Merge tag 'x86_kdump_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / hugetlbfs / inode.c
CommitLineData
1da177e4
LT
1/*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
6d49e352 4 * Nadia Yvette Chambers, 2002
1da177e4
LT
5 *
6 * Copyright (C) 2002 Linus Torvalds.
3e89e1c5 7 * License: GPL
1da177e4
LT
8 */
9
9b857d26
AM
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
1da177e4
LT
12#include <linux/thread_info.h>
13#include <asm/current.h>
174cd4b1 14#include <linux/sched/signal.h> /* remove ASAP */
70c3547e 15#include <linux/falloc.h>
1da177e4
LT
16#include <linux/fs.h>
17#include <linux/mount.h>
18#include <linux/file.h>
e73a75fa 19#include <linux/kernel.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/pagemap.h>
22#include <linux/highmem.h>
23#include <linux/init.h>
24#include <linux/string.h>
16f7e0fe 25#include <linux/capability.h>
e73a75fa 26#include <linux/ctype.h>
1da177e4
LT
27#include <linux/backing-dev.h>
28#include <linux/hugetlb.h>
29#include <linux/pagevec.h>
32021982 30#include <linux/fs_parser.h>
036e0856 31#include <linux/mman.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/dnotify.h>
34#include <linux/statfs.h>
35#include <linux/security.h>
1fd7317d 36#include <linux/magic.h>
290408d4 37#include <linux/migrate.h>
34d0640e 38#include <linux/uio.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
88590253 41#include <linux/sched/mm.h>
1da177e4 42
ee9b6d61 43static const struct super_operations hugetlbfs_ops;
f5e54d6e 44static const struct address_space_operations hugetlbfs_aops;
4b6f5d20 45const struct file_operations hugetlbfs_file_operations;
92e1d5be
AV
46static const struct inode_operations hugetlbfs_dir_inode_operations;
47static const struct inode_operations hugetlbfs_inode_operations;
1da177e4 48
32021982
DH
49enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51struct hugetlbfs_fs_context {
4a25220d 52 struct hstate *hstate;
32021982
DH
53 unsigned long long max_size_opt;
54 unsigned long long min_size_opt;
4a25220d
DH
55 long max_hpages;
56 long nr_inodes;
57 long min_hpages;
32021982
DH
58 enum hugetlbfs_size_type max_val_type;
59 enum hugetlbfs_size_type min_val_type;
4a25220d
DH
60 kuid_t uid;
61 kgid_t gid;
62 umode_t mode;
a1d776ee
DG
63};
64
1da177e4
LT
65int sysctl_hugetlb_shm_group;
66
32021982
DH
67enum hugetlb_param {
68 Opt_gid,
69 Opt_min_size,
70 Opt_mode,
71 Opt_nr_inodes,
72 Opt_pagesize,
73 Opt_size,
74 Opt_uid,
e73a75fa
RD
75};
76
d7167b14 77static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
32021982
DH
78 fsparam_u32 ("gid", Opt_gid),
79 fsparam_string("min_size", Opt_min_size),
e0f7e2b2 80 fsparam_u32oct("mode", Opt_mode),
32021982
DH
81 fsparam_string("nr_inodes", Opt_nr_inodes),
82 fsparam_string("pagesize", Opt_pagesize),
83 fsparam_string("size", Opt_size),
84 fsparam_u32 ("uid", Opt_uid),
85 {}
86};
87
70c3547e
MK
88#ifdef CONFIG_NUMA
89static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91{
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94}
95
96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97{
98 mpol_cond_put(vma->vm_policy);
99}
100#else
101static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103{
104}
105
106static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107{
108}
109#endif
110
2e9b367c
AL
111static void huge_pagevec_release(struct pagevec *pvec)
112{
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119}
120
63489f8e
MK
121/*
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
127 */
128#define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
1da177e4
LT
131static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132{
496ad9aa 133 struct inode *inode = file_inode(file);
22247efd 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4
LT
135 loff_t len, vma_len;
136 int ret;
a5516438 137 struct hstate *h = hstate_file(file);
1da177e4 138
68589bc3 139 /*
dec4ad86
DG
140 * vma address alignment (but not the pgoff alignment) has
141 * already been checked by prepare_hugepage_range. If you add
142 * any error returns here, do so after setting VM_HUGETLB, so
143 * is_vm_hugetlb_page tests below unmap_region go the right
45e55300 144 * way when do_mmap unwinds (may be important on powerpc
dec4ad86 145 * and ia64).
68589bc3 146 */
a2fce914 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
68589bc3 148 vma->vm_ops = &hugetlb_vm_ops;
1da177e4 149
22247efd
PX
150 ret = seal_check_future_write(info->seals, vma);
151 if (ret)
152 return ret;
153
045c7a3f 154 /*
63489f8e 155 * page based offset in vm_pgoff could be sufficiently large to
5df63c2a
MK
156 * overflow a loff_t when converted to byte offset. This can
157 * only happen on architectures where sizeof(loff_t) ==
158 * sizeof(unsigned long). So, only check in those instances.
045c7a3f 159 */
5df63c2a
MK
160 if (sizeof(unsigned long) == sizeof(loff_t)) {
161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 return -EINVAL;
163 }
045c7a3f 164
63489f8e 165 /* must be huge page aligned */
2b37c35e 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
dec4ad86
DG
167 return -EINVAL;
168
1da177e4 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
045c7a3f
MK
170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 /* check for overflow */
172 if (len < vma_len)
173 return -EINVAL;
1da177e4 174
5955102c 175 inode_lock(inode);
1da177e4 176 file_accessed(file);
1da177e4
LT
177
178 ret = -ENOMEM;
33b8f84a 179 if (!hugetlb_reserve_pages(inode,
a5516438 180 vma->vm_pgoff >> huge_page_order(h),
5a6fe125
MG
181 len >> huge_page_shift(h), vma,
182 vma->vm_flags))
a43a8c39 183 goto out;
b45b5bd6 184
4c887265 185 ret = 0;
b6174df5 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
045c7a3f 187 i_size_write(inode, len);
1da177e4 188out:
5955102c 189 inode_unlock(inode);
1da177e4
LT
190
191 return ret;
192}
193
194/*
3e4e28c5 195 * Called under mmap_write_lock(mm).
1da177e4
LT
196 */
197
d2ba27e8 198#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
88590253
SH
199static unsigned long
200hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 unsigned long len, unsigned long pgoff, unsigned long flags)
202{
203 struct hstate *h = hstate_file(file);
204 struct vm_unmapped_area_info info;
205
206 info.flags = 0;
207 info.length = len;
208 info.low_limit = current->mm->mmap_base;
5f24d5a5 209 info.high_limit = arch_get_mmap_end(addr);
88590253
SH
210 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 info.align_offset = 0;
212 return vm_unmapped_area(&info);
213}
214
215static unsigned long
216hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 unsigned long len, unsigned long pgoff, unsigned long flags)
218{
219 struct hstate *h = hstate_file(file);
220 struct vm_unmapped_area_info info;
221
222 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 info.length = len;
224 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
5f24d5a5 225 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
88590253
SH
226 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 info.align_offset = 0;
228 addr = vm_unmapped_area(&info);
229
230 /*
231 * A failed mmap() very likely causes application failure,
232 * so fall back to the bottom-up function here. This scenario
233 * can happen with large stack limits and large mmap()
234 * allocations.
235 */
236 if (unlikely(offset_in_page(addr))) {
237 VM_BUG_ON(addr != -ENOMEM);
238 info.flags = 0;
239 info.low_limit = current->mm->mmap_base;
5f24d5a5 240 info.high_limit = arch_get_mmap_end(addr);
88590253
SH
241 addr = vm_unmapped_area(&info);
242 }
243
244 return addr;
245}
246
1da177e4
LT
247static unsigned long
248hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 unsigned long len, unsigned long pgoff, unsigned long flags)
250{
251 struct mm_struct *mm = current->mm;
252 struct vm_area_struct *vma;
a5516438 253 struct hstate *h = hstate_file(file);
5f24d5a5 254 const unsigned long mmap_end = arch_get_mmap_end(addr);
1da177e4 255
a5516438 256 if (len & ~huge_page_mask(h))
1da177e4
LT
257 return -EINVAL;
258 if (len > TASK_SIZE)
259 return -ENOMEM;
260
036e0856 261 if (flags & MAP_FIXED) {
a5516438 262 if (prepare_hugepage_range(file, addr, len))
036e0856
BH
263 return -EINVAL;
264 return addr;
265 }
266
1da177e4 267 if (addr) {
a5516438 268 addr = ALIGN(addr, huge_page_size(h));
1da177e4 269 vma = find_vma(mm, addr);
5f24d5a5 270 if (mmap_end - len >= addr &&
1be7107f 271 (!vma || addr + len <= vm_start_gap(vma)))
1da177e4
LT
272 return addr;
273 }
274
88590253
SH
275 /*
276 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277 * If architectures have special needs, they should define their own
278 * version of hugetlb_get_unmapped_area.
279 */
280 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281 return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 pgoff, flags);
283 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284 pgoff, flags);
1da177e4
LT
285}
286#endif
287
34d0640e 288static size_t
e63e1e5a 289hugetlbfs_read_actor(struct page *page, unsigned long offset,
34d0640e 290 struct iov_iter *to, unsigned long size)
e63e1e5a 291{
34d0640e 292 size_t copied = 0;
e63e1e5a
BP
293 int i, chunksize;
294
e63e1e5a 295 /* Find which 4k chunk and offset with in that chunk */
09cbfeaf
KS
296 i = offset >> PAGE_SHIFT;
297 offset = offset & ~PAGE_MASK;
e63e1e5a
BP
298
299 while (size) {
34d0640e 300 size_t n;
09cbfeaf 301 chunksize = PAGE_SIZE;
e63e1e5a
BP
302 if (offset)
303 chunksize -= offset;
304 if (chunksize > size)
305 chunksize = size;
34d0640e
AV
306 n = copy_page_to_iter(&page[i], offset, chunksize, to);
307 copied += n;
308 if (n != chunksize)
309 return copied;
e63e1e5a
BP
310 offset = 0;
311 size -= chunksize;
e63e1e5a
BP
312 i++;
313 }
34d0640e 314 return copied;
e63e1e5a
BP
315}
316
317/*
318 * Support for read() - Find the page attached to f_mapping and copy out the
c7e285e3 319 * data. Its *very* similar to generic_file_buffered_read(), we can't use that
ea1754a0 320 * since it has PAGE_SIZE assumptions.
e63e1e5a 321 */
34d0640e 322static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
e63e1e5a 323{
34d0640e
AV
324 struct file *file = iocb->ki_filp;
325 struct hstate *h = hstate_file(file);
326 struct address_space *mapping = file->f_mapping;
e63e1e5a 327 struct inode *inode = mapping->host;
34d0640e
AV
328 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
329 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
e63e1e5a
BP
330 unsigned long end_index;
331 loff_t isize;
332 ssize_t retval = 0;
333
34d0640e 334 while (iov_iter_count(to)) {
e63e1e5a 335 struct page *page;
34d0640e 336 size_t nr, copied;
e63e1e5a
BP
337
338 /* nr is the maximum number of bytes to copy from this page */
a5516438 339 nr = huge_page_size(h);
a05b0855
AK
340 isize = i_size_read(inode);
341 if (!isize)
34d0640e 342 break;
a05b0855 343 end_index = (isize - 1) >> huge_page_shift(h);
34d0640e
AV
344 if (index > end_index)
345 break;
346 if (index == end_index) {
a5516438 347 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
a05b0855 348 if (nr <= offset)
34d0640e 349 break;
e63e1e5a
BP
350 }
351 nr = nr - offset;
352
353 /* Find the page */
a05b0855 354 page = find_lock_page(mapping, index);
e63e1e5a
BP
355 if (unlikely(page == NULL)) {
356 /*
357 * We have a HOLE, zero out the user-buffer for the
358 * length of the hole or request.
359 */
34d0640e 360 copied = iov_iter_zero(nr, to);
e63e1e5a 361 } else {
a05b0855
AK
362 unlock_page(page);
363
e63e1e5a
BP
364 /*
365 * We have the page, copy it to user space buffer.
366 */
34d0640e 367 copied = hugetlbfs_read_actor(page, offset, to, nr);
09cbfeaf 368 put_page(page);
e63e1e5a 369 }
34d0640e
AV
370 offset += copied;
371 retval += copied;
372 if (copied != nr && iov_iter_count(to)) {
373 if (!retval)
374 retval = -EFAULT;
375 break;
e63e1e5a 376 }
a5516438
AK
377 index += offset >> huge_page_shift(h);
378 offset &= ~huge_page_mask(h);
e63e1e5a 379 }
34d0640e 380 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
e63e1e5a
BP
381 return retval;
382}
383
800d15a5
NP
384static int hugetlbfs_write_begin(struct file *file,
385 struct address_space *mapping,
386 loff_t pos, unsigned len, unsigned flags,
387 struct page **pagep, void **fsdata)
1da177e4
LT
388{
389 return -EINVAL;
390}
391
800d15a5
NP
392static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
393 loff_t pos, unsigned len, unsigned copied,
394 struct page *page, void *fsdata)
1da177e4 395{
800d15a5 396 BUG();
1da177e4
LT
397 return -EINVAL;
398}
399
b5cec28d 400static void remove_huge_page(struct page *page)
1da177e4 401{
b9ea2515 402 ClearPageDirty(page);
1da177e4 403 ClearPageUptodate(page);
bd65cb86 404 delete_from_page_cache(page);
1da177e4
LT
405}
406
4aae8d1c 407static void
f808c13f 408hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
4aae8d1c
MK
409{
410 struct vm_area_struct *vma;
411
412 /*
d6aba4c8
SC
413 * end == 0 indicates that the entire range after start should be
414 * unmapped. Note, end is exclusive, whereas the interval tree takes
415 * an inclusive "last".
4aae8d1c 416 */
d6aba4c8 417 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
4aae8d1c
MK
418 unsigned long v_offset;
419 unsigned long v_end;
420
421 /*
422 * Can the expression below overflow on 32-bit arches?
423 * No, because the interval tree returns us only those vmas
424 * which overlap the truncated area starting at pgoff,
425 * and no vma on a 32-bit arch can span beyond the 4GB.
426 */
427 if (vma->vm_pgoff < start)
428 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
429 else
430 v_offset = 0;
431
432 if (!end)
433 v_end = vma->vm_end;
434 else {
435 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
436 + vma->vm_start;
437 if (v_end > vma->vm_end)
438 v_end = vma->vm_end;
439 }
440
441 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
442 NULL);
443 }
444}
b5cec28d
MK
445
446/*
447 * remove_inode_hugepages handles two distinct cases: truncation and hole
448 * punch. There are subtle differences in operation for each case.
4aae8d1c 449 *
b5cec28d
MK
450 * truncation is indicated by end of range being LLONG_MAX
451 * In this case, we first scan the range and release found pages.
1935ebd3 452 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
e7c58097 453 * maps and global counts. Page faults can not race with truncation
87bf91d3
MK
454 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
455 * page faults in the truncated range by checking i_size. i_size is
456 * modified while holding i_mmap_rwsem.
b5cec28d
MK
457 * hole punch is indicated if end is not LLONG_MAX
458 * In the hole punch case we scan the range and release found pages.
1935ebd3
ML
459 * Only when releasing a page is the associated region/reserve map
460 * deleted. The region/reserve map for ranges without associated
e7c58097
MK
461 * pages are not modified. Page faults can race with hole punch.
462 * This is indicated if we find a mapped page.
b5cec28d
MK
463 * Note: If the passed end of range value is beyond the end of file, but
464 * not LLONG_MAX this routine still performs a hole punch operation.
465 */
466static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
467 loff_t lend)
1da177e4 468{
a5516438 469 struct hstate *h = hstate_inode(inode);
b45b5bd6 470 struct address_space *mapping = &inode->i_data;
a5516438 471 const pgoff_t start = lstart >> huge_page_shift(h);
b5cec28d 472 const pgoff_t end = lend >> huge_page_shift(h);
1da177e4 473 struct pagevec pvec;
d72dc8a2 474 pgoff_t next, index;
a43a8c39 475 int i, freed = 0;
b5cec28d 476 bool truncate_op = (lend == LLONG_MAX);
1da177e4 477
86679820 478 pagevec_init(&pvec);
1da177e4 479 next = start;
b5cec28d 480 while (next < end) {
b5cec28d 481 /*
1817889e 482 * When no more pages are found, we are done.
b5cec28d 483 */
397162ff 484 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
1817889e 485 break;
1da177e4
LT
486
487 for (i = 0; i < pagevec_count(&pvec); ++i) {
488 struct page *page = pvec.pages[i];
d4241a04 489 u32 hash = 0;
b5cec28d 490
d72dc8a2 491 index = page->index;
87bf91d3
MK
492 if (!truncate_op) {
493 /*
494 * Only need to hold the fault mutex in the
495 * hole punch case. This prevents races with
496 * page faults. Races are not possible in the
497 * case of truncation.
498 */
d4241a04 499 hash = hugetlb_fault_mutex_hash(mapping, index);
87bf91d3
MK
500 mutex_lock(&hugetlb_fault_mutex_table[hash]);
501 }
e7c58097 502
4aae8d1c 503 /*
e7c58097
MK
504 * If page is mapped, it was faulted in after being
505 * unmapped in caller. Unmap (again) now after taking
506 * the fault mutex. The mutex will prevent faults
507 * until we finish removing the page.
508 *
509 * This race can only happen in the hole punch case.
510 * Getting here in a truncate operation is a bug.
4aae8d1c 511 */
e7c58097
MK
512 if (unlikely(page_mapped(page))) {
513 BUG_ON(truncate_op);
514
c0d0381a 515 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
e7c58097 516 i_mmap_lock_write(mapping);
c0d0381a 517 mutex_lock(&hugetlb_fault_mutex_table[hash]);
e7c58097
MK
518 hugetlb_vmdelete_list(&mapping->i_mmap,
519 index * pages_per_huge_page(h),
520 (index + 1) * pages_per_huge_page(h));
521 i_mmap_unlock_write(mapping);
522 }
4aae8d1c
MK
523
524 lock_page(page);
525 /*
526 * We must free the huge page and remove from page
527 * cache (remove_huge_page) BEFORE removing the
528 * region/reserve map (hugetlb_unreserve_pages). In
529 * rare out of memory conditions, removal of the
72e2936c 530 * region/reserve map could fail. Correspondingly,
531 * the subpool and global reserve usage count can need
532 * to be adjusted.
4aae8d1c 533 */
e32905e5 534 VM_BUG_ON(HPageRestoreReserve(page));
4aae8d1c
MK
535 remove_huge_page(page);
536 freed++;
537 if (!truncate_op) {
538 if (unlikely(hugetlb_unreserve_pages(inode,
d72dc8a2 539 index, index + 1, 1)))
72e2936c 540 hugetlb_fix_reserve_counts(inode);
b5cec28d
MK
541 }
542
1da177e4 543 unlock_page(page);
87bf91d3
MK
544 if (!truncate_op)
545 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
1da177e4
LT
546 }
547 huge_pagevec_release(&pvec);
1817889e 548 cond_resched();
1da177e4 549 }
b5cec28d
MK
550
551 if (truncate_op)
552 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
1da177e4
LT
553}
554
2bbbda30 555static void hugetlbfs_evict_inode(struct inode *inode)
1da177e4 556{
9119a41e
JK
557 struct resv_map *resv_map;
558
b5cec28d 559 remove_inode_hugepages(inode, 0, LLONG_MAX);
f27a5136
MK
560
561 /*
562 * Get the resv_map from the address space embedded in the inode.
563 * This is the address space which points to any resv_map allocated
564 * at inode creation time. If this is a device special inode,
565 * i_mapping may not point to the original address space.
566 */
567 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
568 /* Only regular and link inodes have associated reserve maps */
9119a41e
JK
569 if (resv_map)
570 resv_map_release(&resv_map->refs);
dbd5768f 571 clear_inode(inode);
149f4211
CH
572}
573
e5d319de 574static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
1da177e4 575{
856fc295 576 pgoff_t pgoff;
1da177e4 577 struct address_space *mapping = inode->i_mapping;
a5516438 578 struct hstate *h = hstate_inode(inode);
1da177e4 579
a5516438 580 BUG_ON(offset & ~huge_page_mask(h));
856fc295 581 pgoff = offset >> PAGE_SHIFT;
1da177e4 582
83cde9e8 583 i_mmap_lock_write(mapping);
87bf91d3 584 i_size_write(inode, offset);
f808c13f 585 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
1bfad99a 586 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
c86aa7bb 587 i_mmap_unlock_write(mapping);
e7c58097 588 remove_inode_hugepages(inode, offset, LLONG_MAX);
1da177e4
LT
589}
590
70c3547e
MK
591static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
592{
593 struct hstate *h = hstate_inode(inode);
594 loff_t hpage_size = huge_page_size(h);
595 loff_t hole_start, hole_end;
596
597 /*
598 * For hole punch round up the beginning offset of the hole and
599 * round down the end.
600 */
601 hole_start = round_up(offset, hpage_size);
602 hole_end = round_down(offset + len, hpage_size);
603
604 if (hole_end > hole_start) {
605 struct address_space *mapping = inode->i_mapping;
ff62a342 606 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
70c3547e 607
5955102c 608 inode_lock(inode);
ff62a342 609
398c0da7 610 /* protected by i_rwsem */
ab3948f5 611 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
ff62a342
MAL
612 inode_unlock(inode);
613 return -EPERM;
614 }
615
70c3547e 616 i_mmap_lock_write(mapping);
f808c13f 617 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
70c3547e
MK
618 hugetlb_vmdelete_list(&mapping->i_mmap,
619 hole_start >> PAGE_SHIFT,
620 hole_end >> PAGE_SHIFT);
c86aa7bb 621 i_mmap_unlock_write(mapping);
e7c58097 622 remove_inode_hugepages(inode, hole_start, hole_end);
5955102c 623 inode_unlock(inode);
70c3547e
MK
624 }
625
626 return 0;
627}
628
629static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
630 loff_t len)
631{
632 struct inode *inode = file_inode(file);
ff62a342 633 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
70c3547e
MK
634 struct address_space *mapping = inode->i_mapping;
635 struct hstate *h = hstate_inode(inode);
636 struct vm_area_struct pseudo_vma;
637 struct mm_struct *mm = current->mm;
638 loff_t hpage_size = huge_page_size(h);
639 unsigned long hpage_shift = huge_page_shift(h);
640 pgoff_t start, index, end;
641 int error;
642 u32 hash;
643
644 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
645 return -EOPNOTSUPP;
646
647 if (mode & FALLOC_FL_PUNCH_HOLE)
648 return hugetlbfs_punch_hole(inode, offset, len);
649
650 /*
651 * Default preallocate case.
652 * For this range, start is rounded down and end is rounded up
653 * as well as being converted to page offsets.
654 */
655 start = offset >> hpage_shift;
656 end = (offset + len + hpage_size - 1) >> hpage_shift;
657
5955102c 658 inode_lock(inode);
70c3547e
MK
659
660 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
661 error = inode_newsize_ok(inode, offset + len);
662 if (error)
663 goto out;
664
ff62a342
MAL
665 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
666 error = -EPERM;
667 goto out;
668 }
669
70c3547e
MK
670 /*
671 * Initialize a pseudo vma as this is required by the huge page
672 * allocation routines. If NUMA is configured, use page index
673 * as input to create an allocation policy.
674 */
2c4541e2 675 vma_init(&pseudo_vma, mm);
70c3547e
MK
676 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
677 pseudo_vma.vm_file = file;
678
679 for (index = start; index < end; index++) {
680 /*
681 * This is supposed to be the vaddr where the page is being
682 * faulted in, but we have no vaddr here.
683 */
684 struct page *page;
685 unsigned long addr;
70c3547e
MK
686
687 cond_resched();
688
689 /*
690 * fallocate(2) manpage permits EINTR; we may have been
691 * interrupted because we are using up too much memory.
692 */
693 if (signal_pending(current)) {
694 error = -EINTR;
695 break;
696 }
697
698 /* Set numa allocation policy based on index */
699 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
700
701 /* addr is the offset within the file (zero based) */
702 addr = index * hpage_size;
703
87bf91d3
MK
704 /*
705 * fault mutex taken here, protects against fault path
706 * and hole punch. inode_lock previously taken protects
707 * against truncation.
708 */
188b04a7 709 hash = hugetlb_fault_mutex_hash(mapping, index);
70c3547e
MK
710 mutex_lock(&hugetlb_fault_mutex_table[hash]);
711
712 /* See if already present in mapping to avoid alloc/free */
713 page = find_get_page(mapping, index);
714 if (page) {
715 put_page(page);
716 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
717 hugetlb_drop_vma_policy(&pseudo_vma);
718 continue;
719 }
720
88ce3fef
ML
721 /*
722 * Allocate page without setting the avoid_reserve argument.
723 * There certainly are no reserves associated with the
724 * pseudo_vma. However, there could be shared mappings with
725 * reserves for the file at the inode level. If we fallocate
726 * pages in these areas, we need to consume the reserves
727 * to keep reservation accounting consistent.
728 */
729 page = alloc_huge_page(&pseudo_vma, addr, 0);
70c3547e
MK
730 hugetlb_drop_vma_policy(&pseudo_vma);
731 if (IS_ERR(page)) {
732 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
733 error = PTR_ERR(page);
734 goto out;
735 }
736 clear_huge_page(page, addr, pages_per_huge_page(h));
737 __SetPageUptodate(page);
738 error = huge_add_to_page_cache(page, mapping, index);
739 if (unlikely(error)) {
846be085 740 restore_reserve_on_error(h, &pseudo_vma, addr, page);
70c3547e
MK
741 put_page(page);
742 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
743 goto out;
744 }
745
746 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
747
8f251a3d 748 SetHPageMigratable(page);
70c3547e 749 /*
70c3547e 750 * unlock_page because locked by add_to_page_cache()
585fc0d2 751 * put_page() due to reference from alloc_huge_page()
70c3547e 752 */
70c3547e 753 unlock_page(page);
72639e6d 754 put_page(page);
70c3547e
MK
755 }
756
757 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
758 i_size_write(inode, offset + len);
078cd827 759 inode->i_ctime = current_time(inode);
70c3547e 760out:
5955102c 761 inode_unlock(inode);
70c3547e
MK
762 return error;
763}
764
549c7297
CB
765static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
766 struct dentry *dentry, struct iattr *attr)
1da177e4 767{
2b0143b5 768 struct inode *inode = d_inode(dentry);
a5516438 769 struct hstate *h = hstate_inode(inode);
1da177e4
LT
770 int error;
771 unsigned int ia_valid = attr->ia_valid;
ff62a342 772 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4 773
2f221d6f 774 error = setattr_prepare(&init_user_ns, dentry, attr);
1da177e4 775 if (error)
1025774c 776 return error;
1da177e4
LT
777
778 if (ia_valid & ATTR_SIZE) {
ff62a342
MAL
779 loff_t oldsize = inode->i_size;
780 loff_t newsize = attr->ia_size;
781
782 if (newsize & ~huge_page_mask(h))
1025774c 783 return -EINVAL;
398c0da7 784 /* protected by i_rwsem */
ff62a342
MAL
785 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
786 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
787 return -EPERM;
e5d319de 788 hugetlb_vmtruncate(inode, newsize);
1da177e4 789 }
1025774c 790
2f221d6f 791 setattr_copy(&init_user_ns, inode, attr);
1025774c
CH
792 mark_inode_dirty(inode);
793 return 0;
1da177e4
LT
794}
795
7d54fa64 796static struct inode *hugetlbfs_get_root(struct super_block *sb,
32021982 797 struct hugetlbfs_fs_context *ctx)
1da177e4
LT
798{
799 struct inode *inode;
1da177e4
LT
800
801 inode = new_inode(sb);
802 if (inode) {
85fe4025 803 inode->i_ino = get_next_ino();
32021982
DH
804 inode->i_mode = S_IFDIR | ctx->mode;
805 inode->i_uid = ctx->uid;
806 inode->i_gid = ctx->gid;
078cd827 807 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
7d54fa64
AV
808 inode->i_op = &hugetlbfs_dir_inode_operations;
809 inode->i_fop = &simple_dir_operations;
810 /* directory inodes start off with i_nlink == 2 (for "." entry) */
811 inc_nlink(inode);
65ed7601 812 lockdep_annotate_inode_mutex_key(inode);
7d54fa64
AV
813 }
814 return inode;
815}
816
b610ded7 817/*
c8c06efa 818 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
b610ded7 819 * be taken from reclaim -- unlike regular filesystems. This needs an
88f306b6 820 * annotation because huge_pmd_share() does an allocation under hugetlb's
c8c06efa 821 * i_mmap_rwsem.
b610ded7 822 */
c8c06efa 823static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
b610ded7 824
7d54fa64
AV
825static struct inode *hugetlbfs_get_inode(struct super_block *sb,
826 struct inode *dir,
18df2252 827 umode_t mode, dev_t dev)
7d54fa64
AV
828{
829 struct inode *inode;
58b6e5e8 830 struct resv_map *resv_map = NULL;
9119a41e 831
58b6e5e8
MK
832 /*
833 * Reserve maps are only needed for inodes that can have associated
834 * page allocations.
835 */
836 if (S_ISREG(mode) || S_ISLNK(mode)) {
837 resv_map = resv_map_alloc();
838 if (!resv_map)
839 return NULL;
840 }
7d54fa64
AV
841
842 inode = new_inode(sb);
843 if (inode) {
ff62a342
MAL
844 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
845
7d54fa64 846 inode->i_ino = get_next_ino();
21cb47be 847 inode_init_owner(&init_user_ns, inode, dir, mode);
c8c06efa
DB
848 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
849 &hugetlbfs_i_mmap_rwsem_key);
1da177e4 850 inode->i_mapping->a_ops = &hugetlbfs_aops;
078cd827 851 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
9119a41e 852 inode->i_mapping->private_data = resv_map;
ff62a342 853 info->seals = F_SEAL_SEAL;
1da177e4
LT
854 switch (mode & S_IFMT) {
855 default:
856 init_special_inode(inode, mode, dev);
857 break;
858 case S_IFREG:
859 inode->i_op = &hugetlbfs_inode_operations;
860 inode->i_fop = &hugetlbfs_file_operations;
861 break;
862 case S_IFDIR:
863 inode->i_op = &hugetlbfs_dir_inode_operations;
864 inode->i_fop = &simple_dir_operations;
865
866 /* directory inodes start off with i_nlink == 2 (for "." entry) */
d8c76e6f 867 inc_nlink(inode);
1da177e4
LT
868 break;
869 case S_IFLNK:
870 inode->i_op = &page_symlink_inode_operations;
21fc61c7 871 inode_nohighmem(inode);
1da177e4
LT
872 break;
873 }
e096d0c7 874 lockdep_annotate_inode_mutex_key(inode);
58b6e5e8
MK
875 } else {
876 if (resv_map)
877 kref_put(&resv_map->refs, resv_map_release);
878 }
9119a41e 879
1da177e4
LT
880 return inode;
881}
882
883/*
884 * File creation. Allocate an inode, and we're done..
885 */
1ab5b82f
PS
886static int do_hugetlbfs_mknod(struct inode *dir,
887 struct dentry *dentry,
888 umode_t mode,
889 dev_t dev,
890 bool tmpfile)
1da177e4
LT
891{
892 struct inode *inode;
893 int error = -ENOSPC;
7d54fa64
AV
894
895 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1da177e4 896 if (inode) {
078cd827 897 dir->i_ctime = dir->i_mtime = current_time(dir);
1ab5b82f
PS
898 if (tmpfile) {
899 d_tmpfile(dentry, inode);
900 } else {
901 d_instantiate(dentry, inode);
902 dget(dentry);/* Extra count - pin the dentry in core */
903 }
1da177e4
LT
904 error = 0;
905 }
906 return error;
907}
908
549c7297
CB
909static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
910 struct dentry *dentry, umode_t mode, dev_t dev)
1ab5b82f
PS
911{
912 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
913}
914
549c7297
CB
915static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
916 struct dentry *dentry, umode_t mode)
1da177e4 917{
549c7297
CB
918 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
919 mode | S_IFDIR, 0);
1da177e4 920 if (!retval)
d8c76e6f 921 inc_nlink(dir);
1da177e4
LT
922 return retval;
923}
924
549c7297
CB
925static int hugetlbfs_create(struct user_namespace *mnt_userns,
926 struct inode *dir, struct dentry *dentry,
927 umode_t mode, bool excl)
1da177e4 928{
549c7297 929 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
930}
931
549c7297
CB
932static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
933 struct inode *dir, struct dentry *dentry,
934 umode_t mode)
1ab5b82f
PS
935{
936 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
937}
938
549c7297
CB
939static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
940 struct inode *dir, struct dentry *dentry,
941 const char *symname)
1da177e4
LT
942{
943 struct inode *inode;
944 int error = -ENOSPC;
1da177e4 945
7d54fa64 946 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1da177e4
LT
947 if (inode) {
948 int l = strlen(symname)+1;
949 error = page_symlink(inode, symname, l);
950 if (!error) {
951 d_instantiate(dentry, inode);
952 dget(dentry);
953 } else
954 iput(inode);
955 }
078cd827 956 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
957
958 return error;
959}
960
290408d4 961static int hugetlbfs_migrate_page(struct address_space *mapping,
b969c4ab 962 struct page *newpage, struct page *page,
a6bc32b8 963 enum migrate_mode mode)
290408d4
NH
964{
965 int rc;
966
967 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
78bd5209 968 if (rc != MIGRATEPAGE_SUCCESS)
290408d4 969 return rc;
cb6acd01 970
d6995da3
MK
971 if (hugetlb_page_subpool(page)) {
972 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
973 hugetlb_set_page_subpool(page, NULL);
cb6acd01
MK
974 }
975
2916ecc0
JG
976 if (mode != MIGRATE_SYNC_NO_COPY)
977 migrate_page_copy(newpage, page);
978 else
979 migrate_page_states(newpage, page);
290408d4 980
78bd5209 981 return MIGRATEPAGE_SUCCESS;
290408d4
NH
982}
983
78bb9203
NH
984static int hugetlbfs_error_remove_page(struct address_space *mapping,
985 struct page *page)
986{
987 struct inode *inode = mapping->host;
ab615a5b 988 pgoff_t index = page->index;
78bb9203
NH
989
990 remove_huge_page(page);
ab615a5b
MK
991 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
992 hugetlb_fix_reserve_counts(inode);
993
78bb9203
NH
994 return 0;
995}
996
4a25220d
DH
997/*
998 * Display the mount options in /proc/mounts.
999 */
1000static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1001{
1002 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1003 struct hugepage_subpool *spool = sbinfo->spool;
1004 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1005 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1006 char mod;
1007
1008 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1009 seq_printf(m, ",uid=%u",
1010 from_kuid_munged(&init_user_ns, sbinfo->uid));
1011 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1012 seq_printf(m, ",gid=%u",
1013 from_kgid_munged(&init_user_ns, sbinfo->gid));
1014 if (sbinfo->mode != 0755)
1015 seq_printf(m, ",mode=%o", sbinfo->mode);
1016 if (sbinfo->max_inodes != -1)
1017 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1018
1019 hpage_size /= 1024;
1020 mod = 'K';
1021 if (hpage_size >= 1024) {
1022 hpage_size /= 1024;
1023 mod = 'M';
1024 }
1025 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1026 if (spool) {
1027 if (spool->max_hpages != -1)
1028 seq_printf(m, ",size=%llu",
1029 (unsigned long long)spool->max_hpages << hpage_shift);
1030 if (spool->min_hpages != -1)
1031 seq_printf(m, ",min_size=%llu",
1032 (unsigned long long)spool->min_hpages << hpage_shift);
1033 }
1034 return 0;
1035}
1036
726c3342 1037static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1038{
726c3342 1039 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
2b0143b5 1040 struct hstate *h = hstate_inode(d_inode(dentry));
1da177e4
LT
1041
1042 buf->f_type = HUGETLBFS_MAGIC;
a5516438 1043 buf->f_bsize = huge_page_size(h);
1da177e4
LT
1044 if (sbinfo) {
1045 spin_lock(&sbinfo->stat_lock);
74a8a65c
DG
1046 /* If no limits set, just report 0 for max/free/used
1047 * blocks, like simple_statfs() */
90481622
DG
1048 if (sbinfo->spool) {
1049 long free_pages;
1050
1051 spin_lock(&sbinfo->spool->lock);
1052 buf->f_blocks = sbinfo->spool->max_hpages;
1053 free_pages = sbinfo->spool->max_hpages
1054 - sbinfo->spool->used_hpages;
1055 buf->f_bavail = buf->f_bfree = free_pages;
1056 spin_unlock(&sbinfo->spool->lock);
74a8a65c
DG
1057 buf->f_files = sbinfo->max_inodes;
1058 buf->f_ffree = sbinfo->free_inodes;
1059 }
1da177e4
LT
1060 spin_unlock(&sbinfo->stat_lock);
1061 }
1062 buf->f_namelen = NAME_MAX;
1063 return 0;
1064}
1065
1066static void hugetlbfs_put_super(struct super_block *sb)
1067{
1068 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1069
1070 if (sbi) {
1071 sb->s_fs_info = NULL;
90481622
DG
1072
1073 if (sbi->spool)
1074 hugepage_put_subpool(sbi->spool);
1075
1da177e4
LT
1076 kfree(sbi);
1077 }
1078}
1079
96527980
CH
1080static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1081{
1082 if (sbinfo->free_inodes >= 0) {
1083 spin_lock(&sbinfo->stat_lock);
1084 if (unlikely(!sbinfo->free_inodes)) {
1085 spin_unlock(&sbinfo->stat_lock);
1086 return 0;
1087 }
1088 sbinfo->free_inodes--;
1089 spin_unlock(&sbinfo->stat_lock);
1090 }
1091
1092 return 1;
1093}
1094
1095static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1096{
1097 if (sbinfo->free_inodes >= 0) {
1098 spin_lock(&sbinfo->stat_lock);
1099 sbinfo->free_inodes++;
1100 spin_unlock(&sbinfo->stat_lock);
1101 }
1102}
1103
1104
e18b890b 1105static struct kmem_cache *hugetlbfs_inode_cachep;
1da177e4
LT
1106
1107static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1108{
96527980 1109 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1da177e4
LT
1110 struct hugetlbfs_inode_info *p;
1111
96527980
CH
1112 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1113 return NULL;
fd60b288 1114 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
96527980
CH
1115 if (unlikely(!p)) {
1116 hugetlbfs_inc_free_inodes(sbinfo);
1da177e4 1117 return NULL;
96527980 1118 }
4742a35d
MK
1119
1120 /*
1121 * Any time after allocation, hugetlbfs_destroy_inode can be called
1122 * for the inode. mpol_free_shared_policy is unconditionally called
1123 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1124 * in case of a quick call to destroy.
1125 *
1126 * Note that the policy is initialized even if we are creating a
1127 * private inode. This simplifies hugetlbfs_destroy_inode.
1128 */
1129 mpol_shared_policy_init(&p->policy, NULL);
1130
1da177e4
LT
1131 return &p->vfs_inode;
1132}
1133
b62de322 1134static void hugetlbfs_free_inode(struct inode *inode)
fa0d7e3d 1135{
fa0d7e3d
NP
1136 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1137}
1138
1da177e4
LT
1139static void hugetlbfs_destroy_inode(struct inode *inode)
1140{
96527980 1141 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1da177e4 1142 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1da177e4
LT
1143}
1144
f5e54d6e 1145static const struct address_space_operations hugetlbfs_aops = {
800d15a5
NP
1146 .write_begin = hugetlbfs_write_begin,
1147 .write_end = hugetlbfs_write_end,
46de8b97 1148 .dirty_folio = noop_dirty_folio,
290408d4 1149 .migratepage = hugetlbfs_migrate_page,
78bb9203 1150 .error_remove_page = hugetlbfs_error_remove_page,
1da177e4
LT
1151};
1152
96527980 1153
51cc5068 1154static void init_once(void *foo)
96527980
CH
1155{
1156 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1157
a35afb83 1158 inode_init_once(&ei->vfs_inode);
96527980
CH
1159}
1160
4b6f5d20 1161const struct file_operations hugetlbfs_file_operations = {
34d0640e 1162 .read_iter = hugetlbfs_read_iter,
1da177e4 1163 .mmap = hugetlbfs_file_mmap,
1b061d92 1164 .fsync = noop_fsync,
1da177e4 1165 .get_unmapped_area = hugetlb_get_unmapped_area,
70c3547e
MK
1166 .llseek = default_llseek,
1167 .fallocate = hugetlbfs_fallocate,
1da177e4
LT
1168};
1169
92e1d5be 1170static const struct inode_operations hugetlbfs_dir_inode_operations = {
1da177e4
LT
1171 .create = hugetlbfs_create,
1172 .lookup = simple_lookup,
1173 .link = simple_link,
1174 .unlink = simple_unlink,
1175 .symlink = hugetlbfs_symlink,
1176 .mkdir = hugetlbfs_mkdir,
1177 .rmdir = simple_rmdir,
1178 .mknod = hugetlbfs_mknod,
1179 .rename = simple_rename,
1180 .setattr = hugetlbfs_setattr,
1ab5b82f 1181 .tmpfile = hugetlbfs_tmpfile,
1da177e4
LT
1182};
1183
92e1d5be 1184static const struct inode_operations hugetlbfs_inode_operations = {
1da177e4
LT
1185 .setattr = hugetlbfs_setattr,
1186};
1187
ee9b6d61 1188static const struct super_operations hugetlbfs_ops = {
1da177e4 1189 .alloc_inode = hugetlbfs_alloc_inode,
b62de322 1190 .free_inode = hugetlbfs_free_inode,
1da177e4 1191 .destroy_inode = hugetlbfs_destroy_inode,
2bbbda30 1192 .evict_inode = hugetlbfs_evict_inode,
1da177e4 1193 .statfs = hugetlbfs_statfs,
1da177e4 1194 .put_super = hugetlbfs_put_super,
4a25220d 1195 .show_options = hugetlbfs_show_options,
1da177e4
LT
1196};
1197
7ca02d0a
MK
1198/*
1199 * Convert size option passed from command line to number of huge pages
1200 * in the pool specified by hstate. Size option could be in bytes
1201 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1202 */
4a25220d 1203static long
7ca02d0a 1204hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
4a25220d 1205 enum hugetlbfs_size_type val_type)
7ca02d0a
MK
1206{
1207 if (val_type == NO_SIZE)
1208 return -1;
1209
1210 if (val_type == SIZE_PERCENT) {
1211 size_opt <<= huge_page_shift(h);
1212 size_opt *= h->max_huge_pages;
1213 do_div(size_opt, 100);
1214 }
1215
1216 size_opt >>= huge_page_shift(h);
1217 return size_opt;
1218}
1219
32021982
DH
1220/*
1221 * Parse one mount parameter.
1222 */
1223static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1da177e4 1224{
32021982
DH
1225 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1226 struct fs_parse_result result;
1227 char *rest;
1228 unsigned long ps;
1229 int opt;
1230
d7167b14 1231 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
32021982
DH
1232 if (opt < 0)
1233 return opt;
1234
1235 switch (opt) {
1236 case Opt_uid:
1237 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1238 if (!uid_valid(ctx->uid))
1239 goto bad_val;
1da177e4 1240 return 0;
1da177e4 1241
32021982
DH
1242 case Opt_gid:
1243 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1244 if (!gid_valid(ctx->gid))
1245 goto bad_val;
1246 return 0;
e73a75fa 1247
32021982
DH
1248 case Opt_mode:
1249 ctx->mode = result.uint_32 & 01777U;
1250 return 0;
e73a75fa 1251
32021982
DH
1252 case Opt_size:
1253 /* memparse() will accept a K/M/G without a digit */
1254 if (!isdigit(param->string[0]))
1255 goto bad_val;
1256 ctx->max_size_opt = memparse(param->string, &rest);
1257 ctx->max_val_type = SIZE_STD;
1258 if (*rest == '%')
1259 ctx->max_val_type = SIZE_PERCENT;
1260 return 0;
e73a75fa 1261
32021982
DH
1262 case Opt_nr_inodes:
1263 /* memparse() will accept a K/M/G without a digit */
1264 if (!isdigit(param->string[0]))
1265 goto bad_val;
1266 ctx->nr_inodes = memparse(param->string, &rest);
1267 return 0;
e73a75fa 1268
32021982
DH
1269 case Opt_pagesize:
1270 ps = memparse(param->string, &rest);
1271 ctx->hstate = size_to_hstate(ps);
1272 if (!ctx->hstate) {
1273 pr_err("Unsupported page size %lu MB\n", ps >> 20);
1274 return -EINVAL;
e73a75fa 1275 }
32021982 1276 return 0;
1da177e4 1277
32021982
DH
1278 case Opt_min_size:
1279 /* memparse() will accept a K/M/G without a digit */
1280 if (!isdigit(param->string[0]))
1281 goto bad_val;
1282 ctx->min_size_opt = memparse(param->string, &rest);
1283 ctx->min_val_type = SIZE_STD;
1284 if (*rest == '%')
1285 ctx->min_val_type = SIZE_PERCENT;
1286 return 0;
e73a75fa 1287
32021982
DH
1288 default:
1289 return -EINVAL;
1290 }
a137e1cc 1291
32021982 1292bad_val:
b5db30cf 1293 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
32021982
DH
1294 param->string, param->key);
1295}
7ca02d0a 1296
32021982
DH
1297/*
1298 * Validate the parsed options.
1299 */
1300static int hugetlbfs_validate(struct fs_context *fc)
1301{
1302 struct hugetlbfs_fs_context *ctx = fc->fs_private;
a137e1cc 1303
7ca02d0a
MK
1304 /*
1305 * Use huge page pool size (in hstate) to convert the size
1306 * options to number of huge pages. If NO_SIZE, -1 is returned.
1307 */
32021982
DH
1308 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1309 ctx->max_size_opt,
1310 ctx->max_val_type);
1311 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1312 ctx->min_size_opt,
1313 ctx->min_val_type);
7ca02d0a
MK
1314
1315 /*
1316 * If max_size was specified, then min_size must be smaller
1317 */
32021982
DH
1318 if (ctx->max_val_type > NO_SIZE &&
1319 ctx->min_hpages > ctx->max_hpages) {
1320 pr_err("Minimum size can not be greater than maximum size\n");
7ca02d0a 1321 return -EINVAL;
a137e1cc
AK
1322 }
1323
1da177e4
LT
1324 return 0;
1325}
1326
1327static int
32021982 1328hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 1329{
32021982 1330 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1da177e4
LT
1331 struct hugetlbfs_sb_info *sbinfo;
1332
1da177e4
LT
1333 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1334 if (!sbinfo)
1335 return -ENOMEM;
1336 sb->s_fs_info = sbinfo;
1337 spin_lock_init(&sbinfo->stat_lock);
32021982
DH
1338 sbinfo->hstate = ctx->hstate;
1339 sbinfo->max_inodes = ctx->nr_inodes;
1340 sbinfo->free_inodes = ctx->nr_inodes;
1341 sbinfo->spool = NULL;
1342 sbinfo->uid = ctx->uid;
1343 sbinfo->gid = ctx->gid;
1344 sbinfo->mode = ctx->mode;
4a25220d 1345
7ca02d0a
MK
1346 /*
1347 * Allocate and initialize subpool if maximum or minimum size is
1935ebd3 1348 * specified. Any needed reservations (for minimum size) are taken
7ca02d0a
MK
1349 * taken when the subpool is created.
1350 */
32021982
DH
1351 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1352 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1353 ctx->max_hpages,
1354 ctx->min_hpages);
90481622
DG
1355 if (!sbinfo->spool)
1356 goto out_free;
1357 }
1da177e4 1358 sb->s_maxbytes = MAX_LFS_FILESIZE;
32021982
DH
1359 sb->s_blocksize = huge_page_size(ctx->hstate);
1360 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1da177e4
LT
1361 sb->s_magic = HUGETLBFS_MAGIC;
1362 sb->s_op = &hugetlbfs_ops;
1363 sb->s_time_gran = 1;
15568299
MK
1364
1365 /*
1366 * Due to the special and limited functionality of hugetlbfs, it does
1367 * not work well as a stacking filesystem.
1368 */
1369 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
32021982 1370 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
48fde701 1371 if (!sb->s_root)
1da177e4 1372 goto out_free;
1da177e4
LT
1373 return 0;
1374out_free:
6e6870d4 1375 kfree(sbinfo->spool);
1da177e4
LT
1376 kfree(sbinfo);
1377 return -ENOMEM;
1378}
1379
32021982
DH
1380static int hugetlbfs_get_tree(struct fs_context *fc)
1381{
1382 int err = hugetlbfs_validate(fc);
1383 if (err)
1384 return err;
2ac295d4 1385 return get_tree_nodev(fc, hugetlbfs_fill_super);
32021982
DH
1386}
1387
1388static void hugetlbfs_fs_context_free(struct fs_context *fc)
1389{
1390 kfree(fc->fs_private);
1391}
1392
1393static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1394 .free = hugetlbfs_fs_context_free,
1395 .parse_param = hugetlbfs_parse_param,
1396 .get_tree = hugetlbfs_get_tree,
1397};
1398
1399static int hugetlbfs_init_fs_context(struct fs_context *fc)
1da177e4 1400{
32021982
DH
1401 struct hugetlbfs_fs_context *ctx;
1402
1403 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1404 if (!ctx)
1405 return -ENOMEM;
1406
1407 ctx->max_hpages = -1; /* No limit on size by default */
1408 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1409 ctx->uid = current_fsuid();
1410 ctx->gid = current_fsgid();
1411 ctx->mode = 0755;
1412 ctx->hstate = &default_hstate;
1413 ctx->min_hpages = -1; /* No default minimum size */
1414 ctx->max_val_type = NO_SIZE;
1415 ctx->min_val_type = NO_SIZE;
1416 fc->fs_private = ctx;
1417 fc->ops = &hugetlbfs_fs_context_ops;
1418 return 0;
1da177e4
LT
1419}
1420
1421static struct file_system_type hugetlbfs_fs_type = {
32021982
DH
1422 .name = "hugetlbfs",
1423 .init_fs_context = hugetlbfs_init_fs_context,
d7167b14 1424 .parameters = hugetlb_fs_parameters,
32021982 1425 .kill_sb = kill_litter_super,
1da177e4
LT
1426};
1427
42d7395f 1428static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1da177e4 1429
ef1ff6b8 1430static int can_do_hugetlb_shm(void)
1da177e4 1431{
a0eb3a05
EB
1432 kgid_t shm_group;
1433 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1434 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1da177e4
LT
1435}
1436
42d7395f
AK
1437static int get_hstate_idx(int page_size_log)
1438{
af73e4d9 1439 struct hstate *h = hstate_sizelog(page_size_log);
42d7395f 1440
42d7395f
AK
1441 if (!h)
1442 return -1;
04adbc3f 1443 return hstate_index(h);
42d7395f
AK
1444}
1445
af73e4d9
NH
1446/*
1447 * Note that size should be aligned to proper hugepage size in caller side,
1448 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1449 */
1450struct file *hugetlb_file_setup(const char *name, size_t size,
83c1fd76 1451 vm_flags_t acctflag, int creat_flags,
1452 int page_size_log)
1da177e4 1453{
1da177e4 1454 struct inode *inode;
e68375c8 1455 struct vfsmount *mnt;
42d7395f 1456 int hstate_idx;
e68375c8 1457 struct file *file;
42d7395f
AK
1458
1459 hstate_idx = get_hstate_idx(page_size_log);
1460 if (hstate_idx < 0)
1461 return ERR_PTR(-ENODEV);
1da177e4 1462
e68375c8
AV
1463 mnt = hugetlbfs_vfsmount[hstate_idx];
1464 if (!mnt)
5bc98594
AM
1465 return ERR_PTR(-ENOENT);
1466
ef1ff6b8 1467 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
83c1fd76 1468 struct ucounts *ucounts = current_ucounts();
1469
1470 if (user_shm_lock(size, ucounts)) {
1471 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
21a3c273 1472 current->comm, current->pid);
83c1fd76 1473 user_shm_unlock(size, ucounts);
353d5c30 1474 }
83c1fd76 1475 return ERR_PTR(-EPERM);
2584e517 1476 }
1da177e4 1477
39b65252 1478 file = ERR_PTR(-ENOSPC);
e68375c8 1479 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1da177e4 1480 if (!inode)
e68375c8 1481 goto out;
e1832f29
SS
1482 if (creat_flags == HUGETLB_SHMFS_INODE)
1483 inode->i_flags |= S_PRIVATE;
1da177e4 1484
1da177e4 1485 inode->i_size = size;
6d6b77f1 1486 clear_nlink(inode);
ce8d2cdf 1487
33b8f84a 1488 if (!hugetlb_reserve_pages(inode, 0,
e68375c8
AV
1489 size >> huge_page_shift(hstate_inode(inode)), NULL,
1490 acctflag))
1491 file = ERR_PTR(-ENOMEM);
1492 else
1493 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1494 &hugetlbfs_file_operations);
1495 if (!IS_ERR(file))
1496 return file;
1da177e4 1497
b45b5bd6 1498 iput(inode);
e68375c8 1499out:
39b65252 1500 return file;
1da177e4
LT
1501}
1502
32021982
DH
1503static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1504{
1505 struct fs_context *fc;
1506 struct vfsmount *mnt;
1507
1508 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1509 if (IS_ERR(fc)) {
1510 mnt = ERR_CAST(fc);
1511 } else {
1512 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1513 ctx->hstate = h;
1514 mnt = fc_mount(fc);
1515 put_fs_context(fc);
1516 }
1517 if (IS_ERR(mnt))
a25fddce
ML
1518 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1519 huge_page_size(h) >> 10);
32021982
DH
1520 return mnt;
1521}
1522
1da177e4
LT
1523static int __init init_hugetlbfs_fs(void)
1524{
32021982 1525 struct vfsmount *mnt;
42d7395f 1526 struct hstate *h;
1da177e4 1527 int error;
42d7395f 1528 int i;
1da177e4 1529
457c1b27 1530 if (!hugepages_supported()) {
9b857d26 1531 pr_info("disabling because there are no supported hugepage sizes\n");
457c1b27
NA
1532 return -ENOTSUPP;
1533 }
1534
d1d5e05f 1535 error = -ENOMEM;
1da177e4
LT
1536 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1537 sizeof(struct hugetlbfs_inode_info),
5d097056 1538 0, SLAB_ACCOUNT, init_once);
1da177e4 1539 if (hugetlbfs_inode_cachep == NULL)
8fc312b3 1540 goto out;
1da177e4
LT
1541
1542 error = register_filesystem(&hugetlbfs_fs_type);
1543 if (error)
8fc312b3 1544 goto out_free;
1da177e4 1545
8fc312b3 1546 /* default hstate mount is required */
3b2275a8 1547 mnt = mount_one_hugetlbfs(&default_hstate);
8fc312b3
MK
1548 if (IS_ERR(mnt)) {
1549 error = PTR_ERR(mnt);
1550 goto out_unreg;
1551 }
1552 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1553
1554 /* other hstates are optional */
42d7395f
AK
1555 i = 0;
1556 for_each_hstate(h) {
15f0ec94
JS
1557 if (i == default_hstate_idx) {
1558 i++;
8fc312b3 1559 continue;
15f0ec94 1560 }
8fc312b3 1561
32021982 1562 mnt = mount_one_hugetlbfs(h);
8fc312b3
MK
1563 if (IS_ERR(mnt))
1564 hugetlbfs_vfsmount[i] = NULL;
1565 else
1566 hugetlbfs_vfsmount[i] = mnt;
42d7395f
AK
1567 i++;
1568 }
32021982
DH
1569
1570 return 0;
1da177e4 1571
8fc312b3
MK
1572 out_unreg:
1573 (void)unregister_filesystem(&hugetlbfs_fs_type);
1574 out_free:
d1d5e05f 1575 kmem_cache_destroy(hugetlbfs_inode_cachep);
8fc312b3 1576 out:
1da177e4
LT
1577 return error;
1578}
3e89e1c5 1579fs_initcall(init_hugetlbfs_fs)