mm: cleanup is_highmem()
[linux-block.git] / fs / hugetlbfs / inode.c
CommitLineData
1da177e4
LT
1/*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
6d49e352 4 * Nadia Yvette Chambers, 2002
1da177e4
LT
5 *
6 * Copyright (C) 2002 Linus Torvalds.
3e89e1c5 7 * License: GPL
1da177e4
LT
8 */
9
9b857d26
AM
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
1da177e4
LT
12#include <linux/thread_info.h>
13#include <asm/current.h>
174cd4b1 14#include <linux/sched/signal.h> /* remove ASAP */
70c3547e 15#include <linux/falloc.h>
1da177e4
LT
16#include <linux/fs.h>
17#include <linux/mount.h>
18#include <linux/file.h>
e73a75fa 19#include <linux/kernel.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/pagemap.h>
22#include <linux/highmem.h>
23#include <linux/init.h>
24#include <linux/string.h>
16f7e0fe 25#include <linux/capability.h>
e73a75fa 26#include <linux/ctype.h>
1da177e4
LT
27#include <linux/backing-dev.h>
28#include <linux/hugetlb.h>
29#include <linux/pagevec.h>
32021982 30#include <linux/fs_parser.h>
036e0856 31#include <linux/mman.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/dnotify.h>
34#include <linux/statfs.h>
35#include <linux/security.h>
1fd7317d 36#include <linux/magic.h>
290408d4 37#include <linux/migrate.h>
34d0640e 38#include <linux/uio.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
88590253 41#include <linux/sched/mm.h>
1da177e4 42
ee9b6d61 43static const struct super_operations hugetlbfs_ops;
f5e54d6e 44static const struct address_space_operations hugetlbfs_aops;
4b6f5d20 45const struct file_operations hugetlbfs_file_operations;
92e1d5be
AV
46static const struct inode_operations hugetlbfs_dir_inode_operations;
47static const struct inode_operations hugetlbfs_inode_operations;
1da177e4 48
32021982
DH
49enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51struct hugetlbfs_fs_context {
4a25220d 52 struct hstate *hstate;
32021982
DH
53 unsigned long long max_size_opt;
54 unsigned long long min_size_opt;
4a25220d
DH
55 long max_hpages;
56 long nr_inodes;
57 long min_hpages;
32021982
DH
58 enum hugetlbfs_size_type max_val_type;
59 enum hugetlbfs_size_type min_val_type;
4a25220d
DH
60 kuid_t uid;
61 kgid_t gid;
62 umode_t mode;
a1d776ee
DG
63};
64
1da177e4
LT
65int sysctl_hugetlb_shm_group;
66
32021982
DH
67enum hugetlb_param {
68 Opt_gid,
69 Opt_min_size,
70 Opt_mode,
71 Opt_nr_inodes,
72 Opt_pagesize,
73 Opt_size,
74 Opt_uid,
e73a75fa
RD
75};
76
d7167b14 77static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
32021982
DH
78 fsparam_u32 ("gid", Opt_gid),
79 fsparam_string("min_size", Opt_min_size),
e0f7e2b2 80 fsparam_u32oct("mode", Opt_mode),
32021982
DH
81 fsparam_string("nr_inodes", Opt_nr_inodes),
82 fsparam_string("pagesize", Opt_pagesize),
83 fsparam_string("size", Opt_size),
84 fsparam_u32 ("uid", Opt_uid),
85 {}
86};
87
70c3547e
MK
88#ifdef CONFIG_NUMA
89static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91{
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94}
95
96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97{
98 mpol_cond_put(vma->vm_policy);
99}
100#else
101static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103{
104}
105
106static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107{
108}
109#endif
110
2e9b367c
AL
111static void huge_pagevec_release(struct pagevec *pvec)
112{
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119}
120
63489f8e
MK
121/*
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
127 */
128#define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
1da177e4
LT
131static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132{
496ad9aa 133 struct inode *inode = file_inode(file);
22247efd 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4
LT
135 loff_t len, vma_len;
136 int ret;
a5516438 137 struct hstate *h = hstate_file(file);
1da177e4 138
68589bc3 139 /*
dec4ad86
DG
140 * vma address alignment (but not the pgoff alignment) has
141 * already been checked by prepare_hugepage_range. If you add
142 * any error returns here, do so after setting VM_HUGETLB, so
143 * is_vm_hugetlb_page tests below unmap_region go the right
45e55300 144 * way when do_mmap unwinds (may be important on powerpc
dec4ad86 145 * and ia64).
68589bc3 146 */
a2fce914 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
68589bc3 148 vma->vm_ops = &hugetlb_vm_ops;
1da177e4 149
22247efd
PX
150 ret = seal_check_future_write(info->seals, vma);
151 if (ret)
152 return ret;
153
045c7a3f 154 /*
63489f8e 155 * page based offset in vm_pgoff could be sufficiently large to
5df63c2a
MK
156 * overflow a loff_t when converted to byte offset. This can
157 * only happen on architectures where sizeof(loff_t) ==
158 * sizeof(unsigned long). So, only check in those instances.
045c7a3f 159 */
5df63c2a
MK
160 if (sizeof(unsigned long) == sizeof(loff_t)) {
161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 return -EINVAL;
163 }
045c7a3f 164
63489f8e 165 /* must be huge page aligned */
2b37c35e 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
dec4ad86
DG
167 return -EINVAL;
168
1da177e4 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
045c7a3f
MK
170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 /* check for overflow */
172 if (len < vma_len)
173 return -EINVAL;
1da177e4 174
5955102c 175 inode_lock(inode);
1da177e4 176 file_accessed(file);
1da177e4
LT
177
178 ret = -ENOMEM;
33b8f84a 179 if (!hugetlb_reserve_pages(inode,
a5516438 180 vma->vm_pgoff >> huge_page_order(h),
5a6fe125
MG
181 len >> huge_page_shift(h), vma,
182 vma->vm_flags))
a43a8c39 183 goto out;
b45b5bd6 184
4c887265 185 ret = 0;
b6174df5 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
045c7a3f 187 i_size_write(inode, len);
1da177e4 188out:
5955102c 189 inode_unlock(inode);
1da177e4
LT
190
191 return ret;
192}
193
194/*
3e4e28c5 195 * Called under mmap_write_lock(mm).
1da177e4
LT
196 */
197
88590253
SH
198static unsigned long
199hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
200 unsigned long len, unsigned long pgoff, unsigned long flags)
201{
202 struct hstate *h = hstate_file(file);
203 struct vm_unmapped_area_info info;
204
205 info.flags = 0;
206 info.length = len;
207 info.low_limit = current->mm->mmap_base;
2cb4de08 208 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
209 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
210 info.align_offset = 0;
211 return vm_unmapped_area(&info);
212}
213
214static unsigned long
215hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
216 unsigned long len, unsigned long pgoff, unsigned long flags)
217{
218 struct hstate *h = hstate_file(file);
219 struct vm_unmapped_area_info info;
220
221 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
222 info.length = len;
223 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
5f24d5a5 224 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
88590253
SH
225 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226 info.align_offset = 0;
227 addr = vm_unmapped_area(&info);
228
229 /*
230 * A failed mmap() very likely causes application failure,
231 * so fall back to the bottom-up function here. This scenario
232 * can happen with large stack limits and large mmap()
233 * allocations.
234 */
235 if (unlikely(offset_in_page(addr))) {
236 VM_BUG_ON(addr != -ENOMEM);
237 info.flags = 0;
238 info.low_limit = current->mm->mmap_base;
2cb4de08 239 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
240 addr = vm_unmapped_area(&info);
241 }
242
243 return addr;
244}
245
4b439e25
CL
246unsigned long
247generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
248 unsigned long len, unsigned long pgoff,
249 unsigned long flags)
1da177e4
LT
250{
251 struct mm_struct *mm = current->mm;
252 struct vm_area_struct *vma;
a5516438 253 struct hstate *h = hstate_file(file);
2cb4de08 254 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1da177e4 255
a5516438 256 if (len & ~huge_page_mask(h))
1da177e4
LT
257 return -EINVAL;
258 if (len > TASK_SIZE)
259 return -ENOMEM;
260
036e0856 261 if (flags & MAP_FIXED) {
a5516438 262 if (prepare_hugepage_range(file, addr, len))
036e0856
BH
263 return -EINVAL;
264 return addr;
265 }
266
1da177e4 267 if (addr) {
a5516438 268 addr = ALIGN(addr, huge_page_size(h));
1da177e4 269 vma = find_vma(mm, addr);
5f24d5a5 270 if (mmap_end - len >= addr &&
1be7107f 271 (!vma || addr + len <= vm_start_gap(vma)))
1da177e4
LT
272 return addr;
273 }
274
88590253
SH
275 /*
276 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277 * If architectures have special needs, they should define their own
278 * version of hugetlb_get_unmapped_area.
279 */
280 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281 return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 pgoff, flags);
283 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284 pgoff, flags);
1da177e4 285}
4b439e25
CL
286
287#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
288static unsigned long
289hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
290 unsigned long len, unsigned long pgoff,
291 unsigned long flags)
292{
293 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
294}
1da177e4
LT
295#endif
296
34d0640e 297static size_t
e63e1e5a 298hugetlbfs_read_actor(struct page *page, unsigned long offset,
34d0640e 299 struct iov_iter *to, unsigned long size)
e63e1e5a 300{
34d0640e 301 size_t copied = 0;
e63e1e5a
BP
302 int i, chunksize;
303
e63e1e5a 304 /* Find which 4k chunk and offset with in that chunk */
09cbfeaf
KS
305 i = offset >> PAGE_SHIFT;
306 offset = offset & ~PAGE_MASK;
e63e1e5a
BP
307
308 while (size) {
34d0640e 309 size_t n;
09cbfeaf 310 chunksize = PAGE_SIZE;
e63e1e5a
BP
311 if (offset)
312 chunksize -= offset;
313 if (chunksize > size)
314 chunksize = size;
34d0640e
AV
315 n = copy_page_to_iter(&page[i], offset, chunksize, to);
316 copied += n;
317 if (n != chunksize)
318 return copied;
e63e1e5a
BP
319 offset = 0;
320 size -= chunksize;
e63e1e5a
BP
321 i++;
322 }
34d0640e 323 return copied;
e63e1e5a
BP
324}
325
326/*
327 * Support for read() - Find the page attached to f_mapping and copy out the
c7e285e3 328 * data. Its *very* similar to generic_file_buffered_read(), we can't use that
ea1754a0 329 * since it has PAGE_SIZE assumptions.
e63e1e5a 330 */
34d0640e 331static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
e63e1e5a 332{
34d0640e
AV
333 struct file *file = iocb->ki_filp;
334 struct hstate *h = hstate_file(file);
335 struct address_space *mapping = file->f_mapping;
e63e1e5a 336 struct inode *inode = mapping->host;
34d0640e
AV
337 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
338 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
e63e1e5a
BP
339 unsigned long end_index;
340 loff_t isize;
341 ssize_t retval = 0;
342
34d0640e 343 while (iov_iter_count(to)) {
e63e1e5a 344 struct page *page;
34d0640e 345 size_t nr, copied;
e63e1e5a
BP
346
347 /* nr is the maximum number of bytes to copy from this page */
a5516438 348 nr = huge_page_size(h);
a05b0855
AK
349 isize = i_size_read(inode);
350 if (!isize)
34d0640e 351 break;
a05b0855 352 end_index = (isize - 1) >> huge_page_shift(h);
34d0640e
AV
353 if (index > end_index)
354 break;
355 if (index == end_index) {
a5516438 356 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
a05b0855 357 if (nr <= offset)
34d0640e 358 break;
e63e1e5a
BP
359 }
360 nr = nr - offset;
361
362 /* Find the page */
a05b0855 363 page = find_lock_page(mapping, index);
e63e1e5a
BP
364 if (unlikely(page == NULL)) {
365 /*
366 * We have a HOLE, zero out the user-buffer for the
367 * length of the hole or request.
368 */
34d0640e 369 copied = iov_iter_zero(nr, to);
e63e1e5a 370 } else {
a05b0855
AK
371 unlock_page(page);
372
e63e1e5a
BP
373 /*
374 * We have the page, copy it to user space buffer.
375 */
34d0640e 376 copied = hugetlbfs_read_actor(page, offset, to, nr);
09cbfeaf 377 put_page(page);
e63e1e5a 378 }
34d0640e
AV
379 offset += copied;
380 retval += copied;
381 if (copied != nr && iov_iter_count(to)) {
382 if (!retval)
383 retval = -EFAULT;
384 break;
e63e1e5a 385 }
a5516438
AK
386 index += offset >> huge_page_shift(h);
387 offset &= ~huge_page_mask(h);
e63e1e5a 388 }
34d0640e 389 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
e63e1e5a
BP
390 return retval;
391}
392
800d15a5
NP
393static int hugetlbfs_write_begin(struct file *file,
394 struct address_space *mapping,
9d6b0cd7 395 loff_t pos, unsigned len,
800d15a5 396 struct page **pagep, void **fsdata)
1da177e4
LT
397{
398 return -EINVAL;
399}
400
800d15a5
NP
401static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
402 loff_t pos, unsigned len, unsigned copied,
403 struct page *page, void *fsdata)
1da177e4 404{
800d15a5 405 BUG();
1da177e4
LT
406 return -EINVAL;
407}
408
b5cec28d 409static void remove_huge_page(struct page *page)
1da177e4 410{
b9ea2515 411 ClearPageDirty(page);
1da177e4 412 ClearPageUptodate(page);
bd65cb86 413 delete_from_page_cache(page);
1da177e4
LT
414}
415
4aae8d1c 416static void
05e90bd0
PX
417hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
418 zap_flags_t zap_flags)
4aae8d1c
MK
419{
420 struct vm_area_struct *vma;
421
422 /*
d6aba4c8
SC
423 * end == 0 indicates that the entire range after start should be
424 * unmapped. Note, end is exclusive, whereas the interval tree takes
425 * an inclusive "last".
4aae8d1c 426 */
d6aba4c8 427 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
4aae8d1c
MK
428 unsigned long v_offset;
429 unsigned long v_end;
430
431 /*
432 * Can the expression below overflow on 32-bit arches?
433 * No, because the interval tree returns us only those vmas
434 * which overlap the truncated area starting at pgoff,
435 * and no vma on a 32-bit arch can span beyond the 4GB.
436 */
437 if (vma->vm_pgoff < start)
438 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439 else
440 v_offset = 0;
441
442 if (!end)
443 v_end = vma->vm_end;
444 else {
445 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446 + vma->vm_start;
447 if (v_end > vma->vm_end)
448 v_end = vma->vm_end;
449 }
450
451 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
05e90bd0 452 NULL, zap_flags);
4aae8d1c
MK
453 }
454}
b5cec28d
MK
455
456/*
457 * remove_inode_hugepages handles two distinct cases: truncation and hole
458 * punch. There are subtle differences in operation for each case.
4aae8d1c 459 *
b5cec28d
MK
460 * truncation is indicated by end of range being LLONG_MAX
461 * In this case, we first scan the range and release found pages.
1935ebd3 462 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
e7c58097 463 * maps and global counts. Page faults can not race with truncation
87bf91d3
MK
464 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
465 * page faults in the truncated range by checking i_size. i_size is
466 * modified while holding i_mmap_rwsem.
b5cec28d
MK
467 * hole punch is indicated if end is not LLONG_MAX
468 * In the hole punch case we scan the range and release found pages.
1935ebd3
ML
469 * Only when releasing a page is the associated region/reserve map
470 * deleted. The region/reserve map for ranges without associated
e7c58097
MK
471 * pages are not modified. Page faults can race with hole punch.
472 * This is indicated if we find a mapped page.
b5cec28d
MK
473 * Note: If the passed end of range value is beyond the end of file, but
474 * not LLONG_MAX this routine still performs a hole punch operation.
475 */
476static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477 loff_t lend)
1da177e4 478{
a5516438 479 struct hstate *h = hstate_inode(inode);
b45b5bd6 480 struct address_space *mapping = &inode->i_data;
a5516438 481 const pgoff_t start = lstart >> huge_page_shift(h);
b5cec28d 482 const pgoff_t end = lend >> huge_page_shift(h);
1da177e4 483 struct pagevec pvec;
d72dc8a2 484 pgoff_t next, index;
a43a8c39 485 int i, freed = 0;
b5cec28d 486 bool truncate_op = (lend == LLONG_MAX);
1da177e4 487
86679820 488 pagevec_init(&pvec);
1da177e4 489 next = start;
b5cec28d 490 while (next < end) {
b5cec28d 491 /*
1817889e 492 * When no more pages are found, we are done.
b5cec28d 493 */
397162ff 494 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
1817889e 495 break;
1da177e4
LT
496
497 for (i = 0; i < pagevec_count(&pvec); ++i) {
498 struct page *page = pvec.pages[i];
d4241a04 499 u32 hash = 0;
b5cec28d 500
d72dc8a2 501 index = page->index;
87bf91d3
MK
502 if (!truncate_op) {
503 /*
504 * Only need to hold the fault mutex in the
505 * hole punch case. This prevents races with
506 * page faults. Races are not possible in the
507 * case of truncation.
508 */
d4241a04 509 hash = hugetlb_fault_mutex_hash(mapping, index);
87bf91d3
MK
510 mutex_lock(&hugetlb_fault_mutex_table[hash]);
511 }
e7c58097 512
4aae8d1c 513 /*
e7c58097
MK
514 * If page is mapped, it was faulted in after being
515 * unmapped in caller. Unmap (again) now after taking
516 * the fault mutex. The mutex will prevent faults
517 * until we finish removing the page.
518 *
519 * This race can only happen in the hole punch case.
520 * Getting here in a truncate operation is a bug.
4aae8d1c 521 */
e7c58097
MK
522 if (unlikely(page_mapped(page))) {
523 BUG_ON(truncate_op);
524
c0d0381a 525 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
e7c58097 526 i_mmap_lock_write(mapping);
c0d0381a 527 mutex_lock(&hugetlb_fault_mutex_table[hash]);
e7c58097
MK
528 hugetlb_vmdelete_list(&mapping->i_mmap,
529 index * pages_per_huge_page(h),
05e90bd0
PX
530 (index + 1) * pages_per_huge_page(h),
531 ZAP_FLAG_DROP_MARKER);
e7c58097
MK
532 i_mmap_unlock_write(mapping);
533 }
4aae8d1c
MK
534
535 lock_page(page);
536 /*
537 * We must free the huge page and remove from page
538 * cache (remove_huge_page) BEFORE removing the
539 * region/reserve map (hugetlb_unreserve_pages). In
540 * rare out of memory conditions, removal of the
72e2936c 541 * region/reserve map could fail. Correspondingly,
542 * the subpool and global reserve usage count can need
543 * to be adjusted.
4aae8d1c 544 */
e32905e5 545 VM_BUG_ON(HPageRestoreReserve(page));
4aae8d1c
MK
546 remove_huge_page(page);
547 freed++;
548 if (!truncate_op) {
549 if (unlikely(hugetlb_unreserve_pages(inode,
d72dc8a2 550 index, index + 1, 1)))
72e2936c 551 hugetlb_fix_reserve_counts(inode);
b5cec28d
MK
552 }
553
1da177e4 554 unlock_page(page);
87bf91d3
MK
555 if (!truncate_op)
556 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
1da177e4
LT
557 }
558 huge_pagevec_release(&pvec);
1817889e 559 cond_resched();
1da177e4 560 }
b5cec28d
MK
561
562 if (truncate_op)
563 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
1da177e4
LT
564}
565
2bbbda30 566static void hugetlbfs_evict_inode(struct inode *inode)
1da177e4 567{
9119a41e
JK
568 struct resv_map *resv_map;
569
b5cec28d 570 remove_inode_hugepages(inode, 0, LLONG_MAX);
f27a5136
MK
571
572 /*
573 * Get the resv_map from the address space embedded in the inode.
574 * This is the address space which points to any resv_map allocated
575 * at inode creation time. If this is a device special inode,
576 * i_mapping may not point to the original address space.
577 */
578 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
579 /* Only regular and link inodes have associated reserve maps */
9119a41e
JK
580 if (resv_map)
581 resv_map_release(&resv_map->refs);
dbd5768f 582 clear_inode(inode);
149f4211
CH
583}
584
e5d319de 585static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
1da177e4 586{
856fc295 587 pgoff_t pgoff;
1da177e4 588 struct address_space *mapping = inode->i_mapping;
a5516438 589 struct hstate *h = hstate_inode(inode);
1da177e4 590
a5516438 591 BUG_ON(offset & ~huge_page_mask(h));
856fc295 592 pgoff = offset >> PAGE_SHIFT;
1da177e4 593
83cde9e8 594 i_mmap_lock_write(mapping);
87bf91d3 595 i_size_write(inode, offset);
f808c13f 596 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
05e90bd0
PX
597 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
598 ZAP_FLAG_DROP_MARKER);
c86aa7bb 599 i_mmap_unlock_write(mapping);
e7c58097 600 remove_inode_hugepages(inode, offset, LLONG_MAX);
1da177e4
LT
601}
602
68d32527
MK
603static void hugetlbfs_zero_partial_page(struct hstate *h,
604 struct address_space *mapping,
605 loff_t start,
606 loff_t end)
607{
608 pgoff_t idx = start >> huge_page_shift(h);
609 struct folio *folio;
610
611 folio = filemap_lock_folio(mapping, idx);
612 if (!folio)
613 return;
614
615 start = start & ~huge_page_mask(h);
616 end = end & ~huge_page_mask(h);
617 if (!end)
618 end = huge_page_size(h);
619
620 folio_zero_segment(folio, (size_t)start, (size_t)end);
621
622 folio_unlock(folio);
623 folio_put(folio);
624}
625
70c3547e
MK
626static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
627{
68d32527
MK
628 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
629 struct address_space *mapping = inode->i_mapping;
70c3547e
MK
630 struct hstate *h = hstate_inode(inode);
631 loff_t hpage_size = huge_page_size(h);
632 loff_t hole_start, hole_end;
633
634 /*
68d32527 635 * hole_start and hole_end indicate the full pages within the hole.
70c3547e
MK
636 */
637 hole_start = round_up(offset, hpage_size);
638 hole_end = round_down(offset + len, hpage_size);
639
68d32527
MK
640 inode_lock(inode);
641
642 /* protected by i_rwsem */
643 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
644 inode_unlock(inode);
645 return -EPERM;
646 }
70c3547e 647
68d32527 648 i_mmap_lock_write(mapping);
ff62a342 649
68d32527
MK
650 /* If range starts before first full page, zero partial page. */
651 if (offset < hole_start)
652 hugetlbfs_zero_partial_page(h, mapping,
653 offset, min(offset + len, hole_start));
ff62a342 654
68d32527
MK
655 /* Unmap users of full pages in the hole. */
656 if (hole_end > hole_start) {
f808c13f 657 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
70c3547e 658 hugetlb_vmdelete_list(&mapping->i_mmap,
05e90bd0
PX
659 hole_start >> PAGE_SHIFT,
660 hole_end >> PAGE_SHIFT, 0);
70c3547e
MK
661 }
662
68d32527
MK
663 /* If range extends beyond last full page, zero partial page. */
664 if ((offset + len) > hole_end && (offset + len) > hole_start)
665 hugetlbfs_zero_partial_page(h, mapping,
666 hole_end, offset + len);
667
668 i_mmap_unlock_write(mapping);
669
670 /* Remove full pages from the file. */
671 if (hole_end > hole_start)
672 remove_inode_hugepages(inode, hole_start, hole_end);
673
674 inode_unlock(inode);
675
70c3547e
MK
676 return 0;
677}
678
679static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
680 loff_t len)
681{
682 struct inode *inode = file_inode(file);
ff62a342 683 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
70c3547e
MK
684 struct address_space *mapping = inode->i_mapping;
685 struct hstate *h = hstate_inode(inode);
686 struct vm_area_struct pseudo_vma;
687 struct mm_struct *mm = current->mm;
688 loff_t hpage_size = huge_page_size(h);
689 unsigned long hpage_shift = huge_page_shift(h);
690 pgoff_t start, index, end;
691 int error;
692 u32 hash;
693
694 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
695 return -EOPNOTSUPP;
696
697 if (mode & FALLOC_FL_PUNCH_HOLE)
698 return hugetlbfs_punch_hole(inode, offset, len);
699
700 /*
701 * Default preallocate case.
702 * For this range, start is rounded down and end is rounded up
703 * as well as being converted to page offsets.
704 */
705 start = offset >> hpage_shift;
706 end = (offset + len + hpage_size - 1) >> hpage_shift;
707
5955102c 708 inode_lock(inode);
70c3547e
MK
709
710 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
711 error = inode_newsize_ok(inode, offset + len);
712 if (error)
713 goto out;
714
ff62a342
MAL
715 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
716 error = -EPERM;
717 goto out;
718 }
719
70c3547e
MK
720 /*
721 * Initialize a pseudo vma as this is required by the huge page
722 * allocation routines. If NUMA is configured, use page index
723 * as input to create an allocation policy.
724 */
2c4541e2 725 vma_init(&pseudo_vma, mm);
70c3547e
MK
726 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
727 pseudo_vma.vm_file = file;
728
729 for (index = start; index < end; index++) {
730 /*
731 * This is supposed to be the vaddr where the page is being
732 * faulted in, but we have no vaddr here.
733 */
734 struct page *page;
735 unsigned long addr;
70c3547e
MK
736
737 cond_resched();
738
739 /*
740 * fallocate(2) manpage permits EINTR; we may have been
741 * interrupted because we are using up too much memory.
742 */
743 if (signal_pending(current)) {
744 error = -EINTR;
745 break;
746 }
747
748 /* Set numa allocation policy based on index */
749 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
750
751 /* addr is the offset within the file (zero based) */
752 addr = index * hpage_size;
753
87bf91d3
MK
754 /*
755 * fault mutex taken here, protects against fault path
756 * and hole punch. inode_lock previously taken protects
757 * against truncation.
758 */
188b04a7 759 hash = hugetlb_fault_mutex_hash(mapping, index);
70c3547e
MK
760 mutex_lock(&hugetlb_fault_mutex_table[hash]);
761
762 /* See if already present in mapping to avoid alloc/free */
763 page = find_get_page(mapping, index);
764 if (page) {
765 put_page(page);
766 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
767 hugetlb_drop_vma_policy(&pseudo_vma);
768 continue;
769 }
770
88ce3fef
ML
771 /*
772 * Allocate page without setting the avoid_reserve argument.
773 * There certainly are no reserves associated with the
774 * pseudo_vma. However, there could be shared mappings with
775 * reserves for the file at the inode level. If we fallocate
776 * pages in these areas, we need to consume the reserves
777 * to keep reservation accounting consistent.
778 */
779 page = alloc_huge_page(&pseudo_vma, addr, 0);
70c3547e
MK
780 hugetlb_drop_vma_policy(&pseudo_vma);
781 if (IS_ERR(page)) {
782 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
783 error = PTR_ERR(page);
784 goto out;
785 }
786 clear_huge_page(page, addr, pages_per_huge_page(h));
787 __SetPageUptodate(page);
788 error = huge_add_to_page_cache(page, mapping, index);
789 if (unlikely(error)) {
846be085 790 restore_reserve_on_error(h, &pseudo_vma, addr, page);
70c3547e
MK
791 put_page(page);
792 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
793 goto out;
794 }
795
796 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
797
8f251a3d 798 SetHPageMigratable(page);
70c3547e 799 /*
70c3547e 800 * unlock_page because locked by add_to_page_cache()
585fc0d2 801 * put_page() due to reference from alloc_huge_page()
70c3547e 802 */
70c3547e 803 unlock_page(page);
72639e6d 804 put_page(page);
70c3547e
MK
805 }
806
807 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
808 i_size_write(inode, offset + len);
078cd827 809 inode->i_ctime = current_time(inode);
70c3547e 810out:
5955102c 811 inode_unlock(inode);
70c3547e
MK
812 return error;
813}
814
549c7297
CB
815static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
816 struct dentry *dentry, struct iattr *attr)
1da177e4 817{
2b0143b5 818 struct inode *inode = d_inode(dentry);
a5516438 819 struct hstate *h = hstate_inode(inode);
1da177e4
LT
820 int error;
821 unsigned int ia_valid = attr->ia_valid;
ff62a342 822 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4 823
2f221d6f 824 error = setattr_prepare(&init_user_ns, dentry, attr);
1da177e4 825 if (error)
1025774c 826 return error;
1da177e4
LT
827
828 if (ia_valid & ATTR_SIZE) {
ff62a342
MAL
829 loff_t oldsize = inode->i_size;
830 loff_t newsize = attr->ia_size;
831
832 if (newsize & ~huge_page_mask(h))
1025774c 833 return -EINVAL;
398c0da7 834 /* protected by i_rwsem */
ff62a342
MAL
835 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
836 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
837 return -EPERM;
e5d319de 838 hugetlb_vmtruncate(inode, newsize);
1da177e4 839 }
1025774c 840
2f221d6f 841 setattr_copy(&init_user_ns, inode, attr);
1025774c
CH
842 mark_inode_dirty(inode);
843 return 0;
1da177e4
LT
844}
845
7d54fa64 846static struct inode *hugetlbfs_get_root(struct super_block *sb,
32021982 847 struct hugetlbfs_fs_context *ctx)
1da177e4
LT
848{
849 struct inode *inode;
1da177e4
LT
850
851 inode = new_inode(sb);
852 if (inode) {
85fe4025 853 inode->i_ino = get_next_ino();
32021982
DH
854 inode->i_mode = S_IFDIR | ctx->mode;
855 inode->i_uid = ctx->uid;
856 inode->i_gid = ctx->gid;
078cd827 857 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
7d54fa64
AV
858 inode->i_op = &hugetlbfs_dir_inode_operations;
859 inode->i_fop = &simple_dir_operations;
860 /* directory inodes start off with i_nlink == 2 (for "." entry) */
861 inc_nlink(inode);
65ed7601 862 lockdep_annotate_inode_mutex_key(inode);
7d54fa64
AV
863 }
864 return inode;
865}
866
b610ded7 867/*
c8c06efa 868 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
b610ded7 869 * be taken from reclaim -- unlike regular filesystems. This needs an
88f306b6 870 * annotation because huge_pmd_share() does an allocation under hugetlb's
c8c06efa 871 * i_mmap_rwsem.
b610ded7 872 */
c8c06efa 873static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
b610ded7 874
7d54fa64
AV
875static struct inode *hugetlbfs_get_inode(struct super_block *sb,
876 struct inode *dir,
18df2252 877 umode_t mode, dev_t dev)
7d54fa64
AV
878{
879 struct inode *inode;
58b6e5e8 880 struct resv_map *resv_map = NULL;
9119a41e 881
58b6e5e8
MK
882 /*
883 * Reserve maps are only needed for inodes that can have associated
884 * page allocations.
885 */
886 if (S_ISREG(mode) || S_ISLNK(mode)) {
887 resv_map = resv_map_alloc();
888 if (!resv_map)
889 return NULL;
890 }
7d54fa64
AV
891
892 inode = new_inode(sb);
893 if (inode) {
ff62a342
MAL
894 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
895
7d54fa64 896 inode->i_ino = get_next_ino();
21cb47be 897 inode_init_owner(&init_user_ns, inode, dir, mode);
c8c06efa
DB
898 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
899 &hugetlbfs_i_mmap_rwsem_key);
1da177e4 900 inode->i_mapping->a_ops = &hugetlbfs_aops;
078cd827 901 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
9119a41e 902 inode->i_mapping->private_data = resv_map;
ff62a342 903 info->seals = F_SEAL_SEAL;
1da177e4
LT
904 switch (mode & S_IFMT) {
905 default:
906 init_special_inode(inode, mode, dev);
907 break;
908 case S_IFREG:
909 inode->i_op = &hugetlbfs_inode_operations;
910 inode->i_fop = &hugetlbfs_file_operations;
911 break;
912 case S_IFDIR:
913 inode->i_op = &hugetlbfs_dir_inode_operations;
914 inode->i_fop = &simple_dir_operations;
915
916 /* directory inodes start off with i_nlink == 2 (for "." entry) */
d8c76e6f 917 inc_nlink(inode);
1da177e4
LT
918 break;
919 case S_IFLNK:
920 inode->i_op = &page_symlink_inode_operations;
21fc61c7 921 inode_nohighmem(inode);
1da177e4
LT
922 break;
923 }
e096d0c7 924 lockdep_annotate_inode_mutex_key(inode);
58b6e5e8
MK
925 } else {
926 if (resv_map)
927 kref_put(&resv_map->refs, resv_map_release);
928 }
9119a41e 929
1da177e4
LT
930 return inode;
931}
932
933/*
934 * File creation. Allocate an inode, and we're done..
935 */
1ab5b82f
PS
936static int do_hugetlbfs_mknod(struct inode *dir,
937 struct dentry *dentry,
938 umode_t mode,
939 dev_t dev,
940 bool tmpfile)
1da177e4
LT
941{
942 struct inode *inode;
943 int error = -ENOSPC;
7d54fa64
AV
944
945 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1da177e4 946 if (inode) {
078cd827 947 dir->i_ctime = dir->i_mtime = current_time(dir);
1ab5b82f
PS
948 if (tmpfile) {
949 d_tmpfile(dentry, inode);
950 } else {
951 d_instantiate(dentry, inode);
952 dget(dentry);/* Extra count - pin the dentry in core */
953 }
1da177e4
LT
954 error = 0;
955 }
956 return error;
957}
958
549c7297
CB
959static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
960 struct dentry *dentry, umode_t mode, dev_t dev)
1ab5b82f
PS
961{
962 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
963}
964
549c7297
CB
965static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
966 struct dentry *dentry, umode_t mode)
1da177e4 967{
549c7297
CB
968 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
969 mode | S_IFDIR, 0);
1da177e4 970 if (!retval)
d8c76e6f 971 inc_nlink(dir);
1da177e4
LT
972 return retval;
973}
974
549c7297
CB
975static int hugetlbfs_create(struct user_namespace *mnt_userns,
976 struct inode *dir, struct dentry *dentry,
977 umode_t mode, bool excl)
1da177e4 978{
549c7297 979 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
980}
981
549c7297
CB
982static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
983 struct inode *dir, struct dentry *dentry,
984 umode_t mode)
1ab5b82f
PS
985{
986 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
987}
988
549c7297
CB
989static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
990 struct inode *dir, struct dentry *dentry,
991 const char *symname)
1da177e4
LT
992{
993 struct inode *inode;
994 int error = -ENOSPC;
1da177e4 995
7d54fa64 996 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1da177e4
LT
997 if (inode) {
998 int l = strlen(symname)+1;
999 error = page_symlink(inode, symname, l);
1000 if (!error) {
1001 d_instantiate(dentry, inode);
1002 dget(dentry);
1003 } else
1004 iput(inode);
1005 }
078cd827 1006 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
1007
1008 return error;
1009}
1010
290408d4 1011static int hugetlbfs_migrate_page(struct address_space *mapping,
b969c4ab 1012 struct page *newpage, struct page *page,
a6bc32b8 1013 enum migrate_mode mode)
290408d4
NH
1014{
1015 int rc;
1016
1017 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
78bd5209 1018 if (rc != MIGRATEPAGE_SUCCESS)
290408d4 1019 return rc;
cb6acd01 1020
d6995da3
MK
1021 if (hugetlb_page_subpool(page)) {
1022 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
1023 hugetlb_set_page_subpool(page, NULL);
cb6acd01
MK
1024 }
1025
2916ecc0
JG
1026 if (mode != MIGRATE_SYNC_NO_COPY)
1027 migrate_page_copy(newpage, page);
1028 else
1029 migrate_page_states(newpage, page);
290408d4 1030
78bd5209 1031 return MIGRATEPAGE_SUCCESS;
290408d4
NH
1032}
1033
78bb9203
NH
1034static int hugetlbfs_error_remove_page(struct address_space *mapping,
1035 struct page *page)
1036{
1037 struct inode *inode = mapping->host;
ab615a5b 1038 pgoff_t index = page->index;
78bb9203
NH
1039
1040 remove_huge_page(page);
ab615a5b
MK
1041 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1042 hugetlb_fix_reserve_counts(inode);
1043
78bb9203
NH
1044 return 0;
1045}
1046
4a25220d
DH
1047/*
1048 * Display the mount options in /proc/mounts.
1049 */
1050static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1051{
1052 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1053 struct hugepage_subpool *spool = sbinfo->spool;
1054 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1055 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1056 char mod;
1057
1058 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1059 seq_printf(m, ",uid=%u",
1060 from_kuid_munged(&init_user_ns, sbinfo->uid));
1061 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1062 seq_printf(m, ",gid=%u",
1063 from_kgid_munged(&init_user_ns, sbinfo->gid));
1064 if (sbinfo->mode != 0755)
1065 seq_printf(m, ",mode=%o", sbinfo->mode);
1066 if (sbinfo->max_inodes != -1)
1067 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1068
1069 hpage_size /= 1024;
1070 mod = 'K';
1071 if (hpage_size >= 1024) {
1072 hpage_size /= 1024;
1073 mod = 'M';
1074 }
1075 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1076 if (spool) {
1077 if (spool->max_hpages != -1)
1078 seq_printf(m, ",size=%llu",
1079 (unsigned long long)spool->max_hpages << hpage_shift);
1080 if (spool->min_hpages != -1)
1081 seq_printf(m, ",min_size=%llu",
1082 (unsigned long long)spool->min_hpages << hpage_shift);
1083 }
1084 return 0;
1085}
1086
726c3342 1087static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1088{
726c3342 1089 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
2b0143b5 1090 struct hstate *h = hstate_inode(d_inode(dentry));
1da177e4
LT
1091
1092 buf->f_type = HUGETLBFS_MAGIC;
a5516438 1093 buf->f_bsize = huge_page_size(h);
1da177e4
LT
1094 if (sbinfo) {
1095 spin_lock(&sbinfo->stat_lock);
74a8a65c
DG
1096 /* If no limits set, just report 0 for max/free/used
1097 * blocks, like simple_statfs() */
90481622
DG
1098 if (sbinfo->spool) {
1099 long free_pages;
1100
4b25f030 1101 spin_lock_irq(&sbinfo->spool->lock);
90481622
DG
1102 buf->f_blocks = sbinfo->spool->max_hpages;
1103 free_pages = sbinfo->spool->max_hpages
1104 - sbinfo->spool->used_hpages;
1105 buf->f_bavail = buf->f_bfree = free_pages;
4b25f030 1106 spin_unlock_irq(&sbinfo->spool->lock);
74a8a65c
DG
1107 buf->f_files = sbinfo->max_inodes;
1108 buf->f_ffree = sbinfo->free_inodes;
1109 }
1da177e4
LT
1110 spin_unlock(&sbinfo->stat_lock);
1111 }
1112 buf->f_namelen = NAME_MAX;
1113 return 0;
1114}
1115
1116static void hugetlbfs_put_super(struct super_block *sb)
1117{
1118 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1119
1120 if (sbi) {
1121 sb->s_fs_info = NULL;
90481622
DG
1122
1123 if (sbi->spool)
1124 hugepage_put_subpool(sbi->spool);
1125
1da177e4
LT
1126 kfree(sbi);
1127 }
1128}
1129
96527980
CH
1130static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1131{
1132 if (sbinfo->free_inodes >= 0) {
1133 spin_lock(&sbinfo->stat_lock);
1134 if (unlikely(!sbinfo->free_inodes)) {
1135 spin_unlock(&sbinfo->stat_lock);
1136 return 0;
1137 }
1138 sbinfo->free_inodes--;
1139 spin_unlock(&sbinfo->stat_lock);
1140 }
1141
1142 return 1;
1143}
1144
1145static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1146{
1147 if (sbinfo->free_inodes >= 0) {
1148 spin_lock(&sbinfo->stat_lock);
1149 sbinfo->free_inodes++;
1150 spin_unlock(&sbinfo->stat_lock);
1151 }
1152}
1153
1154
e18b890b 1155static struct kmem_cache *hugetlbfs_inode_cachep;
1da177e4
LT
1156
1157static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1158{
96527980 1159 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1da177e4
LT
1160 struct hugetlbfs_inode_info *p;
1161
96527980
CH
1162 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1163 return NULL;
fd60b288 1164 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
96527980
CH
1165 if (unlikely(!p)) {
1166 hugetlbfs_inc_free_inodes(sbinfo);
1da177e4 1167 return NULL;
96527980 1168 }
4742a35d
MK
1169
1170 /*
1171 * Any time after allocation, hugetlbfs_destroy_inode can be called
1172 * for the inode. mpol_free_shared_policy is unconditionally called
1173 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1174 * in case of a quick call to destroy.
1175 *
1176 * Note that the policy is initialized even if we are creating a
1177 * private inode. This simplifies hugetlbfs_destroy_inode.
1178 */
1179 mpol_shared_policy_init(&p->policy, NULL);
1180
1da177e4
LT
1181 return &p->vfs_inode;
1182}
1183
b62de322 1184static void hugetlbfs_free_inode(struct inode *inode)
fa0d7e3d 1185{
fa0d7e3d
NP
1186 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1187}
1188
1da177e4
LT
1189static void hugetlbfs_destroy_inode(struct inode *inode)
1190{
96527980 1191 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1da177e4 1192 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1da177e4
LT
1193}
1194
f5e54d6e 1195static const struct address_space_operations hugetlbfs_aops = {
800d15a5
NP
1196 .write_begin = hugetlbfs_write_begin,
1197 .write_end = hugetlbfs_write_end,
46de8b97 1198 .dirty_folio = noop_dirty_folio,
290408d4 1199 .migratepage = hugetlbfs_migrate_page,
78bb9203 1200 .error_remove_page = hugetlbfs_error_remove_page,
1da177e4
LT
1201};
1202
96527980 1203
51cc5068 1204static void init_once(void *foo)
96527980
CH
1205{
1206 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1207
a35afb83 1208 inode_init_once(&ei->vfs_inode);
96527980
CH
1209}
1210
4b6f5d20 1211const struct file_operations hugetlbfs_file_operations = {
34d0640e 1212 .read_iter = hugetlbfs_read_iter,
1da177e4 1213 .mmap = hugetlbfs_file_mmap,
1b061d92 1214 .fsync = noop_fsync,
1da177e4 1215 .get_unmapped_area = hugetlb_get_unmapped_area,
70c3547e
MK
1216 .llseek = default_llseek,
1217 .fallocate = hugetlbfs_fallocate,
1da177e4
LT
1218};
1219
92e1d5be 1220static const struct inode_operations hugetlbfs_dir_inode_operations = {
1da177e4
LT
1221 .create = hugetlbfs_create,
1222 .lookup = simple_lookup,
1223 .link = simple_link,
1224 .unlink = simple_unlink,
1225 .symlink = hugetlbfs_symlink,
1226 .mkdir = hugetlbfs_mkdir,
1227 .rmdir = simple_rmdir,
1228 .mknod = hugetlbfs_mknod,
1229 .rename = simple_rename,
1230 .setattr = hugetlbfs_setattr,
1ab5b82f 1231 .tmpfile = hugetlbfs_tmpfile,
1da177e4
LT
1232};
1233
92e1d5be 1234static const struct inode_operations hugetlbfs_inode_operations = {
1da177e4
LT
1235 .setattr = hugetlbfs_setattr,
1236};
1237
ee9b6d61 1238static const struct super_operations hugetlbfs_ops = {
1da177e4 1239 .alloc_inode = hugetlbfs_alloc_inode,
b62de322 1240 .free_inode = hugetlbfs_free_inode,
1da177e4 1241 .destroy_inode = hugetlbfs_destroy_inode,
2bbbda30 1242 .evict_inode = hugetlbfs_evict_inode,
1da177e4 1243 .statfs = hugetlbfs_statfs,
1da177e4 1244 .put_super = hugetlbfs_put_super,
4a25220d 1245 .show_options = hugetlbfs_show_options,
1da177e4
LT
1246};
1247
7ca02d0a
MK
1248/*
1249 * Convert size option passed from command line to number of huge pages
1250 * in the pool specified by hstate. Size option could be in bytes
1251 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1252 */
4a25220d 1253static long
7ca02d0a 1254hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
4a25220d 1255 enum hugetlbfs_size_type val_type)
7ca02d0a
MK
1256{
1257 if (val_type == NO_SIZE)
1258 return -1;
1259
1260 if (val_type == SIZE_PERCENT) {
1261 size_opt <<= huge_page_shift(h);
1262 size_opt *= h->max_huge_pages;
1263 do_div(size_opt, 100);
1264 }
1265
1266 size_opt >>= huge_page_shift(h);
1267 return size_opt;
1268}
1269
32021982
DH
1270/*
1271 * Parse one mount parameter.
1272 */
1273static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1da177e4 1274{
32021982
DH
1275 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1276 struct fs_parse_result result;
1277 char *rest;
1278 unsigned long ps;
1279 int opt;
1280
d7167b14 1281 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
32021982
DH
1282 if (opt < 0)
1283 return opt;
1284
1285 switch (opt) {
1286 case Opt_uid:
1287 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1288 if (!uid_valid(ctx->uid))
1289 goto bad_val;
1da177e4 1290 return 0;
1da177e4 1291
32021982
DH
1292 case Opt_gid:
1293 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1294 if (!gid_valid(ctx->gid))
1295 goto bad_val;
1296 return 0;
e73a75fa 1297
32021982
DH
1298 case Opt_mode:
1299 ctx->mode = result.uint_32 & 01777U;
1300 return 0;
e73a75fa 1301
32021982
DH
1302 case Opt_size:
1303 /* memparse() will accept a K/M/G without a digit */
1304 if (!isdigit(param->string[0]))
1305 goto bad_val;
1306 ctx->max_size_opt = memparse(param->string, &rest);
1307 ctx->max_val_type = SIZE_STD;
1308 if (*rest == '%')
1309 ctx->max_val_type = SIZE_PERCENT;
1310 return 0;
e73a75fa 1311
32021982
DH
1312 case Opt_nr_inodes:
1313 /* memparse() will accept a K/M/G without a digit */
1314 if (!isdigit(param->string[0]))
1315 goto bad_val;
1316 ctx->nr_inodes = memparse(param->string, &rest);
1317 return 0;
e73a75fa 1318
32021982
DH
1319 case Opt_pagesize:
1320 ps = memparse(param->string, &rest);
1321 ctx->hstate = size_to_hstate(ps);
1322 if (!ctx->hstate) {
1323 pr_err("Unsupported page size %lu MB\n", ps >> 20);
1324 return -EINVAL;
e73a75fa 1325 }
32021982 1326 return 0;
1da177e4 1327
32021982
DH
1328 case Opt_min_size:
1329 /* memparse() will accept a K/M/G without a digit */
1330 if (!isdigit(param->string[0]))
1331 goto bad_val;
1332 ctx->min_size_opt = memparse(param->string, &rest);
1333 ctx->min_val_type = SIZE_STD;
1334 if (*rest == '%')
1335 ctx->min_val_type = SIZE_PERCENT;
1336 return 0;
e73a75fa 1337
32021982
DH
1338 default:
1339 return -EINVAL;
1340 }
a137e1cc 1341
32021982 1342bad_val:
b5db30cf 1343 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
32021982
DH
1344 param->string, param->key);
1345}
7ca02d0a 1346
32021982
DH
1347/*
1348 * Validate the parsed options.
1349 */
1350static int hugetlbfs_validate(struct fs_context *fc)
1351{
1352 struct hugetlbfs_fs_context *ctx = fc->fs_private;
a137e1cc 1353
7ca02d0a
MK
1354 /*
1355 * Use huge page pool size (in hstate) to convert the size
1356 * options to number of huge pages. If NO_SIZE, -1 is returned.
1357 */
32021982
DH
1358 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1359 ctx->max_size_opt,
1360 ctx->max_val_type);
1361 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1362 ctx->min_size_opt,
1363 ctx->min_val_type);
7ca02d0a
MK
1364
1365 /*
1366 * If max_size was specified, then min_size must be smaller
1367 */
32021982
DH
1368 if (ctx->max_val_type > NO_SIZE &&
1369 ctx->min_hpages > ctx->max_hpages) {
1370 pr_err("Minimum size can not be greater than maximum size\n");
7ca02d0a 1371 return -EINVAL;
a137e1cc
AK
1372 }
1373
1da177e4
LT
1374 return 0;
1375}
1376
1377static int
32021982 1378hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 1379{
32021982 1380 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1da177e4
LT
1381 struct hugetlbfs_sb_info *sbinfo;
1382
1da177e4
LT
1383 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1384 if (!sbinfo)
1385 return -ENOMEM;
1386 sb->s_fs_info = sbinfo;
1387 spin_lock_init(&sbinfo->stat_lock);
32021982
DH
1388 sbinfo->hstate = ctx->hstate;
1389 sbinfo->max_inodes = ctx->nr_inodes;
1390 sbinfo->free_inodes = ctx->nr_inodes;
1391 sbinfo->spool = NULL;
1392 sbinfo->uid = ctx->uid;
1393 sbinfo->gid = ctx->gid;
1394 sbinfo->mode = ctx->mode;
4a25220d 1395
7ca02d0a
MK
1396 /*
1397 * Allocate and initialize subpool if maximum or minimum size is
1935ebd3 1398 * specified. Any needed reservations (for minimum size) are taken
7ca02d0a
MK
1399 * taken when the subpool is created.
1400 */
32021982
DH
1401 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1402 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1403 ctx->max_hpages,
1404 ctx->min_hpages);
90481622
DG
1405 if (!sbinfo->spool)
1406 goto out_free;
1407 }
1da177e4 1408 sb->s_maxbytes = MAX_LFS_FILESIZE;
32021982
DH
1409 sb->s_blocksize = huge_page_size(ctx->hstate);
1410 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1da177e4
LT
1411 sb->s_magic = HUGETLBFS_MAGIC;
1412 sb->s_op = &hugetlbfs_ops;
1413 sb->s_time_gran = 1;
15568299
MK
1414
1415 /*
1416 * Due to the special and limited functionality of hugetlbfs, it does
1417 * not work well as a stacking filesystem.
1418 */
1419 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
32021982 1420 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
48fde701 1421 if (!sb->s_root)
1da177e4 1422 goto out_free;
1da177e4
LT
1423 return 0;
1424out_free:
6e6870d4 1425 kfree(sbinfo->spool);
1da177e4
LT
1426 kfree(sbinfo);
1427 return -ENOMEM;
1428}
1429
32021982
DH
1430static int hugetlbfs_get_tree(struct fs_context *fc)
1431{
1432 int err = hugetlbfs_validate(fc);
1433 if (err)
1434 return err;
2ac295d4 1435 return get_tree_nodev(fc, hugetlbfs_fill_super);
32021982
DH
1436}
1437
1438static void hugetlbfs_fs_context_free(struct fs_context *fc)
1439{
1440 kfree(fc->fs_private);
1441}
1442
1443static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1444 .free = hugetlbfs_fs_context_free,
1445 .parse_param = hugetlbfs_parse_param,
1446 .get_tree = hugetlbfs_get_tree,
1447};
1448
1449static int hugetlbfs_init_fs_context(struct fs_context *fc)
1da177e4 1450{
32021982
DH
1451 struct hugetlbfs_fs_context *ctx;
1452
1453 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1454 if (!ctx)
1455 return -ENOMEM;
1456
1457 ctx->max_hpages = -1; /* No limit on size by default */
1458 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1459 ctx->uid = current_fsuid();
1460 ctx->gid = current_fsgid();
1461 ctx->mode = 0755;
1462 ctx->hstate = &default_hstate;
1463 ctx->min_hpages = -1; /* No default minimum size */
1464 ctx->max_val_type = NO_SIZE;
1465 ctx->min_val_type = NO_SIZE;
1466 fc->fs_private = ctx;
1467 fc->ops = &hugetlbfs_fs_context_ops;
1468 return 0;
1da177e4
LT
1469}
1470
1471static struct file_system_type hugetlbfs_fs_type = {
32021982
DH
1472 .name = "hugetlbfs",
1473 .init_fs_context = hugetlbfs_init_fs_context,
d7167b14 1474 .parameters = hugetlb_fs_parameters,
32021982 1475 .kill_sb = kill_litter_super,
1da177e4
LT
1476};
1477
42d7395f 1478static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1da177e4 1479
ef1ff6b8 1480static int can_do_hugetlb_shm(void)
1da177e4 1481{
a0eb3a05
EB
1482 kgid_t shm_group;
1483 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1484 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1da177e4
LT
1485}
1486
42d7395f
AK
1487static int get_hstate_idx(int page_size_log)
1488{
af73e4d9 1489 struct hstate *h = hstate_sizelog(page_size_log);
42d7395f 1490
42d7395f
AK
1491 if (!h)
1492 return -1;
04adbc3f 1493 return hstate_index(h);
42d7395f
AK
1494}
1495
af73e4d9
NH
1496/*
1497 * Note that size should be aligned to proper hugepage size in caller side,
1498 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1499 */
1500struct file *hugetlb_file_setup(const char *name, size_t size,
83c1fd76 1501 vm_flags_t acctflag, int creat_flags,
1502 int page_size_log)
1da177e4 1503{
1da177e4 1504 struct inode *inode;
e68375c8 1505 struct vfsmount *mnt;
42d7395f 1506 int hstate_idx;
e68375c8 1507 struct file *file;
42d7395f
AK
1508
1509 hstate_idx = get_hstate_idx(page_size_log);
1510 if (hstate_idx < 0)
1511 return ERR_PTR(-ENODEV);
1da177e4 1512
e68375c8
AV
1513 mnt = hugetlbfs_vfsmount[hstate_idx];
1514 if (!mnt)
5bc98594
AM
1515 return ERR_PTR(-ENOENT);
1516
ef1ff6b8 1517 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
83c1fd76 1518 struct ucounts *ucounts = current_ucounts();
1519
1520 if (user_shm_lock(size, ucounts)) {
1521 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
21a3c273 1522 current->comm, current->pid);
83c1fd76 1523 user_shm_unlock(size, ucounts);
353d5c30 1524 }
83c1fd76 1525 return ERR_PTR(-EPERM);
2584e517 1526 }
1da177e4 1527
39b65252 1528 file = ERR_PTR(-ENOSPC);
e68375c8 1529 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1da177e4 1530 if (!inode)
e68375c8 1531 goto out;
e1832f29
SS
1532 if (creat_flags == HUGETLB_SHMFS_INODE)
1533 inode->i_flags |= S_PRIVATE;
1da177e4 1534
1da177e4 1535 inode->i_size = size;
6d6b77f1 1536 clear_nlink(inode);
ce8d2cdf 1537
33b8f84a 1538 if (!hugetlb_reserve_pages(inode, 0,
e68375c8
AV
1539 size >> huge_page_shift(hstate_inode(inode)), NULL,
1540 acctflag))
1541 file = ERR_PTR(-ENOMEM);
1542 else
1543 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1544 &hugetlbfs_file_operations);
1545 if (!IS_ERR(file))
1546 return file;
1da177e4 1547
b45b5bd6 1548 iput(inode);
e68375c8 1549out:
39b65252 1550 return file;
1da177e4
LT
1551}
1552
32021982
DH
1553static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1554{
1555 struct fs_context *fc;
1556 struct vfsmount *mnt;
1557
1558 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1559 if (IS_ERR(fc)) {
1560 mnt = ERR_CAST(fc);
1561 } else {
1562 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1563 ctx->hstate = h;
1564 mnt = fc_mount(fc);
1565 put_fs_context(fc);
1566 }
1567 if (IS_ERR(mnt))
a25fddce
ML
1568 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1569 huge_page_size(h) >> 10);
32021982
DH
1570 return mnt;
1571}
1572
1da177e4
LT
1573static int __init init_hugetlbfs_fs(void)
1574{
32021982 1575 struct vfsmount *mnt;
42d7395f 1576 struct hstate *h;
1da177e4 1577 int error;
42d7395f 1578 int i;
1da177e4 1579
457c1b27 1580 if (!hugepages_supported()) {
9b857d26 1581 pr_info("disabling because there are no supported hugepage sizes\n");
457c1b27
NA
1582 return -ENOTSUPP;
1583 }
1584
d1d5e05f 1585 error = -ENOMEM;
1da177e4
LT
1586 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1587 sizeof(struct hugetlbfs_inode_info),
5d097056 1588 0, SLAB_ACCOUNT, init_once);
1da177e4 1589 if (hugetlbfs_inode_cachep == NULL)
8fc312b3 1590 goto out;
1da177e4
LT
1591
1592 error = register_filesystem(&hugetlbfs_fs_type);
1593 if (error)
8fc312b3 1594 goto out_free;
1da177e4 1595
8fc312b3 1596 /* default hstate mount is required */
3b2275a8 1597 mnt = mount_one_hugetlbfs(&default_hstate);
8fc312b3
MK
1598 if (IS_ERR(mnt)) {
1599 error = PTR_ERR(mnt);
1600 goto out_unreg;
1601 }
1602 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1603
1604 /* other hstates are optional */
42d7395f
AK
1605 i = 0;
1606 for_each_hstate(h) {
15f0ec94
JS
1607 if (i == default_hstate_idx) {
1608 i++;
8fc312b3 1609 continue;
15f0ec94 1610 }
8fc312b3 1611
32021982 1612 mnt = mount_one_hugetlbfs(h);
8fc312b3
MK
1613 if (IS_ERR(mnt))
1614 hugetlbfs_vfsmount[i] = NULL;
1615 else
1616 hugetlbfs_vfsmount[i] = mnt;
42d7395f
AK
1617 i++;
1618 }
32021982
DH
1619
1620 return 0;
1da177e4 1621
8fc312b3
MK
1622 out_unreg:
1623 (void)unregister_filesystem(&hugetlbfs_fs_type);
1624 out_free:
d1d5e05f 1625 kmem_cache_destroy(hugetlbfs_inode_cachep);
8fc312b3 1626 out:
1da177e4
LT
1627 return error;
1628}
3e89e1c5 1629fs_initcall(init_hugetlbfs_fs)