vmscan: per-node deferred work
[linux-2.6-block.git] / fs / inode.c
CommitLineData
1da177e4 1/*
1da177e4 2 * (C) 1997 Linus Torvalds
4b4563dc 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
1da177e4 4 */
e59cc473 5#include <linux/export.h>
1da177e4
LT
6#include <linux/fs.h>
7#include <linux/mm.h>
1da177e4 8#include <linux/backing-dev.h>
1da177e4
LT
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
1da177e4
LT
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
3be25f49 14#include <linux/fsnotify.h>
fc33a7bb 15#include <linux/mount.h>
f19d4a8f 16#include <linux/posix_acl.h>
9ce6e0be 17#include <linux/prefetch.h>
4b4563dc 18#include <linux/buffer_head.h> /* for inode_has_buffers */
7ada4db8 19#include <linux/ratelimit.h>
bc3b14cb 20#include <linux/list_lru.h>
a66979ab 21#include "internal.h"
1da177e4 22
250df6ed 23/*
4b4563dc 24 * Inode locking rules:
250df6ed
DC
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
bc3b14cb 28 * Inode LRU list locks protect:
98b745c6 29 * inode->i_sb->s_inode_lru, inode->i_lru
55fa6091
DC
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
f758eeab 32 * bdi->wb.list_lock protects:
a66979ab 33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
67a23c49
DC
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
250df6ed
DC
36 *
37 * Lock ordering:
55fa6091
DC
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
bc3b14cb 41 * Inode LRU list locks
a66979ab 42 *
f758eeab 43 * bdi->wb.list_lock
a66979ab 44 * inode->i_lock
67a23c49
DC
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
250df6ed
DC
52 */
53
fa3536cc
ED
54static unsigned int i_hash_mask __read_mostly;
55static unsigned int i_hash_shift __read_mostly;
67a23c49
DC
56static struct hlist_head *inode_hashtable __read_mostly;
57static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
1da177e4 58
55fa6091
DC
59__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
7dcda1c9
JA
61/*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65const struct address_space_operations empty_aops = {
66};
67EXPORT_SYMBOL(empty_aops);
68
1da177e4
LT
69/*
70 * Statistics gathering..
71 */
72struct inodes_stat_t inodes_stat;
73
3942c07c
GC
74static DEFINE_PER_CPU(unsigned long, nr_inodes);
75static DEFINE_PER_CPU(unsigned long, nr_unused);
cffbc8aa 76
6b3304b5 77static struct kmem_cache *inode_cachep __read_mostly;
1da177e4 78
3942c07c 79static long get_nr_inodes(void)
cffbc8aa 80{
3e880fb5 81 int i;
3942c07c 82 long sum = 0;
3e880fb5
NP
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
cffbc8aa
DC
86}
87
3942c07c 88static inline long get_nr_inodes_unused(void)
cffbc8aa 89{
fcb94f72 90 int i;
3942c07c 91 long sum = 0;
fcb94f72
DC
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
cffbc8aa
DC
95}
96
3942c07c 97long get_nr_dirty_inodes(void)
cffbc8aa 98{
3e880fb5 99 /* not actually dirty inodes, but a wild approximation */
3942c07c 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
cffbc8aa 101 return nr_dirty > 0 ? nr_dirty : 0;
cffbc8aa
DC
102}
103
104/*
105 * Handle nr_inode sysctl
106 */
107#ifdef CONFIG_SYSCTL
108int proc_nr_inodes(ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110{
111 inodes_stat.nr_inodes = get_nr_inodes();
fcb94f72 112 inodes_stat.nr_unused = get_nr_inodes_unused();
3942c07c 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
cffbc8aa
DC
114}
115#endif
116
2cb1599f
DC
117/**
118 * inode_init_always - perform inode structure intialisation
0bc02f3f
RD
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
2cb1599f
DC
121 *
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
124 */
54e34621 125int inode_init_always(struct super_block *sb, struct inode *inode)
1da177e4 126{
6e1d5dcc 127 static const struct inode_operations empty_iops;
99ac48f5 128 static const struct file_operations empty_fops;
6b3304b5 129 struct address_space *const mapping = &inode->i_data;
2cb1599f
DC
130
131 inode->i_sb = sb;
132 inode->i_blkbits = sb->s_blocksize_bits;
133 inode->i_flags = 0;
134 atomic_set(&inode->i_count, 1);
135 inode->i_op = &empty_iops;
136 inode->i_fop = &empty_fops;
a78ef704 137 inode->__i_nlink = 1;
3ddcd056 138 inode->i_opflags = 0;
92361636
EB
139 i_uid_write(inode, 0);
140 i_gid_write(inode, 0);
2cb1599f
DC
141 atomic_set(&inode->i_writecount, 0);
142 inode->i_size = 0;
143 inode->i_blocks = 0;
144 inode->i_bytes = 0;
145 inode->i_generation = 0;
1da177e4 146#ifdef CONFIG_QUOTA
2cb1599f 147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
1da177e4 148#endif
2cb1599f
DC
149 inode->i_pipe = NULL;
150 inode->i_bdev = NULL;
151 inode->i_cdev = NULL;
152 inode->i_rdev = 0;
153 inode->dirtied_when = 0;
6146f0d5
MZ
154
155 if (security_inode_alloc(inode))
54e34621 156 goto out;
2cb1599f
DC
157 spin_lock_init(&inode->i_lock);
158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159
160 mutex_init(&inode->i_mutex);
161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162
bd5fe6c5 163 atomic_set(&inode->i_dio_count, 0);
2cb1599f
DC
164
165 mapping->a_ops = &empty_aops;
166 mapping->host = inode;
167 mapping->flags = 0;
3c1d4378 168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
252aa6f5 169 mapping->private_data = NULL;
2cb1599f
DC
170 mapping->backing_dev_info = &default_backing_dev_info;
171 mapping->writeback_index = 0;
172
173 /*
174 * If the block_device provides a backing_dev_info for client
175 * inodes then use that. Otherwise the inode share the bdev's
176 * backing_dev_info.
177 */
178 if (sb->s_bdev) {
179 struct backing_dev_info *bdi;
180
2c96ce9f 181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
2cb1599f
DC
182 mapping->backing_dev_info = bdi;
183 }
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
b3d9b7a3 186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
f19d4a8f
AV
187#ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189#endif
2cb1599f 190
3be25f49
EP
191#ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
193#endif
194
3e880fb5 195 this_cpu_inc(nr_inodes);
cffbc8aa 196
54e34621 197 return 0;
54e34621
CH
198out:
199 return -ENOMEM;
1da177e4 200}
2cb1599f
DC
201EXPORT_SYMBOL(inode_init_always);
202
203static struct inode *alloc_inode(struct super_block *sb)
204{
205 struct inode *inode;
206
207 if (sb->s_op->alloc_inode)
208 inode = sb->s_op->alloc_inode(sb);
209 else
210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211
54e34621
CH
212 if (!inode)
213 return NULL;
214
215 if (unlikely(inode_init_always(sb, inode))) {
216 if (inode->i_sb->s_op->destroy_inode)
217 inode->i_sb->s_op->destroy_inode(inode);
218 else
219 kmem_cache_free(inode_cachep, inode);
220 return NULL;
221 }
222
223 return inode;
2cb1599f 224}
1da177e4 225
ff0c7d15
NP
226void free_inode_nonrcu(struct inode *inode)
227{
228 kmem_cache_free(inode_cachep, inode);
229}
230EXPORT_SYMBOL(free_inode_nonrcu);
231
2e00c97e 232void __destroy_inode(struct inode *inode)
1da177e4 233{
b7542f8c 234 BUG_ON(inode_has_buffers(inode));
1da177e4 235 security_inode_free(inode);
3be25f49 236 fsnotify_inode_delete(inode);
7ada4db8
MS
237 if (!inode->i_nlink) {
238 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
239 atomic_long_dec(&inode->i_sb->s_remove_count);
240 }
241
f19d4a8f
AV
242#ifdef CONFIG_FS_POSIX_ACL
243 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_acl);
245 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_default_acl);
247#endif
3e880fb5 248 this_cpu_dec(nr_inodes);
2e00c97e
CH
249}
250EXPORT_SYMBOL(__destroy_inode);
251
fa0d7e3d
NP
252static void i_callback(struct rcu_head *head)
253{
254 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
255 kmem_cache_free(inode_cachep, inode);
256}
257
56b0dacf 258static void destroy_inode(struct inode *inode)
2e00c97e 259{
7ccf19a8 260 BUG_ON(!list_empty(&inode->i_lru));
2e00c97e 261 __destroy_inode(inode);
1da177e4
LT
262 if (inode->i_sb->s_op->destroy_inode)
263 inode->i_sb->s_op->destroy_inode(inode);
264 else
fa0d7e3d 265 call_rcu(&inode->i_rcu, i_callback);
1da177e4 266}
1da177e4 267
7ada4db8
MS
268/**
269 * drop_nlink - directly drop an inode's link count
270 * @inode: inode
271 *
272 * This is a low-level filesystem helper to replace any
273 * direct filesystem manipulation of i_nlink. In cases
274 * where we are attempting to track writes to the
275 * filesystem, a decrement to zero means an imminent
276 * write when the file is truncated and actually unlinked
277 * on the filesystem.
278 */
279void drop_nlink(struct inode *inode)
280{
281 WARN_ON(inode->i_nlink == 0);
282 inode->__i_nlink--;
283 if (!inode->i_nlink)
284 atomic_long_inc(&inode->i_sb->s_remove_count);
285}
286EXPORT_SYMBOL(drop_nlink);
287
288/**
289 * clear_nlink - directly zero an inode's link count
290 * @inode: inode
291 *
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. See
294 * drop_nlink() for why we care about i_nlink hitting zero.
295 */
296void clear_nlink(struct inode *inode)
297{
298 if (inode->i_nlink) {
299 inode->__i_nlink = 0;
300 atomic_long_inc(&inode->i_sb->s_remove_count);
301 }
302}
303EXPORT_SYMBOL(clear_nlink);
304
305/**
306 * set_nlink - directly set an inode's link count
307 * @inode: inode
308 * @nlink: new nlink (should be non-zero)
309 *
310 * This is a low-level filesystem helper to replace any
311 * direct filesystem manipulation of i_nlink.
312 */
313void set_nlink(struct inode *inode, unsigned int nlink)
314{
315 if (!nlink) {
7ada4db8
MS
316 clear_nlink(inode);
317 } else {
318 /* Yes, some filesystems do change nlink from zero to one */
319 if (inode->i_nlink == 0)
320 atomic_long_dec(&inode->i_sb->s_remove_count);
321
322 inode->__i_nlink = nlink;
323 }
324}
325EXPORT_SYMBOL(set_nlink);
326
327/**
328 * inc_nlink - directly increment an inode's link count
329 * @inode: inode
330 *
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink. Currently,
333 * it is only here for parity with dec_nlink().
334 */
335void inc_nlink(struct inode *inode)
336{
f4e0c30c
AV
337 if (unlikely(inode->i_nlink == 0)) {
338 WARN_ON(!(inode->i_state & I_LINKABLE));
7ada4db8 339 atomic_long_dec(&inode->i_sb->s_remove_count);
f4e0c30c 340 }
7ada4db8
MS
341
342 inode->__i_nlink++;
343}
344EXPORT_SYMBOL(inc_nlink);
345
2aa15890
MS
346void address_space_init_once(struct address_space *mapping)
347{
348 memset(mapping, 0, sizeof(*mapping));
349 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 spin_lock_init(&mapping->tree_lock);
3d48ae45 351 mutex_init(&mapping->i_mmap_mutex);
2aa15890
MS
352 INIT_LIST_HEAD(&mapping->private_list);
353 spin_lock_init(&mapping->private_lock);
6b2dbba8 354 mapping->i_mmap = RB_ROOT;
2aa15890 355 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
2aa15890
MS
356}
357EXPORT_SYMBOL(address_space_init_once);
358
1da177e4
LT
359/*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364void inode_init_once(struct inode *inode)
365{
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
1da177e4 368 INIT_LIST_HEAD(&inode->i_devices);
7ccf19a8
NP
369 INIT_LIST_HEAD(&inode->i_wb_list);
370 INIT_LIST_HEAD(&inode->i_lru);
2aa15890 371 address_space_init_once(&inode->i_data);
1da177e4 372 i_size_ordered_init(inode);
3be25f49 373#ifdef CONFIG_FSNOTIFY
e61ce867 374 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
3be25f49 375#endif
1da177e4 376}
1da177e4
LT
377EXPORT_SYMBOL(inode_init_once);
378
51cc5068 379static void init_once(void *foo)
1da177e4 380{
6b3304b5 381 struct inode *inode = (struct inode *) foo;
1da177e4 382
a35afb83 383 inode_init_once(inode);
1da177e4
LT
384}
385
386/*
250df6ed 387 * inode->i_lock must be held
1da177e4 388 */
6b3304b5 389void __iget(struct inode *inode)
1da177e4 390{
9e38d86f
NP
391 atomic_inc(&inode->i_count);
392}
2e147f1e 393
7de9c6ee
AV
394/*
395 * get additional reference to inode; caller must already hold one.
396 */
397void ihold(struct inode *inode)
398{
399 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400}
401EXPORT_SYMBOL(ihold);
402
9e38d86f
NP
403static void inode_lru_list_add(struct inode *inode)
404{
bc3b14cb 405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
fcb94f72 406 this_cpu_inc(nr_unused);
9e38d86f 407}
2e147f1e 408
4eff96dd
JK
409/*
410 * Add inode to LRU if needed (inode is unused and clean).
411 *
412 * Needs inode->i_lock held.
413 */
414void inode_add_lru(struct inode *inode)
415{
416 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
417 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 inode_lru_list_add(inode);
419}
420
421
9e38d86f
NP
422static void inode_lru_list_del(struct inode *inode)
423{
bc3b14cb
DC
424
425 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
fcb94f72 426 this_cpu_dec(nr_unused);
1da177e4
LT
427}
428
646ec461
CH
429/**
430 * inode_sb_list_add - add inode to the superblock list of inodes
431 * @inode: inode to add
432 */
433void inode_sb_list_add(struct inode *inode)
434{
55fa6091
DC
435 spin_lock(&inode_sb_list_lock);
436 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 spin_unlock(&inode_sb_list_lock);
646ec461
CH
438}
439EXPORT_SYMBOL_GPL(inode_sb_list_add);
440
55fa6091 441static inline void inode_sb_list_del(struct inode *inode)
646ec461 442{
a209dfc7
ED
443 if (!list_empty(&inode->i_sb_list)) {
444 spin_lock(&inode_sb_list_lock);
445 list_del_init(&inode->i_sb_list);
446 spin_unlock(&inode_sb_list_lock);
447 }
646ec461
CH
448}
449
4c51acbc
DC
450static unsigned long hash(struct super_block *sb, unsigned long hashval)
451{
452 unsigned long tmp;
453
454 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 L1_CACHE_BYTES;
4b4563dc
CH
456 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 return tmp & i_hash_mask;
4c51acbc
DC
458}
459
460/**
461 * __insert_inode_hash - hash an inode
462 * @inode: unhashed inode
463 * @hashval: unsigned long value used to locate this object in the
464 * inode_hashtable.
465 *
466 * Add an inode to the inode hash for this superblock.
467 */
468void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469{
646ec461
CH
470 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471
67a23c49 472 spin_lock(&inode_hash_lock);
250df6ed 473 spin_lock(&inode->i_lock);
646ec461 474 hlist_add_head(&inode->i_hash, b);
250df6ed 475 spin_unlock(&inode->i_lock);
67a23c49 476 spin_unlock(&inode_hash_lock);
4c51acbc
DC
477}
478EXPORT_SYMBOL(__insert_inode_hash);
479
4c51acbc 480/**
f2ee7abf 481 * __remove_inode_hash - remove an inode from the hash
4c51acbc
DC
482 * @inode: inode to unhash
483 *
484 * Remove an inode from the superblock.
485 */
f2ee7abf 486void __remove_inode_hash(struct inode *inode)
4c51acbc 487{
67a23c49 488 spin_lock(&inode_hash_lock);
250df6ed 489 spin_lock(&inode->i_lock);
4c51acbc 490 hlist_del_init(&inode->i_hash);
250df6ed 491 spin_unlock(&inode->i_lock);
67a23c49 492 spin_unlock(&inode_hash_lock);
4c51acbc 493}
f2ee7abf 494EXPORT_SYMBOL(__remove_inode_hash);
4c51acbc 495
dbd5768f 496void clear_inode(struct inode *inode)
b0683aa6
AV
497{
498 might_sleep();
08142579
JK
499 /*
500 * We have to cycle tree_lock here because reclaim can be still in the
501 * process of removing the last page (in __delete_from_page_cache())
502 * and we must not free mapping under it.
503 */
504 spin_lock_irq(&inode->i_data.tree_lock);
b0683aa6 505 BUG_ON(inode->i_data.nrpages);
08142579 506 spin_unlock_irq(&inode->i_data.tree_lock);
b0683aa6
AV
507 BUG_ON(!list_empty(&inode->i_data.private_list));
508 BUG_ON(!(inode->i_state & I_FREEING));
509 BUG_ON(inode->i_state & I_CLEAR);
fa0d7e3d 510 /* don't need i_lock here, no concurrent mods to i_state */
b0683aa6
AV
511 inode->i_state = I_FREEING | I_CLEAR;
512}
dbd5768f 513EXPORT_SYMBOL(clear_inode);
b0683aa6 514
b2b2af8e
DC
515/*
516 * Free the inode passed in, removing it from the lists it is still connected
517 * to. We remove any pages still attached to the inode and wait for any IO that
518 * is still in progress before finally destroying the inode.
519 *
520 * An inode must already be marked I_FREEING so that we avoid the inode being
521 * moved back onto lists if we race with other code that manipulates the lists
522 * (e.g. writeback_single_inode). The caller is responsible for setting this.
523 *
524 * An inode must already be removed from the LRU list before being evicted from
525 * the cache. This should occur atomically with setting the I_FREEING state
526 * flag, so no inodes here should ever be on the LRU when being evicted.
527 */
644da596 528static void evict(struct inode *inode)
b4272d4c
AV
529{
530 const struct super_operations *op = inode->i_sb->s_op;
531
b2b2af8e
DC
532 BUG_ON(!(inode->i_state & I_FREEING));
533 BUG_ON(!list_empty(&inode->i_lru));
534
b12362bd
ED
535 if (!list_empty(&inode->i_wb_list))
536 inode_wb_list_del(inode);
537
55fa6091
DC
538 inode_sb_list_del(inode);
539
169ebd90
JK
540 /*
541 * Wait for flusher thread to be done with the inode so that filesystem
542 * does not start destroying it while writeback is still running. Since
543 * the inode has I_FREEING set, flusher thread won't start new work on
544 * the inode. We just have to wait for running writeback to finish.
545 */
546 inode_wait_for_writeback(inode);
7994e6f7 547
be7ce416
AV
548 if (op->evict_inode) {
549 op->evict_inode(inode);
b4272d4c
AV
550 } else {
551 if (inode->i_data.nrpages)
552 truncate_inode_pages(&inode->i_data, 0);
dbd5768f 553 clear_inode(inode);
b4272d4c 554 }
661074e9
AV
555 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 bd_forget(inode);
557 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 cd_forget(inode);
b2b2af8e
DC
559
560 remove_inode_hash(inode);
561
562 spin_lock(&inode->i_lock);
563 wake_up_bit(&inode->i_state, __I_NEW);
564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 spin_unlock(&inode->i_lock);
566
567 destroy_inode(inode);
b4272d4c
AV
568}
569
1da177e4
LT
570/*
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
573 *
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
576 */
577static void dispose_list(struct list_head *head)
578{
1da177e4
LT
579 while (!list_empty(head)) {
580 struct inode *inode;
581
7ccf19a8
NP
582 inode = list_first_entry(head, struct inode, i_lru);
583 list_del_init(&inode->i_lru);
1da177e4 584
644da596 585 evict(inode);
1da177e4 586 }
1da177e4
LT
587}
588
63997e98
AV
589/**
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
592 *
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
1da177e4 597 */
63997e98 598void evict_inodes(struct super_block *sb)
1da177e4 599{
63997e98
AV
600 struct inode *inode, *next;
601 LIST_HEAD(dispose);
1da177e4 602
55fa6091 603 spin_lock(&inode_sb_list_lock);
63997e98
AV
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
aabb8fdb 606 continue;
250df6ed
DC
607
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
1da177e4 611 continue;
250df6ed 612 }
63997e98
AV
613
614 inode->i_state |= I_FREEING;
02afc410 615 inode_lru_list_del(inode);
250df6ed 616 spin_unlock(&inode->i_lock);
02afc410 617 list_add(&inode->i_lru, &dispose);
1da177e4 618 }
55fa6091 619 spin_unlock(&inode_sb_list_lock);
63997e98
AV
620
621 dispose_list(&dispose);
1da177e4
LT
622}
623
1da177e4 624/**
a0318786
CH
625 * invalidate_inodes - attempt to free all inodes on a superblock
626 * @sb: superblock to operate on
93b270f7 627 * @kill_dirty: flag to guide handling of dirty inodes
1da177e4 628 *
a0318786
CH
629 * Attempts to free all inodes for a given superblock. If there were any
630 * busy inodes return a non-zero value, else zero.
93b270f7
N
631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
632 * them as busy.
1da177e4 633 */
93b270f7 634int invalidate_inodes(struct super_block *sb, bool kill_dirty)
1da177e4 635{
cffbc8aa 636 int busy = 0;
a0318786
CH
637 struct inode *inode, *next;
638 LIST_HEAD(dispose);
1da177e4 639
55fa6091 640 spin_lock(&inode_sb_list_lock);
a0318786 641 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
250df6ed
DC
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
aabb8fdb 645 continue;
250df6ed 646 }
93b270f7 647 if (inode->i_state & I_DIRTY && !kill_dirty) {
250df6ed 648 spin_unlock(&inode->i_lock);
93b270f7
N
649 busy = 1;
650 continue;
651 }
99a38919 652 if (atomic_read(&inode->i_count)) {
250df6ed 653 spin_unlock(&inode->i_lock);
99a38919 654 busy = 1;
1da177e4
LT
655 continue;
656 }
99a38919 657
99a38919 658 inode->i_state |= I_FREEING;
02afc410 659 inode_lru_list_del(inode);
250df6ed 660 spin_unlock(&inode->i_lock);
02afc410 661 list_add(&inode->i_lru, &dispose);
1da177e4 662 }
55fa6091 663 spin_unlock(&inode_sb_list_lock);
1da177e4 664
a0318786 665 dispose_list(&dispose);
1da177e4
LT
666
667 return busy;
668}
1da177e4 669
1da177e4 670/*
bc3b14cb 671 * Isolate the inode from the LRU in preparation for freeing it.
1da177e4
LT
672 *
673 * Any inodes which are pinned purely because of attached pagecache have their
9e38d86f
NP
674 * pagecache removed. If the inode has metadata buffers attached to
675 * mapping->private_list then try to remove them.
1da177e4 676 *
9e38d86f
NP
677 * If the inode has the I_REFERENCED flag set, then it means that it has been
678 * used recently - the flag is set in iput_final(). When we encounter such an
679 * inode, clear the flag and move it to the back of the LRU so it gets another
680 * pass through the LRU before it gets reclaimed. This is necessary because of
681 * the fact we are doing lazy LRU updates to minimise lock contention so the
682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683 * with this flag set because they are the inodes that are out of order.
1da177e4 684 */
bc3b14cb
DC
685static enum lru_status
686inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
1da177e4 687{
bc3b14cb
DC
688 struct list_head *freeable = arg;
689 struct inode *inode = container_of(item, struct inode, i_lru);
1da177e4 690
bc3b14cb
DC
691 /*
692 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 * If we fail to get the lock, just skip it.
694 */
695 if (!spin_trylock(&inode->i_lock))
696 return LRU_SKIP;
1da177e4 697
bc3b14cb
DC
698 /*
699 * Referenced or dirty inodes are still in use. Give them another pass
700 * through the LRU as we canot reclaim them now.
701 */
702 if (atomic_read(&inode->i_count) ||
703 (inode->i_state & ~I_REFERENCED)) {
704 list_del_init(&inode->i_lru);
705 spin_unlock(&inode->i_lock);
706 this_cpu_dec(nr_unused);
707 return LRU_REMOVED;
708 }
1da177e4 709
bc3b14cb
DC
710 /* recently referenced inodes get one more pass */
711 if (inode->i_state & I_REFERENCED) {
712 inode->i_state &= ~I_REFERENCED;
713 spin_unlock(&inode->i_lock);
714 return LRU_ROTATE;
715 }
1da177e4 716
bc3b14cb
DC
717 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
718 __iget(inode);
719 spin_unlock(&inode->i_lock);
720 spin_unlock(lru_lock);
721 if (remove_inode_buffers(inode)) {
722 unsigned long reap;
723 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
724 if (current_is_kswapd())
725 __count_vm_events(KSWAPD_INODESTEAL, reap);
726 else
727 __count_vm_events(PGINODESTEAL, reap);
728 if (current->reclaim_state)
729 current->reclaim_state->reclaimed_slab += reap;
02afc410 730 }
bc3b14cb
DC
731 iput(inode);
732 spin_lock(lru_lock);
733 return LRU_RETRY;
734 }
02afc410 735
bc3b14cb
DC
736 WARN_ON(inode->i_state & I_NEW);
737 inode->i_state |= I_FREEING;
d38fa698 738 list_move(&inode->i_lru, freeable);
bc3b14cb 739 spin_unlock(&inode->i_lock);
9e38d86f 740
bc3b14cb
DC
741 this_cpu_dec(nr_unused);
742 return LRU_REMOVED;
743}
7ccf19a8 744
bc3b14cb
DC
745/*
746 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747 * This is called from the superblock shrinker function with a number of inodes
748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749 * then are freed outside inode_lock by dispose_list().
750 */
751long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan)
752{
753 LIST_HEAD(freeable);
754 long freed;
1da177e4 755
bc3b14cb
DC
756 freed = list_lru_walk(&sb->s_inode_lru, inode_lru_isolate,
757 &freeable, nr_to_scan);
1da177e4 758 dispose_list(&freeable);
0a234c6d 759 return freed;
1da177e4
LT
760}
761
1da177e4
LT
762static void __wait_on_freeing_inode(struct inode *inode);
763/*
764 * Called with the inode lock held.
1da177e4 765 */
6b3304b5
MK
766static struct inode *find_inode(struct super_block *sb,
767 struct hlist_head *head,
768 int (*test)(struct inode *, void *),
769 void *data)
1da177e4 770{
6b3304b5 771 struct inode *inode = NULL;
1da177e4
LT
772
773repeat:
b67bfe0d 774 hlist_for_each_entry(inode, head, i_hash) {
67a23c49
DC
775 spin_lock(&inode->i_lock);
776 if (inode->i_sb != sb) {
777 spin_unlock(&inode->i_lock);
1da177e4 778 continue;
67a23c49
DC
779 }
780 if (!test(inode, data)) {
781 spin_unlock(&inode->i_lock);
1da177e4 782 continue;
67a23c49 783 }
a4ffdde6 784 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1da177e4
LT
785 __wait_on_freeing_inode(inode);
786 goto repeat;
787 }
f7899bd5 788 __iget(inode);
250df6ed 789 spin_unlock(&inode->i_lock);
f7899bd5 790 return inode;
1da177e4 791 }
f7899bd5 792 return NULL;
1da177e4
LT
793}
794
795/*
796 * find_inode_fast is the fast path version of find_inode, see the comment at
797 * iget_locked for details.
798 */
6b3304b5
MK
799static struct inode *find_inode_fast(struct super_block *sb,
800 struct hlist_head *head, unsigned long ino)
1da177e4 801{
6b3304b5 802 struct inode *inode = NULL;
1da177e4
LT
803
804repeat:
b67bfe0d 805 hlist_for_each_entry(inode, head, i_hash) {
67a23c49
DC
806 spin_lock(&inode->i_lock);
807 if (inode->i_ino != ino) {
808 spin_unlock(&inode->i_lock);
1da177e4 809 continue;
67a23c49
DC
810 }
811 if (inode->i_sb != sb) {
812 spin_unlock(&inode->i_lock);
1da177e4 813 continue;
67a23c49 814 }
a4ffdde6 815 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1da177e4
LT
816 __wait_on_freeing_inode(inode);
817 goto repeat;
818 }
f7899bd5 819 __iget(inode);
250df6ed 820 spin_unlock(&inode->i_lock);
f7899bd5 821 return inode;
1da177e4 822 }
f7899bd5 823 return NULL;
8290c35f
DC
824}
825
f991bd2e
ED
826/*
827 * Each cpu owns a range of LAST_INO_BATCH numbers.
828 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
829 * to renew the exhausted range.
8290c35f 830 *
f991bd2e
ED
831 * This does not significantly increase overflow rate because every CPU can
832 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
833 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
834 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
835 * overflow rate by 2x, which does not seem too significant.
836 *
837 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
838 * error if st_ino won't fit in target struct field. Use 32bit counter
839 * here to attempt to avoid that.
8290c35f 840 */
f991bd2e
ED
841#define LAST_INO_BATCH 1024
842static DEFINE_PER_CPU(unsigned int, last_ino);
843
85fe4025 844unsigned int get_next_ino(void)
8290c35f 845{
f991bd2e
ED
846 unsigned int *p = &get_cpu_var(last_ino);
847 unsigned int res = *p;
8290c35f 848
f991bd2e
ED
849#ifdef CONFIG_SMP
850 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
851 static atomic_t shared_last_ino;
852 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
853
854 res = next - LAST_INO_BATCH;
855 }
856#endif
857
858 *p = ++res;
859 put_cpu_var(last_ino);
860 return res;
8290c35f 861}
85fe4025 862EXPORT_SYMBOL(get_next_ino);
8290c35f 863
a209dfc7
ED
864/**
865 * new_inode_pseudo - obtain an inode
866 * @sb: superblock
867 *
868 * Allocates a new inode for given superblock.
869 * Inode wont be chained in superblock s_inodes list
870 * This means :
871 * - fs can't be unmount
872 * - quotas, fsnotify, writeback can't work
873 */
874struct inode *new_inode_pseudo(struct super_block *sb)
875{
876 struct inode *inode = alloc_inode(sb);
877
878 if (inode) {
879 spin_lock(&inode->i_lock);
880 inode->i_state = 0;
881 spin_unlock(&inode->i_lock);
882 INIT_LIST_HEAD(&inode->i_sb_list);
883 }
884 return inode;
885}
886
1da177e4
LT
887/**
888 * new_inode - obtain an inode
889 * @sb: superblock
890 *
769848c0 891 * Allocates a new inode for given superblock. The default gfp_mask
3c1d4378 892 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
769848c0
MG
893 * If HIGHMEM pages are unsuitable or it is known that pages allocated
894 * for the page cache are not reclaimable or migratable,
895 * mapping_set_gfp_mask() must be called with suitable flags on the
896 * newly created inode's mapping
897 *
1da177e4
LT
898 */
899struct inode *new_inode(struct super_block *sb)
900{
6b3304b5 901 struct inode *inode;
1da177e4 902
55fa6091 903 spin_lock_prefetch(&inode_sb_list_lock);
6b3304b5 904
a209dfc7
ED
905 inode = new_inode_pseudo(sb);
906 if (inode)
55fa6091 907 inode_sb_list_add(inode);
1da177e4
LT
908 return inode;
909}
1da177e4
LT
910EXPORT_SYMBOL(new_inode);
911
14358e6d 912#ifdef CONFIG_DEBUG_LOCK_ALLOC
e096d0c7
JB
913void lockdep_annotate_inode_mutex_key(struct inode *inode)
914{
a3314a0e 915 if (S_ISDIR(inode->i_mode)) {
1e89a5e1
PZ
916 struct file_system_type *type = inode->i_sb->s_type;
917
9a7aa12f 918 /* Set new key only if filesystem hasn't already changed it */
978d6d8c 919 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
9a7aa12f
JK
920 /*
921 * ensure nobody is actually holding i_mutex
922 */
923 mutex_destroy(&inode->i_mutex);
924 mutex_init(&inode->i_mutex);
925 lockdep_set_class(&inode->i_mutex,
926 &type->i_mutex_dir_key);
927 }
1e89a5e1 928 }
e096d0c7
JB
929}
930EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
14358e6d 931#endif
e096d0c7
JB
932
933/**
934 * unlock_new_inode - clear the I_NEW state and wake up any waiters
935 * @inode: new inode to unlock
936 *
937 * Called when the inode is fully initialised to clear the new state of the
938 * inode and wake up anyone waiting for the inode to finish initialisation.
939 */
940void unlock_new_inode(struct inode *inode)
941{
942 lockdep_annotate_inode_mutex_key(inode);
250df6ed 943 spin_lock(&inode->i_lock);
eaff8079
CH
944 WARN_ON(!(inode->i_state & I_NEW));
945 inode->i_state &= ~I_NEW;
310fa7a3 946 smp_mb();
250df6ed
DC
947 wake_up_bit(&inode->i_state, __I_NEW);
948 spin_unlock(&inode->i_lock);
1da177e4 949}
1da177e4
LT
950EXPORT_SYMBOL(unlock_new_inode);
951
0b2d0724
CH
952/**
953 * iget5_locked - obtain an inode from a mounted file system
954 * @sb: super block of file system
955 * @hashval: hash value (usually inode number) to get
956 * @test: callback used for comparisons between inodes
957 * @set: callback used to initialize a new struct inode
958 * @data: opaque data pointer to pass to @test and @set
959 *
960 * Search for the inode specified by @hashval and @data in the inode cache,
961 * and if present it is return it with an increased reference count. This is
962 * a generalized version of iget_locked() for file systems where the inode
963 * number is not sufficient for unique identification of an inode.
964 *
965 * If the inode is not in cache, allocate a new inode and return it locked,
966 * hashed, and with the I_NEW flag set. The file system gets to fill it in
967 * before unlocking it via unlock_new_inode().
1da177e4 968 *
0b2d0724
CH
969 * Note both @test and @set are called with the inode_hash_lock held, so can't
970 * sleep.
1da177e4 971 */
0b2d0724
CH
972struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
973 int (*test)(struct inode *, void *),
974 int (*set)(struct inode *, void *), void *data)
1da177e4 975{
0b2d0724 976 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
6b3304b5 977 struct inode *inode;
1da177e4 978
0b2d0724
CH
979 spin_lock(&inode_hash_lock);
980 inode = find_inode(sb, head, test, data);
981 spin_unlock(&inode_hash_lock);
982
983 if (inode) {
984 wait_on_inode(inode);
985 return inode;
986 }
987
1da177e4
LT
988 inode = alloc_inode(sb);
989 if (inode) {
6b3304b5 990 struct inode *old;
1da177e4 991
67a23c49 992 spin_lock(&inode_hash_lock);
1da177e4
LT
993 /* We released the lock, so.. */
994 old = find_inode(sb, head, test, data);
995 if (!old) {
996 if (set(inode, data))
997 goto set_failed;
998
250df6ed
DC
999 spin_lock(&inode->i_lock);
1000 inode->i_state = I_NEW;
646ec461 1001 hlist_add_head(&inode->i_hash, head);
250df6ed 1002 spin_unlock(&inode->i_lock);
55fa6091 1003 inode_sb_list_add(inode);
67a23c49 1004 spin_unlock(&inode_hash_lock);
1da177e4
LT
1005
1006 /* Return the locked inode with I_NEW set, the
1007 * caller is responsible for filling in the contents
1008 */
1009 return inode;
1010 }
1011
1012 /*
1013 * Uhhuh, somebody else created the same inode under
1014 * us. Use the old inode instead of the one we just
1015 * allocated.
1016 */
67a23c49 1017 spin_unlock(&inode_hash_lock);
1da177e4
LT
1018 destroy_inode(inode);
1019 inode = old;
1020 wait_on_inode(inode);
1021 }
1022 return inode;
1023
1024set_failed:
67a23c49 1025 spin_unlock(&inode_hash_lock);
1da177e4
LT
1026 destroy_inode(inode);
1027 return NULL;
1028}
0b2d0724 1029EXPORT_SYMBOL(iget5_locked);
1da177e4 1030
0b2d0724
CH
1031/**
1032 * iget_locked - obtain an inode from a mounted file system
1033 * @sb: super block of file system
1034 * @ino: inode number to get
1035 *
1036 * Search for the inode specified by @ino in the inode cache and if present
1037 * return it with an increased reference count. This is for file systems
1038 * where the inode number is sufficient for unique identification of an inode.
1039 *
1040 * If the inode is not in cache, allocate a new inode and return it locked,
1041 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1042 * before unlocking it via unlock_new_inode().
1da177e4 1043 */
0b2d0724 1044struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1da177e4 1045{
0b2d0724 1046 struct hlist_head *head = inode_hashtable + hash(sb, ino);
6b3304b5 1047 struct inode *inode;
1da177e4 1048
0b2d0724
CH
1049 spin_lock(&inode_hash_lock);
1050 inode = find_inode_fast(sb, head, ino);
1051 spin_unlock(&inode_hash_lock);
1052 if (inode) {
1053 wait_on_inode(inode);
1054 return inode;
1055 }
1056
1da177e4
LT
1057 inode = alloc_inode(sb);
1058 if (inode) {
6b3304b5 1059 struct inode *old;
1da177e4 1060
67a23c49 1061 spin_lock(&inode_hash_lock);
1da177e4
LT
1062 /* We released the lock, so.. */
1063 old = find_inode_fast(sb, head, ino);
1064 if (!old) {
1065 inode->i_ino = ino;
250df6ed
DC
1066 spin_lock(&inode->i_lock);
1067 inode->i_state = I_NEW;
646ec461 1068 hlist_add_head(&inode->i_hash, head);
250df6ed 1069 spin_unlock(&inode->i_lock);
55fa6091 1070 inode_sb_list_add(inode);
67a23c49 1071 spin_unlock(&inode_hash_lock);
1da177e4
LT
1072
1073 /* Return the locked inode with I_NEW set, the
1074 * caller is responsible for filling in the contents
1075 */
1076 return inode;
1077 }
1078
1079 /*
1080 * Uhhuh, somebody else created the same inode under
1081 * us. Use the old inode instead of the one we just
1082 * allocated.
1083 */
67a23c49 1084 spin_unlock(&inode_hash_lock);
1da177e4
LT
1085 destroy_inode(inode);
1086 inode = old;
1087 wait_on_inode(inode);
1088 }
1089 return inode;
1090}
0b2d0724 1091EXPORT_SYMBOL(iget_locked);
1da177e4 1092
ad5e195a
CH
1093/*
1094 * search the inode cache for a matching inode number.
1095 * If we find one, then the inode number we are trying to
1096 * allocate is not unique and so we should not use it.
1097 *
1098 * Returns 1 if the inode number is unique, 0 if it is not.
1099 */
1100static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1101{
1102 struct hlist_head *b = inode_hashtable + hash(sb, ino);
ad5e195a
CH
1103 struct inode *inode;
1104
67a23c49 1105 spin_lock(&inode_hash_lock);
b67bfe0d 1106 hlist_for_each_entry(inode, b, i_hash) {
67a23c49
DC
1107 if (inode->i_ino == ino && inode->i_sb == sb) {
1108 spin_unlock(&inode_hash_lock);
ad5e195a 1109 return 0;
67a23c49 1110 }
ad5e195a 1111 }
67a23c49 1112 spin_unlock(&inode_hash_lock);
ad5e195a
CH
1113
1114 return 1;
1115}
1116
1da177e4
LT
1117/**
1118 * iunique - get a unique inode number
1119 * @sb: superblock
1120 * @max_reserved: highest reserved inode number
1121 *
1122 * Obtain an inode number that is unique on the system for a given
1123 * superblock. This is used by file systems that have no natural
1124 * permanent inode numbering system. An inode number is returned that
1125 * is higher than the reserved limit but unique.
1126 *
1127 * BUGS:
1128 * With a large number of inodes live on the file system this function
1129 * currently becomes quite slow.
1130 */
1131ino_t iunique(struct super_block *sb, ino_t max_reserved)
1132{
866b04fc
JL
1133 /*
1134 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1135 * error if st_ino won't fit in target struct field. Use 32bit counter
1136 * here to attempt to avoid that.
1137 */
ad5e195a 1138 static DEFINE_SPINLOCK(iunique_lock);
866b04fc 1139 static unsigned int counter;
1da177e4 1140 ino_t res;
3361c7be 1141
ad5e195a 1142 spin_lock(&iunique_lock);
3361c7be
JL
1143 do {
1144 if (counter <= max_reserved)
1145 counter = max_reserved + 1;
1da177e4 1146 res = counter++;
ad5e195a
CH
1147 } while (!test_inode_iunique(sb, res));
1148 spin_unlock(&iunique_lock);
1da177e4 1149
3361c7be
JL
1150 return res;
1151}
1da177e4
LT
1152EXPORT_SYMBOL(iunique);
1153
1154struct inode *igrab(struct inode *inode)
1155{
250df6ed
DC
1156 spin_lock(&inode->i_lock);
1157 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1da177e4 1158 __iget(inode);
250df6ed
DC
1159 spin_unlock(&inode->i_lock);
1160 } else {
1161 spin_unlock(&inode->i_lock);
1da177e4
LT
1162 /*
1163 * Handle the case where s_op->clear_inode is not been
1164 * called yet, and somebody is calling igrab
1165 * while the inode is getting freed.
1166 */
1167 inode = NULL;
250df6ed 1168 }
1da177e4
LT
1169 return inode;
1170}
1da177e4
LT
1171EXPORT_SYMBOL(igrab);
1172
1173/**
0b2d0724 1174 * ilookup5_nowait - search for an inode in the inode cache
1da177e4 1175 * @sb: super block of file system to search
0b2d0724 1176 * @hashval: hash value (usually inode number) to search for
1da177e4
LT
1177 * @test: callback used for comparisons between inodes
1178 * @data: opaque data pointer to pass to @test
1da177e4 1179 *
0b2d0724 1180 * Search for the inode specified by @hashval and @data in the inode cache.
1da177e4
LT
1181 * If the inode is in the cache, the inode is returned with an incremented
1182 * reference count.
1183 *
0b2d0724
CH
1184 * Note: I_NEW is not waited upon so you have to be very careful what you do
1185 * with the returned inode. You probably should be using ilookup5() instead.
1da177e4 1186 *
b6d0ad68 1187 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1da177e4 1188 */
0b2d0724
CH
1189struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1190 int (*test)(struct inode *, void *), void *data)
1da177e4 1191{
0b2d0724 1192 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1da177e4
LT
1193 struct inode *inode;
1194
67a23c49 1195 spin_lock(&inode_hash_lock);
1da177e4 1196 inode = find_inode(sb, head, test, data);
67a23c49 1197 spin_unlock(&inode_hash_lock);
88bd5121 1198
0b2d0724 1199 return inode;
88bd5121 1200}
88bd5121
AA
1201EXPORT_SYMBOL(ilookup5_nowait);
1202
1203/**
1204 * ilookup5 - search for an inode in the inode cache
1205 * @sb: super block of file system to search
1206 * @hashval: hash value (usually inode number) to search for
1207 * @test: callback used for comparisons between inodes
1208 * @data: opaque data pointer to pass to @test
1209 *
0b2d0724
CH
1210 * Search for the inode specified by @hashval and @data in the inode cache,
1211 * and if the inode is in the cache, return the inode with an incremented
1212 * reference count. Waits on I_NEW before returning the inode.
88bd5121 1213 * returned with an incremented reference count.
1da177e4 1214 *
0b2d0724
CH
1215 * This is a generalized version of ilookup() for file systems where the
1216 * inode number is not sufficient for unique identification of an inode.
1da177e4 1217 *
0b2d0724 1218 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1da177e4
LT
1219 */
1220struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1221 int (*test)(struct inode *, void *), void *data)
1222{
0b2d0724 1223 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1da177e4 1224
0b2d0724
CH
1225 if (inode)
1226 wait_on_inode(inode);
1227 return inode;
1da177e4 1228}
1da177e4
LT
1229EXPORT_SYMBOL(ilookup5);
1230
1231/**
1232 * ilookup - search for an inode in the inode cache
1233 * @sb: super block of file system to search
1234 * @ino: inode number to search for
1235 *
0b2d0724
CH
1236 * Search for the inode @ino in the inode cache, and if the inode is in the
1237 * cache, the inode is returned with an incremented reference count.
1da177e4
LT
1238 */
1239struct inode *ilookup(struct super_block *sb, unsigned long ino)
1240{
1241 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1da177e4
LT
1242 struct inode *inode;
1243
0b2d0724
CH
1244 spin_lock(&inode_hash_lock);
1245 inode = find_inode_fast(sb, head, ino);
1246 spin_unlock(&inode_hash_lock);
1da177e4 1247
1da177e4 1248 if (inode)
0b2d0724
CH
1249 wait_on_inode(inode);
1250 return inode;
1da177e4 1251}
0b2d0724 1252EXPORT_SYMBOL(ilookup);
1da177e4 1253
261bca86
AV
1254int insert_inode_locked(struct inode *inode)
1255{
1256 struct super_block *sb = inode->i_sb;
1257 ino_t ino = inode->i_ino;
1258 struct hlist_head *head = inode_hashtable + hash(sb, ino);
261bca86 1259
261bca86 1260 while (1) {
72a43d63 1261 struct inode *old = NULL;
67a23c49 1262 spin_lock(&inode_hash_lock);
b67bfe0d 1263 hlist_for_each_entry(old, head, i_hash) {
72a43d63
AV
1264 if (old->i_ino != ino)
1265 continue;
1266 if (old->i_sb != sb)
1267 continue;
250df6ed
DC
1268 spin_lock(&old->i_lock);
1269 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1270 spin_unlock(&old->i_lock);
72a43d63 1271 continue;
250df6ed 1272 }
72a43d63
AV
1273 break;
1274 }
b67bfe0d 1275 if (likely(!old)) {
250df6ed
DC
1276 spin_lock(&inode->i_lock);
1277 inode->i_state |= I_NEW;
261bca86 1278 hlist_add_head(&inode->i_hash, head);
250df6ed 1279 spin_unlock(&inode->i_lock);
67a23c49 1280 spin_unlock(&inode_hash_lock);
261bca86
AV
1281 return 0;
1282 }
1283 __iget(old);
250df6ed 1284 spin_unlock(&old->i_lock);
67a23c49 1285 spin_unlock(&inode_hash_lock);
261bca86 1286 wait_on_inode(old);
1d3382cb 1287 if (unlikely(!inode_unhashed(old))) {
261bca86
AV
1288 iput(old);
1289 return -EBUSY;
1290 }
1291 iput(old);
1292 }
1293}
261bca86
AV
1294EXPORT_SYMBOL(insert_inode_locked);
1295
1296int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1297 int (*test)(struct inode *, void *), void *data)
1298{
1299 struct super_block *sb = inode->i_sb;
1300 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
261bca86 1301
261bca86 1302 while (1) {
72a43d63
AV
1303 struct inode *old = NULL;
1304
67a23c49 1305 spin_lock(&inode_hash_lock);
b67bfe0d 1306 hlist_for_each_entry(old, head, i_hash) {
72a43d63
AV
1307 if (old->i_sb != sb)
1308 continue;
1309 if (!test(old, data))
1310 continue;
250df6ed
DC
1311 spin_lock(&old->i_lock);
1312 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1313 spin_unlock(&old->i_lock);
72a43d63 1314 continue;
250df6ed 1315 }
72a43d63
AV
1316 break;
1317 }
b67bfe0d 1318 if (likely(!old)) {
250df6ed
DC
1319 spin_lock(&inode->i_lock);
1320 inode->i_state |= I_NEW;
261bca86 1321 hlist_add_head(&inode->i_hash, head);
250df6ed 1322 spin_unlock(&inode->i_lock);
67a23c49 1323 spin_unlock(&inode_hash_lock);
261bca86
AV
1324 return 0;
1325 }
1326 __iget(old);
250df6ed 1327 spin_unlock(&old->i_lock);
67a23c49 1328 spin_unlock(&inode_hash_lock);
261bca86 1329 wait_on_inode(old);
1d3382cb 1330 if (unlikely(!inode_unhashed(old))) {
261bca86
AV
1331 iput(old);
1332 return -EBUSY;
1333 }
1334 iput(old);
1335 }
1336}
261bca86
AV
1337EXPORT_SYMBOL(insert_inode_locked4);
1338
1da177e4 1339
45321ac5
AV
1340int generic_delete_inode(struct inode *inode)
1341{
1342 return 1;
1343}
1344EXPORT_SYMBOL(generic_delete_inode);
1345
45321ac5
AV
1346/*
1347 * Called when we're dropping the last reference
1348 * to an inode.
22fe4042 1349 *
45321ac5
AV
1350 * Call the FS "drop_inode()" function, defaulting to
1351 * the legacy UNIX filesystem behaviour. If it tells
1352 * us to evict inode, do so. Otherwise, retain inode
1353 * in cache if fs is alive, sync and evict if fs is
1354 * shutting down.
22fe4042 1355 */
45321ac5 1356static void iput_final(struct inode *inode)
1da177e4
LT
1357{
1358 struct super_block *sb = inode->i_sb;
45321ac5
AV
1359 const struct super_operations *op = inode->i_sb->s_op;
1360 int drop;
1361
250df6ed
DC
1362 WARN_ON(inode->i_state & I_NEW);
1363
e7f59097 1364 if (op->drop_inode)
45321ac5
AV
1365 drop = op->drop_inode(inode);
1366 else
1367 drop = generic_drop_inode(inode);
1da177e4 1368
b2b2af8e
DC
1369 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1370 inode->i_state |= I_REFERENCED;
4eff96dd 1371 inode_add_lru(inode);
b2b2af8e 1372 spin_unlock(&inode->i_lock);
b2b2af8e
DC
1373 return;
1374 }
1375
45321ac5 1376 if (!drop) {
991114c6 1377 inode->i_state |= I_WILL_FREE;
250df6ed 1378 spin_unlock(&inode->i_lock);
1da177e4 1379 write_inode_now(inode, 1);
250df6ed 1380 spin_lock(&inode->i_lock);
7ef0d737 1381 WARN_ON(inode->i_state & I_NEW);
991114c6 1382 inode->i_state &= ~I_WILL_FREE;
1da177e4 1383 }
7ccf19a8 1384
991114c6 1385 inode->i_state |= I_FREEING;
c4ae0c65
ED
1386 if (!list_empty(&inode->i_lru))
1387 inode_lru_list_del(inode);
b2b2af8e 1388 spin_unlock(&inode->i_lock);
b2b2af8e 1389
644da596 1390 evict(inode);
1da177e4
LT
1391}
1392
1da177e4 1393/**
6b3304b5 1394 * iput - put an inode
1da177e4
LT
1395 * @inode: inode to put
1396 *
1397 * Puts an inode, dropping its usage count. If the inode use count hits
1398 * zero, the inode is then freed and may also be destroyed.
1399 *
1400 * Consequently, iput() can sleep.
1401 */
1402void iput(struct inode *inode)
1403{
1404 if (inode) {
a4ffdde6 1405 BUG_ON(inode->i_state & I_CLEAR);
1da177e4 1406
f283c86a 1407 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1da177e4
LT
1408 iput_final(inode);
1409 }
1410}
1da177e4
LT
1411EXPORT_SYMBOL(iput);
1412
1413/**
1414 * bmap - find a block number in a file
1415 * @inode: inode of file
1416 * @block: block to find
1417 *
1418 * Returns the block number on the device holding the inode that
1419 * is the disk block number for the block of the file requested.
1420 * That is, asked for block 4 of inode 1 the function will return the
6b3304b5 1421 * disk block relative to the disk start that holds that block of the
1da177e4
LT
1422 * file.
1423 */
6b3304b5 1424sector_t bmap(struct inode *inode, sector_t block)
1da177e4
LT
1425{
1426 sector_t res = 0;
1427 if (inode->i_mapping->a_ops->bmap)
1428 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1429 return res;
1430}
1da177e4
LT
1431EXPORT_SYMBOL(bmap);
1432
11ff6f05
MG
1433/*
1434 * With relative atime, only update atime if the previous atime is
1435 * earlier than either the ctime or mtime or if at least a day has
1436 * passed since the last atime update.
1437 */
1438static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1439 struct timespec now)
1440{
1441
1442 if (!(mnt->mnt_flags & MNT_RELATIME))
1443 return 1;
1444 /*
1445 * Is mtime younger than atime? If yes, update atime:
1446 */
1447 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1448 return 1;
1449 /*
1450 * Is ctime younger than atime? If yes, update atime:
1451 */
1452 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1453 return 1;
1454
1455 /*
1456 * Is the previous atime value older than a day? If yes,
1457 * update atime:
1458 */
1459 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1460 return 1;
1461 /*
1462 * Good, we can skip the atime update:
1463 */
1464 return 0;
1465}
1466
c3b2da31
JB
1467/*
1468 * This does the actual work of updating an inodes time or version. Must have
1469 * had called mnt_want_write() before calling this.
1470 */
1471static int update_time(struct inode *inode, struct timespec *time, int flags)
1472{
1473 if (inode->i_op->update_time)
1474 return inode->i_op->update_time(inode, time, flags);
1475
1476 if (flags & S_ATIME)
1477 inode->i_atime = *time;
1478 if (flags & S_VERSION)
1479 inode_inc_iversion(inode);
1480 if (flags & S_CTIME)
1481 inode->i_ctime = *time;
1482 if (flags & S_MTIME)
1483 inode->i_mtime = *time;
1484 mark_inode_dirty_sync(inode);
1485 return 0;
1486}
1487
1da177e4 1488/**
869243a0 1489 * touch_atime - update the access time
185553b2 1490 * @path: the &struct path to update
1da177e4
LT
1491 *
1492 * Update the accessed time on an inode and mark it for writeback.
1493 * This function automatically handles read only file systems and media,
1494 * as well as the "noatime" flag and inode specific "noatime" markers.
1495 */
badcf2b7 1496void touch_atime(const struct path *path)
1da177e4 1497{
68ac1234
AV
1498 struct vfsmount *mnt = path->mnt;
1499 struct inode *inode = path->dentry->d_inode;
1da177e4
LT
1500 struct timespec now;
1501
cdb70f3f 1502 if (inode->i_flags & S_NOATIME)
b12536c2 1503 return;
37756ced 1504 if (IS_NOATIME(inode))
b12536c2 1505 return;
b2276138 1506 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
b12536c2 1507 return;
47ae32d6 1508
cdb70f3f 1509 if (mnt->mnt_flags & MNT_NOATIME)
b12536c2 1510 return;
cdb70f3f 1511 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
b12536c2 1512 return;
1da177e4
LT
1513
1514 now = current_fs_time(inode->i_sb);
11ff6f05
MG
1515
1516 if (!relatime_need_update(mnt, inode, now))
b12536c2 1517 return;
11ff6f05 1518
47ae32d6 1519 if (timespec_equal(&inode->i_atime, &now))
b12536c2
AK
1520 return;
1521
5d37e9e6 1522 if (!sb_start_write_trylock(inode->i_sb))
b12536c2 1523 return;
47ae32d6 1524
5d37e9e6
JK
1525 if (__mnt_want_write(mnt))
1526 goto skip_update;
c3b2da31
JB
1527 /*
1528 * File systems can error out when updating inodes if they need to
1529 * allocate new space to modify an inode (such is the case for
1530 * Btrfs), but since we touch atime while walking down the path we
1531 * really don't care if we failed to update the atime of the file,
1532 * so just ignore the return value.
2bc55652
AB
1533 * We may also fail on filesystems that have the ability to make parts
1534 * of the fs read only, e.g. subvolumes in Btrfs.
c3b2da31
JB
1535 */
1536 update_time(inode, &now, S_ATIME);
5d37e9e6
JK
1537 __mnt_drop_write(mnt);
1538skip_update:
1539 sb_end_write(inode->i_sb);
1da177e4 1540}
869243a0 1541EXPORT_SYMBOL(touch_atime);
1da177e4 1542
3ed37648
CW
1543/*
1544 * The logic we want is
1545 *
1546 * if suid or (sgid and xgrp)
1547 * remove privs
1548 */
1549int should_remove_suid(struct dentry *dentry)
1550{
1551 umode_t mode = dentry->d_inode->i_mode;
1552 int kill = 0;
1553
1554 /* suid always must be killed */
1555 if (unlikely(mode & S_ISUID))
1556 kill = ATTR_KILL_SUID;
1557
1558 /*
1559 * sgid without any exec bits is just a mandatory locking mark; leave
1560 * it alone. If some exec bits are set, it's a real sgid; kill it.
1561 */
1562 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1563 kill |= ATTR_KILL_SGID;
1564
1565 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1566 return kill;
1567
1568 return 0;
1569}
1570EXPORT_SYMBOL(should_remove_suid);
1571
1572static int __remove_suid(struct dentry *dentry, int kill)
1573{
1574 struct iattr newattrs;
1575
1576 newattrs.ia_valid = ATTR_FORCE | kill;
1577 return notify_change(dentry, &newattrs);
1578}
1579
1580int file_remove_suid(struct file *file)
1581{
1582 struct dentry *dentry = file->f_path.dentry;
1583 struct inode *inode = dentry->d_inode;
1584 int killsuid;
1585 int killpriv;
1586 int error = 0;
1587
1588 /* Fast path for nothing security related */
1589 if (IS_NOSEC(inode))
1590 return 0;
1591
1592 killsuid = should_remove_suid(dentry);
1593 killpriv = security_inode_need_killpriv(dentry);
1594
1595 if (killpriv < 0)
1596 return killpriv;
1597 if (killpriv)
1598 error = security_inode_killpriv(dentry);
1599 if (!error && killsuid)
1600 error = __remove_suid(dentry, killsuid);
1601 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1602 inode->i_flags |= S_NOSEC;
1603
1604 return error;
1605}
1606EXPORT_SYMBOL(file_remove_suid);
1607
1da177e4 1608/**
870f4817
CH
1609 * file_update_time - update mtime and ctime time
1610 * @file: file accessed
1da177e4 1611 *
870f4817
CH
1612 * Update the mtime and ctime members of an inode and mark the inode
1613 * for writeback. Note that this function is meant exclusively for
1614 * usage in the file write path of filesystems, and filesystems may
1615 * choose to explicitly ignore update via this function with the
2eadfc0e 1616 * S_NOCMTIME inode flag, e.g. for network filesystem where these
c3b2da31
JB
1617 * timestamps are handled by the server. This can return an error for
1618 * file systems who need to allocate space in order to update an inode.
1da177e4
LT
1619 */
1620
c3b2da31 1621int file_update_time(struct file *file)
1da177e4 1622{
496ad9aa 1623 struct inode *inode = file_inode(file);
1da177e4 1624 struct timespec now;
c3b2da31
JB
1625 int sync_it = 0;
1626 int ret;
1da177e4 1627
ce06e0b2 1628 /* First try to exhaust all avenues to not sync */
1da177e4 1629 if (IS_NOCMTIME(inode))
c3b2da31 1630 return 0;
20ddee2c 1631
1da177e4 1632 now = current_fs_time(inode->i_sb);
ce06e0b2
AK
1633 if (!timespec_equal(&inode->i_mtime, &now))
1634 sync_it = S_MTIME;
1da177e4 1635
ce06e0b2
AK
1636 if (!timespec_equal(&inode->i_ctime, &now))
1637 sync_it |= S_CTIME;
870f4817 1638
ce06e0b2
AK
1639 if (IS_I_VERSION(inode))
1640 sync_it |= S_VERSION;
7a224228 1641
ce06e0b2 1642 if (!sync_it)
c3b2da31 1643 return 0;
ce06e0b2
AK
1644
1645 /* Finally allowed to write? Takes lock. */
eb04c282 1646 if (__mnt_want_write_file(file))
c3b2da31 1647 return 0;
ce06e0b2 1648
c3b2da31 1649 ret = update_time(inode, &now, sync_it);
eb04c282 1650 __mnt_drop_write_file(file);
c3b2da31
JB
1651
1652 return ret;
1da177e4 1653}
870f4817 1654EXPORT_SYMBOL(file_update_time);
1da177e4
LT
1655
1656int inode_needs_sync(struct inode *inode)
1657{
1658 if (IS_SYNC(inode))
1659 return 1;
1660 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1661 return 1;
1662 return 0;
1663}
1da177e4
LT
1664EXPORT_SYMBOL(inode_needs_sync);
1665
1da177e4
LT
1666int inode_wait(void *word)
1667{
1668 schedule();
1669 return 0;
1670}
d44dab8d 1671EXPORT_SYMBOL(inode_wait);
1da177e4
LT
1672
1673/*
168a9fd6
MS
1674 * If we try to find an inode in the inode hash while it is being
1675 * deleted, we have to wait until the filesystem completes its
1676 * deletion before reporting that it isn't found. This function waits
1677 * until the deletion _might_ have completed. Callers are responsible
1678 * to recheck inode state.
1679 *
eaff8079 1680 * It doesn't matter if I_NEW is not set initially, a call to
250df6ed
DC
1681 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1682 * will DTRT.
1da177e4
LT
1683 */
1684static void __wait_on_freeing_inode(struct inode *inode)
1685{
1686 wait_queue_head_t *wq;
eaff8079
CH
1687 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1688 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1da177e4 1689 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
250df6ed 1690 spin_unlock(&inode->i_lock);
67a23c49 1691 spin_unlock(&inode_hash_lock);
1da177e4
LT
1692 schedule();
1693 finish_wait(wq, &wait.wait);
67a23c49 1694 spin_lock(&inode_hash_lock);
1da177e4
LT
1695}
1696
1da177e4
LT
1697static __initdata unsigned long ihash_entries;
1698static int __init set_ihash_entries(char *str)
1699{
1700 if (!str)
1701 return 0;
1702 ihash_entries = simple_strtoul(str, &str, 0);
1703 return 1;
1704}
1705__setup("ihash_entries=", set_ihash_entries);
1706
1707/*
1708 * Initialize the waitqueues and inode hash table.
1709 */
1710void __init inode_init_early(void)
1711{
074b8517 1712 unsigned int loop;
1da177e4
LT
1713
1714 /* If hashes are distributed across NUMA nodes, defer
1715 * hash allocation until vmalloc space is available.
1716 */
1717 if (hashdist)
1718 return;
1719
1720 inode_hashtable =
1721 alloc_large_system_hash("Inode-cache",
1722 sizeof(struct hlist_head),
1723 ihash_entries,
1724 14,
1725 HASH_EARLY,
1726 &i_hash_shift,
1727 &i_hash_mask,
31fe62b9 1728 0,
1da177e4
LT
1729 0);
1730
074b8517 1731 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1da177e4
LT
1732 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1733}
1734
74bf17cf 1735void __init inode_init(void)
1da177e4 1736{
074b8517 1737 unsigned int loop;
1da177e4
LT
1738
1739 /* inode slab cache */
b0196009
PJ
1740 inode_cachep = kmem_cache_create("inode_cache",
1741 sizeof(struct inode),
1742 0,
1743 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1744 SLAB_MEM_SPREAD),
20c2df83 1745 init_once);
1da177e4
LT
1746
1747 /* Hash may have been set up in inode_init_early */
1748 if (!hashdist)
1749 return;
1750
1751 inode_hashtable =
1752 alloc_large_system_hash("Inode-cache",
1753 sizeof(struct hlist_head),
1754 ihash_entries,
1755 14,
1756 0,
1757 &i_hash_shift,
1758 &i_hash_mask,
31fe62b9 1759 0,
1da177e4
LT
1760 0);
1761
074b8517 1762 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1da177e4
LT
1763 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1764}
1765
1766void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1767{
1768 inode->i_mode = mode;
1769 if (S_ISCHR(mode)) {
1770 inode->i_fop = &def_chr_fops;
1771 inode->i_rdev = rdev;
1772 } else if (S_ISBLK(mode)) {
1773 inode->i_fop = &def_blk_fops;
1774 inode->i_rdev = rdev;
1775 } else if (S_ISFIFO(mode))
599a0ac1 1776 inode->i_fop = &pipefifo_fops;
1da177e4
LT
1777 else if (S_ISSOCK(mode))
1778 inode->i_fop = &bad_sock_fops;
1779 else
af0d9ae8
MK
1780 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1781 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1782 inode->i_ino);
1da177e4
LT
1783}
1784EXPORT_SYMBOL(init_special_inode);
a1bd120d
DM
1785
1786/**
eaae668d 1787 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
a1bd120d
DM
1788 * @inode: New inode
1789 * @dir: Directory inode
1790 * @mode: mode of the new inode
1791 */
1792void inode_init_owner(struct inode *inode, const struct inode *dir,
62bb1091 1793 umode_t mode)
a1bd120d
DM
1794{
1795 inode->i_uid = current_fsuid();
1796 if (dir && dir->i_mode & S_ISGID) {
1797 inode->i_gid = dir->i_gid;
1798 if (S_ISDIR(mode))
1799 mode |= S_ISGID;
1800 } else
1801 inode->i_gid = current_fsgid();
1802 inode->i_mode = mode;
1803}
1804EXPORT_SYMBOL(inode_init_owner);
e795b717 1805
2e149670
SH
1806/**
1807 * inode_owner_or_capable - check current task permissions to inode
1808 * @inode: inode being checked
1809 *
1810 * Return true if current either has CAP_FOWNER to the inode, or
1811 * owns the file.
e795b717 1812 */
2e149670 1813bool inode_owner_or_capable(const struct inode *inode)
e795b717 1814{
92361636 1815 if (uid_eq(current_fsuid(), inode->i_uid))
e795b717 1816 return true;
1a48e2ac 1817 if (inode_capable(inode, CAP_FOWNER))
e795b717
SH
1818 return true;
1819 return false;
1820}
2e149670 1821EXPORT_SYMBOL(inode_owner_or_capable);
1d59d61f
TM
1822
1823/*
1824 * Direct i/o helper functions
1825 */
1826static void __inode_dio_wait(struct inode *inode)
1827{
1828 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1829 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1830
1831 do {
1832 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1833 if (atomic_read(&inode->i_dio_count))
1834 schedule();
1835 } while (atomic_read(&inode->i_dio_count));
1836 finish_wait(wq, &q.wait);
1837}
1838
1839/**
1840 * inode_dio_wait - wait for outstanding DIO requests to finish
1841 * @inode: inode to wait for
1842 *
1843 * Waits for all pending direct I/O requests to finish so that we can
1844 * proceed with a truncate or equivalent operation.
1845 *
1846 * Must be called under a lock that serializes taking new references
1847 * to i_dio_count, usually by inode->i_mutex.
1848 */
1849void inode_dio_wait(struct inode *inode)
1850{
1851 if (atomic_read(&inode->i_dio_count))
1852 __inode_dio_wait(inode);
1853}
1854EXPORT_SYMBOL(inode_dio_wait);
1855
1856/*
1857 * inode_dio_done - signal finish of a direct I/O requests
1858 * @inode: inode the direct I/O happens on
1859 *
1860 * This is called once we've finished processing a direct I/O request,
1861 * and is used to wake up callers waiting for direct I/O to be quiesced.
1862 */
1863void inode_dio_done(struct inode *inode)
1864{
1865 if (atomic_dec_and_test(&inode->i_dio_count))
1866 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1867}
1868EXPORT_SYMBOL(inode_dio_done);