->j_committing_transaction);
2535 jinode->i_next_transaction = transaction;
2536 goto done;
2537 }
2538 /* Not on any transaction list... */
2539 J_ASSERT(!jinode->i_next_transaction);
2540 jinode->i_transaction = transaction;
2541 list_add(&jinode->i_list, &transaction->t_inode_list);
2542done:
2543 spin_unlock(&journal->j_list_lock);
2544
2545 return 0;
2546}
2547
41617e1a
JK
2548int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2549{
2550 return jbd2_journal_file_inode(handle, jinode,
2551 JI_WRITE_DATA | JI_WAIT_DATA);
2552}
2553
2554int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2555{
2556 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2557}
2558
c851ed54 2559/*
7f5aa215
JK
2560 * File truncate and transaction commit interact with each other in a
2561 * non-trivial way. If a transaction writing data block A is
2562 * committing, we cannot discard the data by truncate until we have
2563 * written them. Otherwise if we crashed after the transaction with
2564 * write has committed but before the transaction with truncate has
2565 * committed, we could see stale data in block A. This function is a
2566 * helper to solve this problem. It starts writeout of the truncated
2567 * part in case it is in the committing transaction.
2568 *
2569 * Filesystem code must call this function when inode is journaled in
2570 * ordered mode before truncation happens and after the inode has been
2571 * placed on orphan list with the new inode size. The second condition
2572 * avoids the race that someone writes new data and we start
2573 * committing the transaction after this function has been called but
2574 * before a transaction for truncate is started (and furthermore it
2575 * allows us to optimize the case where the addition to orphan list
2576 * happens in the same transaction as write --- we don't have to write
2577 * any data in such case).
c851ed54 2578 */
7f5aa215
JK
2579int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2580 struct jbd2_inode *jinode,
c851ed54
JK
2581 loff_t new_size)
2582{
7f5aa215 2583 transaction_t *inode_trans, *commit_trans;
c851ed54
JK
2584 int ret = 0;
2585
7f5aa215
JK
2586 /* This is a quick check to avoid locking if not necessary */
2587 if (!jinode->i_transaction)
c851ed54 2588 goto out;
7f5aa215
JK
2589 /* Locks are here just to force reading of recent values, it is
2590 * enough that the transaction was not committing before we started
2591 * a transaction adding the inode to orphan list */
a931da6a 2592 read_lock(&journal->j_state_lock);
c851ed54 2593 commit_trans = journal->j_committing_transaction;
a931da6a 2594 read_unlock(&journal->j_state_lock);
7f5aa215
JK
2595 spin_lock(&journal->j_list_lock);
2596 inode_trans = jinode->i_transaction;
2597 spin_unlock(&journal->j_list_lock);
2598 if (inode_trans == commit_trans) {
2599 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
c851ed54
JK
2600 new_size, LLONG_MAX);
2601 if (ret)
2602 jbd2_journal_abort(journal, ret);
2603 }
2604out:
2605 return ret;
2606}