Merge tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / hugetlbfs / inode.c
CommitLineData
1da177e4
LT
1/*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
6d49e352 4 * Nadia Yvette Chambers, 2002
1da177e4
LT
5 *
6 * Copyright (C) 2002 Linus Torvalds.
3e89e1c5 7 * License: GPL
1da177e4
LT
8 */
9
9b857d26
AM
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
1da177e4
LT
12#include <linux/thread_info.h>
13#include <asm/current.h>
70c3547e 14#include <linux/falloc.h>
1da177e4
LT
15#include <linux/fs.h>
16#include <linux/mount.h>
17#include <linux/file.h>
e73a75fa 18#include <linux/kernel.h>
1da177e4
LT
19#include <linux/writeback.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/init.h>
23#include <linux/string.h>
16f7e0fe 24#include <linux/capability.h>
e73a75fa 25#include <linux/ctype.h>
1da177e4
LT
26#include <linux/backing-dev.h>
27#include <linux/hugetlb.h>
28#include <linux/pagevec.h>
32021982 29#include <linux/fs_parser.h>
036e0856 30#include <linux/mman.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/dnotify.h>
33#include <linux/statfs.h>
34#include <linux/security.h>
1fd7317d 35#include <linux/magic.h>
290408d4 36#include <linux/migrate.h>
34d0640e 37#include <linux/uio.h>
1da177e4 38
7c0f6ba6 39#include <linux/uaccess.h>
88590253 40#include <linux/sched/mm.h>
1da177e4 41
f5e54d6e 42static const struct address_space_operations hugetlbfs_aops;
4b6f5d20 43const struct file_operations hugetlbfs_file_operations;
92e1d5be
AV
44static const struct inode_operations hugetlbfs_dir_inode_operations;
45static const struct inode_operations hugetlbfs_inode_operations;
1da177e4 46
32021982
DH
47enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48
49struct hugetlbfs_fs_context {
4a25220d 50 struct hstate *hstate;
32021982
DH
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
4a25220d
DH
53 long max_hpages;
54 long nr_inodes;
55 long min_hpages;
32021982
DH
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
4a25220d
DH
58 kuid_t uid;
59 kgid_t gid;
60 umode_t mode;
a1d776ee
DG
61};
62
1da177e4
LT
63int sysctl_hugetlb_shm_group;
64
32021982
DH
65enum hugetlb_param {
66 Opt_gid,
67 Opt_min_size,
68 Opt_mode,
69 Opt_nr_inodes,
70 Opt_pagesize,
71 Opt_size,
72 Opt_uid,
e73a75fa
RD
73};
74
d7167b14 75static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
32021982
DH
76 fsparam_u32 ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
e0f7e2b2 78 fsparam_u32oct("mode", Opt_mode),
32021982
DH
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_u32 ("uid", Opt_uid),
83 {}
84};
85
70c3547e
MK
86#ifdef CONFIG_NUMA
87static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 struct inode *inode, pgoff_t index)
89{
90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 index);
92}
93
94static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95{
96 mpol_cond_put(vma->vm_policy);
97}
98#else
99static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 struct inode *inode, pgoff_t index)
101{
102}
103
104static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105{
106}
107#endif
108
63489f8e
MK
109/*
110 * Mask used when checking the page offset value passed in via system
111 * calls. This value will be converted to a loff_t which is signed.
112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113 * value. The extra bit (- 1 in the shift value) is to take the sign
114 * bit into account.
115 */
116#define PGOFF_LOFFT_MAX \
117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118
1da177e4
LT
119static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120{
496ad9aa 121 struct inode *inode = file_inode(file);
22247efd 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4
LT
123 loff_t len, vma_len;
124 int ret;
a5516438 125 struct hstate *h = hstate_file(file);
1da177e4 126
68589bc3 127 /*
dec4ad86
DG
128 * vma address alignment (but not the pgoff alignment) has
129 * already been checked by prepare_hugepage_range. If you add
130 * any error returns here, do so after setting VM_HUGETLB, so
131 * is_vm_hugetlb_page tests below unmap_region go the right
45e55300 132 * way when do_mmap unwinds (may be important on powerpc
dec4ad86 133 * and ia64).
68589bc3 134 */
1c71222e 135 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
68589bc3 136 vma->vm_ops = &hugetlb_vm_ops;
1da177e4 137
22247efd
PX
138 ret = seal_check_future_write(info->seals, vma);
139 if (ret)
140 return ret;
141
045c7a3f 142 /*
63489f8e 143 * page based offset in vm_pgoff could be sufficiently large to
5df63c2a
MK
144 * overflow a loff_t when converted to byte offset. This can
145 * only happen on architectures where sizeof(loff_t) ==
146 * sizeof(unsigned long). So, only check in those instances.
045c7a3f 147 */
5df63c2a
MK
148 if (sizeof(unsigned long) == sizeof(loff_t)) {
149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 return -EINVAL;
151 }
045c7a3f 152
63489f8e 153 /* must be huge page aligned */
2b37c35e 154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
dec4ad86
DG
155 return -EINVAL;
156
1da177e4 157 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
045c7a3f
MK
158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 /* check for overflow */
160 if (len < vma_len)
161 return -EINVAL;
1da177e4 162
5955102c 163 inode_lock(inode);
1da177e4 164 file_accessed(file);
1da177e4
LT
165
166 ret = -ENOMEM;
33b8f84a 167 if (!hugetlb_reserve_pages(inode,
a5516438 168 vma->vm_pgoff >> huge_page_order(h),
5a6fe125
MG
169 len >> huge_page_shift(h), vma,
170 vma->vm_flags))
a43a8c39 171 goto out;
b45b5bd6 172
4c887265 173 ret = 0;
b6174df5 174 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
045c7a3f 175 i_size_write(inode, len);
1da177e4 176out:
5955102c 177 inode_unlock(inode);
1da177e4
LT
178
179 return ret;
180}
181
182/*
3e4e28c5 183 * Called under mmap_write_lock(mm).
1da177e4
LT
184 */
185
88590253
SH
186static unsigned long
187hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 unsigned long len, unsigned long pgoff, unsigned long flags)
189{
190 struct hstate *h = hstate_file(file);
191 struct vm_unmapped_area_info info;
192
193 info.flags = 0;
194 info.length = len;
195 info.low_limit = current->mm->mmap_base;
2cb4de08 196 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
197 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 info.align_offset = 0;
199 return vm_unmapped_area(&info);
200}
201
202static unsigned long
203hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 unsigned long len, unsigned long pgoff, unsigned long flags)
205{
206 struct hstate *h = hstate_file(file);
207 struct vm_unmapped_area_info info;
208
209 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 info.length = len;
6b008640 211 info.low_limit = PAGE_SIZE;
5f24d5a5 212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
88590253
SH
213 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 info.align_offset = 0;
215 addr = vm_unmapped_area(&info);
216
217 /*
218 * A failed mmap() very likely causes application failure,
219 * so fall back to the bottom-up function here. This scenario
220 * can happen with large stack limits and large mmap()
221 * allocations.
222 */
223 if (unlikely(offset_in_page(addr))) {
224 VM_BUG_ON(addr != -ENOMEM);
225 info.flags = 0;
226 info.low_limit = current->mm->mmap_base;
2cb4de08 227 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
228 addr = vm_unmapped_area(&info);
229 }
230
231 return addr;
232}
233
4b439e25
CL
234unsigned long
235generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 unsigned long len, unsigned long pgoff,
237 unsigned long flags)
1da177e4
LT
238{
239 struct mm_struct *mm = current->mm;
240 struct vm_area_struct *vma;
a5516438 241 struct hstate *h = hstate_file(file);
2cb4de08 242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1da177e4 243
a5516438 244 if (len & ~huge_page_mask(h))
1da177e4
LT
245 return -EINVAL;
246 if (len > TASK_SIZE)
247 return -ENOMEM;
248
036e0856 249 if (flags & MAP_FIXED) {
a5516438 250 if (prepare_hugepage_range(file, addr, len))
036e0856
BH
251 return -EINVAL;
252 return addr;
253 }
254
1da177e4 255 if (addr) {
a5516438 256 addr = ALIGN(addr, huge_page_size(h));
1da177e4 257 vma = find_vma(mm, addr);
5f24d5a5 258 if (mmap_end - len >= addr &&
1be7107f 259 (!vma || addr + len <= vm_start_gap(vma)))
1da177e4
LT
260 return addr;
261 }
262
88590253
SH
263 /*
264 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 * If architectures have special needs, they should define their own
266 * version of hugetlb_get_unmapped_area.
267 */
268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 pgoff, flags);
271 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 pgoff, flags);
1da177e4 273}
4b439e25
CL
274
275#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276static unsigned long
277hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 unsigned long len, unsigned long pgoff,
279 unsigned long flags)
280{
281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282}
1da177e4
LT
283#endif
284
e63e1e5a
BP
285/*
286 * Support for read() - Find the page attached to f_mapping and copy out the
445c8098 287 * data. This provides functionality similar to filemap_read().
e63e1e5a 288 */
34d0640e 289static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
e63e1e5a 290{
34d0640e
AV
291 struct file *file = iocb->ki_filp;
292 struct hstate *h = hstate_file(file);
293 struct address_space *mapping = file->f_mapping;
e63e1e5a 294 struct inode *inode = mapping->host;
34d0640e
AV
295 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
296 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
e63e1e5a
BP
297 unsigned long end_index;
298 loff_t isize;
299 ssize_t retval = 0;
300
34d0640e 301 while (iov_iter_count(to)) {
e63e1e5a 302 struct page *page;
34d0640e 303 size_t nr, copied;
e63e1e5a
BP
304
305 /* nr is the maximum number of bytes to copy from this page */
a5516438 306 nr = huge_page_size(h);
a05b0855
AK
307 isize = i_size_read(inode);
308 if (!isize)
34d0640e 309 break;
a05b0855 310 end_index = (isize - 1) >> huge_page_shift(h);
34d0640e
AV
311 if (index > end_index)
312 break;
313 if (index == end_index) {
a5516438 314 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
a05b0855 315 if (nr <= offset)
34d0640e 316 break;
e63e1e5a
BP
317 }
318 nr = nr - offset;
319
320 /* Find the page */
a05b0855 321 page = find_lock_page(mapping, index);
e63e1e5a
BP
322 if (unlikely(page == NULL)) {
323 /*
324 * We have a HOLE, zero out the user-buffer for the
325 * length of the hole or request.
326 */
34d0640e 327 copied = iov_iter_zero(nr, to);
e63e1e5a 328 } else {
a05b0855
AK
329 unlock_page(page);
330
8625147c
JH
331 if (PageHWPoison(page)) {
332 put_page(page);
333 retval = -EIO;
334 break;
335 }
336
e63e1e5a
BP
337 /*
338 * We have the page, copy it to user space buffer.
339 */
c7d57ab1 340 copied = copy_page_to_iter(page, offset, nr, to);
09cbfeaf 341 put_page(page);
e63e1e5a 342 }
34d0640e
AV
343 offset += copied;
344 retval += copied;
345 if (copied != nr && iov_iter_count(to)) {
346 if (!retval)
347 retval = -EFAULT;
348 break;
e63e1e5a 349 }
a5516438
AK
350 index += offset >> huge_page_shift(h);
351 offset &= ~huge_page_mask(h);
e63e1e5a 352 }
34d0640e 353 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
e63e1e5a
BP
354 return retval;
355}
356
800d15a5
NP
357static int hugetlbfs_write_begin(struct file *file,
358 struct address_space *mapping,
9d6b0cd7 359 loff_t pos, unsigned len,
800d15a5 360 struct page **pagep, void **fsdata)
1da177e4
LT
361{
362 return -EINVAL;
363}
364
800d15a5
NP
365static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
366 loff_t pos, unsigned len, unsigned copied,
367 struct page *page, void *fsdata)
1da177e4 368{
800d15a5 369 BUG();
1da177e4
LT
370 return -EINVAL;
371}
372
ece62684 373static void hugetlb_delete_from_page_cache(struct folio *folio)
1da177e4 374{
ece62684
SK
375 folio_clear_dirty(folio);
376 folio_clear_uptodate(folio);
377 filemap_remove_folio(folio);
1da177e4
LT
378}
379
378397cc
MK
380/*
381 * Called with i_mmap_rwsem held for inode based vma maps. This makes
382 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
383 * mutex for the page in the mapping. So, we can not race with page being
384 * faulted into the vma.
385 */
386static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
387 unsigned long addr, struct page *page)
388{
389 pte_t *ptep, pte;
390
9c67a207 391 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
378397cc
MK
392 if (!ptep)
393 return false;
394
395 pte = huge_ptep_get(ptep);
396 if (huge_pte_none(pte) || !pte_present(pte))
397 return false;
398
399 if (pte_page(pte) == page)
400 return true;
401
402 return false;
403}
404
405/*
406 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
407 * No, because the interval tree returns us only those vmas
408 * which overlap the truncated area starting at pgoff,
409 * and no vma on a 32-bit arch can span beyond the 4GB.
410 */
411static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
412{
243b1f2d
PX
413 unsigned long offset = 0;
414
378397cc 415 if (vma->vm_pgoff < start)
243b1f2d
PX
416 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
417
418 return vma->vm_start + offset;
378397cc
MK
419}
420
421static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
422{
423 unsigned long t_end;
424
425 if (!end)
426 return vma->vm_end;
427
428 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
429 if (t_end > vma->vm_end)
430 t_end = vma->vm_end;
431 return t_end;
432}
433
434/*
435 * Called with hugetlb fault mutex held. Therefore, no more mappings to
436 * this folio can be created while executing the routine.
437 */
438static void hugetlb_unmap_file_folio(struct hstate *h,
439 struct address_space *mapping,
440 struct folio *folio, pgoff_t index)
441{
442 struct rb_root_cached *root = &mapping->i_mmap;
40549ba8 443 struct hugetlb_vma_lock *vma_lock;
378397cc
MK
444 struct page *page = &folio->page;
445 struct vm_area_struct *vma;
446 unsigned long v_start;
447 unsigned long v_end;
448 pgoff_t start, end;
449
450 start = index * pages_per_huge_page(h);
451 end = (index + 1) * pages_per_huge_page(h);
452
453 i_mmap_lock_write(mapping);
40549ba8
MK
454retry:
455 vma_lock = NULL;
378397cc
MK
456 vma_interval_tree_foreach(vma, root, start, end - 1) {
457 v_start = vma_offset_start(vma, start);
458 v_end = vma_offset_end(vma, end);
459
243b1f2d 460 if (!hugetlb_vma_maps_page(vma, v_start, page))
378397cc
MK
461 continue;
462
40549ba8
MK
463 if (!hugetlb_vma_trylock_write(vma)) {
464 vma_lock = vma->vm_private_data;
465 /*
466 * If we can not get vma lock, we need to drop
467 * immap_sema and take locks in order. First,
468 * take a ref on the vma_lock structure so that
469 * we can be guaranteed it will not go away when
470 * dropping immap_sema.
471 */
472 kref_get(&vma_lock->refs);
473 break;
474 }
475
243b1f2d
PX
476 unmap_hugepage_range(vma, v_start, v_end, NULL,
477 ZAP_FLAG_DROP_MARKER);
40549ba8 478 hugetlb_vma_unlock_write(vma);
378397cc
MK
479 }
480
481 i_mmap_unlock_write(mapping);
40549ba8
MK
482
483 if (vma_lock) {
484 /*
485 * Wait on vma_lock. We know it is still valid as we have
486 * a reference. We must 'open code' vma locking as we do
487 * not know if vma_lock is still attached to vma.
488 */
489 down_write(&vma_lock->rw_sema);
490 i_mmap_lock_write(mapping);
491
492 vma = vma_lock->vma;
493 if (!vma) {
494 /*
495 * If lock is no longer attached to vma, then just
496 * unlock, drop our reference and retry looking for
497 * other vmas.
498 */
499 up_write(&vma_lock->rw_sema);
500 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
501 goto retry;
502 }
503
504 /*
505 * vma_lock is still attached to vma. Check to see if vma
506 * still maps page and if so, unmap.
507 */
508 v_start = vma_offset_start(vma, start);
509 v_end = vma_offset_end(vma, end);
243b1f2d
PX
510 if (hugetlb_vma_maps_page(vma, v_start, page))
511 unmap_hugepage_range(vma, v_start, v_end, NULL,
512 ZAP_FLAG_DROP_MARKER);
40549ba8
MK
513
514 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
515 hugetlb_vma_unlock_write(vma);
516
517 goto retry;
518 }
378397cc
MK
519}
520
4aae8d1c 521static void
05e90bd0
PX
522hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
523 zap_flags_t zap_flags)
4aae8d1c
MK
524{
525 struct vm_area_struct *vma;
526
527 /*
d6aba4c8
SC
528 * end == 0 indicates that the entire range after start should be
529 * unmapped. Note, end is exclusive, whereas the interval tree takes
530 * an inclusive "last".
4aae8d1c 531 */
d6aba4c8 532 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
378397cc 533 unsigned long v_start;
4aae8d1c
MK
534 unsigned long v_end;
535
40549ba8
MK
536 if (!hugetlb_vma_trylock_write(vma))
537 continue;
538
378397cc
MK
539 v_start = vma_offset_start(vma, start);
540 v_end = vma_offset_end(vma, end);
4aae8d1c 541
243b1f2d 542 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
40549ba8
MK
543
544 /*
545 * Note that vma lock only exists for shared/non-private
546 * vmas. Therefore, lock is not held when calling
547 * unmap_hugepage_range for private vmas.
548 */
549 hugetlb_vma_unlock_write(vma);
4aae8d1c
MK
550 }
551}
b5cec28d 552
c8627228
MK
553/*
554 * Called with hugetlb fault mutex held.
555 * Returns true if page was actually removed, false otherwise.
556 */
557static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
558 struct address_space *mapping,
559 struct folio *folio, pgoff_t index,
560 bool truncate_op)
561{
562 bool ret = false;
563
564 /*
565 * If folio is mapped, it was faulted in after being
566 * unmapped in caller. Unmap (again) while holding
567 * the fault mutex. The mutex will prevent faults
568 * until we finish removing the folio.
569 */
378397cc
MK
570 if (unlikely(folio_mapped(folio)))
571 hugetlb_unmap_file_folio(h, mapping, folio, index);
c8627228
MK
572
573 folio_lock(folio);
574 /*
fa27759a
MK
575 * We must remove the folio from page cache before removing
576 * the region/ reserve map (hugetlb_unreserve_pages). In
577 * rare out of memory conditions, removal of the region/reserve
578 * map could fail. Correspondingly, the subpool and global
579 * reserve usage count can need to be adjusted.
c8627228 580 */
ece62684
SK
581 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
582 hugetlb_delete_from_page_cache(folio);
fa27759a
MK
583 ret = true;
584 if (!truncate_op) {
585 if (unlikely(hugetlb_unreserve_pages(inode, index,
586 index + 1, 1)))
587 hugetlb_fix_reserve_counts(inode);
c8627228
MK
588 }
589
590 folio_unlock(folio);
591 return ret;
592}
593
b5cec28d
MK
594/*
595 * remove_inode_hugepages handles two distinct cases: truncation and hole
596 * punch. There are subtle differences in operation for each case.
4aae8d1c 597 *
b5cec28d
MK
598 * truncation is indicated by end of range being LLONG_MAX
599 * In this case, we first scan the range and release found pages.
1935ebd3 600 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
c8627228
MK
601 * maps and global counts. Page faults can race with truncation.
602 * During faults, hugetlb_no_page() checks i_size before page allocation,
603 * and again after obtaining page table lock. It will 'back out'
604 * allocations in the truncated range.
b5cec28d
MK
605 * hole punch is indicated if end is not LLONG_MAX
606 * In the hole punch case we scan the range and release found pages.
1935ebd3
ML
607 * Only when releasing a page is the associated region/reserve map
608 * deleted. The region/reserve map for ranges without associated
e7c58097
MK
609 * pages are not modified. Page faults can race with hole punch.
610 * This is indicated if we find a mapped page.
b5cec28d
MK
611 * Note: If the passed end of range value is beyond the end of file, but
612 * not LLONG_MAX this routine still performs a hole punch operation.
613 */
614static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
615 loff_t lend)
1da177e4 616{
a5516438 617 struct hstate *h = hstate_inode(inode);
b45b5bd6 618 struct address_space *mapping = &inode->i_data;
a5516438 619 const pgoff_t start = lstart >> huge_page_shift(h);
b5cec28d 620 const pgoff_t end = lend >> huge_page_shift(h);
1508062e 621 struct folio_batch fbatch;
d72dc8a2 622 pgoff_t next, index;
a43a8c39 623 int i, freed = 0;
b5cec28d 624 bool truncate_op = (lend == LLONG_MAX);
1da177e4 625
1508062e 626 folio_batch_init(&fbatch);
1da177e4 627 next = start;
1508062e
MWO
628 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
629 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
630 struct folio *folio = fbatch.folios[i];
d4241a04 631 u32 hash = 0;
b5cec28d 632
1508062e 633 index = folio->index;
188a3972
MK
634 hash = hugetlb_fault_mutex_hash(mapping, index);
635 mutex_lock(&hugetlb_fault_mutex_table[hash]);
e7c58097 636
4aae8d1c 637 /*
c8627228 638 * Remove folio that was part of folio_batch.
4aae8d1c 639 */
c8627228
MK
640 if (remove_inode_single_folio(h, inode, mapping, folio,
641 index, truncate_op))
642 freed++;
643
188a3972 644 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
1da177e4 645 }
1508062e 646 folio_batch_release(&fbatch);
1817889e 647 cond_resched();
1da177e4 648 }
b5cec28d
MK
649
650 if (truncate_op)
651 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
1da177e4
LT
652}
653
2bbbda30 654static void hugetlbfs_evict_inode(struct inode *inode)
1da177e4 655{
9119a41e
JK
656 struct resv_map *resv_map;
657
b5cec28d 658 remove_inode_hugepages(inode, 0, LLONG_MAX);
f27a5136
MK
659
660 /*
661 * Get the resv_map from the address space embedded in the inode.
662 * This is the address space which points to any resv_map allocated
663 * at inode creation time. If this is a device special inode,
664 * i_mapping may not point to the original address space.
665 */
666 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
667 /* Only regular and link inodes have associated reserve maps */
9119a41e
JK
668 if (resv_map)
669 resv_map_release(&resv_map->refs);
dbd5768f 670 clear_inode(inode);
149f4211
CH
671}
672
e5d319de 673static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
1da177e4 674{
856fc295 675 pgoff_t pgoff;
1da177e4 676 struct address_space *mapping = inode->i_mapping;
a5516438 677 struct hstate *h = hstate_inode(inode);
1da177e4 678
a5516438 679 BUG_ON(offset & ~huge_page_mask(h));
856fc295 680 pgoff = offset >> PAGE_SHIFT;
1da177e4 681
87bf91d3 682 i_size_write(inode, offset);
188a3972 683 i_mmap_lock_write(mapping);
f808c13f 684 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
05e90bd0
PX
685 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
686 ZAP_FLAG_DROP_MARKER);
c86aa7bb 687 i_mmap_unlock_write(mapping);
e7c58097 688 remove_inode_hugepages(inode, offset, LLONG_MAX);
1da177e4
LT
689}
690
68d32527
MK
691static void hugetlbfs_zero_partial_page(struct hstate *h,
692 struct address_space *mapping,
693 loff_t start,
694 loff_t end)
695{
696 pgoff_t idx = start >> huge_page_shift(h);
697 struct folio *folio;
698
699 folio = filemap_lock_folio(mapping, idx);
66dabbb6 700 if (IS_ERR(folio))
68d32527
MK
701 return;
702
703 start = start & ~huge_page_mask(h);
704 end = end & ~huge_page_mask(h);
705 if (!end)
706 end = huge_page_size(h);
707
708 folio_zero_segment(folio, (size_t)start, (size_t)end);
709
710 folio_unlock(folio);
711 folio_put(folio);
712}
713
70c3547e
MK
714static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
715{
68d32527
MK
716 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
717 struct address_space *mapping = inode->i_mapping;
70c3547e
MK
718 struct hstate *h = hstate_inode(inode);
719 loff_t hpage_size = huge_page_size(h);
720 loff_t hole_start, hole_end;
721
722 /*
68d32527 723 * hole_start and hole_end indicate the full pages within the hole.
70c3547e
MK
724 */
725 hole_start = round_up(offset, hpage_size);
726 hole_end = round_down(offset + len, hpage_size);
727
68d32527
MK
728 inode_lock(inode);
729
730 /* protected by i_rwsem */
731 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
732 inode_unlock(inode);
733 return -EPERM;
734 }
70c3547e 735
68d32527 736 i_mmap_lock_write(mapping);
ff62a342 737
68d32527
MK
738 /* If range starts before first full page, zero partial page. */
739 if (offset < hole_start)
740 hugetlbfs_zero_partial_page(h, mapping,
741 offset, min(offset + len, hole_start));
ff62a342 742
68d32527
MK
743 /* Unmap users of full pages in the hole. */
744 if (hole_end > hole_start) {
f808c13f 745 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
70c3547e 746 hugetlb_vmdelete_list(&mapping->i_mmap,
05e90bd0
PX
747 hole_start >> PAGE_SHIFT,
748 hole_end >> PAGE_SHIFT, 0);
70c3547e
MK
749 }
750
68d32527
MK
751 /* If range extends beyond last full page, zero partial page. */
752 if ((offset + len) > hole_end && (offset + len) > hole_start)
753 hugetlbfs_zero_partial_page(h, mapping,
754 hole_end, offset + len);
755
756 i_mmap_unlock_write(mapping);
757
758 /* Remove full pages from the file. */
759 if (hole_end > hole_start)
760 remove_inode_hugepages(inode, hole_start, hole_end);
761
762 inode_unlock(inode);
763
70c3547e
MK
764 return 0;
765}
766
767static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
768 loff_t len)
769{
770 struct inode *inode = file_inode(file);
ff62a342 771 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
70c3547e
MK
772 struct address_space *mapping = inode->i_mapping;
773 struct hstate *h = hstate_inode(inode);
774 struct vm_area_struct pseudo_vma;
775 struct mm_struct *mm = current->mm;
776 loff_t hpage_size = huge_page_size(h);
777 unsigned long hpage_shift = huge_page_shift(h);
778 pgoff_t start, index, end;
779 int error;
780 u32 hash;
781
782 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
783 return -EOPNOTSUPP;
784
785 if (mode & FALLOC_FL_PUNCH_HOLE)
786 return hugetlbfs_punch_hole(inode, offset, len);
787
788 /*
789 * Default preallocate case.
790 * For this range, start is rounded down and end is rounded up
791 * as well as being converted to page offsets.
792 */
793 start = offset >> hpage_shift;
794 end = (offset + len + hpage_size - 1) >> hpage_shift;
795
5955102c 796 inode_lock(inode);
70c3547e
MK
797
798 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
799 error = inode_newsize_ok(inode, offset + len);
800 if (error)
801 goto out;
802
ff62a342
MAL
803 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
804 error = -EPERM;
805 goto out;
806 }
807
70c3547e
MK
808 /*
809 * Initialize a pseudo vma as this is required by the huge page
810 * allocation routines. If NUMA is configured, use page index
811 * as input to create an allocation policy.
812 */
2c4541e2 813 vma_init(&pseudo_vma, mm);
1c71222e 814 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
70c3547e
MK
815 pseudo_vma.vm_file = file;
816
817 for (index = start; index < end; index++) {
818 /*
819 * This is supposed to be the vaddr where the page is being
820 * faulted in, but we have no vaddr here.
821 */
d0ce0e47 822 struct folio *folio;
70c3547e 823 unsigned long addr;
d0ce0e47 824 bool present;
70c3547e
MK
825
826 cond_resched();
827
828 /*
829 * fallocate(2) manpage permits EINTR; we may have been
830 * interrupted because we are using up too much memory.
831 */
832 if (signal_pending(current)) {
833 error = -EINTR;
834 break;
835 }
836
837 /* Set numa allocation policy based on index */
838 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
839
840 /* addr is the offset within the file (zero based) */
841 addr = index * hpage_size;
842
188a3972 843 /* mutex taken here, fault path and hole punch */
188b04a7 844 hash = hugetlb_fault_mutex_hash(mapping, index);
70c3547e
MK
845 mutex_lock(&hugetlb_fault_mutex_table[hash]);
846
847 /* See if already present in mapping to avoid alloc/free */
d0ce0e47
SK
848 rcu_read_lock();
849 present = page_cache_next_miss(mapping, index, 1) != index;
850 rcu_read_unlock();
851 if (present) {
70c3547e
MK
852 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
853 hugetlb_drop_vma_policy(&pseudo_vma);
854 continue;
855 }
856
88ce3fef 857 /*
d0ce0e47 858 * Allocate folio without setting the avoid_reserve argument.
88ce3fef
ML
859 * There certainly are no reserves associated with the
860 * pseudo_vma. However, there could be shared mappings with
861 * reserves for the file at the inode level. If we fallocate
d0ce0e47 862 * folios in these areas, we need to consume the reserves
88ce3fef
ML
863 * to keep reservation accounting consistent.
864 */
d0ce0e47 865 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
70c3547e 866 hugetlb_drop_vma_policy(&pseudo_vma);
d0ce0e47 867 if (IS_ERR(folio)) {
70c3547e 868 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
d0ce0e47 869 error = PTR_ERR(folio);
70c3547e
MK
870 goto out;
871 }
d0ce0e47
SK
872 clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
873 __folio_mark_uptodate(folio);
9b91c0e2 874 error = hugetlb_add_to_page_cache(folio, mapping, index);
70c3547e 875 if (unlikely(error)) {
d2d7bb44 876 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
d0ce0e47 877 folio_put(folio);
70c3547e
MK
878 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
879 goto out;
880 }
881
882 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
883
d0ce0e47 884 folio_set_hugetlb_migratable(folio);
70c3547e 885 /*
d0ce0e47
SK
886 * folio_unlock because locked by hugetlb_add_to_page_cache()
887 * folio_put() due to reference from alloc_hugetlb_folio()
70c3547e 888 */
d0ce0e47
SK
889 folio_unlock(folio);
890 folio_put(folio);
70c3547e
MK
891 }
892
893 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
894 i_size_write(inode, offset + len);
078cd827 895 inode->i_ctime = current_time(inode);
70c3547e 896out:
5955102c 897 inode_unlock(inode);
70c3547e
MK
898 return error;
899}
900
c1632a0f 901static int hugetlbfs_setattr(struct mnt_idmap *idmap,
549c7297 902 struct dentry *dentry, struct iattr *attr)
1da177e4 903{
2b0143b5 904 struct inode *inode = d_inode(dentry);
a5516438 905 struct hstate *h = hstate_inode(inode);
1da177e4
LT
906 int error;
907 unsigned int ia_valid = attr->ia_valid;
ff62a342 908 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4 909
c1632a0f 910 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1da177e4 911 if (error)
1025774c 912 return error;
1da177e4
LT
913
914 if (ia_valid & ATTR_SIZE) {
ff62a342
MAL
915 loff_t oldsize = inode->i_size;
916 loff_t newsize = attr->ia_size;
917
918 if (newsize & ~huge_page_mask(h))
1025774c 919 return -EINVAL;
398c0da7 920 /* protected by i_rwsem */
ff62a342
MAL
921 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
922 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
923 return -EPERM;
e5d319de 924 hugetlb_vmtruncate(inode, newsize);
1da177e4 925 }
1025774c 926
c1632a0f 927 setattr_copy(&nop_mnt_idmap, inode, attr);
1025774c
CH
928 mark_inode_dirty(inode);
929 return 0;
1da177e4
LT
930}
931
7d54fa64 932static struct inode *hugetlbfs_get_root(struct super_block *sb,
32021982 933 struct hugetlbfs_fs_context *ctx)
1da177e4
LT
934{
935 struct inode *inode;
1da177e4
LT
936
937 inode = new_inode(sb);
938 if (inode) {
85fe4025 939 inode->i_ino = get_next_ino();
32021982
DH
940 inode->i_mode = S_IFDIR | ctx->mode;
941 inode->i_uid = ctx->uid;
942 inode->i_gid = ctx->gid;
078cd827 943 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
7d54fa64
AV
944 inode->i_op = &hugetlbfs_dir_inode_operations;
945 inode->i_fop = &simple_dir_operations;
946 /* directory inodes start off with i_nlink == 2 (for "." entry) */
947 inc_nlink(inode);
65ed7601 948 lockdep_annotate_inode_mutex_key(inode);
7d54fa64
AV
949 }
950 return inode;
951}
952
b610ded7 953/*
c8c06efa 954 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
b610ded7 955 * be taken from reclaim -- unlike regular filesystems. This needs an
88f306b6 956 * annotation because huge_pmd_share() does an allocation under hugetlb's
c8c06efa 957 * i_mmap_rwsem.
b610ded7 958 */
c8c06efa 959static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
b610ded7 960
7d54fa64
AV
961static struct inode *hugetlbfs_get_inode(struct super_block *sb,
962 struct inode *dir,
18df2252 963 umode_t mode, dev_t dev)
7d54fa64
AV
964{
965 struct inode *inode;
58b6e5e8 966 struct resv_map *resv_map = NULL;
9119a41e 967
58b6e5e8
MK
968 /*
969 * Reserve maps are only needed for inodes that can have associated
970 * page allocations.
971 */
972 if (S_ISREG(mode) || S_ISLNK(mode)) {
973 resv_map = resv_map_alloc();
974 if (!resv_map)
975 return NULL;
976 }
7d54fa64
AV
977
978 inode = new_inode(sb);
979 if (inode) {
ff62a342
MAL
980 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
981
7d54fa64 982 inode->i_ino = get_next_ino();
f2d40141 983 inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
c8c06efa
DB
984 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
985 &hugetlbfs_i_mmap_rwsem_key);
1da177e4 986 inode->i_mapping->a_ops = &hugetlbfs_aops;
078cd827 987 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
9119a41e 988 inode->i_mapping->private_data = resv_map;
ff62a342 989 info->seals = F_SEAL_SEAL;
1da177e4
LT
990 switch (mode & S_IFMT) {
991 default:
992 init_special_inode(inode, mode, dev);
993 break;
994 case S_IFREG:
995 inode->i_op = &hugetlbfs_inode_operations;
996 inode->i_fop = &hugetlbfs_file_operations;
997 break;
998 case S_IFDIR:
999 inode->i_op = &hugetlbfs_dir_inode_operations;
1000 inode->i_fop = &simple_dir_operations;
1001
1002 /* directory inodes start off with i_nlink == 2 (for "." entry) */
d8c76e6f 1003 inc_nlink(inode);
1da177e4
LT
1004 break;
1005 case S_IFLNK:
1006 inode->i_op = &page_symlink_inode_operations;
21fc61c7 1007 inode_nohighmem(inode);
1da177e4
LT
1008 break;
1009 }
e096d0c7 1010 lockdep_annotate_inode_mutex_key(inode);
58b6e5e8
MK
1011 } else {
1012 if (resv_map)
1013 kref_put(&resv_map->refs, resv_map_release);
1014 }
9119a41e 1015
1da177e4
LT
1016 return inode;
1017}
1018
1019/*
1020 * File creation. Allocate an inode, and we're done..
1021 */
5ebb29be 1022static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
19ee5345 1023 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4
LT
1024{
1025 struct inode *inode;
7d54fa64
AV
1026
1027 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
19ee5345
AV
1028 if (!inode)
1029 return -ENOSPC;
1030 dir->i_ctime = dir->i_mtime = current_time(dir);
1031 d_instantiate(dentry, inode);
1032 dget(dentry);/* Extra count - pin the dentry in core */
1033 return 0;
1ab5b82f
PS
1034}
1035
c54bd91e 1036static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
549c7297 1037 struct dentry *dentry, umode_t mode)
1da177e4 1038{
5ebb29be 1039 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
549c7297 1040 mode | S_IFDIR, 0);
1da177e4 1041 if (!retval)
d8c76e6f 1042 inc_nlink(dir);
1da177e4
LT
1043 return retval;
1044}
1045
6c960e68 1046static int hugetlbfs_create(struct mnt_idmap *idmap,
549c7297
CB
1047 struct inode *dir, struct dentry *dentry,
1048 umode_t mode, bool excl)
1da177e4 1049{
5ebb29be 1050 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
1051}
1052
011e2b71 1053static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
863f144f 1054 struct inode *dir, struct file *file,
549c7297 1055 umode_t mode)
1ab5b82f 1056{
19ee5345
AV
1057 struct inode *inode;
1058
1059 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1060 if (!inode)
1061 return -ENOSPC;
1062 dir->i_ctime = dir->i_mtime = current_time(dir);
863f144f
MS
1063 d_tmpfile(file, inode);
1064 return finish_open_simple(file, 0);
1ab5b82f
PS
1065}
1066
7a77db95 1067static int hugetlbfs_symlink(struct mnt_idmap *idmap,
549c7297
CB
1068 struct inode *dir, struct dentry *dentry,
1069 const char *symname)
1da177e4
LT
1070{
1071 struct inode *inode;
1072 int error = -ENOSPC;
1da177e4 1073
7d54fa64 1074 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1da177e4
LT
1075 if (inode) {
1076 int l = strlen(symname)+1;
1077 error = page_symlink(inode, symname, l);
1078 if (!error) {
1079 d_instantiate(dentry, inode);
1080 dget(dentry);
1081 } else
1082 iput(inode);
1083 }
078cd827 1084 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
1085
1086 return error;
1087}
1088
b890ec2a
MWO
1089#ifdef CONFIG_MIGRATION
1090static int hugetlbfs_migrate_folio(struct address_space *mapping,
1091 struct folio *dst, struct folio *src,
a6bc32b8 1092 enum migrate_mode mode)
290408d4
NH
1093{
1094 int rc;
1095
b890ec2a 1096 rc = migrate_huge_page_move_mapping(mapping, dst, src);
78bd5209 1097 if (rc != MIGRATEPAGE_SUCCESS)
290408d4 1098 return rc;
cb6acd01 1099
149562f7
SK
1100 if (hugetlb_folio_subpool(src)) {
1101 hugetlb_set_folio_subpool(dst,
1102 hugetlb_folio_subpool(src));
1103 hugetlb_set_folio_subpool(src, NULL);
cb6acd01
MK
1104 }
1105
2916ecc0 1106 if (mode != MIGRATE_SYNC_NO_COPY)
b890ec2a 1107 folio_migrate_copy(dst, src);
2916ecc0 1108 else
b890ec2a 1109 folio_migrate_flags(dst, src);
290408d4 1110
78bd5209 1111 return MIGRATEPAGE_SUCCESS;
290408d4 1112}
b890ec2a
MWO
1113#else
1114#define hugetlbfs_migrate_folio NULL
1115#endif
290408d4 1116
78bb9203
NH
1117static int hugetlbfs_error_remove_page(struct address_space *mapping,
1118 struct page *page)
1119{
78bb9203
NH
1120 return 0;
1121}
1122
4a25220d
DH
1123/*
1124 * Display the mount options in /proc/mounts.
1125 */
1126static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1127{
1128 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1129 struct hugepage_subpool *spool = sbinfo->spool;
1130 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1131 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1132 char mod;
1133
1134 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1135 seq_printf(m, ",uid=%u",
1136 from_kuid_munged(&init_user_ns, sbinfo->uid));
1137 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1138 seq_printf(m, ",gid=%u",
1139 from_kgid_munged(&init_user_ns, sbinfo->gid));
1140 if (sbinfo->mode != 0755)
1141 seq_printf(m, ",mode=%o", sbinfo->mode);
1142 if (sbinfo->max_inodes != -1)
1143 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1144
1145 hpage_size /= 1024;
1146 mod = 'K';
1147 if (hpage_size >= 1024) {
1148 hpage_size /= 1024;
1149 mod = 'M';
1150 }
1151 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1152 if (spool) {
1153 if (spool->max_hpages != -1)
1154 seq_printf(m, ",size=%llu",
1155 (unsigned long long)spool->max_hpages << hpage_shift);
1156 if (spool->min_hpages != -1)
1157 seq_printf(m, ",min_size=%llu",
1158 (unsigned long long)spool->min_hpages << hpage_shift);
1159 }
1160 return 0;
1161}
1162
726c3342 1163static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1164{
726c3342 1165 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
2b0143b5 1166 struct hstate *h = hstate_inode(d_inode(dentry));
1da177e4
LT
1167
1168 buf->f_type = HUGETLBFS_MAGIC;
a5516438 1169 buf->f_bsize = huge_page_size(h);
1da177e4
LT
1170 if (sbinfo) {
1171 spin_lock(&sbinfo->stat_lock);
11680763 1172 /* If no limits set, just report 0 or -1 for max/free/used
74a8a65c 1173 * blocks, like simple_statfs() */
90481622
DG
1174 if (sbinfo->spool) {
1175 long free_pages;
1176
4b25f030 1177 spin_lock_irq(&sbinfo->spool->lock);
90481622
DG
1178 buf->f_blocks = sbinfo->spool->max_hpages;
1179 free_pages = sbinfo->spool->max_hpages
1180 - sbinfo->spool->used_hpages;
1181 buf->f_bavail = buf->f_bfree = free_pages;
4b25f030 1182 spin_unlock_irq(&sbinfo->spool->lock);
74a8a65c
DG
1183 buf->f_files = sbinfo->max_inodes;
1184 buf->f_ffree = sbinfo->free_inodes;
1185 }
1da177e4
LT
1186 spin_unlock(&sbinfo->stat_lock);
1187 }
1188 buf->f_namelen = NAME_MAX;
1189 return 0;
1190}
1191
1192static void hugetlbfs_put_super(struct super_block *sb)
1193{
1194 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1195
1196 if (sbi) {
1197 sb->s_fs_info = NULL;
90481622
DG
1198
1199 if (sbi->spool)
1200 hugepage_put_subpool(sbi->spool);
1201
1da177e4
LT
1202 kfree(sbi);
1203 }
1204}
1205
96527980
CH
1206static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1207{
1208 if (sbinfo->free_inodes >= 0) {
1209 spin_lock(&sbinfo->stat_lock);
1210 if (unlikely(!sbinfo->free_inodes)) {
1211 spin_unlock(&sbinfo->stat_lock);
1212 return 0;
1213 }
1214 sbinfo->free_inodes--;
1215 spin_unlock(&sbinfo->stat_lock);
1216 }
1217
1218 return 1;
1219}
1220
1221static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1222{
1223 if (sbinfo->free_inodes >= 0) {
1224 spin_lock(&sbinfo->stat_lock);
1225 sbinfo->free_inodes++;
1226 spin_unlock(&sbinfo->stat_lock);
1227 }
1228}
1229
1230
e18b890b 1231static struct kmem_cache *hugetlbfs_inode_cachep;
1da177e4
LT
1232
1233static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1234{
96527980 1235 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1da177e4
LT
1236 struct hugetlbfs_inode_info *p;
1237
96527980
CH
1238 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1239 return NULL;
fd60b288 1240 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
96527980
CH
1241 if (unlikely(!p)) {
1242 hugetlbfs_inc_free_inodes(sbinfo);
1da177e4 1243 return NULL;
96527980 1244 }
4742a35d
MK
1245
1246 /*
1247 * Any time after allocation, hugetlbfs_destroy_inode can be called
1248 * for the inode. mpol_free_shared_policy is unconditionally called
1249 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1250 * in case of a quick call to destroy.
1251 *
1252 * Note that the policy is initialized even if we are creating a
1253 * private inode. This simplifies hugetlbfs_destroy_inode.
1254 */
1255 mpol_shared_policy_init(&p->policy, NULL);
1256
1da177e4
LT
1257 return &p->vfs_inode;
1258}
1259
b62de322 1260static void hugetlbfs_free_inode(struct inode *inode)
fa0d7e3d 1261{
fa0d7e3d
NP
1262 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1263}
1264
1da177e4
LT
1265static void hugetlbfs_destroy_inode(struct inode *inode)
1266{
96527980 1267 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1da177e4 1268 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1da177e4
LT
1269}
1270
f5e54d6e 1271static const struct address_space_operations hugetlbfs_aops = {
800d15a5
NP
1272 .write_begin = hugetlbfs_write_begin,
1273 .write_end = hugetlbfs_write_end,
46de8b97 1274 .dirty_folio = noop_dirty_folio,
b890ec2a 1275 .migrate_folio = hugetlbfs_migrate_folio,
78bb9203 1276 .error_remove_page = hugetlbfs_error_remove_page,
1da177e4
LT
1277};
1278
96527980 1279
51cc5068 1280static void init_once(void *foo)
96527980 1281{
dbaf7dc9 1282 struct hugetlbfs_inode_info *ei = foo;
96527980 1283
a35afb83 1284 inode_init_once(&ei->vfs_inode);
96527980
CH
1285}
1286
4b6f5d20 1287const struct file_operations hugetlbfs_file_operations = {
34d0640e 1288 .read_iter = hugetlbfs_read_iter,
1da177e4 1289 .mmap = hugetlbfs_file_mmap,
1b061d92 1290 .fsync = noop_fsync,
1da177e4 1291 .get_unmapped_area = hugetlb_get_unmapped_area,
70c3547e
MK
1292 .llseek = default_llseek,
1293 .fallocate = hugetlbfs_fallocate,
1da177e4
LT
1294};
1295
92e1d5be 1296static const struct inode_operations hugetlbfs_dir_inode_operations = {
1da177e4
LT
1297 .create = hugetlbfs_create,
1298 .lookup = simple_lookup,
1299 .link = simple_link,
1300 .unlink = simple_unlink,
1301 .symlink = hugetlbfs_symlink,
1302 .mkdir = hugetlbfs_mkdir,
1303 .rmdir = simple_rmdir,
1304 .mknod = hugetlbfs_mknod,
1305 .rename = simple_rename,
1306 .setattr = hugetlbfs_setattr,
1ab5b82f 1307 .tmpfile = hugetlbfs_tmpfile,
1da177e4
LT
1308};
1309
92e1d5be 1310static const struct inode_operations hugetlbfs_inode_operations = {
1da177e4
LT
1311 .setattr = hugetlbfs_setattr,
1312};
1313
ee9b6d61 1314static const struct super_operations hugetlbfs_ops = {
1da177e4 1315 .alloc_inode = hugetlbfs_alloc_inode,
b62de322 1316 .free_inode = hugetlbfs_free_inode,
1da177e4 1317 .destroy_inode = hugetlbfs_destroy_inode,
2bbbda30 1318 .evict_inode = hugetlbfs_evict_inode,
1da177e4 1319 .statfs = hugetlbfs_statfs,
1da177e4 1320 .put_super = hugetlbfs_put_super,
4a25220d 1321 .show_options = hugetlbfs_show_options,
1da177e4
LT
1322};
1323
7ca02d0a
MK
1324/*
1325 * Convert size option passed from command line to number of huge pages
1326 * in the pool specified by hstate. Size option could be in bytes
1327 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1328 */
4a25220d 1329static long
7ca02d0a 1330hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
4a25220d 1331 enum hugetlbfs_size_type val_type)
7ca02d0a
MK
1332{
1333 if (val_type == NO_SIZE)
1334 return -1;
1335
1336 if (val_type == SIZE_PERCENT) {
1337 size_opt <<= huge_page_shift(h);
1338 size_opt *= h->max_huge_pages;
1339 do_div(size_opt, 100);
1340 }
1341
1342 size_opt >>= huge_page_shift(h);
1343 return size_opt;
1344}
1345
32021982
DH
1346/*
1347 * Parse one mount parameter.
1348 */
1349static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1da177e4 1350{
32021982
DH
1351 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1352 struct fs_parse_result result;
1353 char *rest;
1354 unsigned long ps;
1355 int opt;
1356
d7167b14 1357 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
32021982
DH
1358 if (opt < 0)
1359 return opt;
1360
1361 switch (opt) {
1362 case Opt_uid:
1363 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1364 if (!uid_valid(ctx->uid))
1365 goto bad_val;
1da177e4 1366 return 0;
1da177e4 1367
32021982
DH
1368 case Opt_gid:
1369 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1370 if (!gid_valid(ctx->gid))
1371 goto bad_val;
1372 return 0;
e73a75fa 1373
32021982
DH
1374 case Opt_mode:
1375 ctx->mode = result.uint_32 & 01777U;
1376 return 0;
e73a75fa 1377
32021982
DH
1378 case Opt_size:
1379 /* memparse() will accept a K/M/G without a digit */
26215b7e 1380 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1381 goto bad_val;
1382 ctx->max_size_opt = memparse(param->string, &rest);
1383 ctx->max_val_type = SIZE_STD;
1384 if (*rest == '%')
1385 ctx->max_val_type = SIZE_PERCENT;
1386 return 0;
e73a75fa 1387
32021982
DH
1388 case Opt_nr_inodes:
1389 /* memparse() will accept a K/M/G without a digit */
26215b7e 1390 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1391 goto bad_val;
1392 ctx->nr_inodes = memparse(param->string, &rest);
1393 return 0;
e73a75fa 1394
32021982
DH
1395 case Opt_pagesize:
1396 ps = memparse(param->string, &rest);
1397 ctx->hstate = size_to_hstate(ps);
1398 if (!ctx->hstate) {
d0036517 1399 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
32021982 1400 return -EINVAL;
e73a75fa 1401 }
32021982 1402 return 0;
1da177e4 1403
32021982
DH
1404 case Opt_min_size:
1405 /* memparse() will accept a K/M/G without a digit */
26215b7e 1406 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1407 goto bad_val;
1408 ctx->min_size_opt = memparse(param->string, &rest);
1409 ctx->min_val_type = SIZE_STD;
1410 if (*rest == '%')
1411 ctx->min_val_type = SIZE_PERCENT;
1412 return 0;
e73a75fa 1413
32021982
DH
1414 default:
1415 return -EINVAL;
1416 }
a137e1cc 1417
32021982 1418bad_val:
b5db30cf 1419 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
32021982
DH
1420 param->string, param->key);
1421}
7ca02d0a 1422
32021982
DH
1423/*
1424 * Validate the parsed options.
1425 */
1426static int hugetlbfs_validate(struct fs_context *fc)
1427{
1428 struct hugetlbfs_fs_context *ctx = fc->fs_private;
a137e1cc 1429
7ca02d0a
MK
1430 /*
1431 * Use huge page pool size (in hstate) to convert the size
1432 * options to number of huge pages. If NO_SIZE, -1 is returned.
1433 */
32021982
DH
1434 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1435 ctx->max_size_opt,
1436 ctx->max_val_type);
1437 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1438 ctx->min_size_opt,
1439 ctx->min_val_type);
7ca02d0a
MK
1440
1441 /*
1442 * If max_size was specified, then min_size must be smaller
1443 */
32021982
DH
1444 if (ctx->max_val_type > NO_SIZE &&
1445 ctx->min_hpages > ctx->max_hpages) {
1446 pr_err("Minimum size can not be greater than maximum size\n");
7ca02d0a 1447 return -EINVAL;
a137e1cc
AK
1448 }
1449
1da177e4
LT
1450 return 0;
1451}
1452
1453static int
32021982 1454hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 1455{
32021982 1456 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1da177e4
LT
1457 struct hugetlbfs_sb_info *sbinfo;
1458
1da177e4
LT
1459 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1460 if (!sbinfo)
1461 return -ENOMEM;
1462 sb->s_fs_info = sbinfo;
1463 spin_lock_init(&sbinfo->stat_lock);
32021982
DH
1464 sbinfo->hstate = ctx->hstate;
1465 sbinfo->max_inodes = ctx->nr_inodes;
1466 sbinfo->free_inodes = ctx->nr_inodes;
1467 sbinfo->spool = NULL;
1468 sbinfo->uid = ctx->uid;
1469 sbinfo->gid = ctx->gid;
1470 sbinfo->mode = ctx->mode;
4a25220d 1471
7ca02d0a
MK
1472 /*
1473 * Allocate and initialize subpool if maximum or minimum size is
1935ebd3 1474 * specified. Any needed reservations (for minimum size) are taken
445c8098 1475 * when the subpool is created.
7ca02d0a 1476 */
32021982
DH
1477 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1478 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1479 ctx->max_hpages,
1480 ctx->min_hpages);
90481622
DG
1481 if (!sbinfo->spool)
1482 goto out_free;
1483 }
1da177e4 1484 sb->s_maxbytes = MAX_LFS_FILESIZE;
32021982
DH
1485 sb->s_blocksize = huge_page_size(ctx->hstate);
1486 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1da177e4
LT
1487 sb->s_magic = HUGETLBFS_MAGIC;
1488 sb->s_op = &hugetlbfs_ops;
1489 sb->s_time_gran = 1;
15568299
MK
1490
1491 /*
1492 * Due to the special and limited functionality of hugetlbfs, it does
1493 * not work well as a stacking filesystem.
1494 */
1495 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
32021982 1496 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
48fde701 1497 if (!sb->s_root)
1da177e4 1498 goto out_free;
1da177e4
LT
1499 return 0;
1500out_free:
6e6870d4 1501 kfree(sbinfo->spool);
1da177e4
LT
1502 kfree(sbinfo);
1503 return -ENOMEM;
1504}
1505
32021982
DH
1506static int hugetlbfs_get_tree(struct fs_context *fc)
1507{
1508 int err = hugetlbfs_validate(fc);
1509 if (err)
1510 return err;
2ac295d4 1511 return get_tree_nodev(fc, hugetlbfs_fill_super);
32021982
DH
1512}
1513
1514static void hugetlbfs_fs_context_free(struct fs_context *fc)
1515{
1516 kfree(fc->fs_private);
1517}
1518
1519static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1520 .free = hugetlbfs_fs_context_free,
1521 .parse_param = hugetlbfs_parse_param,
1522 .get_tree = hugetlbfs_get_tree,
1523};
1524
1525static int hugetlbfs_init_fs_context(struct fs_context *fc)
1da177e4 1526{
32021982
DH
1527 struct hugetlbfs_fs_context *ctx;
1528
1529 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1530 if (!ctx)
1531 return -ENOMEM;
1532
1533 ctx->max_hpages = -1; /* No limit on size by default */
1534 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1535 ctx->uid = current_fsuid();
1536 ctx->gid = current_fsgid();
1537 ctx->mode = 0755;
1538 ctx->hstate = &default_hstate;
1539 ctx->min_hpages = -1; /* No default minimum size */
1540 ctx->max_val_type = NO_SIZE;
1541 ctx->min_val_type = NO_SIZE;
1542 fc->fs_private = ctx;
1543 fc->ops = &hugetlbfs_fs_context_ops;
1544 return 0;
1da177e4
LT
1545}
1546
1547static struct file_system_type hugetlbfs_fs_type = {
32021982
DH
1548 .name = "hugetlbfs",
1549 .init_fs_context = hugetlbfs_init_fs_context,
d7167b14 1550 .parameters = hugetlb_fs_parameters,
32021982 1551 .kill_sb = kill_litter_super,
1da177e4
LT
1552};
1553
42d7395f 1554static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1da177e4 1555
ef1ff6b8 1556static int can_do_hugetlb_shm(void)
1da177e4 1557{
a0eb3a05
EB
1558 kgid_t shm_group;
1559 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1560 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1da177e4
LT
1561}
1562
42d7395f
AK
1563static int get_hstate_idx(int page_size_log)
1564{
af73e4d9 1565 struct hstate *h = hstate_sizelog(page_size_log);
42d7395f 1566
42d7395f
AK
1567 if (!h)
1568 return -1;
04adbc3f 1569 return hstate_index(h);
42d7395f
AK
1570}
1571
af73e4d9
NH
1572/*
1573 * Note that size should be aligned to proper hugepage size in caller side,
1574 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1575 */
1576struct file *hugetlb_file_setup(const char *name, size_t size,
83c1fd76 1577 vm_flags_t acctflag, int creat_flags,
1578 int page_size_log)
1da177e4 1579{
1da177e4 1580 struct inode *inode;
e68375c8 1581 struct vfsmount *mnt;
42d7395f 1582 int hstate_idx;
e68375c8 1583 struct file *file;
42d7395f
AK
1584
1585 hstate_idx = get_hstate_idx(page_size_log);
1586 if (hstate_idx < 0)
1587 return ERR_PTR(-ENODEV);
1da177e4 1588
e68375c8
AV
1589 mnt = hugetlbfs_vfsmount[hstate_idx];
1590 if (!mnt)
5bc98594
AM
1591 return ERR_PTR(-ENOENT);
1592
ef1ff6b8 1593 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
83c1fd76 1594 struct ucounts *ucounts = current_ucounts();
1595
1596 if (user_shm_lock(size, ucounts)) {
1597 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
21a3c273 1598 current->comm, current->pid);
83c1fd76 1599 user_shm_unlock(size, ucounts);
353d5c30 1600 }
83c1fd76 1601 return ERR_PTR(-EPERM);
2584e517 1602 }
1da177e4 1603
39b65252 1604 file = ERR_PTR(-ENOSPC);
e68375c8 1605 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1da177e4 1606 if (!inode)
e68375c8 1607 goto out;
e1832f29
SS
1608 if (creat_flags == HUGETLB_SHMFS_INODE)
1609 inode->i_flags |= S_PRIVATE;
1da177e4 1610
1da177e4 1611 inode->i_size = size;
6d6b77f1 1612 clear_nlink(inode);
ce8d2cdf 1613
33b8f84a 1614 if (!hugetlb_reserve_pages(inode, 0,
e68375c8
AV
1615 size >> huge_page_shift(hstate_inode(inode)), NULL,
1616 acctflag))
1617 file = ERR_PTR(-ENOMEM);
1618 else
1619 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1620 &hugetlbfs_file_operations);
1621 if (!IS_ERR(file))
1622 return file;
1da177e4 1623
b45b5bd6 1624 iput(inode);
e68375c8 1625out:
39b65252 1626 return file;
1da177e4
LT
1627}
1628
32021982
DH
1629static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1630{
1631 struct fs_context *fc;
1632 struct vfsmount *mnt;
1633
1634 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1635 if (IS_ERR(fc)) {
1636 mnt = ERR_CAST(fc);
1637 } else {
1638 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1639 ctx->hstate = h;
1640 mnt = fc_mount(fc);
1641 put_fs_context(fc);
1642 }
1643 if (IS_ERR(mnt))
a25fddce 1644 pr_err("Cannot mount internal hugetlbfs for page size %luK",
d0036517 1645 huge_page_size(h) / SZ_1K);
32021982
DH
1646 return mnt;
1647}
1648
1da177e4
LT
1649static int __init init_hugetlbfs_fs(void)
1650{
32021982 1651 struct vfsmount *mnt;
42d7395f 1652 struct hstate *h;
1da177e4 1653 int error;
42d7395f 1654 int i;
1da177e4 1655
457c1b27 1656 if (!hugepages_supported()) {
9b857d26 1657 pr_info("disabling because there are no supported hugepage sizes\n");
457c1b27
NA
1658 return -ENOTSUPP;
1659 }
1660
d1d5e05f 1661 error = -ENOMEM;
1da177e4
LT
1662 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1663 sizeof(struct hugetlbfs_inode_info),
5d097056 1664 0, SLAB_ACCOUNT, init_once);
1da177e4 1665 if (hugetlbfs_inode_cachep == NULL)
8fc312b3 1666 goto out;
1da177e4
LT
1667
1668 error = register_filesystem(&hugetlbfs_fs_type);
1669 if (error)
8fc312b3 1670 goto out_free;
1da177e4 1671
8fc312b3 1672 /* default hstate mount is required */
3b2275a8 1673 mnt = mount_one_hugetlbfs(&default_hstate);
8fc312b3
MK
1674 if (IS_ERR(mnt)) {
1675 error = PTR_ERR(mnt);
1676 goto out_unreg;
1677 }
1678 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1679
1680 /* other hstates are optional */
42d7395f
AK
1681 i = 0;
1682 for_each_hstate(h) {
15f0ec94
JS
1683 if (i == default_hstate_idx) {
1684 i++;
8fc312b3 1685 continue;
15f0ec94 1686 }
8fc312b3 1687
32021982 1688 mnt = mount_one_hugetlbfs(h);
8fc312b3
MK
1689 if (IS_ERR(mnt))
1690 hugetlbfs_vfsmount[i] = NULL;
1691 else
1692 hugetlbfs_vfsmount[i] = mnt;
42d7395f
AK
1693 i++;
1694 }
32021982
DH
1695
1696 return 0;
1da177e4 1697
8fc312b3
MK
1698 out_unreg:
1699 (void)unregister_filesystem(&hugetlbfs_fs_type);
1700 out_free:
d1d5e05f 1701 kmem_cache_destroy(hugetlbfs_inode_cachep);
8fc312b3 1702 out:
1da177e4
LT
1703 return error;
1704}
3e89e1c5 1705fs_initcall(init_hugetlbfs_fs)