Revert "ext4: wait on all pending commits in ext4_sync_fs()"
[linux-2.6-block.git] / fs / jbd2 / transaction.c
CommitLineData
470decc6 1/*
58862699 2 * linux/fs/jbd2/transaction.c
470decc6
DK
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
f7f4bccb 22#include <linux/jbd2.h>
470decc6
DK
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
470decc6
DK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e07f7183 28#include <linux/hrtimer.h>
470decc6 29
7ddae860
AB
30static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
31
470decc6 32/*
f7f4bccb 33 * jbd2_get_transaction: obtain a new transaction_t object.
470decc6
DK
34 *
35 * Simply allocate and initialise a new transaction. Create it in
36 * RUNNING state and add it to the current journal (which should not
37 * have an existing running transaction: we only make a new transaction
38 * once we have started to commit the old one).
39 *
40 * Preconditions:
41 * The journal MUST be locked. We don't perform atomic mallocs on the
42 * new transaction and we can't block without protecting against other
43 * processes trying to touch the journal while it is in transition.
44 *
470decc6
DK
45 */
46
47static transaction_t *
f7f4bccb 48jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
470decc6
DK
49{
50 transaction->t_journal = journal;
51 transaction->t_state = T_RUNNING;
e07f7183 52 transaction->t_start_time = ktime_get();
470decc6
DK
53 transaction->t_tid = journal->j_transaction_sequence++;
54 transaction->t_expires = jiffies + journal->j_commit_interval;
55 spin_lock_init(&transaction->t_handle_lock);
c851ed54 56 INIT_LIST_HEAD(&transaction->t_inode_list);
3e624fc7 57 INIT_LIST_HEAD(&transaction->t_private_list);
470decc6
DK
58
59 /* Set up the commit timer for the new transaction. */
db857da3 60 journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
470decc6
DK
61 add_timer(&journal->j_commit_timer);
62
63 J_ASSERT(journal->j_running_transaction == NULL);
64 journal->j_running_transaction = transaction;
8e85fb3f
JL
65 transaction->t_max_wait = 0;
66 transaction->t_start = jiffies;
470decc6
DK
67
68 return transaction;
69}
70
71/*
72 * Handle management.
73 *
74 * A handle_t is an object which represents a single atomic update to a
75 * filesystem, and which tracks all of the modifications which form part
76 * of that one update.
77 */
78
79/*
80 * start_this_handle: Given a handle, deal with any locking or stalling
81 * needed to make sure that there is enough journal space for the handle
82 * to begin. Attach the handle to a transaction and set up the
83 * transaction's buffer credits.
84 */
85
86static int start_this_handle(journal_t *journal, handle_t *handle)
87{
88 transaction_t *transaction;
89 int needed;
90 int nblocks = handle->h_buffer_credits;
91 transaction_t *new_transaction = NULL;
92 int ret = 0;
8e85fb3f 93 unsigned long ts = jiffies;
470decc6
DK
94
95 if (nblocks > journal->j_max_transaction_buffers) {
96 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
97 current->comm, nblocks,
98 journal->j_max_transaction_buffers);
99 ret = -ENOSPC;
100 goto out;
101 }
102
103alloc_transaction:
104 if (!journal->j_running_transaction) {
d802ffa8 105 new_transaction = kzalloc(sizeof(*new_transaction),
2d917969 106 GFP_NOFS|__GFP_NOFAIL);
470decc6
DK
107 if (!new_transaction) {
108 ret = -ENOMEM;
109 goto out;
110 }
470decc6
DK
111 }
112
113 jbd_debug(3, "New handle %p going live.\n", handle);
114
115repeat:
116
117 /*
118 * We need to hold j_state_lock until t_updates has been incremented,
119 * for proper journal barrier handling
120 */
121 spin_lock(&journal->j_state_lock);
122repeat_locked:
123 if (is_journal_aborted(journal) ||
f7f4bccb 124 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
470decc6
DK
125 spin_unlock(&journal->j_state_lock);
126 ret = -EROFS;
127 goto out;
128 }
129
130 /* Wait on the journal's transaction barrier if necessary */
131 if (journal->j_barrier_count) {
132 spin_unlock(&journal->j_state_lock);
133 wait_event(journal->j_wait_transaction_locked,
134 journal->j_barrier_count == 0);
135 goto repeat;
136 }
137
138 if (!journal->j_running_transaction) {
139 if (!new_transaction) {
140 spin_unlock(&journal->j_state_lock);
141 goto alloc_transaction;
142 }
f7f4bccb 143 jbd2_get_transaction(journal, new_transaction);
470decc6
DK
144 new_transaction = NULL;
145 }
146
147 transaction = journal->j_running_transaction;
148
149 /*
150 * If the current transaction is locked down for commit, wait for the
151 * lock to be released.
152 */
153 if (transaction->t_state == T_LOCKED) {
154 DEFINE_WAIT(wait);
155
156 prepare_to_wait(&journal->j_wait_transaction_locked,
157 &wait, TASK_UNINTERRUPTIBLE);
158 spin_unlock(&journal->j_state_lock);
159 schedule();
160 finish_wait(&journal->j_wait_transaction_locked, &wait);
161 goto repeat;
162 }
163
164 /*
165 * If there is not enough space left in the log to write all potential
166 * buffers requested by this operation, we need to stall pending a log
167 * checkpoint to free some more log space.
168 */
169 spin_lock(&transaction->t_handle_lock);
170 needed = transaction->t_outstanding_credits + nblocks;
171
172 if (needed > journal->j_max_transaction_buffers) {
173 /*
174 * If the current transaction is already too large, then start
175 * to commit it: we can then go back and attach this handle to
176 * a new transaction.
177 */
178 DEFINE_WAIT(wait);
179
180 jbd_debug(2, "Handle %p starting new commit...\n", handle);
181 spin_unlock(&transaction->t_handle_lock);
182 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
183 TASK_UNINTERRUPTIBLE);
f7f4bccb 184 __jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
185 spin_unlock(&journal->j_state_lock);
186 schedule();
187 finish_wait(&journal->j_wait_transaction_locked, &wait);
188 goto repeat;
189 }
190
191 /*
192 * The commit code assumes that it can get enough log space
193 * without forcing a checkpoint. This is *critical* for
194 * correctness: a checkpoint of a buffer which is also
195 * associated with a committing transaction creates a deadlock,
196 * so commit simply cannot force through checkpoints.
197 *
198 * We must therefore ensure the necessary space in the journal
199 * *before* starting to dirty potentially checkpointed buffers
200 * in the new transaction.
201 *
202 * The worst part is, any transaction currently committing can
203 * reduce the free space arbitrarily. Be careful to account for
204 * those buffers when checkpointing.
205 */
206
207 /*
208 * @@@ AKPM: This seems rather over-defensive. We're giving commit
209 * a _lot_ of headroom: 1/4 of the journal plus the size of
210 * the committing transaction. Really, we only need to give it
211 * committing_transaction->t_outstanding_credits plus "enough" for
212 * the log control blocks.
213 * Also, this test is inconsitent with the matching one in
f7f4bccb 214 * jbd2_journal_extend().
470decc6 215 */
f7f4bccb 216 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
470decc6
DK
217 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
218 spin_unlock(&transaction->t_handle_lock);
f7f4bccb 219 __jbd2_log_wait_for_space(journal);
470decc6
DK
220 goto repeat_locked;
221 }
222
223 /* OK, account for the buffers that this operation expects to
224 * use and add the handle to the running transaction. */
225
8e85fb3f
JL
226 if (time_after(transaction->t_start, ts)) {
227 ts = jbd2_time_diff(ts, transaction->t_start);
228 if (ts > transaction->t_max_wait)
229 transaction->t_max_wait = ts;
230 }
231
470decc6
DK
232 handle->h_transaction = transaction;
233 transaction->t_outstanding_credits += nblocks;
234 transaction->t_updates++;
235 transaction->t_handle_count++;
236 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
237 handle, nblocks, transaction->t_outstanding_credits,
f7f4bccb 238 __jbd2_log_space_left(journal));
470decc6
DK
239 spin_unlock(&transaction->t_handle_lock);
240 spin_unlock(&journal->j_state_lock);
241out:
242 if (unlikely(new_transaction)) /* It's usually NULL */
243 kfree(new_transaction);
244 return ret;
245}
246
7b751066
MC
247static struct lock_class_key jbd2_handle_key;
248
470decc6
DK
249/* Allocate a new handle. This should probably be in a slab... */
250static handle_t *new_handle(int nblocks)
251{
af1e76d6 252 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
470decc6
DK
253 if (!handle)
254 return NULL;
255 memset(handle, 0, sizeof(*handle));
256 handle->h_buffer_credits = nblocks;
257 handle->h_ref = 1;
258
7b751066
MC
259 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
260 &jbd2_handle_key, 0);
261
470decc6
DK
262 return handle;
263}
264
265/**
f7f4bccb 266 * handle_t *jbd2_journal_start() - Obtain a new handle.
470decc6
DK
267 * @journal: Journal to start transaction on.
268 * @nblocks: number of block buffer we might modify
269 *
270 * We make sure that the transaction can guarantee at least nblocks of
271 * modified buffers in the log. We block until the log can guarantee
272 * that much space.
273 *
274 * This function is visible to journal users (like ext3fs), so is not
275 * called with the journal already locked.
276 *
277 * Return a pointer to a newly allocated handle, or NULL on failure
278 */
f7f4bccb 279handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
470decc6
DK
280{
281 handle_t *handle = journal_current_handle();
282 int err;
283
284 if (!journal)
285 return ERR_PTR(-EROFS);
286
287 if (handle) {
288 J_ASSERT(handle->h_transaction->t_journal == journal);
289 handle->h_ref++;
290 return handle;
291 }
292
293 handle = new_handle(nblocks);
294 if (!handle)
295 return ERR_PTR(-ENOMEM);
296
297 current->journal_info = handle;
298
299 err = start_this_handle(journal, handle);
300 if (err < 0) {
af1e76d6 301 jbd2_free_handle(handle);
470decc6
DK
302 current->journal_info = NULL;
303 handle = ERR_PTR(err);
7b751066 304 goto out;
470decc6 305 }
7b751066 306
3295f0ef 307 lock_map_acquire(&handle->h_lockdep_map);
7b751066 308out:
470decc6
DK
309 return handle;
310}
311
312/**
f7f4bccb 313 * int jbd2_journal_extend() - extend buffer credits.
470decc6
DK
314 * @handle: handle to 'extend'
315 * @nblocks: nr blocks to try to extend by.
316 *
317 * Some transactions, such as large extends and truncates, can be done
318 * atomically all at once or in several stages. The operation requests
319 * a credit for a number of buffer modications in advance, but can
320 * extend its credit if it needs more.
321 *
f7f4bccb 322 * jbd2_journal_extend tries to give the running handle more buffer credits.
470decc6
DK
323 * It does not guarantee that allocation - this is a best-effort only.
324 * The calling process MUST be able to deal cleanly with a failure to
325 * extend here.
326 *
327 * Return 0 on success, non-zero on failure.
328 *
329 * return code < 0 implies an error
330 * return code > 0 implies normal transaction-full status.
331 */
f7f4bccb 332int jbd2_journal_extend(handle_t *handle, int nblocks)
470decc6
DK
333{
334 transaction_t *transaction = handle->h_transaction;
335 journal_t *journal = transaction->t_journal;
336 int result;
337 int wanted;
338
339 result = -EIO;
340 if (is_handle_aborted(handle))
341 goto out;
342
343 result = 1;
344
345 spin_lock(&journal->j_state_lock);
346
347 /* Don't extend a locked-down transaction! */
348 if (handle->h_transaction->t_state != T_RUNNING) {
349 jbd_debug(3, "denied handle %p %d blocks: "
350 "transaction not running\n", handle, nblocks);
351 goto error_out;
352 }
353
354 spin_lock(&transaction->t_handle_lock);
355 wanted = transaction->t_outstanding_credits + nblocks;
356
357 if (wanted > journal->j_max_transaction_buffers) {
358 jbd_debug(3, "denied handle %p %d blocks: "
359 "transaction too large\n", handle, nblocks);
360 goto unlock;
361 }
362
f7f4bccb 363 if (wanted > __jbd2_log_space_left(journal)) {
470decc6
DK
364 jbd_debug(3, "denied handle %p %d blocks: "
365 "insufficient log space\n", handle, nblocks);
366 goto unlock;
367 }
368
369 handle->h_buffer_credits += nblocks;
370 transaction->t_outstanding_credits += nblocks;
371 result = 0;
372
373 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
374unlock:
375 spin_unlock(&transaction->t_handle_lock);
376error_out:
377 spin_unlock(&journal->j_state_lock);
378out:
379 return result;
380}
381
382
383/**
f7f4bccb 384 * int jbd2_journal_restart() - restart a handle .
470decc6
DK
385 * @handle: handle to restart
386 * @nblocks: nr credits requested
387 *
388 * Restart a handle for a multi-transaction filesystem
389 * operation.
390 *
f7f4bccb
MC
391 * If the jbd2_journal_extend() call above fails to grant new buffer credits
392 * to a running handle, a call to jbd2_journal_restart will commit the
470decc6
DK
393 * handle's transaction so far and reattach the handle to a new
394 * transaction capabable of guaranteeing the requested number of
395 * credits.
396 */
397
f7f4bccb 398int jbd2_journal_restart(handle_t *handle, int nblocks)
470decc6
DK
399{
400 transaction_t *transaction = handle->h_transaction;
401 journal_t *journal = transaction->t_journal;
402 int ret;
403
404 /* If we've had an abort of any type, don't even think about
405 * actually doing the restart! */
406 if (is_handle_aborted(handle))
407 return 0;
408
409 /*
410 * First unlink the handle from its current transaction, and start the
411 * commit on that.
412 */
413 J_ASSERT(transaction->t_updates > 0);
414 J_ASSERT(journal_current_handle() == handle);
415
416 spin_lock(&journal->j_state_lock);
417 spin_lock(&transaction->t_handle_lock);
418 transaction->t_outstanding_credits -= handle->h_buffer_credits;
419 transaction->t_updates--;
420
421 if (!transaction->t_updates)
422 wake_up(&journal->j_wait_updates);
423 spin_unlock(&transaction->t_handle_lock);
424
425 jbd_debug(2, "restarting handle %p\n", handle);
f7f4bccb 426 __jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
427 spin_unlock(&journal->j_state_lock);
428
429 handle->h_buffer_credits = nblocks;
430 ret = start_this_handle(journal, handle);
431 return ret;
432}
433
434
435/**
f7f4bccb 436 * void jbd2_journal_lock_updates () - establish a transaction barrier.
470decc6
DK
437 * @journal: Journal to establish a barrier on.
438 *
439 * This locks out any further updates from being started, and blocks
440 * until all existing updates have completed, returning only once the
441 * journal is in a quiescent state with no updates running.
442 *
443 * The journal lock should not be held on entry.
444 */
f7f4bccb 445void jbd2_journal_lock_updates(journal_t *journal)
470decc6
DK
446{
447 DEFINE_WAIT(wait);
448
449 spin_lock(&journal->j_state_lock);
450 ++journal->j_barrier_count;
451
452 /* Wait until there are no running updates */
453 while (1) {
454 transaction_t *transaction = journal->j_running_transaction;
455
456 if (!transaction)
457 break;
458
459 spin_lock(&transaction->t_handle_lock);
460 if (!transaction->t_updates) {
461 spin_unlock(&transaction->t_handle_lock);
462 break;
463 }
464 prepare_to_wait(&journal->j_wait_updates, &wait,
465 TASK_UNINTERRUPTIBLE);
466 spin_unlock(&transaction->t_handle_lock);
467 spin_unlock(&journal->j_state_lock);
468 schedule();
469 finish_wait(&journal->j_wait_updates, &wait);
470 spin_lock(&journal->j_state_lock);
471 }
472 spin_unlock(&journal->j_state_lock);
473
474 /*
475 * We have now established a barrier against other normal updates, but
f7f4bccb 476 * we also need to barrier against other jbd2_journal_lock_updates() calls
470decc6
DK
477 * to make sure that we serialise special journal-locked operations
478 * too.
479 */
480 mutex_lock(&journal->j_barrier);
481}
482
483/**
f7f4bccb 484 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
470decc6
DK
485 * @journal: Journal to release the barrier on.
486 *
f7f4bccb 487 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
470decc6
DK
488 *
489 * Should be called without the journal lock held.
490 */
f7f4bccb 491void jbd2_journal_unlock_updates (journal_t *journal)
470decc6
DK
492{
493 J_ASSERT(journal->j_barrier_count != 0);
494
495 mutex_unlock(&journal->j_barrier);
496 spin_lock(&journal->j_state_lock);
497 --journal->j_barrier_count;
498 spin_unlock(&journal->j_state_lock);
499 wake_up(&journal->j_wait_transaction_locked);
500}
501
502/*
503 * Report any unexpected dirty buffers which turn up. Normally those
504 * indicate an error, but they can occur if the user is running (say)
505 * tune2fs to modify the live filesystem, so we need the option of
506 * continuing as gracefully as possible. #
507 *
508 * The caller should already hold the journal lock and
509 * j_list_lock spinlock: most callers will need those anyway
510 * in order to probe the buffer's journaling state safely.
511 */
512static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
513{
514 int jlist;
515
516 /* If this buffer is one which might reasonably be dirty
517 * --- ie. data, or not part of this journal --- then
518 * we're OK to leave it alone, but otherwise we need to
519 * move the dirty bit to the journal's own internal
520 * JBDDirty bit. */
521 jlist = jh->b_jlist;
522
523 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
524 jlist == BJ_Shadow || jlist == BJ_Forget) {
525 struct buffer_head *bh = jh2bh(jh);
526
527 if (test_clear_buffer_dirty(bh))
528 set_buffer_jbddirty(bh);
529 }
530}
531
532/*
533 * If the buffer is already part of the current transaction, then there
534 * is nothing we need to do. If it is already part of a prior
535 * transaction which we are still committing to disk, then we need to
536 * make sure that we do not overwrite the old copy: we do copy-out to
537 * preserve the copy going to disk. We also account the buffer against
538 * the handle's metadata buffer credits (unless the buffer is already
539 * part of the transaction, that is).
540 *
541 */
542static int
543do_get_write_access(handle_t *handle, struct journal_head *jh,
544 int force_copy)
545{
546 struct buffer_head *bh;
547 transaction_t *transaction;
548 journal_t *journal;
549 int error;
550 char *frozen_buffer = NULL;
551 int need_copy = 0;
552
553 if (is_handle_aborted(handle))
554 return -EROFS;
555
556 transaction = handle->h_transaction;
557 journal = transaction->t_journal;
558
559 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
560
561 JBUFFER_TRACE(jh, "entry");
562repeat:
563 bh = jh2bh(jh);
564
565 /* @@@ Need to check for errors here at some point. */
566
567 lock_buffer(bh);
568 jbd_lock_bh_state(bh);
569
570 /* We now hold the buffer lock so it is safe to query the buffer
571 * state. Is the buffer dirty?
572 *
573 * If so, there are two possibilities. The buffer may be
574 * non-journaled, and undergoing a quite legitimate writeback.
575 * Otherwise, it is journaled, and we don't expect dirty buffers
576 * in that state (the buffers should be marked JBD_Dirty
577 * instead.) So either the IO is being done under our own
578 * control and this is a bug, or it's a third party IO such as
579 * dump(8) (which may leave the buffer scheduled for read ---
580 * ie. locked but not dirty) or tune2fs (which may actually have
581 * the buffer dirtied, ugh.) */
582
583 if (buffer_dirty(bh)) {
584 /*
585 * First question: is this buffer already part of the current
586 * transaction or the existing committing transaction?
587 */
588 if (jh->b_transaction) {
589 J_ASSERT_JH(jh,
590 jh->b_transaction == transaction ||
591 jh->b_transaction ==
592 journal->j_committing_transaction);
593 if (jh->b_next_transaction)
594 J_ASSERT_JH(jh, jh->b_next_transaction ==
595 transaction);
596 }
597 /*
598 * In any case we need to clean the dirty flag and we must
599 * do it under the buffer lock to be sure we don't race
600 * with running write-out.
601 */
602 JBUFFER_TRACE(jh, "Unexpected dirty buffer");
603 jbd_unexpected_dirty_buffer(jh);
604 }
605
606 unlock_buffer(bh);
607
608 error = -EROFS;
609 if (is_handle_aborted(handle)) {
610 jbd_unlock_bh_state(bh);
611 goto out;
612 }
613 error = 0;
614
615 /*
616 * The buffer is already part of this transaction if b_transaction or
617 * b_next_transaction points to it
618 */
619 if (jh->b_transaction == transaction ||
620 jh->b_next_transaction == transaction)
621 goto done;
622
9fc7c63a
JB
623 /*
624 * this is the first time this transaction is touching this buffer,
625 * reset the modified flag
626 */
627 jh->b_modified = 0;
628
470decc6
DK
629 /*
630 * If there is already a copy-out version of this buffer, then we don't
631 * need to make another one
632 */
633 if (jh->b_frozen_data) {
634 JBUFFER_TRACE(jh, "has frozen data");
635 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
636 jh->b_next_transaction = transaction;
637 goto done;
638 }
639
640 /* Is there data here we need to preserve? */
641
642 if (jh->b_transaction && jh->b_transaction != transaction) {
643 JBUFFER_TRACE(jh, "owned by older transaction");
644 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
645 J_ASSERT_JH(jh, jh->b_transaction ==
646 journal->j_committing_transaction);
647
648 /* There is one case we have to be very careful about.
649 * If the committing transaction is currently writing
650 * this buffer out to disk and has NOT made a copy-out,
651 * then we cannot modify the buffer contents at all
652 * right now. The essence of copy-out is that it is the
653 * extra copy, not the primary copy, which gets
654 * journaled. If the primary copy is already going to
655 * disk then we cannot do copy-out here. */
656
657 if (jh->b_jlist == BJ_Shadow) {
658 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
659 wait_queue_head_t *wqh;
660
661 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
662
663 JBUFFER_TRACE(jh, "on shadow: sleep");
664 jbd_unlock_bh_state(bh);
665 /* commit wakes up all shadow buffers after IO */
666 for ( ; ; ) {
667 prepare_to_wait(wqh, &wait.wait,
668 TASK_UNINTERRUPTIBLE);
669 if (jh->b_jlist != BJ_Shadow)
670 break;
671 schedule();
672 }
673 finish_wait(wqh, &wait.wait);
674 goto repeat;
675 }
676
677 /* Only do the copy if the currently-owning transaction
678 * still needs it. If it is on the Forget list, the
679 * committing transaction is past that stage. The
680 * buffer had better remain locked during the kmalloc,
681 * but that should be true --- we hold the journal lock
682 * still and the buffer is already on the BUF_JOURNAL
683 * list so won't be flushed.
684 *
685 * Subtle point, though: if this is a get_undo_access,
686 * then we will be relying on the frozen_data to contain
687 * the new value of the committed_data record after the
688 * transaction, so we HAVE to force the frozen_data copy
689 * in that case. */
690
691 if (jh->b_jlist != BJ_Forget || force_copy) {
692 JBUFFER_TRACE(jh, "generate frozen data");
693 if (!frozen_buffer) {
694 JBUFFER_TRACE(jh, "allocate memory for buffer");
695 jbd_unlock_bh_state(bh);
696 frozen_buffer =
af1e76d6 697 jbd2_alloc(jh2bh(jh)->b_size,
470decc6
DK
698 GFP_NOFS);
699 if (!frozen_buffer) {
700 printk(KERN_EMERG
701 "%s: OOM for frozen_buffer\n",
329d291f 702 __func__);
470decc6
DK
703 JBUFFER_TRACE(jh, "oom!");
704 error = -ENOMEM;
705 jbd_lock_bh_state(bh);
706 goto done;
707 }
708 goto repeat;
709 }
710 jh->b_frozen_data = frozen_buffer;
711 frozen_buffer = NULL;
712 need_copy = 1;
713 }
714 jh->b_next_transaction = transaction;
715 }
716
717
718 /*
719 * Finally, if the buffer is not journaled right now, we need to make
720 * sure it doesn't get written to disk before the caller actually
721 * commits the new data
722 */
723 if (!jh->b_transaction) {
724 JBUFFER_TRACE(jh, "no transaction");
725 J_ASSERT_JH(jh, !jh->b_next_transaction);
726 jh->b_transaction = transaction;
727 JBUFFER_TRACE(jh, "file as BJ_Reserved");
728 spin_lock(&journal->j_list_lock);
f7f4bccb 729 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
470decc6
DK
730 spin_unlock(&journal->j_list_lock);
731 }
732
733done:
734 if (need_copy) {
735 struct page *page;
736 int offset;
737 char *source;
738
739 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
740 "Possible IO failure.\n");
741 page = jh2bh(jh)->b_page;
742 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
743 source = kmap_atomic(page, KM_USER0);
744 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
745 kunmap_atomic(source, KM_USER0);
e06c8227
JB
746
747 /*
748 * Now that the frozen data is saved off, we need to store
749 * any matching triggers.
750 */
751 jh->b_frozen_triggers = jh->b_triggers;
470decc6
DK
752 }
753 jbd_unlock_bh_state(bh);
754
755 /*
756 * If we are about to journal a buffer, then any revoke pending on it is
757 * no longer valid
758 */
f7f4bccb 759 jbd2_journal_cancel_revoke(handle, jh);
470decc6
DK
760
761out:
762 if (unlikely(frozen_buffer)) /* It's usually NULL */
af1e76d6 763 jbd2_free(frozen_buffer, bh->b_size);
470decc6
DK
764
765 JBUFFER_TRACE(jh, "exit");
766 return error;
767}
768
769/**
f7f4bccb 770 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
470decc6
DK
771 * @handle: transaction to add buffer modifications to
772 * @bh: bh to be used for metadata writes
773 * @credits: variable that will receive credits for the buffer
774 *
775 * Returns an error code or 0 on success.
776 *
777 * In full data journalling mode the buffer may be of type BJ_AsyncData,
778 * because we're write()ing a buffer which is also part of a shared mapping.
779 */
780
f7f4bccb 781int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
470decc6 782{
f7f4bccb 783 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
784 int rc;
785
786 /* We do not want to get caught playing with fields which the
787 * log thread also manipulates. Make sure that the buffer
788 * completes any outstanding IO before proceeding. */
789 rc = do_get_write_access(handle, jh, 0);
f7f4bccb 790 jbd2_journal_put_journal_head(jh);
470decc6
DK
791 return rc;
792}
793
794
795/*
796 * When the user wants to journal a newly created buffer_head
797 * (ie. getblk() returned a new buffer and we are going to populate it
798 * manually rather than reading off disk), then we need to keep the
799 * buffer_head locked until it has been completely filled with new
800 * data. In this case, we should be able to make the assertion that
801 * the bh is not already part of an existing transaction.
802 *
803 * The buffer should already be locked by the caller by this point.
804 * There is no lock ranking violation: it was a newly created,
805 * unlocked buffer beforehand. */
806
807/**
f7f4bccb 808 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
470decc6
DK
809 * @handle: transaction to new buffer to
810 * @bh: new buffer.
811 *
812 * Call this if you create a new bh.
813 */
f7f4bccb 814int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
815{
816 transaction_t *transaction = handle->h_transaction;
817 journal_t *journal = transaction->t_journal;
f7f4bccb 818 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
819 int err;
820
821 jbd_debug(5, "journal_head %p\n", jh);
822 err = -EROFS;
823 if (is_handle_aborted(handle))
824 goto out;
825 err = 0;
826
827 JBUFFER_TRACE(jh, "entry");
828 /*
829 * The buffer may already belong to this transaction due to pre-zeroing
830 * in the filesystem's new_block code. It may also be on the previous,
831 * committing transaction's lists, but it HAS to be in Forget state in
832 * that case: the transaction must have deleted the buffer for it to be
833 * reused here.
834 */
835 jbd_lock_bh_state(bh);
836 spin_lock(&journal->j_list_lock);
837 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
838 jh->b_transaction == NULL ||
839 (jh->b_transaction == journal->j_committing_transaction &&
840 jh->b_jlist == BJ_Forget)));
841
842 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
843 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
844
845 if (jh->b_transaction == NULL) {
846 jh->b_transaction = transaction;
9fc7c63a
JB
847
848 /* first access by this transaction */
849 jh->b_modified = 0;
850
470decc6 851 JBUFFER_TRACE(jh, "file as BJ_Reserved");
f7f4bccb 852 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
470decc6 853 } else if (jh->b_transaction == journal->j_committing_transaction) {
9fc7c63a
JB
854 /* first access by this transaction */
855 jh->b_modified = 0;
856
470decc6
DK
857 JBUFFER_TRACE(jh, "set next transaction");
858 jh->b_next_transaction = transaction;
859 }
860 spin_unlock(&journal->j_list_lock);
861 jbd_unlock_bh_state(bh);
862
863 /*
864 * akpm: I added this. ext3_alloc_branch can pick up new indirect
865 * blocks which contain freed but then revoked metadata. We need
866 * to cancel the revoke in case we end up freeing it yet again
867 * and the reallocating as data - this would cause a second revoke,
868 * which hits an assertion error.
869 */
870 JBUFFER_TRACE(jh, "cancelling revoke");
f7f4bccb
MC
871 jbd2_journal_cancel_revoke(handle, jh);
872 jbd2_journal_put_journal_head(jh);
470decc6
DK
873out:
874 return err;
875}
876
877/**
f7f4bccb 878 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
470decc6
DK
879 * non-rewindable consequences
880 * @handle: transaction
881 * @bh: buffer to undo
882 * @credits: store the number of taken credits here (if not NULL)
883 *
884 * Sometimes there is a need to distinguish between metadata which has
885 * been committed to disk and that which has not. The ext3fs code uses
886 * this for freeing and allocating space, we have to make sure that we
887 * do not reuse freed space until the deallocation has been committed,
888 * since if we overwrote that space we would make the delete
889 * un-rewindable in case of a crash.
890 *
f7f4bccb 891 * To deal with that, jbd2_journal_get_undo_access requests write access to a
470decc6
DK
892 * buffer for parts of non-rewindable operations such as delete
893 * operations on the bitmaps. The journaling code must keep a copy of
894 * the buffer's contents prior to the undo_access call until such time
895 * as we know that the buffer has definitely been committed to disk.
896 *
897 * We never need to know which transaction the committed data is part
898 * of, buffers touched here are guaranteed to be dirtied later and so
899 * will be committed to a new transaction in due course, at which point
900 * we can discard the old committed data pointer.
901 *
902 * Returns error number or 0 on success.
903 */
f7f4bccb 904int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
905{
906 int err;
f7f4bccb 907 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
908 char *committed_data = NULL;
909
910 JBUFFER_TRACE(jh, "entry");
911
912 /*
913 * Do this first --- it can drop the journal lock, so we want to
914 * make sure that obtaining the committed_data is done
915 * atomically wrt. completion of any outstanding commits.
916 */
917 err = do_get_write_access(handle, jh, 1);
918 if (err)
919 goto out;
920
921repeat:
922 if (!jh->b_committed_data) {
af1e76d6 923 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
470decc6
DK
924 if (!committed_data) {
925 printk(KERN_EMERG "%s: No memory for committed data\n",
329d291f 926 __func__);
470decc6
DK
927 err = -ENOMEM;
928 goto out;
929 }
930 }
931
932 jbd_lock_bh_state(bh);
933 if (!jh->b_committed_data) {
934 /* Copy out the current buffer contents into the
935 * preserved, committed copy. */
936 JBUFFER_TRACE(jh, "generate b_committed data");
937 if (!committed_data) {
938 jbd_unlock_bh_state(bh);
939 goto repeat;
940 }
941
942 jh->b_committed_data = committed_data;
943 committed_data = NULL;
944 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
945 }
946 jbd_unlock_bh_state(bh);
947out:
f7f4bccb 948 jbd2_journal_put_journal_head(jh);
470decc6 949 if (unlikely(committed_data))
af1e76d6 950 jbd2_free(committed_data, bh->b_size);
470decc6
DK
951 return err;
952}
953
e06c8227
JB
954/**
955 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
956 * @bh: buffer to trigger on
957 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
958 *
959 * Set any triggers on this journal_head. This is always safe, because
960 * triggers for a committing buffer will be saved off, and triggers for
961 * a running transaction will match the buffer in that transaction.
962 *
963 * Call with NULL to clear the triggers.
964 */
965void jbd2_journal_set_triggers(struct buffer_head *bh,
966 struct jbd2_buffer_trigger_type *type)
967{
968 struct journal_head *jh = bh2jh(bh);
969
970 jh->b_triggers = type;
971}
972
973void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data,
974 struct jbd2_buffer_trigger_type *triggers)
975{
976 struct buffer_head *bh = jh2bh(jh);
977
978 if (!triggers || !triggers->t_commit)
979 return;
980
981 triggers->t_commit(triggers, bh, mapped_data, bh->b_size);
982}
983
984void jbd2_buffer_abort_trigger(struct journal_head *jh,
985 struct jbd2_buffer_trigger_type *triggers)
986{
987 if (!triggers || !triggers->t_abort)
988 return;
989
990 triggers->t_abort(triggers, jh2bh(jh));
991}
992
993
994
470decc6 995/**
f7f4bccb 996 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
470decc6
DK
997 * @handle: transaction to add buffer to.
998 * @bh: buffer to mark
999 *
1000 * mark dirty metadata which needs to be journaled as part of the current
1001 * transaction.
1002 *
1003 * The buffer is placed on the transaction's metadata list and is marked
1004 * as belonging to the transaction.
1005 *
1006 * Returns error number or 0 on success.
1007 *
1008 * Special care needs to be taken if the buffer already belongs to the
1009 * current committing transaction (in which case we should have frozen
1010 * data present for that commit). In that case, we don't relink the
1011 * buffer: that only gets done when the old transaction finally
1012 * completes its commit.
1013 */
f7f4bccb 1014int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1015{
1016 transaction_t *transaction = handle->h_transaction;
1017 journal_t *journal = transaction->t_journal;
1018 struct journal_head *jh = bh2jh(bh);
1019
1020 jbd_debug(5, "journal_head %p\n", jh);
1021 JBUFFER_TRACE(jh, "entry");
1022 if (is_handle_aborted(handle))
1023 goto out;
1024
1025 jbd_lock_bh_state(bh);
1026
1027 if (jh->b_modified == 0) {
1028 /*
1029 * This buffer's got modified and becoming part
1030 * of the transaction. This needs to be done
1031 * once a transaction -bzzz
1032 */
1033 jh->b_modified = 1;
1034 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1035 handle->h_buffer_credits--;
1036 }
1037
1038 /*
1039 * fastpath, to avoid expensive locking. If this buffer is already
1040 * on the running transaction's metadata list there is nothing to do.
1041 * Nobody can take it off again because there is a handle open.
1042 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1043 * result in this test being false, so we go in and take the locks.
1044 */
1045 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1046 JBUFFER_TRACE(jh, "fastpath");
1047 J_ASSERT_JH(jh, jh->b_transaction ==
1048 journal->j_running_transaction);
1049 goto out_unlock_bh;
1050 }
1051
1052 set_buffer_jbddirty(bh);
1053
1054 /*
1055 * Metadata already on the current transaction list doesn't
1056 * need to be filed. Metadata on another transaction's list must
1057 * be committing, and will be refiled once the commit completes:
1058 * leave it alone for now.
1059 */
1060 if (jh->b_transaction != transaction) {
1061 JBUFFER_TRACE(jh, "already on other transaction");
1062 J_ASSERT_JH(jh, jh->b_transaction ==
1063 journal->j_committing_transaction);
1064 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1065 /* And this case is illegal: we can't reuse another
1066 * transaction's data buffer, ever. */
1067 goto out_unlock_bh;
1068 }
1069
1070 /* That test should have eliminated the following case: */
4019191b 1071 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
470decc6
DK
1072
1073 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1074 spin_lock(&journal->j_list_lock);
f7f4bccb 1075 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
470decc6
DK
1076 spin_unlock(&journal->j_list_lock);
1077out_unlock_bh:
1078 jbd_unlock_bh_state(bh);
1079out:
1080 JBUFFER_TRACE(jh, "exit");
1081 return 0;
1082}
1083
1084/*
f7f4bccb 1085 * jbd2_journal_release_buffer: undo a get_write_access without any buffer
470decc6
DK
1086 * updates, if the update decided in the end that it didn't need access.
1087 *
1088 */
1089void
f7f4bccb 1090jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1091{
1092 BUFFER_TRACE(bh, "entry");
1093}
1094
1095/**
f7f4bccb 1096 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
470decc6
DK
1097 * @handle: transaction handle
1098 * @bh: bh to 'forget'
1099 *
1100 * We can only do the bforget if there are no commits pending against the
1101 * buffer. If the buffer is dirty in the current running transaction we
1102 * can safely unlink it.
1103 *
1104 * bh may not be a journalled buffer at all - it may be a non-JBD
1105 * buffer which came off the hashtable. Check for this.
1106 *
1107 * Decrements bh->b_count by one.
1108 *
1109 * Allow this call even if the handle has aborted --- it may be part of
1110 * the caller's cleanup after an abort.
1111 */
f7f4bccb 1112int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
470decc6
DK
1113{
1114 transaction_t *transaction = handle->h_transaction;
1115 journal_t *journal = transaction->t_journal;
1116 struct journal_head *jh;
1117 int drop_reserve = 0;
1118 int err = 0;
1dfc3220 1119 int was_modified = 0;
470decc6
DK
1120
1121 BUFFER_TRACE(bh, "entry");
1122
1123 jbd_lock_bh_state(bh);
1124 spin_lock(&journal->j_list_lock);
1125
1126 if (!buffer_jbd(bh))
1127 goto not_jbd;
1128 jh = bh2jh(bh);
1129
1130 /* Critical error: attempting to delete a bitmap buffer, maybe?
1131 * Don't do any jbd operations, and return an error. */
1132 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1133 "inconsistent data on disk")) {
1134 err = -EIO;
1135 goto not_jbd;
1136 }
1137
1dfc3220
JB
1138 /* keep track of wether or not this transaction modified us */
1139 was_modified = jh->b_modified;
1140
470decc6
DK
1141 /*
1142 * The buffer's going from the transaction, we must drop
1143 * all references -bzzz
1144 */
1145 jh->b_modified = 0;
1146
1147 if (jh->b_transaction == handle->h_transaction) {
1148 J_ASSERT_JH(jh, !jh->b_frozen_data);
1149
1150 /* If we are forgetting a buffer which is already part
1151 * of this transaction, then we can just drop it from
1152 * the transaction immediately. */
1153 clear_buffer_dirty(bh);
1154 clear_buffer_jbddirty(bh);
1155
1156 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1157
1dfc3220
JB
1158 /*
1159 * we only want to drop a reference if this transaction
1160 * modified the buffer
1161 */
1162 if (was_modified)
1163 drop_reserve = 1;
470decc6
DK
1164
1165 /*
1166 * We are no longer going to journal this buffer.
1167 * However, the commit of this transaction is still
1168 * important to the buffer: the delete that we are now
1169 * processing might obsolete an old log entry, so by
1170 * committing, we can satisfy the buffer's checkpoint.
1171 *
1172 * So, if we have a checkpoint on the buffer, we should
1173 * now refile the buffer on our BJ_Forget list so that
1174 * we know to remove the checkpoint after we commit.
1175 */
1176
1177 if (jh->b_cp_transaction) {
f7f4bccb
MC
1178 __jbd2_journal_temp_unlink_buffer(jh);
1179 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6 1180 } else {
f7f4bccb
MC
1181 __jbd2_journal_unfile_buffer(jh);
1182 jbd2_journal_remove_journal_head(bh);
470decc6
DK
1183 __brelse(bh);
1184 if (!buffer_jbd(bh)) {
1185 spin_unlock(&journal->j_list_lock);
1186 jbd_unlock_bh_state(bh);
1187 __bforget(bh);
1188 goto drop;
1189 }
1190 }
1191 } else if (jh->b_transaction) {
1192 J_ASSERT_JH(jh, (jh->b_transaction ==
1193 journal->j_committing_transaction));
1194 /* However, if the buffer is still owned by a prior
1195 * (committing) transaction, we can't drop it yet... */
1196 JBUFFER_TRACE(jh, "belongs to older transaction");
1197 /* ... but we CAN drop it from the new transaction if we
1198 * have also modified it since the original commit. */
1199
1200 if (jh->b_next_transaction) {
1201 J_ASSERT(jh->b_next_transaction == transaction);
1202 jh->b_next_transaction = NULL;
1dfc3220
JB
1203
1204 /*
1205 * only drop a reference if this transaction modified
1206 * the buffer
1207 */
1208 if (was_modified)
1209 drop_reserve = 1;
470decc6
DK
1210 }
1211 }
1212
1213not_jbd:
1214 spin_unlock(&journal->j_list_lock);
1215 jbd_unlock_bh_state(bh);
1216 __brelse(bh);
1217drop:
1218 if (drop_reserve) {
1219 /* no need to reserve log space for this block -bzzz */
1220 handle->h_buffer_credits++;
1221 }
1222 return err;
1223}
1224
1225/**
f7f4bccb 1226 * int jbd2_journal_stop() - complete a transaction
470decc6
DK
1227 * @handle: tranaction to complete.
1228 *
1229 * All done for a particular handle.
1230 *
1231 * There is not much action needed here. We just return any remaining
1232 * buffer credits to the transaction and remove the handle. The only
1233 * complication is that we need to start a commit operation if the
1234 * filesystem is marked for synchronous update.
1235 *
f7f4bccb 1236 * jbd2_journal_stop itself will not usually return an error, but it may
470decc6 1237 * do so in unusual circumstances. In particular, expect it to
f7f4bccb 1238 * return -EIO if a jbd2_journal_abort has been executed since the
470decc6
DK
1239 * transaction began.
1240 */
f7f4bccb 1241int jbd2_journal_stop(handle_t *handle)
470decc6
DK
1242{
1243 transaction_t *transaction = handle->h_transaction;
1244 journal_t *journal = transaction->t_journal;
e07f7183 1245 int err;
470decc6
DK
1246 pid_t pid;
1247
470decc6
DK
1248 J_ASSERT(journal_current_handle() == handle);
1249
1250 if (is_handle_aborted(handle))
1251 err = -EIO;
3e2a532b
OH
1252 else {
1253 J_ASSERT(transaction->t_updates > 0);
470decc6 1254 err = 0;
3e2a532b 1255 }
470decc6
DK
1256
1257 if (--handle->h_ref > 0) {
1258 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1259 handle->h_ref);
1260 return err;
1261 }
1262
1263 jbd_debug(4, "Handle %p going down\n", handle);
1264
1265 /*
1266 * Implement synchronous transaction batching. If the handle
1267 * was synchronous, don't force a commit immediately. Let's
e07f7183
JB
1268 * yield and let another thread piggyback onto this
1269 * transaction. Keep doing that while new threads continue to
1270 * arrive. It doesn't cost much - we're about to run a commit
1271 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1272 * operations by 30x or more...
1273 *
1274 * We try and optimize the sleep time against what the
1275 * underlying disk can do, instead of having a static sleep
1276 * time. This is useful for the case where our storage is so
1277 * fast that it is more optimal to go ahead and force a flush
1278 * and wait for the transaction to be committed than it is to
1279 * wait for an arbitrary amount of time for new writers to
1280 * join the transaction. We achieve this by measuring how
1281 * long it takes to commit a transaction, and compare it with
1282 * how long this transaction has been running, and if run time
1283 * < commit time then we sleep for the delta and commit. This
1284 * greatly helps super fast disks that would see slowdowns as
1285 * more threads started doing fsyncs.
470decc6 1286 *
e07f7183
JB
1287 * But don't do this if this process was the most recent one
1288 * to perform a synchronous write. We do this to detect the
1289 * case where a single process is doing a stream of sync
1290 * writes. No point in waiting for joiners in that case.
470decc6
DK
1291 */
1292 pid = current->pid;
1293 if (handle->h_sync && journal->j_last_sync_writer != pid) {
e07f7183
JB
1294 u64 commit_time, trans_time;
1295
470decc6 1296 journal->j_last_sync_writer = pid;
e07f7183
JB
1297
1298 spin_lock(&journal->j_state_lock);
1299 commit_time = journal->j_average_commit_time;
1300 spin_unlock(&journal->j_state_lock);
1301
1302 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1303 transaction->t_start_time));
1304
30773840
TT
1305 commit_time = max_t(u64, commit_time,
1306 1000*journal->j_min_batch_time);
e07f7183 1307 commit_time = min_t(u64, commit_time,
30773840 1308 1000*journal->j_max_batch_time);
e07f7183
JB
1309
1310 if (trans_time < commit_time) {
1311 ktime_t expires = ktime_add_ns(ktime_get(),
1312 commit_time);
1313 set_current_state(TASK_UNINTERRUPTIBLE);
1314 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1315 }
470decc6
DK
1316 }
1317
1318 current->journal_info = NULL;
1319 spin_lock(&journal->j_state_lock);
1320 spin_lock(&transaction->t_handle_lock);
1321 transaction->t_outstanding_credits -= handle->h_buffer_credits;
1322 transaction->t_updates--;
1323 if (!transaction->t_updates) {
1324 wake_up(&journal->j_wait_updates);
1325 if (journal->j_barrier_count)
1326 wake_up(&journal->j_wait_transaction_locked);
1327 }
1328
1329 /*
1330 * If the handle is marked SYNC, we need to set another commit
1331 * going! We also want to force a commit if the current
1332 * transaction is occupying too much of the log, or if the
1333 * transaction is too old now.
1334 */
1335 if (handle->h_sync ||
1336 transaction->t_outstanding_credits >
1337 journal->j_max_transaction_buffers ||
1338 time_after_eq(jiffies, transaction->t_expires)) {
1339 /* Do this even for aborted journals: an abort still
1340 * completes the commit thread, it just doesn't write
1341 * anything to disk. */
1342 tid_t tid = transaction->t_tid;
1343
1344 spin_unlock(&transaction->t_handle_lock);
1345 jbd_debug(2, "transaction too old, requesting commit for "
1346 "handle %p\n", handle);
1347 /* This is non-blocking */
f7f4bccb 1348 __jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
1349 spin_unlock(&journal->j_state_lock);
1350
1351 /*
f7f4bccb 1352 * Special case: JBD2_SYNC synchronous updates require us
470decc6
DK
1353 * to wait for the commit to complete.
1354 */
1355 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
f7f4bccb 1356 err = jbd2_log_wait_commit(journal, tid);
470decc6
DK
1357 } else {
1358 spin_unlock(&transaction->t_handle_lock);
1359 spin_unlock(&journal->j_state_lock);
1360 }
1361
3295f0ef 1362 lock_map_release(&handle->h_lockdep_map);
7b751066 1363
af1e76d6 1364 jbd2_free_handle(handle);
470decc6
DK
1365 return err;
1366}
1367
5648ba5b
RD
1368/**
1369 * int jbd2_journal_force_commit() - force any uncommitted transactions
470decc6
DK
1370 * @journal: journal to force
1371 *
1372 * For synchronous operations: force any uncommitted transactions
1373 * to disk. May seem kludgy, but it reuses all the handle batching
1374 * code in a very simple manner.
1375 */
f7f4bccb 1376int jbd2_journal_force_commit(journal_t *journal)
470decc6
DK
1377{
1378 handle_t *handle;
1379 int ret;
1380
f7f4bccb 1381 handle = jbd2_journal_start(journal, 1);
470decc6
DK
1382 if (IS_ERR(handle)) {
1383 ret = PTR_ERR(handle);
1384 } else {
1385 handle->h_sync = 1;
f7f4bccb 1386 ret = jbd2_journal_stop(handle);
470decc6
DK
1387 }
1388 return ret;
1389}
1390
1391/*
1392 *
1393 * List management code snippets: various functions for manipulating the
1394 * transaction buffer lists.
1395 *
1396 */
1397
1398/*
1399 * Append a buffer to a transaction list, given the transaction's list head
1400 * pointer.
1401 *
1402 * j_list_lock is held.
1403 *
1404 * jbd_lock_bh_state(jh2bh(jh)) is held.
1405 */
1406
1407static inline void
1408__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1409{
1410 if (!*list) {
1411 jh->b_tnext = jh->b_tprev = jh;
1412 *list = jh;
1413 } else {
1414 /* Insert at the tail of the list to preserve order */
1415 struct journal_head *first = *list, *last = first->b_tprev;
1416 jh->b_tprev = last;
1417 jh->b_tnext = first;
1418 last->b_tnext = first->b_tprev = jh;
1419 }
1420}
1421
1422/*
1423 * Remove a buffer from a transaction list, given the transaction's list
1424 * head pointer.
1425 *
1426 * Called with j_list_lock held, and the journal may not be locked.
1427 *
1428 * jbd_lock_bh_state(jh2bh(jh)) is held.
1429 */
1430
1431static inline void
1432__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1433{
1434 if (*list == jh) {
1435 *list = jh->b_tnext;
1436 if (*list == jh)
1437 *list = NULL;
1438 }
1439 jh->b_tprev->b_tnext = jh->b_tnext;
1440 jh->b_tnext->b_tprev = jh->b_tprev;
1441}
1442
1443/*
1444 * Remove a buffer from the appropriate transaction list.
1445 *
1446 * Note that this function can *change* the value of
87c89c23
JK
1447 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1448 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one
1449 * of these pointers, it could go bad. Generally the caller needs to re-read
1450 * the pointer from the transaction_t.
470decc6
DK
1451 *
1452 * Called under j_list_lock. The journal may not be locked.
1453 */
f7f4bccb 1454void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
470decc6
DK
1455{
1456 struct journal_head **list = NULL;
1457 transaction_t *transaction;
1458 struct buffer_head *bh = jh2bh(jh);
1459
1460 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1461 transaction = jh->b_transaction;
1462 if (transaction)
1463 assert_spin_locked(&transaction->t_journal->j_list_lock);
1464
1465 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1466 if (jh->b_jlist != BJ_None)
4019191b 1467 J_ASSERT_JH(jh, transaction != NULL);
470decc6
DK
1468
1469 switch (jh->b_jlist) {
1470 case BJ_None:
1471 return;
470decc6
DK
1472 case BJ_Metadata:
1473 transaction->t_nr_buffers--;
1474 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1475 list = &transaction->t_buffers;
1476 break;
1477 case BJ_Forget:
1478 list = &transaction->t_forget;
1479 break;
1480 case BJ_IO:
1481 list = &transaction->t_iobuf_list;
1482 break;
1483 case BJ_Shadow:
1484 list = &transaction->t_shadow_list;
1485 break;
1486 case BJ_LogCtl:
1487 list = &transaction->t_log_list;
1488 break;
1489 case BJ_Reserved:
1490 list = &transaction->t_reserved_list;
1491 break;
470decc6
DK
1492 }
1493
1494 __blist_del_buffer(list, jh);
1495 jh->b_jlist = BJ_None;
1496 if (test_clear_buffer_jbddirty(bh))
1497 mark_buffer_dirty(bh); /* Expose it to the VM */
1498}
1499
f7f4bccb 1500void __jbd2_journal_unfile_buffer(struct journal_head *jh)
470decc6 1501{
f7f4bccb 1502 __jbd2_journal_temp_unlink_buffer(jh);
470decc6
DK
1503 jh->b_transaction = NULL;
1504}
1505
f7f4bccb 1506void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
470decc6
DK
1507{
1508 jbd_lock_bh_state(jh2bh(jh));
1509 spin_lock(&journal->j_list_lock);
f7f4bccb 1510 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1511 spin_unlock(&journal->j_list_lock);
1512 jbd_unlock_bh_state(jh2bh(jh));
1513}
1514
1515/*
f7f4bccb 1516 * Called from jbd2_journal_try_to_free_buffers().
470decc6
DK
1517 *
1518 * Called under jbd_lock_bh_state(bh)
1519 */
1520static void
1521__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1522{
1523 struct journal_head *jh;
1524
1525 jh = bh2jh(bh);
1526
1527 if (buffer_locked(bh) || buffer_dirty(bh))
1528 goto out;
1529
4019191b 1530 if (jh->b_next_transaction != NULL)
470decc6
DK
1531 goto out;
1532
1533 spin_lock(&journal->j_list_lock);
87c89c23 1534 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
470decc6
DK
1535 /* written-back checkpointed metadata buffer */
1536 if (jh->b_jlist == BJ_None) {
1537 JBUFFER_TRACE(jh, "remove from checkpoint list");
f7f4bccb
MC
1538 __jbd2_journal_remove_checkpoint(jh);
1539 jbd2_journal_remove_journal_head(bh);
470decc6
DK
1540 __brelse(bh);
1541 }
1542 }
1543 spin_unlock(&journal->j_list_lock);
1544out:
1545 return;
1546}
1547
530576bb
MC
1548/*
1549 * jbd2_journal_try_to_free_buffers() could race with
1550 * jbd2_journal_commit_transaction(). The later might still hold the
1551 * reference count to the buffers when inspecting them on
1552 * t_syncdata_list or t_locked_list.
1553 *
1554 * jbd2_journal_try_to_free_buffers() will call this function to
1555 * wait for the current transaction to finish syncing data buffers, before
1556 * try to free that buffer.
1557 *
1558 * Called with journal->j_state_lock hold.
1559 */
1560static void jbd2_journal_wait_for_transaction_sync_data(journal_t *journal)
1561{
1562 transaction_t *transaction;
1563 tid_t tid;
1564
1565 spin_lock(&journal->j_state_lock);
1566 transaction = journal->j_committing_transaction;
1567
1568 if (!transaction) {
1569 spin_unlock(&journal->j_state_lock);
1570 return;
1571 }
1572
1573 tid = transaction->t_tid;
1574 spin_unlock(&journal->j_state_lock);
1575 jbd2_log_wait_commit(journal, tid);
1576}
470decc6
DK
1577
1578/**
f7f4bccb 1579 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
470decc6
DK
1580 * @journal: journal for operation
1581 * @page: to try and free
530576bb
MC
1582 * @gfp_mask: we use the mask to detect how hard should we try to release
1583 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1584 * release the buffers.
470decc6
DK
1585 *
1586 *
1587 * For all the buffers on this page,
1588 * if they are fully written out ordered data, move them onto BUF_CLEAN
1589 * so try_to_free_buffers() can reap them.
1590 *
1591 * This function returns non-zero if we wish try_to_free_buffers()
1592 * to be called. We do this if the page is releasable by try_to_free_buffers().
1593 * We also do it if the page has locked or dirty buffers and the caller wants
1594 * us to perform sync or async writeout.
1595 *
1596 * This complicates JBD locking somewhat. We aren't protected by the
1597 * BKL here. We wish to remove the buffer from its committing or
f7f4bccb 1598 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
470decc6
DK
1599 *
1600 * This may *change* the value of transaction_t->t_datalist, so anyone
1601 * who looks at t_datalist needs to lock against this function.
1602 *
f7f4bccb
MC
1603 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1604 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
470decc6
DK
1605 * will come out of the lock with the buffer dirty, which makes it
1606 * ineligible for release here.
1607 *
1608 * Who else is affected by this? hmm... Really the only contender
1609 * is do_get_write_access() - it could be looking at the buffer while
1610 * journal_try_to_free_buffer() is changing its state. But that
1611 * cannot happen because we never reallocate freed data as metadata
1612 * while the data is part of a transaction. Yes?
530576bb
MC
1613 *
1614 * Return 0 on failure, 1 on success
470decc6 1615 */
f7f4bccb 1616int jbd2_journal_try_to_free_buffers(journal_t *journal,
530576bb 1617 struct page *page, gfp_t gfp_mask)
470decc6
DK
1618{
1619 struct buffer_head *head;
1620 struct buffer_head *bh;
1621 int ret = 0;
1622
1623 J_ASSERT(PageLocked(page));
1624
1625 head = page_buffers(page);
1626 bh = head;
1627 do {
1628 struct journal_head *jh;
1629
1630 /*
1631 * We take our own ref against the journal_head here to avoid
1632 * having to add tons of locking around each instance of
530576bb
MC
1633 * jbd2_journal_remove_journal_head() and
1634 * jbd2_journal_put_journal_head().
470decc6 1635 */
f7f4bccb 1636 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
1637 if (!jh)
1638 continue;
1639
1640 jbd_lock_bh_state(bh);
1641 __journal_try_to_free_buffer(journal, bh);
f7f4bccb 1642 jbd2_journal_put_journal_head(jh);
470decc6
DK
1643 jbd_unlock_bh_state(bh);
1644 if (buffer_jbd(bh))
1645 goto busy;
1646 } while ((bh = bh->b_this_page) != head);
530576bb 1647
470decc6 1648 ret = try_to_free_buffers(page);
530576bb
MC
1649
1650 /*
1651 * There are a number of places where jbd2_journal_try_to_free_buffers()
1652 * could race with jbd2_journal_commit_transaction(), the later still
1653 * holds the reference to the buffers to free while processing them.
1654 * try_to_free_buffers() failed to free those buffers. Some of the
1655 * caller of releasepage() request page buffers to be dropped, otherwise
1656 * treat the fail-to-free as errors (such as generic_file_direct_IO())
1657 *
1658 * So, if the caller of try_to_release_page() wants the synchronous
1659 * behaviour(i.e make sure buffers are dropped upon return),
1660 * let's wait for the current transaction to finish flush of
1661 * dirty data buffers, then try to free those buffers again,
1662 * with the journal locked.
1663 */
1664 if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) {
1665 jbd2_journal_wait_for_transaction_sync_data(journal);
1666 ret = try_to_free_buffers(page);
1667 }
1668
470decc6
DK
1669busy:
1670 return ret;
1671}
1672
1673/*
1674 * This buffer is no longer needed. If it is on an older transaction's
1675 * checkpoint list we need to record it on this transaction's forget list
1676 * to pin this buffer (and hence its checkpointing transaction) down until
1677 * this transaction commits. If the buffer isn't on a checkpoint list, we
1678 * release it.
1679 * Returns non-zero if JBD no longer has an interest in the buffer.
1680 *
1681 * Called under j_list_lock.
1682 *
1683 * Called under jbd_lock_bh_state(bh).
1684 */
1685static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1686{
1687 int may_free = 1;
1688 struct buffer_head *bh = jh2bh(jh);
1689
f7f4bccb 1690 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1691
1692 if (jh->b_cp_transaction) {
1693 JBUFFER_TRACE(jh, "on running+cp transaction");
f7f4bccb 1694 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6
DK
1695 clear_buffer_jbddirty(bh);
1696 may_free = 0;
1697 } else {
1698 JBUFFER_TRACE(jh, "on running transaction");
f7f4bccb 1699 jbd2_journal_remove_journal_head(bh);
470decc6
DK
1700 __brelse(bh);
1701 }
1702 return may_free;
1703}
1704
1705/*
f7f4bccb 1706 * jbd2_journal_invalidatepage
470decc6
DK
1707 *
1708 * This code is tricky. It has a number of cases to deal with.
1709 *
1710 * There are two invariants which this code relies on:
1711 *
1712 * i_size must be updated on disk before we start calling invalidatepage on the
1713 * data.
1714 *
1715 * This is done in ext3 by defining an ext3_setattr method which
1716 * updates i_size before truncate gets going. By maintaining this
1717 * invariant, we can be sure that it is safe to throw away any buffers
1718 * attached to the current transaction: once the transaction commits,
1719 * we know that the data will not be needed.
1720 *
1721 * Note however that we can *not* throw away data belonging to the
1722 * previous, committing transaction!
1723 *
1724 * Any disk blocks which *are* part of the previous, committing
1725 * transaction (and which therefore cannot be discarded immediately) are
1726 * not going to be reused in the new running transaction
1727 *
1728 * The bitmap committed_data images guarantee this: any block which is
1729 * allocated in one transaction and removed in the next will be marked
1730 * as in-use in the committed_data bitmap, so cannot be reused until
1731 * the next transaction to delete the block commits. This means that
1732 * leaving committing buffers dirty is quite safe: the disk blocks
1733 * cannot be reallocated to a different file and so buffer aliasing is
1734 * not possible.
1735 *
1736 *
1737 * The above applies mainly to ordered data mode. In writeback mode we
1738 * don't make guarantees about the order in which data hits disk --- in
1739 * particular we don't guarantee that new dirty data is flushed before
1740 * transaction commit --- so it is always safe just to discard data
1741 * immediately in that mode. --sct
1742 */
1743
1744/*
1745 * The journal_unmap_buffer helper function returns zero if the buffer
1746 * concerned remains pinned as an anonymous buffer belonging to an older
1747 * transaction.
1748 *
1749 * We're outside-transaction here. Either or both of j_running_transaction
1750 * and j_committing_transaction may be NULL.
1751 */
1752static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1753{
1754 transaction_t *transaction;
1755 struct journal_head *jh;
1756 int may_free = 1;
1757 int ret;
1758
1759 BUFFER_TRACE(bh, "entry");
1760
1761 /*
1762 * It is safe to proceed here without the j_list_lock because the
1763 * buffers cannot be stolen by try_to_free_buffers as long as we are
1764 * holding the page lock. --sct
1765 */
1766
1767 if (!buffer_jbd(bh))
1768 goto zap_buffer_unlocked;
1769
87c89c23 1770 /* OK, we have data buffer in journaled mode */
470decc6
DK
1771 spin_lock(&journal->j_state_lock);
1772 jbd_lock_bh_state(bh);
1773 spin_lock(&journal->j_list_lock);
1774
f7f4bccb 1775 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
1776 if (!jh)
1777 goto zap_buffer_no_jh;
1778
1779 transaction = jh->b_transaction;
1780 if (transaction == NULL) {
1781 /* First case: not on any transaction. If it
1782 * has no checkpoint link, then we can zap it:
1783 * it's a writeback-mode buffer so we don't care
1784 * if it hits disk safely. */
1785 if (!jh->b_cp_transaction) {
1786 JBUFFER_TRACE(jh, "not on any transaction: zap");
1787 goto zap_buffer;
1788 }
1789
1790 if (!buffer_dirty(bh)) {
1791 /* bdflush has written it. We can drop it now */
1792 goto zap_buffer;
1793 }
1794
1795 /* OK, it must be in the journal but still not
1796 * written fully to disk: it's metadata or
1797 * journaled data... */
1798
1799 if (journal->j_running_transaction) {
1800 /* ... and once the current transaction has
1801 * committed, the buffer won't be needed any
1802 * longer. */
1803 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1804 ret = __dispose_buffer(jh,
1805 journal->j_running_transaction);
f7f4bccb 1806 jbd2_journal_put_journal_head(jh);
470decc6
DK
1807 spin_unlock(&journal->j_list_lock);
1808 jbd_unlock_bh_state(bh);
1809 spin_unlock(&journal->j_state_lock);
1810 return ret;
1811 } else {
1812 /* There is no currently-running transaction. So the
1813 * orphan record which we wrote for this file must have
1814 * passed into commit. We must attach this buffer to
1815 * the committing transaction, if it exists. */
1816 if (journal->j_committing_transaction) {
1817 JBUFFER_TRACE(jh, "give to committing trans");
1818 ret = __dispose_buffer(jh,
1819 journal->j_committing_transaction);
f7f4bccb 1820 jbd2_journal_put_journal_head(jh);
470decc6
DK
1821 spin_unlock(&journal->j_list_lock);
1822 jbd_unlock_bh_state(bh);
1823 spin_unlock(&journal->j_state_lock);
1824 return ret;
1825 } else {
1826 /* The orphan record's transaction has
1827 * committed. We can cleanse this buffer */
1828 clear_buffer_jbddirty(bh);
1829 goto zap_buffer;
1830 }
1831 }
1832 } else if (transaction == journal->j_committing_transaction) {
9b57988d 1833 JBUFFER_TRACE(jh, "on committing transaction");
470decc6
DK
1834 /*
1835 * If it is committing, we simply cannot touch it. We
1836 * can remove it's next_transaction pointer from the
1837 * running transaction if that is set, but nothing
1838 * else. */
470decc6
DK
1839 set_buffer_freed(bh);
1840 if (jh->b_next_transaction) {
1841 J_ASSERT(jh->b_next_transaction ==
1842 journal->j_running_transaction);
1843 jh->b_next_transaction = NULL;
1844 }
f7f4bccb 1845 jbd2_journal_put_journal_head(jh);
470decc6
DK
1846 spin_unlock(&journal->j_list_lock);
1847 jbd_unlock_bh_state(bh);
1848 spin_unlock(&journal->j_state_lock);
1849 return 0;
1850 } else {
1851 /* Good, the buffer belongs to the running transaction.
1852 * We are writing our own transaction's data, not any
1853 * previous one's, so it is safe to throw it away
1854 * (remember that we expect the filesystem to have set
1855 * i_size already for this truncate so recovery will not
1856 * expose the disk blocks we are discarding here.) */
1857 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
9b57988d 1858 JBUFFER_TRACE(jh, "on running transaction");
470decc6
DK
1859 may_free = __dispose_buffer(jh, transaction);
1860 }
1861
1862zap_buffer:
f7f4bccb 1863 jbd2_journal_put_journal_head(jh);
470decc6
DK
1864zap_buffer_no_jh:
1865 spin_unlock(&journal->j_list_lock);
1866 jbd_unlock_bh_state(bh);
1867 spin_unlock(&journal->j_state_lock);
1868zap_buffer_unlocked:
1869 clear_buffer_dirty(bh);
1870 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1871 clear_buffer_mapped(bh);
1872 clear_buffer_req(bh);
1873 clear_buffer_new(bh);
1874 bh->b_bdev = NULL;
1875 return may_free;
1876}
1877
1878/**
f7f4bccb 1879 * void jbd2_journal_invalidatepage()
470decc6
DK
1880 * @journal: journal to use for flush...
1881 * @page: page to flush
1882 * @offset: length of page to invalidate.
1883 *
1884 * Reap page buffers containing data after offset in page.
1885 *
1886 */
f7f4bccb 1887void jbd2_journal_invalidatepage(journal_t *journal,
470decc6
DK
1888 struct page *page,
1889 unsigned long offset)
1890{
1891 struct buffer_head *head, *bh, *next;
1892 unsigned int curr_off = 0;
1893 int may_free = 1;
1894
1895 if (!PageLocked(page))
1896 BUG();
1897 if (!page_has_buffers(page))
1898 return;
1899
1900 /* We will potentially be playing with lists other than just the
1901 * data lists (especially for journaled data mode), so be
1902 * cautious in our locking. */
1903
1904 head = bh = page_buffers(page);
1905 do {
1906 unsigned int next_off = curr_off + bh->b_size;
1907 next = bh->b_this_page;
1908
1909 if (offset <= curr_off) {
1910 /* This block is wholly outside the truncation point */
1911 lock_buffer(bh);
1912 may_free &= journal_unmap_buffer(journal, bh);
1913 unlock_buffer(bh);
1914 }
1915 curr_off = next_off;
1916 bh = next;
1917
1918 } while (bh != head);
1919
1920 if (!offset) {
1921 if (may_free && try_to_free_buffers(page))
1922 J_ASSERT(!page_has_buffers(page));
1923 }
1924}
1925
1926/*
1927 * File a buffer on the given transaction list.
1928 */
f7f4bccb 1929void __jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
1930 transaction_t *transaction, int jlist)
1931{
1932 struct journal_head **list = NULL;
1933 int was_dirty = 0;
1934 struct buffer_head *bh = jh2bh(jh);
1935
1936 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1937 assert_spin_locked(&transaction->t_journal->j_list_lock);
1938
1939 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1940 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
4019191b 1941 jh->b_transaction == NULL);
470decc6
DK
1942
1943 if (jh->b_transaction && jh->b_jlist == jlist)
1944 return;
1945
1946 /* The following list of buffer states needs to be consistent
1947 * with __jbd_unexpected_dirty_buffer()'s handling of dirty
1948 * state. */
1949
1950 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1951 jlist == BJ_Shadow || jlist == BJ_Forget) {
1952 if (test_clear_buffer_dirty(bh) ||
1953 test_clear_buffer_jbddirty(bh))
1954 was_dirty = 1;
1955 }
1956
1957 if (jh->b_transaction)
f7f4bccb 1958 __jbd2_journal_temp_unlink_buffer(jh);
470decc6
DK
1959 jh->b_transaction = transaction;
1960
1961 switch (jlist) {
1962 case BJ_None:
1963 J_ASSERT_JH(jh, !jh->b_committed_data);
1964 J_ASSERT_JH(jh, !jh->b_frozen_data);
1965 return;
470decc6
DK
1966 case BJ_Metadata:
1967 transaction->t_nr_buffers++;
1968 list = &transaction->t_buffers;
1969 break;
1970 case BJ_Forget:
1971 list = &transaction->t_forget;
1972 break;
1973 case BJ_IO:
1974 list = &transaction->t_iobuf_list;
1975 break;
1976 case BJ_Shadow:
1977 list = &transaction->t_shadow_list;
1978 break;
1979 case BJ_LogCtl:
1980 list = &transaction->t_log_list;
1981 break;
1982 case BJ_Reserved:
1983 list = &transaction->t_reserved_list;
1984 break;
470decc6
DK
1985 }
1986
1987 __blist_add_buffer(list, jh);
1988 jh->b_jlist = jlist;
1989
1990 if (was_dirty)
1991 set_buffer_jbddirty(bh);
1992}
1993
f7f4bccb 1994void jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
1995 transaction_t *transaction, int jlist)
1996{
1997 jbd_lock_bh_state(jh2bh(jh));
1998 spin_lock(&transaction->t_journal->j_list_lock);
f7f4bccb 1999 __jbd2_journal_file_buffer(jh, transaction, jlist);
470decc6
DK
2000 spin_unlock(&transaction->t_journal->j_list_lock);
2001 jbd_unlock_bh_state(jh2bh(jh));
2002}
2003
2004/*
2005 * Remove a buffer from its current buffer list in preparation for
2006 * dropping it from its current transaction entirely. If the buffer has
2007 * already started to be used by a subsequent transaction, refile the
2008 * buffer on that transaction's metadata list.
2009 *
2010 * Called under journal->j_list_lock
2011 *
2012 * Called under jbd_lock_bh_state(jh2bh(jh))
2013 */
f7f4bccb 2014void __jbd2_journal_refile_buffer(struct journal_head *jh)
470decc6
DK
2015{
2016 int was_dirty;
2017 struct buffer_head *bh = jh2bh(jh);
2018
2019 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2020 if (jh->b_transaction)
2021 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2022
2023 /* If the buffer is now unused, just drop it. */
2024 if (jh->b_next_transaction == NULL) {
f7f4bccb 2025 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2026 return;
2027 }
2028
2029 /*
2030 * It has been modified by a later transaction: add it to the new
2031 * transaction's metadata list.
2032 */
2033
2034 was_dirty = test_clear_buffer_jbddirty(bh);
f7f4bccb 2035 __jbd2_journal_temp_unlink_buffer(jh);
470decc6
DK
2036 jh->b_transaction = jh->b_next_transaction;
2037 jh->b_next_transaction = NULL;
f7f4bccb 2038 __jbd2_journal_file_buffer(jh, jh->b_transaction,
1dfc3220 2039 jh->b_modified ? BJ_Metadata : BJ_Reserved);
470decc6
DK
2040 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2041
2042 if (was_dirty)
2043 set_buffer_jbddirty(bh);
2044}
2045
2046/*
2047 * For the unlocked version of this call, also make sure that any
2048 * hanging journal_head is cleaned up if necessary.
2049 *
f7f4bccb 2050 * __jbd2_journal_refile_buffer is usually called as part of a single locked
470decc6
DK
2051 * operation on a buffer_head, in which the caller is probably going to
2052 * be hooking the journal_head onto other lists. In that case it is up
2053 * to the caller to remove the journal_head if necessary. For the
f7f4bccb 2054 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
470decc6
DK
2055 * doing anything else to the buffer so we need to do the cleanup
2056 * ourselves to avoid a jh leak.
2057 *
2058 * *** The journal_head may be freed by this call! ***
2059 */
f7f4bccb 2060void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
470decc6
DK
2061{
2062 struct buffer_head *bh = jh2bh(jh);
2063
2064 jbd_lock_bh_state(bh);
2065 spin_lock(&journal->j_list_lock);
2066
f7f4bccb 2067 __jbd2_journal_refile_buffer(jh);
470decc6 2068 jbd_unlock_bh_state(bh);
f7f4bccb 2069 jbd2_journal_remove_journal_head(bh);
470decc6
DK
2070
2071 spin_unlock(&journal->j_list_lock);
2072 __brelse(bh);
2073}
c851ed54
JK
2074
2075/*
2076 * File inode in the inode list of the handle's transaction
2077 */
2078int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2079{
2080 transaction_t *transaction = handle->h_transaction;
2081 journal_t *journal = transaction->t_journal;
2082
2083 if (is_handle_aborted(handle))
2084 return -EIO;
2085
2086 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2087 transaction->t_tid);
2088
2089 /*
2090 * First check whether inode isn't already on the transaction's
2091 * lists without taking the lock. Note that this check is safe
2092 * without the lock as we cannot race with somebody removing inode
2093 * from the transaction. The reason is that we remove inode from the
2094 * transaction only in journal_release_jbd_inode() and when we commit
2095 * the transaction. We are guarded from the first case by holding
2096 * a reference to the inode. We are safe against the second case
2097 * because if jinode->i_transaction == transaction, commit code
2098 * cannot touch the transaction because we hold reference to it,
2099 * and if jinode->i_next_transaction == transaction, commit code
2100 * will only file the inode where we want it.
2101 */
2102 if (jinode->i_transaction == transaction ||
2103 jinode->i_next_transaction == transaction)
2104 return 0;
2105
2106 spin_lock(&journal->j_list_lock);
2107
2108 if (jinode->i_transaction == transaction ||
2109 jinode->i_next_transaction == transaction)
2110 goto done;
2111
2112 /* On some different transaction's list - should be
2113 * the committing one */
2114 if (jinode->i_transaction) {
2115 J_ASSERT(jinode->i_next_transaction == NULL);
2116 J_ASSERT(jinode->i_transaction ==
2117 journal->j_committing_transaction);
2118 jinode->i_next_transaction = transaction;
2119 goto done;
2120 }
2121 /* Not on any transaction list... */
2122 J_ASSERT(!jinode->i_next_transaction);
2123 jinode->i_transaction = transaction;
2124 list_add(&jinode->i_list, &transaction->t_inode_list);
2125done:
2126 spin_unlock(&journal->j_list_lock);
2127
2128 return 0;
2129}
2130
2131/*
2132 * This function must be called when inode is journaled in ordered mode
2133 * before truncation happens. It starts writeout of truncated part in
2134 * case it is in the committing transaction so that we stand to ordered
2135 * mode consistency guarantees.
2136 */
2137int jbd2_journal_begin_ordered_truncate(struct jbd2_inode *inode,
2138 loff_t new_size)
2139{
2140 journal_t *journal;
2141 transaction_t *commit_trans;
2142 int ret = 0;
2143
2144 if (!inode->i_transaction && !inode->i_next_transaction)
2145 goto out;
2146 journal = inode->i_transaction->t_journal;
2147 spin_lock(&journal->j_state_lock);
2148 commit_trans = journal->j_committing_transaction;
2149 spin_unlock(&journal->j_state_lock);
2150 if (inode->i_transaction == commit_trans) {
2151 ret = filemap_fdatawrite_range(inode->i_vfs_inode->i_mapping,
2152 new_size, LLONG_MAX);
2153 if (ret)
2154 jbd2_journal_abort(journal, ret);
2155 }
2156out:
2157 return ret;
2158}