Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-block.git] / fs / iomap.c
CommitLineData
ae259a9c
CH
1/*
2 * Copyright (C) 2010 Red Hat, Inc.
72b4daa2 3 * Copyright (c) 2016-2018 Christoph Hellwig.
ae259a9c
CH
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14#include <linux/module.h>
15#include <linux/compiler.h>
16#include <linux/fs.h>
17#include <linux/iomap.h>
18#include <linux/uaccess.h>
19#include <linux/gfp.h>
9dc55f13 20#include <linux/migrate.h>
ae259a9c 21#include <linux/mm.h>
72b4daa2 22#include <linux/mm_inline.h>
ae259a9c
CH
23#include <linux/swap.h>
24#include <linux/pagemap.h>
8a78cb1f 25#include <linux/pagevec.h>
ae259a9c
CH
26#include <linux/file.h>
27#include <linux/uio.h>
28#include <linux/backing-dev.h>
29#include <linux/buffer_head.h>
ff6a9292 30#include <linux/task_io_accounting_ops.h>
9a286f0e 31#include <linux/dax.h>
f361bf4a
IM
32#include <linux/sched/signal.h>
33
ae259a9c
CH
34#include "internal.h"
35
ae259a9c
CH
36/*
37 * Execute a iomap write on a segment of the mapping that spans a
38 * contiguous range of pages that have identical block mapping state.
39 *
40 * This avoids the need to map pages individually, do individual allocations
41 * for each page and most importantly avoid the need for filesystem specific
42 * locking per page. Instead, all the operations are amortised over the entire
43 * range of pages. It is assumed that the filesystems will lock whatever
44 * resources they require in the iomap_begin call, and release them in the
45 * iomap_end call.
46 */
befb503c 47loff_t
ae259a9c 48iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
8ff6daa1 49 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
ae259a9c
CH
50{
51 struct iomap iomap = { 0 };
52 loff_t written = 0, ret;
53
54 /*
55 * Need to map a range from start position for length bytes. This can
56 * span multiple pages - it is only guaranteed to return a range of a
57 * single type of pages (e.g. all into a hole, all mapped or all
58 * unwritten). Failure at this point has nothing to undo.
59 *
60 * If allocation is required for this range, reserve the space now so
61 * that the allocation is guaranteed to succeed later on. Once we copy
62 * the data into the page cache pages, then we cannot fail otherwise we
63 * expose transient stale data. If the reserve fails, we can safely
64 * back out at this point as there is nothing to undo.
65 */
66 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
67 if (ret)
68 return ret;
69 if (WARN_ON(iomap.offset > pos))
70 return -EIO;
0c6dda7a
DW
71 if (WARN_ON(iomap.length == 0))
72 return -EIO;
ae259a9c
CH
73
74 /*
75 * Cut down the length to the one actually provided by the filesystem,
76 * as it might not be able to give us the whole size that we requested.
77 */
78 if (iomap.offset + iomap.length < pos + length)
79 length = iomap.offset + iomap.length - pos;
80
81 /*
82 * Now that we have guaranteed that the space allocation will succeed.
83 * we can do the copy-in page by page without having to worry about
84 * failures exposing transient data.
85 */
86 written = actor(inode, pos, length, data, &iomap);
87
88 /*
89 * Now the data has been copied, commit the range we've copied. This
90 * should not fail unless the filesystem has had a fatal error.
91 */
f20ac7ab
CH
92 if (ops->iomap_end) {
93 ret = ops->iomap_end(inode, pos, length,
94 written > 0 ? written : 0,
95 flags, &iomap);
96 }
ae259a9c
CH
97
98 return written ? written : ret;
99}
100
57fc505d
CH
101static sector_t
102iomap_sector(struct iomap *iomap, loff_t pos)
103{
104 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
105}
106
9dc55f13
CH
107static struct iomap_page *
108iomap_page_create(struct inode *inode, struct page *page)
109{
110 struct iomap_page *iop = to_iomap_page(page);
111
112 if (iop || i_blocksize(inode) == PAGE_SIZE)
113 return iop;
114
115 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
116 atomic_set(&iop->read_count, 0);
117 atomic_set(&iop->write_count, 0);
118 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
119 set_page_private(page, (unsigned long)iop);
120 SetPagePrivate(page);
121 return iop;
122}
123
124static void
125iomap_page_release(struct page *page)
126{
127 struct iomap_page *iop = to_iomap_page(page);
128
129 if (!iop)
130 return;
131 WARN_ON_ONCE(atomic_read(&iop->read_count));
132 WARN_ON_ONCE(atomic_read(&iop->write_count));
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
135 kfree(iop);
136}
137
138/*
139 * Calculate the range inside the page that we actually need to read.
140 */
141static void
142iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
143 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
144{
8c110d43
DC
145 loff_t orig_pos = *pos;
146 loff_t isize = i_size_read(inode);
9dc55f13
CH
147 unsigned block_bits = inode->i_blkbits;
148 unsigned block_size = (1 << block_bits);
10259de1 149 unsigned poff = offset_in_page(*pos);
9dc55f13
CH
150 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
151 unsigned first = poff >> block_bits;
152 unsigned last = (poff + plen - 1) >> block_bits;
9dc55f13
CH
153
154 /*
155 * If the block size is smaller than the page size we need to check the
156 * per-block uptodate status and adjust the offset and length if needed
157 * to avoid reading in already uptodate ranges.
158 */
159 if (iop) {
160 unsigned int i;
161
162 /* move forward for each leading block marked uptodate */
163 for (i = first; i <= last; i++) {
164 if (!test_bit(i, iop->uptodate))
165 break;
166 *pos += block_size;
167 poff += block_size;
168 plen -= block_size;
169 first++;
170 }
171
172 /* truncate len if we find any trailing uptodate block(s) */
173 for ( ; i <= last; i++) {
174 if (test_bit(i, iop->uptodate)) {
175 plen -= (last - i + 1) * block_size;
176 last = i - 1;
177 break;
178 }
179 }
180 }
181
182 /*
183 * If the extent spans the block that contains the i_size we need to
184 * handle both halves separately so that we properly zero data in the
185 * page cache for blocks that are entirely outside of i_size.
186 */
8c110d43
DC
187 if (orig_pos <= isize && orig_pos + length > isize) {
188 unsigned end = offset_in_page(isize - 1) >> block_bits;
189
190 if (first <= end && last > end)
191 plen -= (last - end) * block_size;
192 }
9dc55f13
CH
193
194 *offp = poff;
195 *lenp = plen;
196}
197
198static void
199iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
200{
201 struct iomap_page *iop = to_iomap_page(page);
202 struct inode *inode = page->mapping->host;
203 unsigned first = off >> inode->i_blkbits;
204 unsigned last = (off + len - 1) >> inode->i_blkbits;
205 unsigned int i;
206 bool uptodate = true;
207
208 if (iop) {
209 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
210 if (i >= first && i <= last)
211 set_bit(i, iop->uptodate);
212 else if (!test_bit(i, iop->uptodate))
213 uptodate = false;
214 }
215 }
216
217 if (uptodate && !PageError(page))
218 SetPageUptodate(page);
219}
220
221static void
222iomap_read_finish(struct iomap_page *iop, struct page *page)
223{
224 if (!iop || atomic_dec_and_test(&iop->read_count))
225 unlock_page(page);
226}
227
228static void
229iomap_read_page_end_io(struct bio_vec *bvec, int error)
230{
231 struct page *page = bvec->bv_page;
232 struct iomap_page *iop = to_iomap_page(page);
233
234 if (unlikely(error)) {
235 ClearPageUptodate(page);
236 SetPageError(page);
237 } else {
238 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
239 }
240
241 iomap_read_finish(iop, page);
242}
243
19e0c58f
AG
244static void
245iomap_read_inline_data(struct inode *inode, struct page *page,
246 struct iomap *iomap)
247{
248 size_t size = i_size_read(inode);
249 void *addr;
250
251 if (PageUptodate(page))
252 return;
253
254 BUG_ON(page->index);
255 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
256
257 addr = kmap_atomic(page);
258 memcpy(addr, iomap->inline_data, size);
259 memset(addr + size, 0, PAGE_SIZE - size);
260 kunmap_atomic(addr);
261 SetPageUptodate(page);
262}
263
ae259a9c 264static void
72b4daa2
CH
265iomap_read_end_io(struct bio *bio)
266{
267 int error = blk_status_to_errno(bio->bi_status);
268 struct bio_vec *bvec;
269 int i;
270
271 bio_for_each_segment_all(bvec, bio, i)
9dc55f13 272 iomap_read_page_end_io(bvec, error);
72b4daa2
CH
273 bio_put(bio);
274}
275
276struct iomap_readpage_ctx {
277 struct page *cur_page;
278 bool cur_page_in_bio;
279 bool is_readahead;
280 struct bio *bio;
281 struct list_head *pages;
282};
283
284static loff_t
285iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
286 struct iomap *iomap)
287{
288 struct iomap_readpage_ctx *ctx = data;
289 struct page *page = ctx->cur_page;
9dc55f13 290 struct iomap_page *iop = iomap_page_create(inode, page);
72b4daa2 291 bool is_contig = false;
9dc55f13
CH
292 loff_t orig_pos = pos;
293 unsigned poff, plen;
72b4daa2
CH
294 sector_t sector;
295
806a1477 296 if (iomap->type == IOMAP_INLINE) {
7d5e049e 297 WARN_ON_ONCE(pos);
806a1477
AG
298 iomap_read_inline_data(inode, page, iomap);
299 return PAGE_SIZE;
300 }
301
9dc55f13
CH
302 /* zero post-eof blocks as the page may be mapped */
303 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
304 if (plen == 0)
305 goto done;
72b4daa2
CH
306
307 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
308 zero_user(page, poff, plen);
9dc55f13 309 iomap_set_range_uptodate(page, poff, plen);
72b4daa2
CH
310 goto done;
311 }
312
313 ctx->cur_page_in_bio = true;
314
315 /*
316 * Try to merge into a previous segment if we can.
317 */
318 sector = iomap_sector(iomap, pos);
319 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
320 if (__bio_try_merge_page(ctx->bio, page, plen, poff))
321 goto done;
322 is_contig = true;
323 }
324
9dc55f13
CH
325 /*
326 * If we start a new segment we need to increase the read count, and we
327 * need to do so before submitting any previous full bio to make sure
328 * that we don't prematurely unlock the page.
329 */
330 if (iop)
331 atomic_inc(&iop->read_count);
332
72b4daa2
CH
333 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
334 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
335 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
336
337 if (ctx->bio)
338 submit_bio(ctx->bio);
339
340 if (ctx->is_readahead) /* same as readahead_gfp_mask */
341 gfp |= __GFP_NORETRY | __GFP_NOWARN;
342 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
343 ctx->bio->bi_opf = REQ_OP_READ;
344 if (ctx->is_readahead)
345 ctx->bio->bi_opf |= REQ_RAHEAD;
346 ctx->bio->bi_iter.bi_sector = sector;
347 bio_set_dev(ctx->bio, iomap->bdev);
348 ctx->bio->bi_end_io = iomap_read_end_io;
349 }
350
351 __bio_add_page(ctx->bio, page, plen, poff);
352done:
9dc55f13
CH
353 /*
354 * Move the caller beyond our range so that it keeps making progress.
355 * For that we have to include any leading non-uptodate ranges, but
356 * we can skip trailing ones as they will be handled in the next
357 * iteration.
358 */
359 return pos - orig_pos + plen;
72b4daa2
CH
360}
361
362int
363iomap_readpage(struct page *page, const struct iomap_ops *ops)
364{
365 struct iomap_readpage_ctx ctx = { .cur_page = page };
366 struct inode *inode = page->mapping->host;
367 unsigned poff;
368 loff_t ret;
369
72b4daa2
CH
370 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
371 ret = iomap_apply(inode, page_offset(page) + poff,
372 PAGE_SIZE - poff, 0, ops, &ctx,
373 iomap_readpage_actor);
374 if (ret <= 0) {
375 WARN_ON_ONCE(ret == 0);
376 SetPageError(page);
377 break;
378 }
379 }
380
381 if (ctx.bio) {
382 submit_bio(ctx.bio);
383 WARN_ON_ONCE(!ctx.cur_page_in_bio);
384 } else {
385 WARN_ON_ONCE(ctx.cur_page_in_bio);
386 unlock_page(page);
387 }
388
389 /*
390 * Just like mpage_readpages and block_read_full_page we always
391 * return 0 and just mark the page as PageError on errors. This
392 * should be cleaned up all through the stack eventually.
393 */
394 return 0;
395}
396EXPORT_SYMBOL_GPL(iomap_readpage);
397
398static struct page *
399iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
400 loff_t length, loff_t *done)
401{
402 while (!list_empty(pages)) {
403 struct page *page = lru_to_page(pages);
404
405 if (page_offset(page) >= (u64)pos + length)
406 break;
407
408 list_del(&page->lru);
409 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
410 GFP_NOFS))
411 return page;
412
413 /*
414 * If we already have a page in the page cache at index we are
415 * done. Upper layers don't care if it is uptodate after the
416 * readpages call itself as every page gets checked again once
417 * actually needed.
418 */
419 *done += PAGE_SIZE;
420 put_page(page);
421 }
422
423 return NULL;
424}
425
426static loff_t
427iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
428 void *data, struct iomap *iomap)
429{
430 struct iomap_readpage_ctx *ctx = data;
431 loff_t done, ret;
432
433 for (done = 0; done < length; done += ret) {
10259de1 434 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
72b4daa2
CH
435 if (!ctx->cur_page_in_bio)
436 unlock_page(ctx->cur_page);
437 put_page(ctx->cur_page);
438 ctx->cur_page = NULL;
439 }
440 if (!ctx->cur_page) {
441 ctx->cur_page = iomap_next_page(inode, ctx->pages,
442 pos, length, &done);
443 if (!ctx->cur_page)
444 break;
445 ctx->cur_page_in_bio = false;
446 }
447 ret = iomap_readpage_actor(inode, pos + done, length - done,
448 ctx, iomap);
449 }
450
451 return done;
452}
453
454int
455iomap_readpages(struct address_space *mapping, struct list_head *pages,
456 unsigned nr_pages, const struct iomap_ops *ops)
457{
458 struct iomap_readpage_ctx ctx = {
459 .pages = pages,
460 .is_readahead = true,
461 };
462 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
463 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
464 loff_t length = last - pos + PAGE_SIZE, ret = 0;
465
466 while (length > 0) {
467 ret = iomap_apply(mapping->host, pos, length, 0, ops,
468 &ctx, iomap_readpages_actor);
469 if (ret <= 0) {
470 WARN_ON_ONCE(ret == 0);
471 goto done;
472 }
473 pos += ret;
474 length -= ret;
475 }
476 ret = 0;
477done:
478 if (ctx.bio)
479 submit_bio(ctx.bio);
480 if (ctx.cur_page) {
481 if (!ctx.cur_page_in_bio)
482 unlock_page(ctx.cur_page);
483 put_page(ctx.cur_page);
484 }
485
486 /*
487 * Check that we didn't lose a page due to the arcance calling
488 * conventions..
489 */
490 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
491 return ret;
492}
493EXPORT_SYMBOL_GPL(iomap_readpages);
494
9dc55f13
CH
495int
496iomap_is_partially_uptodate(struct page *page, unsigned long from,
497 unsigned long count)
498{
499 struct iomap_page *iop = to_iomap_page(page);
500 struct inode *inode = page->mapping->host;
501 unsigned first = from >> inode->i_blkbits;
502 unsigned last = (from + count - 1) >> inode->i_blkbits;
503 unsigned i;
504
505 if (iop) {
506 for (i = first; i <= last; i++)
507 if (!test_bit(i, iop->uptodate))
508 return 0;
509 return 1;
510 }
511
512 return 0;
513}
514EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
515
516int
517iomap_releasepage(struct page *page, gfp_t gfp_mask)
518{
519 /*
520 * mm accommodates an old ext3 case where clean pages might not have had
521 * the dirty bit cleared. Thus, it can send actual dirty pages to
522 * ->releasepage() via shrink_active_list(), skip those here.
523 */
524 if (PageDirty(page) || PageWriteback(page))
525 return 0;
526 iomap_page_release(page);
527 return 1;
528}
529EXPORT_SYMBOL_GPL(iomap_releasepage);
530
531void
532iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
533{
534 /*
535 * If we are invalidating the entire page, clear the dirty state from it
536 * and release it to avoid unnecessary buildup of the LRU.
537 */
538 if (offset == 0 && len == PAGE_SIZE) {
539 WARN_ON_ONCE(PageWriteback(page));
540 cancel_dirty_page(page);
541 iomap_page_release(page);
542 }
543}
544EXPORT_SYMBOL_GPL(iomap_invalidatepage);
545
546#ifdef CONFIG_MIGRATION
547int
548iomap_migrate_page(struct address_space *mapping, struct page *newpage,
549 struct page *page, enum migrate_mode mode)
550{
551 int ret;
552
553 ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
554 if (ret != MIGRATEPAGE_SUCCESS)
555 return ret;
556
557 if (page_has_private(page)) {
558 ClearPagePrivate(page);
559 set_page_private(newpage, page_private(page));
560 set_page_private(page, 0);
561 SetPagePrivate(newpage);
562 }
563
564 if (mode != MIGRATE_SYNC_NO_COPY)
565 migrate_page_copy(newpage, page);
566 else
567 migrate_page_states(newpage, page);
568 return MIGRATEPAGE_SUCCESS;
569}
570EXPORT_SYMBOL_GPL(iomap_migrate_page);
571#endif /* CONFIG_MIGRATION */
572
ae259a9c
CH
573static void
574iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
575{
576 loff_t i_size = i_size_read(inode);
577
578 /*
579 * Only truncate newly allocated pages beyoned EOF, even if the
580 * write started inside the existing inode size.
581 */
582 if (pos + len > i_size)
583 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
584}
585
c03cea42
CH
586static int
587iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
588 unsigned poff, unsigned plen, unsigned from, unsigned to,
589 struct iomap *iomap)
590{
591 struct bio_vec bvec;
592 struct bio bio;
593
594 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
595 zero_user_segments(page, poff, from, to, poff + plen);
9dc55f13 596 iomap_set_range_uptodate(page, poff, plen);
c03cea42
CH
597 return 0;
598 }
599
600 bio_init(&bio, &bvec, 1);
601 bio.bi_opf = REQ_OP_READ;
602 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
603 bio_set_dev(&bio, iomap->bdev);
604 __bio_add_page(&bio, page, plen, poff);
605 return submit_bio_wait(&bio);
606}
607
608static int
609__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
610 struct page *page, struct iomap *iomap)
611{
9dc55f13 612 struct iomap_page *iop = iomap_page_create(inode, page);
c03cea42
CH
613 loff_t block_size = i_blocksize(inode);
614 loff_t block_start = pos & ~(block_size - 1);
615 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
10259de1 616 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
9dc55f13 617 int status = 0;
c03cea42
CH
618
619 if (PageUptodate(page))
620 return 0;
9dc55f13
CH
621
622 do {
623 iomap_adjust_read_range(inode, iop, &block_start,
624 block_end - block_start, &poff, &plen);
625 if (plen == 0)
626 break;
627
628 if ((from > poff && from < poff + plen) ||
629 (to > poff && to < poff + plen)) {
630 status = iomap_read_page_sync(inode, block_start, page,
631 poff, plen, from, to, iomap);
632 if (status)
633 break;
634 }
635
636 } while ((block_start += plen) < block_end);
637
638 return status;
c03cea42
CH
639}
640
ae259a9c
CH
641static int
642iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
643 struct page **pagep, struct iomap *iomap)
644{
645 pgoff_t index = pos >> PAGE_SHIFT;
646 struct page *page;
647 int status = 0;
648
649 BUG_ON(pos + len > iomap->offset + iomap->length);
650
d1908f52
MH
651 if (fatal_signal_pending(current))
652 return -EINTR;
653
ae259a9c
CH
654 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
655 if (!page)
656 return -ENOMEM;
657
19e0c58f
AG
658 if (iomap->type == IOMAP_INLINE)
659 iomap_read_inline_data(inode, page, iomap);
c03cea42 660 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
19e0c58f 661 status = __block_write_begin_int(page, pos, len, NULL, iomap);
c03cea42
CH
662 else
663 status = __iomap_write_begin(inode, pos, len, page, iomap);
ae259a9c
CH
664 if (unlikely(status)) {
665 unlock_page(page);
666 put_page(page);
667 page = NULL;
668
669 iomap_write_failed(inode, pos, len);
670 }
671
672 *pagep = page;
673 return status;
674}
675
c03cea42
CH
676int
677iomap_set_page_dirty(struct page *page)
678{
679 struct address_space *mapping = page_mapping(page);
680 int newly_dirty;
681
682 if (unlikely(!mapping))
683 return !TestSetPageDirty(page);
684
685 /*
686 * Lock out page->mem_cgroup migration to keep PageDirty
687 * synchronized with per-memcg dirty page counters.
688 */
689 lock_page_memcg(page);
690 newly_dirty = !TestSetPageDirty(page);
691 if (newly_dirty)
692 __set_page_dirty(page, mapping, 0);
693 unlock_page_memcg(page);
694
695 if (newly_dirty)
696 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
697 return newly_dirty;
698}
699EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
700
701static int
702__iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
703 unsigned copied, struct page *page, struct iomap *iomap)
704{
705 flush_dcache_page(page);
706
707 /*
708 * The blocks that were entirely written will now be uptodate, so we
709 * don't have to worry about a readpage reading them and overwriting a
710 * partial write. However if we have encountered a short write and only
711 * partially written into a block, it will not be marked uptodate, so a
712 * readpage might come in and destroy our partial write.
713 *
714 * Do the simplest thing, and just treat any short write to a non
715 * uptodate page as a zero-length write, and force the caller to redo
716 * the whole thing.
717 */
718 if (unlikely(copied < len && !PageUptodate(page))) {
719 copied = 0;
720 } else {
10259de1 721 iomap_set_range_uptodate(page, offset_in_page(pos), len);
c03cea42
CH
722 iomap_set_page_dirty(page);
723 }
724 return __generic_write_end(inode, pos, copied, page);
725}
726
19e0c58f
AG
727static int
728iomap_write_end_inline(struct inode *inode, struct page *page,
729 struct iomap *iomap, loff_t pos, unsigned copied)
730{
731 void *addr;
732
733 WARN_ON_ONCE(!PageUptodate(page));
734 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
735
736 addr = kmap_atomic(page);
737 memcpy(iomap->inline_data + pos, addr + pos, copied);
738 kunmap_atomic(addr);
739
740 mark_inode_dirty(inode);
741 __generic_write_end(inode, pos, copied, page);
742 return copied;
743}
744
ae259a9c
CH
745static int
746iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
19e0c58f 747 unsigned copied, struct page *page, struct iomap *iomap)
ae259a9c
CH
748{
749 int ret;
750
19e0c58f
AG
751 if (iomap->type == IOMAP_INLINE) {
752 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
c03cea42 753 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
19e0c58f
AG
754 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
755 copied, page, NULL);
c03cea42
CH
756 } else {
757 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
19e0c58f
AG
758 }
759
63899c6f
CH
760 if (iomap->page_done)
761 iomap->page_done(inode, pos, copied, page, iomap);
762
ae259a9c
CH
763 if (ret < len)
764 iomap_write_failed(inode, pos, len);
765 return ret;
766}
767
768static loff_t
769iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
770 struct iomap *iomap)
771{
772 struct iov_iter *i = data;
773 long status = 0;
774 ssize_t written = 0;
775 unsigned int flags = AOP_FLAG_NOFS;
776
ae259a9c
CH
777 do {
778 struct page *page;
779 unsigned long offset; /* Offset into pagecache page */
780 unsigned long bytes; /* Bytes to write to page */
781 size_t copied; /* Bytes copied from user */
782
10259de1 783 offset = offset_in_page(pos);
ae259a9c
CH
784 bytes = min_t(unsigned long, PAGE_SIZE - offset,
785 iov_iter_count(i));
786again:
787 if (bytes > length)
788 bytes = length;
789
790 /*
791 * Bring in the user page that we will copy from _first_.
792 * Otherwise there's a nasty deadlock on copying from the
793 * same page as we're writing to, without it being marked
794 * up-to-date.
795 *
796 * Not only is this an optimisation, but it is also required
797 * to check that the address is actually valid, when atomic
798 * usercopies are used, below.
799 */
800 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
801 status = -EFAULT;
802 break;
803 }
804
805 status = iomap_write_begin(inode, pos, bytes, flags, &page,
806 iomap);
807 if (unlikely(status))
808 break;
809
810 if (mapping_writably_mapped(inode->i_mapping))
811 flush_dcache_page(page);
812
ae259a9c 813 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
ae259a9c
CH
814
815 flush_dcache_page(page);
ae259a9c 816
19e0c58f
AG
817 status = iomap_write_end(inode, pos, bytes, copied, page,
818 iomap);
ae259a9c
CH
819 if (unlikely(status < 0))
820 break;
821 copied = status;
822
823 cond_resched();
824
825 iov_iter_advance(i, copied);
826 if (unlikely(copied == 0)) {
827 /*
828 * If we were unable to copy any data at all, we must
829 * fall back to a single segment length write.
830 *
831 * If we didn't fallback here, we could livelock
832 * because not all segments in the iov can be copied at
833 * once without a pagefault.
834 */
835 bytes = min_t(unsigned long, PAGE_SIZE - offset,
836 iov_iter_single_seg_count(i));
837 goto again;
838 }
839 pos += copied;
840 written += copied;
841 length -= copied;
842
843 balance_dirty_pages_ratelimited(inode->i_mapping);
844 } while (iov_iter_count(i) && length);
845
846 return written ? written : status;
847}
848
849ssize_t
850iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 851 const struct iomap_ops *ops)
ae259a9c
CH
852{
853 struct inode *inode = iocb->ki_filp->f_mapping->host;
854 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
855
856 while (iov_iter_count(iter)) {
857 ret = iomap_apply(inode, pos, iov_iter_count(iter),
858 IOMAP_WRITE, ops, iter, iomap_write_actor);
859 if (ret <= 0)
860 break;
861 pos += ret;
862 written += ret;
863 }
864
865 return written ? written : ret;
866}
867EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
868
5f4e5752
CH
869static struct page *
870__iomap_read_page(struct inode *inode, loff_t offset)
871{
872 struct address_space *mapping = inode->i_mapping;
873 struct page *page;
874
875 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
876 if (IS_ERR(page))
877 return page;
878 if (!PageUptodate(page)) {
879 put_page(page);
880 return ERR_PTR(-EIO);
881 }
882 return page;
883}
884
885static loff_t
886iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
887 struct iomap *iomap)
888{
889 long status = 0;
890 ssize_t written = 0;
891
892 do {
893 struct page *page, *rpage;
894 unsigned long offset; /* Offset into pagecache page */
895 unsigned long bytes; /* Bytes to write to page */
896
10259de1 897 offset = offset_in_page(pos);
e28ae8e4 898 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
5f4e5752
CH
899
900 rpage = __iomap_read_page(inode, pos);
901 if (IS_ERR(rpage))
902 return PTR_ERR(rpage);
903
904 status = iomap_write_begin(inode, pos, bytes,
c718a975 905 AOP_FLAG_NOFS, &page, iomap);
5f4e5752
CH
906 put_page(rpage);
907 if (unlikely(status))
908 return status;
909
910 WARN_ON_ONCE(!PageUptodate(page));
911
19e0c58f 912 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
5f4e5752
CH
913 if (unlikely(status <= 0)) {
914 if (WARN_ON_ONCE(status == 0))
915 return -EIO;
916 return status;
917 }
918
919 cond_resched();
920
921 pos += status;
922 written += status;
923 length -= status;
924
925 balance_dirty_pages_ratelimited(inode->i_mapping);
926 } while (length);
927
928 return written;
929}
930
931int
932iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
8ff6daa1 933 const struct iomap_ops *ops)
5f4e5752
CH
934{
935 loff_t ret;
936
937 while (len) {
938 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
939 iomap_dirty_actor);
940 if (ret <= 0)
941 return ret;
942 pos += ret;
943 len -= ret;
944 }
945
946 return 0;
947}
948EXPORT_SYMBOL_GPL(iomap_file_dirty);
949
ae259a9c
CH
950static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
951 unsigned bytes, struct iomap *iomap)
952{
953 struct page *page;
954 int status;
955
c718a975
TH
956 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
957 iomap);
ae259a9c
CH
958 if (status)
959 return status;
960
961 zero_user(page, offset, bytes);
962 mark_page_accessed(page);
963
19e0c58f 964 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
ae259a9c
CH
965}
966
9a286f0e
CH
967static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
968 struct iomap *iomap)
969{
57fc505d
CH
970 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
971 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
9a286f0e
CH
972}
973
ae259a9c
CH
974static loff_t
975iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
976 void *data, struct iomap *iomap)
977{
978 bool *did_zero = data;
979 loff_t written = 0;
980 int status;
981
982 /* already zeroed? we're done. */
983 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
984 return count;
985
986 do {
987 unsigned offset, bytes;
988
10259de1 989 offset = offset_in_page(pos);
e28ae8e4 990 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
ae259a9c 991
9a286f0e
CH
992 if (IS_DAX(inode))
993 status = iomap_dax_zero(pos, offset, bytes, iomap);
994 else
995 status = iomap_zero(inode, pos, offset, bytes, iomap);
ae259a9c
CH
996 if (status < 0)
997 return status;
998
999 pos += bytes;
1000 count -= bytes;
1001 written += bytes;
1002 if (did_zero)
1003 *did_zero = true;
1004 } while (count > 0);
1005
1006 return written;
1007}
1008
1009int
1010iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
8ff6daa1 1011 const struct iomap_ops *ops)
ae259a9c
CH
1012{
1013 loff_t ret;
1014
1015 while (len > 0) {
1016 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1017 ops, did_zero, iomap_zero_range_actor);
1018 if (ret <= 0)
1019 return ret;
1020
1021 pos += ret;
1022 len -= ret;
1023 }
1024
1025 return 0;
1026}
1027EXPORT_SYMBOL_GPL(iomap_zero_range);
1028
1029int
1030iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
8ff6daa1 1031 const struct iomap_ops *ops)
ae259a9c 1032{
93407472
FF
1033 unsigned int blocksize = i_blocksize(inode);
1034 unsigned int off = pos & (blocksize - 1);
ae259a9c
CH
1035
1036 /* Block boundary? Nothing to do */
1037 if (!off)
1038 return 0;
1039 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1040}
1041EXPORT_SYMBOL_GPL(iomap_truncate_page);
1042
1043static loff_t
1044iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1045 void *data, struct iomap *iomap)
1046{
1047 struct page *page = data;
1048 int ret;
1049
c03cea42
CH
1050 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1051 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1052 if (ret)
1053 return ret;
1054 block_commit_write(page, 0, length);
1055 } else {
1056 WARN_ON_ONCE(!PageUptodate(page));
9dc55f13 1057 iomap_page_create(inode, page);
561295a3 1058 set_page_dirty(page);
c03cea42 1059 }
ae259a9c 1060
ae259a9c
CH
1061 return length;
1062}
1063
5780a02f 1064vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
ae259a9c
CH
1065{
1066 struct page *page = vmf->page;
11bac800 1067 struct inode *inode = file_inode(vmf->vma->vm_file);
ae259a9c
CH
1068 unsigned long length;
1069 loff_t offset, size;
1070 ssize_t ret;
1071
1072 lock_page(page);
1073 size = i_size_read(inode);
1074 if ((page->mapping != inode->i_mapping) ||
1075 (page_offset(page) > size)) {
1076 /* We overload EFAULT to mean page got truncated */
1077 ret = -EFAULT;
1078 goto out_unlock;
1079 }
1080
1081 /* page is wholly or partially inside EOF */
1082 if (((page->index + 1) << PAGE_SHIFT) > size)
10259de1 1083 length = offset_in_page(size);
ae259a9c
CH
1084 else
1085 length = PAGE_SIZE;
1086
1087 offset = page_offset(page);
1088 while (length > 0) {
9484ab1b
JK
1089 ret = iomap_apply(inode, offset, length,
1090 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1091 iomap_page_mkwrite_actor);
ae259a9c
CH
1092 if (unlikely(ret <= 0))
1093 goto out_unlock;
1094 offset += ret;
1095 length -= ret;
1096 }
1097
ae259a9c 1098 wait_for_stable_page(page);
e7647fb4 1099 return VM_FAULT_LOCKED;
ae259a9c
CH
1100out_unlock:
1101 unlock_page(page);
e7647fb4 1102 return block_page_mkwrite_return(ret);
ae259a9c
CH
1103}
1104EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
8be9f564
CH
1105
1106struct fiemap_ctx {
1107 struct fiemap_extent_info *fi;
1108 struct iomap prev;
1109};
1110
1111static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1112 struct iomap *iomap, u32 flags)
1113{
1114 switch (iomap->type) {
1115 case IOMAP_HOLE:
1116 /* skip holes */
1117 return 0;
1118 case IOMAP_DELALLOC:
1119 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1120 break;
19319b53
CH
1121 case IOMAP_MAPPED:
1122 break;
8be9f564
CH
1123 case IOMAP_UNWRITTEN:
1124 flags |= FIEMAP_EXTENT_UNWRITTEN;
1125 break;
19319b53
CH
1126 case IOMAP_INLINE:
1127 flags |= FIEMAP_EXTENT_DATA_INLINE;
8be9f564
CH
1128 break;
1129 }
1130
17de0a9f
CH
1131 if (iomap->flags & IOMAP_F_MERGED)
1132 flags |= FIEMAP_EXTENT_MERGED;
e43c460d
DW
1133 if (iomap->flags & IOMAP_F_SHARED)
1134 flags |= FIEMAP_EXTENT_SHARED;
17de0a9f 1135
8be9f564 1136 return fiemap_fill_next_extent(fi, iomap->offset,
19fe5f64 1137 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
17de0a9f 1138 iomap->length, flags);
8be9f564
CH
1139}
1140
1141static loff_t
1142iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1143 struct iomap *iomap)
1144{
1145 struct fiemap_ctx *ctx = data;
1146 loff_t ret = length;
1147
1148 if (iomap->type == IOMAP_HOLE)
1149 return length;
1150
1151 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1152 ctx->prev = *iomap;
1153 switch (ret) {
1154 case 0: /* success */
1155 return length;
1156 case 1: /* extent array full */
1157 return 0;
1158 default:
1159 return ret;
1160 }
1161}
1162
1163int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
8ff6daa1 1164 loff_t start, loff_t len, const struct iomap_ops *ops)
8be9f564
CH
1165{
1166 struct fiemap_ctx ctx;
1167 loff_t ret;
1168
1169 memset(&ctx, 0, sizeof(ctx));
1170 ctx.fi = fi;
1171 ctx.prev.type = IOMAP_HOLE;
1172
1173 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1174 if (ret)
1175 return ret;
1176
8896b8f6
DC
1177 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1178 ret = filemap_write_and_wait(inode->i_mapping);
1179 if (ret)
1180 return ret;
1181 }
8be9f564
CH
1182
1183 while (len > 0) {
d33fd776 1184 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
8be9f564 1185 iomap_fiemap_actor);
ac2dc058
DC
1186 /* inode with no (attribute) mapping will give ENOENT */
1187 if (ret == -ENOENT)
1188 break;
8be9f564
CH
1189 if (ret < 0)
1190 return ret;
1191 if (ret == 0)
1192 break;
1193
1194 start += ret;
1195 len -= ret;
1196 }
1197
1198 if (ctx.prev.type != IOMAP_HOLE) {
1199 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1200 if (ret < 0)
1201 return ret;
1202 }
1203
1204 return 0;
1205}
1206EXPORT_SYMBOL_GPL(iomap_fiemap);
ff6a9292 1207
8a78cb1f
CH
1208/*
1209 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
afd9d6a1 1210 * Returns true if found and updates @lastoff to the offset in file.
8a78cb1f 1211 */
afd9d6a1
CH
1212static bool
1213page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1214 int whence)
8a78cb1f 1215{
afd9d6a1
CH
1216 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1217 unsigned int bsize = i_blocksize(inode), off;
8a78cb1f 1218 bool seek_data = whence == SEEK_DATA;
afd9d6a1 1219 loff_t poff = page_offset(page);
8a78cb1f 1220
afd9d6a1
CH
1221 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1222 return false;
8a78cb1f 1223
afd9d6a1 1224 if (*lastoff < poff) {
8a78cb1f 1225 /*
afd9d6a1
CH
1226 * Last offset smaller than the start of the page means we found
1227 * a hole:
8a78cb1f 1228 */
afd9d6a1
CH
1229 if (whence == SEEK_HOLE)
1230 return true;
1231 *lastoff = poff;
1232 }
8a78cb1f 1233
afd9d6a1
CH
1234 /*
1235 * Just check the page unless we can and should check block ranges:
1236 */
1237 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1238 return PageUptodate(page) == seek_data;
1239
1240 lock_page(page);
1241 if (unlikely(page->mapping != inode->i_mapping))
1242 goto out_unlock_not_found;
1243
1244 for (off = 0; off < PAGE_SIZE; off += bsize) {
10259de1 1245 if (offset_in_page(*lastoff) >= off + bsize)
afd9d6a1
CH
1246 continue;
1247 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1248 unlock_page(page);
1249 return true;
1250 }
1251 *lastoff = poff + off + bsize;
1252 }
1253
1254out_unlock_not_found:
1255 unlock_page(page);
1256 return false;
8a78cb1f
CH
1257}
1258
1259/*
1260 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1261 *
1262 * Within unwritten extents, the page cache determines which parts are holes
bd56b3e1
CH
1263 * and which are data: uptodate buffer heads count as data; everything else
1264 * counts as a hole.
8a78cb1f
CH
1265 *
1266 * Returns the resulting offset on successs, and -ENOENT otherwise.
1267 */
1268static loff_t
1269page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1270 int whence)
1271{
1272 pgoff_t index = offset >> PAGE_SHIFT;
1273 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1274 loff_t lastoff = offset;
1275 struct pagevec pvec;
1276
1277 if (length <= 0)
1278 return -ENOENT;
1279
1280 pagevec_init(&pvec);
1281
1282 do {
1283 unsigned nr_pages, i;
1284
1285 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1286 end - 1);
1287 if (nr_pages == 0)
1288 break;
1289
1290 for (i = 0; i < nr_pages; i++) {
1291 struct page *page = pvec.pages[i];
1292
afd9d6a1 1293 if (page_seek_hole_data(inode, page, &lastoff, whence))
8a78cb1f 1294 goto check_range;
8a78cb1f
CH
1295 lastoff = page_offset(page) + PAGE_SIZE;
1296 }
1297 pagevec_release(&pvec);
1298 } while (index < end);
1299
1300 /* When no page at lastoff and we are not done, we found a hole. */
1301 if (whence != SEEK_HOLE)
1302 goto not_found;
1303
1304check_range:
1305 if (lastoff < offset + length)
1306 goto out;
1307not_found:
1308 lastoff = -ENOENT;
1309out:
1310 pagevec_release(&pvec);
1311 return lastoff;
1312}
1313
1314
0ed3b0d4
AG
1315static loff_t
1316iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1317 void *data, struct iomap *iomap)
1318{
1319 switch (iomap->type) {
1320 case IOMAP_UNWRITTEN:
1321 offset = page_cache_seek_hole_data(inode, offset, length,
1322 SEEK_HOLE);
1323 if (offset < 0)
1324 return length;
1325 /* fall through */
1326 case IOMAP_HOLE:
1327 *(loff_t *)data = offset;
1328 return 0;
1329 default:
1330 return length;
1331 }
1332}
1333
1334loff_t
1335iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1336{
1337 loff_t size = i_size_read(inode);
1338 loff_t length = size - offset;
1339 loff_t ret;
1340
d6ab17f2
DW
1341 /* Nothing to be found before or beyond the end of the file. */
1342 if (offset < 0 || offset >= size)
0ed3b0d4
AG
1343 return -ENXIO;
1344
1345 while (length > 0) {
1346 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1347 &offset, iomap_seek_hole_actor);
1348 if (ret < 0)
1349 return ret;
1350 if (ret == 0)
1351 break;
1352
1353 offset += ret;
1354 length -= ret;
1355 }
1356
1357 return offset;
1358}
1359EXPORT_SYMBOL_GPL(iomap_seek_hole);
1360
1361static loff_t
1362iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1363 void *data, struct iomap *iomap)
1364{
1365 switch (iomap->type) {
1366 case IOMAP_HOLE:
1367 return length;
1368 case IOMAP_UNWRITTEN:
1369 offset = page_cache_seek_hole_data(inode, offset, length,
1370 SEEK_DATA);
1371 if (offset < 0)
1372 return length;
1373 /*FALLTHRU*/
1374 default:
1375 *(loff_t *)data = offset;
1376 return 0;
1377 }
1378}
1379
1380loff_t
1381iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1382{
1383 loff_t size = i_size_read(inode);
1384 loff_t length = size - offset;
1385 loff_t ret;
1386
d6ab17f2
DW
1387 /* Nothing to be found before or beyond the end of the file. */
1388 if (offset < 0 || offset >= size)
0ed3b0d4
AG
1389 return -ENXIO;
1390
1391 while (length > 0) {
1392 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1393 &offset, iomap_seek_data_actor);
1394 if (ret < 0)
1395 return ret;
1396 if (ret == 0)
1397 break;
1398
1399 offset += ret;
1400 length -= ret;
1401 }
1402
1403 if (length <= 0)
1404 return -ENXIO;
1405 return offset;
1406}
1407EXPORT_SYMBOL_GPL(iomap_seek_data);
1408
ff6a9292
CH
1409/*
1410 * Private flags for iomap_dio, must not overlap with the public ones in
1411 * iomap.h:
1412 */
3460cac1 1413#define IOMAP_DIO_WRITE_FUA (1 << 28)
4f8ff44b 1414#define IOMAP_DIO_NEED_SYNC (1 << 29)
ff6a9292
CH
1415#define IOMAP_DIO_WRITE (1 << 30)
1416#define IOMAP_DIO_DIRTY (1 << 31)
1417
1418struct iomap_dio {
1419 struct kiocb *iocb;
1420 iomap_dio_end_io_t *end_io;
1421 loff_t i_size;
1422 loff_t size;
1423 atomic_t ref;
1424 unsigned flags;
1425 int error;
ebf00be3 1426 bool wait_for_completion;
ff6a9292
CH
1427
1428 union {
1429 /* used during submission and for synchronous completion: */
1430 struct {
1431 struct iov_iter *iter;
1432 struct task_struct *waiter;
1433 struct request_queue *last_queue;
1434 blk_qc_t cookie;
1435 } submit;
1436
1437 /* used for aio completion: */
1438 struct {
1439 struct work_struct work;
1440 } aio;
1441 };
1442};
1443
1444static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1445{
1446 struct kiocb *iocb = dio->iocb;
332391a9 1447 struct inode *inode = file_inode(iocb->ki_filp);
5e25c269 1448 loff_t offset = iocb->ki_pos;
ff6a9292
CH
1449 ssize_t ret;
1450
1451 if (dio->end_io) {
1452 ret = dio->end_io(iocb,
1453 dio->error ? dio->error : dio->size,
1454 dio->flags);
1455 } else {
1456 ret = dio->error;
1457 }
1458
1459 if (likely(!ret)) {
1460 ret = dio->size;
1461 /* check for short read */
5e25c269 1462 if (offset + ret > dio->i_size &&
ff6a9292 1463 !(dio->flags & IOMAP_DIO_WRITE))
5e25c269 1464 ret = dio->i_size - offset;
ff6a9292
CH
1465 iocb->ki_pos += ret;
1466 }
1467
5e25c269
EG
1468 /*
1469 * Try again to invalidate clean pages which might have been cached by
1470 * non-direct readahead, or faulted in by get_user_pages() if the source
1471 * of the write was an mmap'ed region of the file we're writing. Either
1472 * one is a pretty crazy thing to do, so we don't support it 100%. If
1473 * this invalidation fails, tough, the write still worked...
1474 *
1475 * And this page cache invalidation has to be after dio->end_io(), as
1476 * some filesystems convert unwritten extents to real allocations in
1477 * end_io() when necessary, otherwise a racing buffer read would cache
1478 * zeros from unwritten extents.
1479 */
1480 if (!dio->error &&
1481 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1482 int err;
1483 err = invalidate_inode_pages2_range(inode->i_mapping,
1484 offset >> PAGE_SHIFT,
1485 (offset + dio->size - 1) >> PAGE_SHIFT);
5a9d929d
DW
1486 if (err)
1487 dio_warn_stale_pagecache(iocb->ki_filp);
5e25c269
EG
1488 }
1489
4f8ff44b
DC
1490 /*
1491 * If this is a DSYNC write, make sure we push it to stable storage now
1492 * that we've written data.
1493 */
1494 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1495 ret = generic_write_sync(iocb, ret);
1496
ff6a9292
CH
1497 inode_dio_end(file_inode(iocb->ki_filp));
1498 kfree(dio);
1499
1500 return ret;
1501}
1502
1503static void iomap_dio_complete_work(struct work_struct *work)
1504{
1505 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1506 struct kiocb *iocb = dio->iocb;
ff6a9292 1507
4f8ff44b 1508 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
ff6a9292
CH
1509}
1510
1511/*
1512 * Set an error in the dio if none is set yet. We have to use cmpxchg
1513 * as the submission context and the completion context(s) can race to
1514 * update the error.
1515 */
1516static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1517{
1518 cmpxchg(&dio->error, 0, ret);
1519}
1520
1521static void iomap_dio_bio_end_io(struct bio *bio)
1522{
1523 struct iomap_dio *dio = bio->bi_private;
1524 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1525
4e4cbee9
CH
1526 if (bio->bi_status)
1527 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
ff6a9292
CH
1528
1529 if (atomic_dec_and_test(&dio->ref)) {
ebf00be3 1530 if (dio->wait_for_completion) {
ff6a9292 1531 struct task_struct *waiter = dio->submit.waiter;
ff6a9292
CH
1532 WRITE_ONCE(dio->submit.waiter, NULL);
1533 wake_up_process(waiter);
1534 } else if (dio->flags & IOMAP_DIO_WRITE) {
1535 struct inode *inode = file_inode(dio->iocb->ki_filp);
1536
1537 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1538 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1539 } else {
1540 iomap_dio_complete_work(&dio->aio.work);
1541 }
1542 }
1543
1544 if (should_dirty) {
1545 bio_check_pages_dirty(bio);
1546 } else {
1547 struct bio_vec *bvec;
1548 int i;
1549
1550 bio_for_each_segment_all(bvec, bio, i)
1551 put_page(bvec->bv_page);
1552 bio_put(bio);
1553 }
1554}
1555
1556static blk_qc_t
1557iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1558 unsigned len)
1559{
1560 struct page *page = ZERO_PAGE(0);
1561 struct bio *bio;
1562
1563 bio = bio_alloc(GFP_KERNEL, 1);
74d46992 1564 bio_set_dev(bio, iomap->bdev);
57fc505d 1565 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
ff6a9292
CH
1566 bio->bi_private = dio;
1567 bio->bi_end_io = iomap_dio_bio_end_io;
1568
1569 get_page(page);
6533b4e4 1570 __bio_add_page(bio, page, len, 0);
5cc60aee 1571 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
ff6a9292
CH
1572
1573 atomic_inc(&dio->ref);
1574 return submit_bio(bio);
1575}
1576
1577static loff_t
09230435
CH
1578iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1579 struct iomap_dio *dio, struct iomap *iomap)
ff6a9292 1580{
93407472
FF
1581 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1582 unsigned int fs_block_size = i_blocksize(inode), pad;
1583 unsigned int align = iov_iter_alignment(dio->submit.iter);
ff6a9292
CH
1584 struct iov_iter iter;
1585 struct bio *bio;
1586 bool need_zeroout = false;
3460cac1 1587 bool use_fua = false;
4721a601 1588 int nr_pages, ret = 0;
cfe057f7 1589 size_t copied = 0;
ff6a9292
CH
1590
1591 if ((pos | length | align) & ((1 << blkbits) - 1))
1592 return -EINVAL;
1593
09230435 1594 if (iomap->type == IOMAP_UNWRITTEN) {
ff6a9292
CH
1595 dio->flags |= IOMAP_DIO_UNWRITTEN;
1596 need_zeroout = true;
09230435
CH
1597 }
1598
1599 if (iomap->flags & IOMAP_F_SHARED)
1600 dio->flags |= IOMAP_DIO_COW;
1601
1602 if (iomap->flags & IOMAP_F_NEW) {
1603 need_zeroout = true;
0929d858 1604 } else if (iomap->type == IOMAP_MAPPED) {
09230435 1605 /*
0929d858
DC
1606 * Use a FUA write if we need datasync semantics, this is a pure
1607 * data IO that doesn't require any metadata updates (including
1608 * after IO completion such as unwritten extent conversion) and
1609 * the underlying device supports FUA. This allows us to avoid
1610 * cache flushes on IO completion.
09230435
CH
1611 */
1612 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1613 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1614 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1615 use_fua = true;
ff6a9292
CH
1616 }
1617
1618 /*
1619 * Operate on a partial iter trimmed to the extent we were called for.
1620 * We'll update the iter in the dio once we're done with this extent.
1621 */
1622 iter = *dio->submit.iter;
1623 iov_iter_truncate(&iter, length);
1624
1625 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1626 if (nr_pages <= 0)
1627 return nr_pages;
1628
1629 if (need_zeroout) {
1630 /* zero out from the start of the block to the write offset */
1631 pad = pos & (fs_block_size - 1);
1632 if (pad)
1633 iomap_dio_zero(dio, iomap, pos - pad, pad);
1634 }
1635
1636 do {
cfe057f7
AV
1637 size_t n;
1638 if (dio->error) {
1639 iov_iter_revert(dio->submit.iter, copied);
ff6a9292 1640 return 0;
cfe057f7 1641 }
ff6a9292
CH
1642
1643 bio = bio_alloc(GFP_KERNEL, nr_pages);
74d46992 1644 bio_set_dev(bio, iomap->bdev);
57fc505d 1645 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
45d06cf7 1646 bio->bi_write_hint = dio->iocb->ki_hint;
087e5669 1647 bio->bi_ioprio = dio->iocb->ki_ioprio;
ff6a9292
CH
1648 bio->bi_private = dio;
1649 bio->bi_end_io = iomap_dio_bio_end_io;
1650
1651 ret = bio_iov_iter_get_pages(bio, &iter);
1652 if (unlikely(ret)) {
4721a601
DC
1653 /*
1654 * We have to stop part way through an IO. We must fall
1655 * through to the sub-block tail zeroing here, otherwise
1656 * this short IO may expose stale data in the tail of
1657 * the block we haven't written data to.
1658 */
ff6a9292 1659 bio_put(bio);
4721a601 1660 goto zero_tail;
ff6a9292
CH
1661 }
1662
cfe057f7 1663 n = bio->bi_iter.bi_size;
ff6a9292 1664 if (dio->flags & IOMAP_DIO_WRITE) {
3460cac1
DC
1665 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1666 if (use_fua)
1667 bio->bi_opf |= REQ_FUA;
1668 else
1669 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
cfe057f7 1670 task_io_account_write(n);
ff6a9292 1671 } else {
3460cac1 1672 bio->bi_opf = REQ_OP_READ;
ff6a9292
CH
1673 if (dio->flags & IOMAP_DIO_DIRTY)
1674 bio_set_pages_dirty(bio);
1675 }
1676
cfe057f7
AV
1677 iov_iter_advance(dio->submit.iter, n);
1678
1679 dio->size += n;
1680 pos += n;
1681 copied += n;
ff6a9292
CH
1682
1683 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1684
1685 atomic_inc(&dio->ref);
1686
1687 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1688 dio->submit.cookie = submit_bio(bio);
1689 } while (nr_pages);
1690
b450672f
DC
1691 /*
1692 * We need to zeroout the tail of a sub-block write if the extent type
1693 * requires zeroing or the write extends beyond EOF. If we don't zero
1694 * the block tail in the latter case, we can expose stale data via mmap
1695 * reads of the EOF block.
1696 */
4721a601 1697zero_tail:
b450672f
DC
1698 if (need_zeroout ||
1699 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
ff6a9292
CH
1700 /* zero out from the end of the write to the end of the block */
1701 pad = pos & (fs_block_size - 1);
1702 if (pad)
1703 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1704 }
4721a601 1705 return copied ? copied : ret;
ff6a9292
CH
1706}
1707
09230435
CH
1708static loff_t
1709iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1710{
1711 length = iov_iter_zero(length, dio->submit.iter);
1712 dio->size += length;
1713 return length;
1714}
1715
ec181f67
AG
1716static loff_t
1717iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1718 struct iomap_dio *dio, struct iomap *iomap)
1719{
1720 struct iov_iter *iter = dio->submit.iter;
1721 size_t copied;
1722
1723 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1724
1725 if (dio->flags & IOMAP_DIO_WRITE) {
1726 loff_t size = inode->i_size;
1727
1728 if (pos > size)
1729 memset(iomap->inline_data + size, 0, pos - size);
1730 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1731 if (copied) {
1732 if (pos + copied > size)
1733 i_size_write(inode, pos + copied);
1734 mark_inode_dirty(inode);
1735 }
1736 } else {
1737 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1738 }
1739 dio->size += copied;
1740 return copied;
1741}
1742
09230435
CH
1743static loff_t
1744iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1745 void *data, struct iomap *iomap)
1746{
1747 struct iomap_dio *dio = data;
1748
1749 switch (iomap->type) {
1750 case IOMAP_HOLE:
1751 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1752 return -EIO;
1753 return iomap_dio_hole_actor(length, dio);
1754 case IOMAP_UNWRITTEN:
1755 if (!(dio->flags & IOMAP_DIO_WRITE))
1756 return iomap_dio_hole_actor(length, dio);
1757 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1758 case IOMAP_MAPPED:
1759 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
ec181f67
AG
1760 case IOMAP_INLINE:
1761 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
09230435
CH
1762 default:
1763 WARN_ON_ONCE(1);
1764 return -EIO;
1765 }
1766}
1767
4f8ff44b
DC
1768/*
1769 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
3460cac1
DC
1770 * is being issued as AIO or not. This allows us to optimise pure data writes
1771 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1772 * REQ_FLUSH post write. This is slightly tricky because a single request here
1773 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1774 * may be pure data writes. In that case, we still need to do a full data sync
1775 * completion.
4f8ff44b 1776 */
ff6a9292 1777ssize_t
8ff6daa1
CH
1778iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1779 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
ff6a9292
CH
1780{
1781 struct address_space *mapping = iocb->ki_filp->f_mapping;
1782 struct inode *inode = file_inode(iocb->ki_filp);
1783 size_t count = iov_iter_count(iter);
c771c14b
EG
1784 loff_t pos = iocb->ki_pos, start = pos;
1785 loff_t end = iocb->ki_pos + count - 1, ret = 0;
ff6a9292
CH
1786 unsigned int flags = IOMAP_DIRECT;
1787 struct blk_plug plug;
1788 struct iomap_dio *dio;
1789
1790 lockdep_assert_held(&inode->i_rwsem);
1791
1792 if (!count)
1793 return 0;
1794
1795 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1796 if (!dio)
1797 return -ENOMEM;
1798
1799 dio->iocb = iocb;
1800 atomic_set(&dio->ref, 1);
1801 dio->size = 0;
1802 dio->i_size = i_size_read(inode);
1803 dio->end_io = end_io;
1804 dio->error = 0;
1805 dio->flags = 0;
ebf00be3 1806 dio->wait_for_completion = is_sync_kiocb(iocb);
ff6a9292
CH
1807
1808 dio->submit.iter = iter;
ebf00be3
AG
1809 dio->submit.waiter = current;
1810 dio->submit.cookie = BLK_QC_T_NONE;
1811 dio->submit.last_queue = NULL;
ff6a9292
CH
1812
1813 if (iov_iter_rw(iter) == READ) {
1814 if (pos >= dio->i_size)
1815 goto out_free_dio;
1816
00e23707 1817 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
ff6a9292
CH
1818 dio->flags |= IOMAP_DIO_DIRTY;
1819 } else {
3460cac1 1820 flags |= IOMAP_WRITE;
ff6a9292 1821 dio->flags |= IOMAP_DIO_WRITE;
3460cac1
DC
1822
1823 /* for data sync or sync, we need sync completion processing */
4f8ff44b
DC
1824 if (iocb->ki_flags & IOCB_DSYNC)
1825 dio->flags |= IOMAP_DIO_NEED_SYNC;
3460cac1
DC
1826
1827 /*
1828 * For datasync only writes, we optimistically try using FUA for
1829 * this IO. Any non-FUA write that occurs will clear this flag,
1830 * hence we know before completion whether a cache flush is
1831 * necessary.
1832 */
1833 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1834 dio->flags |= IOMAP_DIO_WRITE_FUA;
ff6a9292
CH
1835 }
1836
a38d1243
GR
1837 if (iocb->ki_flags & IOCB_NOWAIT) {
1838 if (filemap_range_has_page(mapping, start, end)) {
1839 ret = -EAGAIN;
1840 goto out_free_dio;
1841 }
1842 flags |= IOMAP_NOWAIT;
1843 }
1844
55635ba7
AR
1845 ret = filemap_write_and_wait_range(mapping, start, end);
1846 if (ret)
1847 goto out_free_dio;
ff6a9292 1848
5a9d929d
DW
1849 /*
1850 * Try to invalidate cache pages for the range we're direct
1851 * writing. If this invalidation fails, tough, the write will
1852 * still work, but racing two incompatible write paths is a
1853 * pretty crazy thing to do, so we don't support it 100%.
1854 */
55635ba7
AR
1855 ret = invalidate_inode_pages2_range(mapping,
1856 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
5a9d929d
DW
1857 if (ret)
1858 dio_warn_stale_pagecache(iocb->ki_filp);
55635ba7 1859 ret = 0;
ff6a9292 1860
ebf00be3 1861 if (iov_iter_rw(iter) == WRITE && !dio->wait_for_completion &&
546e7be8
CR
1862 !inode->i_sb->s_dio_done_wq) {
1863 ret = sb_init_dio_done_wq(inode->i_sb);
1864 if (ret < 0)
1865 goto out_free_dio;
1866 }
1867
ff6a9292
CH
1868 inode_dio_begin(inode);
1869
1870 blk_start_plug(&plug);
1871 do {
1872 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1873 iomap_dio_actor);
1874 if (ret <= 0) {
1875 /* magic error code to fall back to buffered I/O */
ebf00be3
AG
1876 if (ret == -ENOTBLK) {
1877 dio->wait_for_completion = true;
ff6a9292 1878 ret = 0;
ebf00be3 1879 }
4721a601
DC
1880
1881 /*
1882 * Splicing to pipes can fail on a full pipe. We have to
1883 * swallow this to make it look like a short IO
1884 * otherwise the higher splice layers will completely
1885 * mishandle the error and stop moving data.
1886 */
1887 if (ret == -EFAULT)
1888 ret = 0;
ff6a9292
CH
1889 break;
1890 }
1891 pos += ret;
a008c31c
CR
1892
1893 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1894 break;
ff6a9292
CH
1895 } while ((count = iov_iter_count(iter)) > 0);
1896 blk_finish_plug(&plug);
1897
1898 if (ret < 0)
1899 iomap_dio_set_error(dio, ret);
1900
3460cac1
DC
1901 /*
1902 * If all the writes we issued were FUA, we don't need to flush the
1903 * cache on IO completion. Clear the sync flag for this case.
1904 */
1905 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1906 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1907
ff6a9292 1908 if (!atomic_dec_and_test(&dio->ref)) {
ebf00be3 1909 if (!dio->wait_for_completion)
ff6a9292
CH
1910 return -EIOCBQUEUED;
1911
1912 for (;;) {
1913 set_current_state(TASK_UNINTERRUPTIBLE);
1914 if (!READ_ONCE(dio->submit.waiter))
1915 break;
1916
1917 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1918 !dio->submit.last_queue ||
ea435e1b 1919 !blk_poll(dio->submit.last_queue,
5cc60aee 1920 dio->submit.cookie))
ff6a9292
CH
1921 io_schedule();
1922 }
1923 __set_current_state(TASK_RUNNING);
1924 }
1925
c771c14b
EG
1926 ret = iomap_dio_complete(dio);
1927
c771c14b 1928 return ret;
ff6a9292
CH
1929
1930out_free_dio:
1931 kfree(dio);
1932 return ret;
1933}
1934EXPORT_SYMBOL_GPL(iomap_dio_rw);
67482129
DW
1935
1936/* Swapfile activation */
1937
1938#ifdef CONFIG_SWAP
1939struct iomap_swapfile_info {
1940 struct iomap iomap; /* accumulated iomap */
1941 struct swap_info_struct *sis;
1942 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1943 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1944 unsigned long nr_pages; /* number of pages collected */
1945 int nr_extents; /* extent count */
1946};
1947
1948/*
1949 * Collect physical extents for this swap file. Physical extents reported to
1950 * the swap code must be trimmed to align to a page boundary. The logical
1951 * offset within the file is irrelevant since the swapfile code maps logical
1952 * page numbers of the swap device to the physical page-aligned extents.
1953 */
1954static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1955{
1956 struct iomap *iomap = &isi->iomap;
1957 unsigned long nr_pages;
1958 uint64_t first_ppage;
1959 uint64_t first_ppage_reported;
1960 uint64_t next_ppage;
1961 int error;
1962
1963 /*
1964 * Round the start up and the end down so that the physical
1965 * extent aligns to a page boundary.
1966 */
1967 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1968 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1969 PAGE_SHIFT;
1970
1971 /* Skip too-short physical extents. */
1972 if (first_ppage >= next_ppage)
1973 return 0;
1974 nr_pages = next_ppage - first_ppage;
1975
1976 /*
1977 * Calculate how much swap space we're adding; the first page contains
1978 * the swap header and doesn't count. The mm still wants that first
1979 * page fed to add_swap_extent, however.
1980 */
1981 first_ppage_reported = first_ppage;
1982 if (iomap->offset == 0)
1983 first_ppage_reported++;
1984 if (isi->lowest_ppage > first_ppage_reported)
1985 isi->lowest_ppage = first_ppage_reported;
1986 if (isi->highest_ppage < (next_ppage - 1))
1987 isi->highest_ppage = next_ppage - 1;
1988
1989 /* Add extent, set up for the next call. */
1990 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
1991 if (error < 0)
1992 return error;
1993 isi->nr_extents += error;
1994 isi->nr_pages += nr_pages;
1995 return 0;
1996}
1997
1998/*
1999 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2000 * swap only cares about contiguous page-aligned physical extents and makes no
2001 * distinction between written and unwritten extents.
2002 */
2003static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2004 loff_t count, void *data, struct iomap *iomap)
2005{
2006 struct iomap_swapfile_info *isi = data;
2007 int error;
2008
19319b53
CH
2009 switch (iomap->type) {
2010 case IOMAP_MAPPED:
2011 case IOMAP_UNWRITTEN:
2012 /* Only real or unwritten extents. */
2013 break;
2014 case IOMAP_INLINE:
2015 /* No inline data. */
ec601924
OS
2016 pr_err("swapon: file is inline\n");
2017 return -EINVAL;
19319b53 2018 default:
ec601924
OS
2019 pr_err("swapon: file has unallocated extents\n");
2020 return -EINVAL;
2021 }
67482129 2022
ec601924
OS
2023 /* No uncommitted metadata or shared blocks. */
2024 if (iomap->flags & IOMAP_F_DIRTY) {
2025 pr_err("swapon: file is not committed\n");
2026 return -EINVAL;
2027 }
2028 if (iomap->flags & IOMAP_F_SHARED) {
2029 pr_err("swapon: file has shared extents\n");
2030 return -EINVAL;
2031 }
67482129 2032
ec601924
OS
2033 /* Only one bdev per swap file. */
2034 if (iomap->bdev != isi->sis->bdev) {
2035 pr_err("swapon: file is on multiple devices\n");
2036 return -EINVAL;
2037 }
67482129
DW
2038
2039 if (isi->iomap.length == 0) {
2040 /* No accumulated extent, so just store it. */
2041 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2042 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2043 /* Append this to the accumulated extent. */
2044 isi->iomap.length += iomap->length;
2045 } else {
2046 /* Otherwise, add the retained iomap and store this one. */
2047 error = iomap_swapfile_add_extent(isi);
2048 if (error)
2049 return error;
2050 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2051 }
67482129 2052 return count;
67482129
DW
2053}
2054
2055/*
2056 * Iterate a swap file's iomaps to construct physical extents that can be
2057 * passed to the swapfile subsystem.
2058 */
2059int iomap_swapfile_activate(struct swap_info_struct *sis,
2060 struct file *swap_file, sector_t *pagespan,
2061 const struct iomap_ops *ops)
2062{
2063 struct iomap_swapfile_info isi = {
2064 .sis = sis,
2065 .lowest_ppage = (sector_t)-1ULL,
2066 };
2067 struct address_space *mapping = swap_file->f_mapping;
2068 struct inode *inode = mapping->host;
2069 loff_t pos = 0;
2070 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2071 loff_t ret;
2072
117a148f
DW
2073 /*
2074 * Persist all file mapping metadata so that we won't have any
2075 * IOMAP_F_DIRTY iomaps.
2076 */
2077 ret = vfs_fsync(swap_file, 1);
67482129
DW
2078 if (ret)
2079 return ret;
2080
2081 while (len > 0) {
2082 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2083 ops, &isi, iomap_swapfile_activate_actor);
2084 if (ret <= 0)
2085 return ret;
2086
2087 pos += ret;
2088 len -= ret;
2089 }
2090
2091 if (isi.iomap.length) {
2092 ret = iomap_swapfile_add_extent(&isi);
2093 if (ret)
2094 return ret;
2095 }
2096
2097 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2098 sis->max = isi.nr_pages;
2099 sis->pages = isi.nr_pages - 1;
2100 sis->highest_bit = isi.nr_pages - 1;
2101 return isi.nr_extents;
2102}
2103EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2104#endif /* CONFIG_SWAP */
89eb1906
CH
2105
2106static loff_t
2107iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2108 void *data, struct iomap *iomap)
2109{
2110 sector_t *bno = data, addr;
2111
2112 if (iomap->type == IOMAP_MAPPED) {
2113 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2114 if (addr > INT_MAX)
2115 WARN(1, "would truncate bmap result\n");
2116 else
2117 *bno = addr;
2118 }
2119 return 0;
2120}
2121
2122/* legacy ->bmap interface. 0 is the error return (!) */
2123sector_t
2124iomap_bmap(struct address_space *mapping, sector_t bno,
2125 const struct iomap_ops *ops)
2126{
2127 struct inode *inode = mapping->host;
79b3dbe4 2128 loff_t pos = bno << inode->i_blkbits;
89eb1906
CH
2129 unsigned blocksize = i_blocksize(inode);
2130
2131 if (filemap_write_and_wait(mapping))
2132 return 0;
2133
2134 bno = 0;
2135 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2136 return bno;
2137}
2138EXPORT_SYMBOL_GPL(iomap_bmap);