Merge tag 'docs-6.8' of git://git.lwn.net/linux
[linux-2.6-block.git] / fs / hugetlbfs / inode.c
CommitLineData
1da177e4
LT
1/*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
6d49e352 4 * Nadia Yvette Chambers, 2002
1da177e4
LT
5 *
6 * Copyright (C) 2002 Linus Torvalds.
3e89e1c5 7 * License: GPL
1da177e4
LT
8 */
9
9b857d26
AM
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
1da177e4
LT
12#include <linux/thread_info.h>
13#include <asm/current.h>
70c3547e 14#include <linux/falloc.h>
1da177e4
LT
15#include <linux/fs.h>
16#include <linux/mount.h>
17#include <linux/file.h>
e73a75fa 18#include <linux/kernel.h>
1da177e4
LT
19#include <linux/writeback.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/init.h>
23#include <linux/string.h>
16f7e0fe 24#include <linux/capability.h>
e73a75fa 25#include <linux/ctype.h>
1da177e4
LT
26#include <linux/backing-dev.h>
27#include <linux/hugetlb.h>
28#include <linux/pagevec.h>
32021982 29#include <linux/fs_parser.h>
036e0856 30#include <linux/mman.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/dnotify.h>
33#include <linux/statfs.h>
34#include <linux/security.h>
1fd7317d 35#include <linux/magic.h>
290408d4 36#include <linux/migrate.h>
34d0640e 37#include <linux/uio.h>
1da177e4 38
7c0f6ba6 39#include <linux/uaccess.h>
88590253 40#include <linux/sched/mm.h>
1da177e4 41
f5e54d6e 42static const struct address_space_operations hugetlbfs_aops;
4b6f5d20 43const struct file_operations hugetlbfs_file_operations;
92e1d5be
AV
44static const struct inode_operations hugetlbfs_dir_inode_operations;
45static const struct inode_operations hugetlbfs_inode_operations;
1da177e4 46
32021982
DH
47enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48
49struct hugetlbfs_fs_context {
4a25220d 50 struct hstate *hstate;
32021982
DH
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
4a25220d
DH
53 long max_hpages;
54 long nr_inodes;
55 long min_hpages;
32021982
DH
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
4a25220d
DH
58 kuid_t uid;
59 kgid_t gid;
60 umode_t mode;
a1d776ee
DG
61};
62
1da177e4
LT
63int sysctl_hugetlb_shm_group;
64
32021982
DH
65enum hugetlb_param {
66 Opt_gid,
67 Opt_min_size,
68 Opt_mode,
69 Opt_nr_inodes,
70 Opt_pagesize,
71 Opt_size,
72 Opt_uid,
e73a75fa
RD
73};
74
d7167b14 75static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
32021982
DH
76 fsparam_u32 ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
e0f7e2b2 78 fsparam_u32oct("mode", Opt_mode),
32021982
DH
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_u32 ("uid", Opt_uid),
83 {}
84};
85
63489f8e
MK
86/*
87 * Mask used when checking the page offset value passed in via system
88 * calls. This value will be converted to a loff_t which is signed.
89 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90 * value. The extra bit (- 1 in the shift value) is to take the sign
91 * bit into account.
92 */
93#define PGOFF_LOFFT_MAX \
94 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95
1da177e4
LT
96static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97{
496ad9aa 98 struct inode *inode = file_inode(file);
22247efd 99 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4
LT
100 loff_t len, vma_len;
101 int ret;
a5516438 102 struct hstate *h = hstate_file(file);
1da177e4 103
68589bc3 104 /*
dec4ad86
DG
105 * vma address alignment (but not the pgoff alignment) has
106 * already been checked by prepare_hugepage_range. If you add
107 * any error returns here, do so after setting VM_HUGETLB, so
108 * is_vm_hugetlb_page tests below unmap_region go the right
45e55300 109 * way when do_mmap unwinds (may be important on powerpc
dec4ad86 110 * and ia64).
68589bc3 111 */
1c71222e 112 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
68589bc3 113 vma->vm_ops = &hugetlb_vm_ops;
1da177e4 114
28464bbb 115 ret = seal_check_write(info->seals, vma);
22247efd
PX
116 if (ret)
117 return ret;
118
045c7a3f 119 /*
63489f8e 120 * page based offset in vm_pgoff could be sufficiently large to
5df63c2a
MK
121 * overflow a loff_t when converted to byte offset. This can
122 * only happen on architectures where sizeof(loff_t) ==
123 * sizeof(unsigned long). So, only check in those instances.
045c7a3f 124 */
5df63c2a
MK
125 if (sizeof(unsigned long) == sizeof(loff_t)) {
126 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
127 return -EINVAL;
128 }
045c7a3f 129
63489f8e 130 /* must be huge page aligned */
2b37c35e 131 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
dec4ad86
DG
132 return -EINVAL;
133
1da177e4 134 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
045c7a3f
MK
135 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 /* check for overflow */
137 if (len < vma_len)
138 return -EINVAL;
1da177e4 139
5955102c 140 inode_lock(inode);
1da177e4 141 file_accessed(file);
1da177e4
LT
142
143 ret = -ENOMEM;
33b8f84a 144 if (!hugetlb_reserve_pages(inode,
a5516438 145 vma->vm_pgoff >> huge_page_order(h),
5a6fe125
MG
146 len >> huge_page_shift(h), vma,
147 vma->vm_flags))
a43a8c39 148 goto out;
b45b5bd6 149
4c887265 150 ret = 0;
b6174df5 151 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
045c7a3f 152 i_size_write(inode, len);
1da177e4 153out:
5955102c 154 inode_unlock(inode);
1da177e4
LT
155
156 return ret;
157}
158
159/*
3e4e28c5 160 * Called under mmap_write_lock(mm).
1da177e4
LT
161 */
162
88590253
SH
163static unsigned long
164hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
165 unsigned long len, unsigned long pgoff, unsigned long flags)
166{
167 struct hstate *h = hstate_file(file);
168 struct vm_unmapped_area_info info;
169
170 info.flags = 0;
171 info.length = len;
172 info.low_limit = current->mm->mmap_base;
2cb4de08 173 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
174 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
175 info.align_offset = 0;
176 return vm_unmapped_area(&info);
177}
178
179static unsigned long
180hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
181 unsigned long len, unsigned long pgoff, unsigned long flags)
182{
183 struct hstate *h = hstate_file(file);
184 struct vm_unmapped_area_info info;
185
186 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
187 info.length = len;
6b008640 188 info.low_limit = PAGE_SIZE;
5f24d5a5 189 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
88590253
SH
190 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
191 info.align_offset = 0;
192 addr = vm_unmapped_area(&info);
193
194 /*
195 * A failed mmap() very likely causes application failure,
196 * so fall back to the bottom-up function here. This scenario
197 * can happen with large stack limits and large mmap()
198 * allocations.
199 */
200 if (unlikely(offset_in_page(addr))) {
201 VM_BUG_ON(addr != -ENOMEM);
202 info.flags = 0;
203 info.low_limit = current->mm->mmap_base;
2cb4de08 204 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
205 addr = vm_unmapped_area(&info);
206 }
207
208 return addr;
209}
210
4b439e25
CL
211unsigned long
212generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
213 unsigned long len, unsigned long pgoff,
214 unsigned long flags)
1da177e4
LT
215{
216 struct mm_struct *mm = current->mm;
217 struct vm_area_struct *vma;
a5516438 218 struct hstate *h = hstate_file(file);
2cb4de08 219 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1da177e4 220
a5516438 221 if (len & ~huge_page_mask(h))
1da177e4
LT
222 return -EINVAL;
223 if (len > TASK_SIZE)
224 return -ENOMEM;
225
036e0856 226 if (flags & MAP_FIXED) {
a5516438 227 if (prepare_hugepage_range(file, addr, len))
036e0856
BH
228 return -EINVAL;
229 return addr;
230 }
231
1da177e4 232 if (addr) {
a5516438 233 addr = ALIGN(addr, huge_page_size(h));
1da177e4 234 vma = find_vma(mm, addr);
5f24d5a5 235 if (mmap_end - len >= addr &&
1be7107f 236 (!vma || addr + len <= vm_start_gap(vma)))
1da177e4
LT
237 return addr;
238 }
239
88590253
SH
240 /*
241 * Use mm->get_unmapped_area value as a hint to use topdown routine.
242 * If architectures have special needs, they should define their own
243 * version of hugetlb_get_unmapped_area.
244 */
245 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
246 return hugetlb_get_unmapped_area_topdown(file, addr, len,
247 pgoff, flags);
248 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
249 pgoff, flags);
1da177e4 250}
4b439e25
CL
251
252#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
253static unsigned long
254hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
255 unsigned long len, unsigned long pgoff,
256 unsigned long flags)
257{
258 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
259}
1da177e4
LT
260#endif
261
38c1ddbd
JY
262/*
263 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
264 * Returns the maximum number of bytes one can read without touching the 1st raw
265 * HWPOISON subpage.
266 *
267 * The implementation borrows the iteration logic from copy_page_to_iter*.
268 */
269static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
270{
271 size_t n = 0;
272 size_t res = 0;
273
274 /* First subpage to start the loop. */
8db0ec79 275 page = nth_page(page, offset / PAGE_SIZE);
38c1ddbd
JY
276 offset %= PAGE_SIZE;
277 while (1) {
278 if (is_raw_hwpoison_page_in_hugepage(page))
279 break;
280
281 /* Safe to read n bytes without touching HWPOISON subpage. */
282 n = min(bytes, (size_t)PAGE_SIZE - offset);
283 res += n;
284 bytes -= n;
285 if (!bytes || !n)
286 break;
287 offset += n;
288 if (offset == PAGE_SIZE) {
8db0ec79 289 page = nth_page(page, 1);
38c1ddbd
JY
290 offset = 0;
291 }
292 }
293
294 return res;
295}
296
e63e1e5a
BP
297/*
298 * Support for read() - Find the page attached to f_mapping and copy out the
445c8098 299 * data. This provides functionality similar to filemap_read().
e63e1e5a 300 */
34d0640e 301static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
e63e1e5a 302{
34d0640e
AV
303 struct file *file = iocb->ki_filp;
304 struct hstate *h = hstate_file(file);
305 struct address_space *mapping = file->f_mapping;
e63e1e5a 306 struct inode *inode = mapping->host;
34d0640e
AV
307 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
308 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
e63e1e5a
BP
309 unsigned long end_index;
310 loff_t isize;
311 ssize_t retval = 0;
312
34d0640e 313 while (iov_iter_count(to)) {
a08c7193 314 struct folio *folio;
38c1ddbd 315 size_t nr, copied, want;
e63e1e5a
BP
316
317 /* nr is the maximum number of bytes to copy from this page */
a5516438 318 nr = huge_page_size(h);
a05b0855
AK
319 isize = i_size_read(inode);
320 if (!isize)
34d0640e 321 break;
a05b0855 322 end_index = (isize - 1) >> huge_page_shift(h);
34d0640e
AV
323 if (index > end_index)
324 break;
325 if (index == end_index) {
a5516438 326 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
a05b0855 327 if (nr <= offset)
34d0640e 328 break;
e63e1e5a
BP
329 }
330 nr = nr - offset;
331
a08c7193
SK
332 /* Find the folio */
333 folio = filemap_lock_hugetlb_folio(h, mapping, index);
334 if (IS_ERR(folio)) {
e63e1e5a
BP
335 /*
336 * We have a HOLE, zero out the user-buffer for the
337 * length of the hole or request.
338 */
34d0640e 339 copied = iov_iter_zero(nr, to);
e63e1e5a 340 } else {
a08c7193 341 folio_unlock(folio);
a05b0855 342
a08c7193 343 if (!folio_test_has_hwpoisoned(folio))
38c1ddbd
JY
344 want = nr;
345 else {
346 /*
347 * Adjust how many bytes safe to read without
348 * touching the 1st raw HWPOISON subpage after
349 * offset.
350 */
a08c7193 351 want = adjust_range_hwpoison(&folio->page, offset, nr);
38c1ddbd 352 if (want == 0) {
a08c7193 353 folio_put(folio);
38c1ddbd
JY
354 retval = -EIO;
355 break;
356 }
8625147c
JH
357 }
358
e63e1e5a 359 /*
a08c7193 360 * We have the folio, copy it to user space buffer.
e63e1e5a 361 */
a08c7193
SK
362 copied = copy_folio_to_iter(folio, offset, want, to);
363 folio_put(folio);
e63e1e5a 364 }
34d0640e
AV
365 offset += copied;
366 retval += copied;
367 if (copied != nr && iov_iter_count(to)) {
368 if (!retval)
369 retval = -EFAULT;
370 break;
e63e1e5a 371 }
a5516438
AK
372 index += offset >> huge_page_shift(h);
373 offset &= ~huge_page_mask(h);
e63e1e5a 374 }
34d0640e 375 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
e63e1e5a
BP
376 return retval;
377}
378
800d15a5
NP
379static int hugetlbfs_write_begin(struct file *file,
380 struct address_space *mapping,
9d6b0cd7 381 loff_t pos, unsigned len,
800d15a5 382 struct page **pagep, void **fsdata)
1da177e4
LT
383{
384 return -EINVAL;
385}
386
800d15a5
NP
387static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
388 loff_t pos, unsigned len, unsigned copied,
389 struct page *page, void *fsdata)
1da177e4 390{
800d15a5 391 BUG();
1da177e4
LT
392 return -EINVAL;
393}
394
ece62684 395static void hugetlb_delete_from_page_cache(struct folio *folio)
1da177e4 396{
ece62684
SK
397 folio_clear_dirty(folio);
398 folio_clear_uptodate(folio);
399 filemap_remove_folio(folio);
1da177e4
LT
400}
401
378397cc
MK
402/*
403 * Called with i_mmap_rwsem held for inode based vma maps. This makes
404 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
405 * mutex for the page in the mapping. So, we can not race with page being
406 * faulted into the vma.
407 */
408static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
409 unsigned long addr, struct page *page)
410{
411 pte_t *ptep, pte;
412
9c67a207 413 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
378397cc
MK
414 if (!ptep)
415 return false;
416
417 pte = huge_ptep_get(ptep);
418 if (huge_pte_none(pte) || !pte_present(pte))
419 return false;
420
421 if (pte_page(pte) == page)
422 return true;
423
424 return false;
425}
426
427/*
428 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
429 * No, because the interval tree returns us only those vmas
430 * which overlap the truncated area starting at pgoff,
431 * and no vma on a 32-bit arch can span beyond the 4GB.
432 */
433static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
434{
243b1f2d
PX
435 unsigned long offset = 0;
436
378397cc 437 if (vma->vm_pgoff < start)
243b1f2d
PX
438 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439
440 return vma->vm_start + offset;
378397cc
MK
441}
442
443static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
444{
445 unsigned long t_end;
446
447 if (!end)
448 return vma->vm_end;
449
450 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
451 if (t_end > vma->vm_end)
452 t_end = vma->vm_end;
453 return t_end;
454}
455
456/*
457 * Called with hugetlb fault mutex held. Therefore, no more mappings to
458 * this folio can be created while executing the routine.
459 */
460static void hugetlb_unmap_file_folio(struct hstate *h,
461 struct address_space *mapping,
462 struct folio *folio, pgoff_t index)
463{
464 struct rb_root_cached *root = &mapping->i_mmap;
40549ba8 465 struct hugetlb_vma_lock *vma_lock;
378397cc
MK
466 struct page *page = &folio->page;
467 struct vm_area_struct *vma;
468 unsigned long v_start;
469 unsigned long v_end;
470 pgoff_t start, end;
471
472 start = index * pages_per_huge_page(h);
473 end = (index + 1) * pages_per_huge_page(h);
474
475 i_mmap_lock_write(mapping);
40549ba8
MK
476retry:
477 vma_lock = NULL;
378397cc
MK
478 vma_interval_tree_foreach(vma, root, start, end - 1) {
479 v_start = vma_offset_start(vma, start);
480 v_end = vma_offset_end(vma, end);
481
243b1f2d 482 if (!hugetlb_vma_maps_page(vma, v_start, page))
378397cc
MK
483 continue;
484
40549ba8
MK
485 if (!hugetlb_vma_trylock_write(vma)) {
486 vma_lock = vma->vm_private_data;
487 /*
488 * If we can not get vma lock, we need to drop
489 * immap_sema and take locks in order. First,
490 * take a ref on the vma_lock structure so that
491 * we can be guaranteed it will not go away when
492 * dropping immap_sema.
493 */
494 kref_get(&vma_lock->refs);
495 break;
496 }
497
243b1f2d
PX
498 unmap_hugepage_range(vma, v_start, v_end, NULL,
499 ZAP_FLAG_DROP_MARKER);
40549ba8 500 hugetlb_vma_unlock_write(vma);
378397cc
MK
501 }
502
503 i_mmap_unlock_write(mapping);
40549ba8
MK
504
505 if (vma_lock) {
506 /*
507 * Wait on vma_lock. We know it is still valid as we have
508 * a reference. We must 'open code' vma locking as we do
509 * not know if vma_lock is still attached to vma.
510 */
511 down_write(&vma_lock->rw_sema);
512 i_mmap_lock_write(mapping);
513
514 vma = vma_lock->vma;
515 if (!vma) {
516 /*
517 * If lock is no longer attached to vma, then just
518 * unlock, drop our reference and retry looking for
519 * other vmas.
520 */
521 up_write(&vma_lock->rw_sema);
522 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
523 goto retry;
524 }
525
526 /*
527 * vma_lock is still attached to vma. Check to see if vma
528 * still maps page and if so, unmap.
529 */
530 v_start = vma_offset_start(vma, start);
531 v_end = vma_offset_end(vma, end);
243b1f2d
PX
532 if (hugetlb_vma_maps_page(vma, v_start, page))
533 unmap_hugepage_range(vma, v_start, v_end, NULL,
534 ZAP_FLAG_DROP_MARKER);
40549ba8
MK
535
536 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
537 hugetlb_vma_unlock_write(vma);
538
539 goto retry;
540 }
378397cc
MK
541}
542
4aae8d1c 543static void
05e90bd0
PX
544hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
545 zap_flags_t zap_flags)
4aae8d1c
MK
546{
547 struct vm_area_struct *vma;
548
549 /*
d6aba4c8
SC
550 * end == 0 indicates that the entire range after start should be
551 * unmapped. Note, end is exclusive, whereas the interval tree takes
552 * an inclusive "last".
4aae8d1c 553 */
d6aba4c8 554 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
378397cc 555 unsigned long v_start;
4aae8d1c
MK
556 unsigned long v_end;
557
40549ba8
MK
558 if (!hugetlb_vma_trylock_write(vma))
559 continue;
560
378397cc
MK
561 v_start = vma_offset_start(vma, start);
562 v_end = vma_offset_end(vma, end);
4aae8d1c 563
243b1f2d 564 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
40549ba8
MK
565
566 /*
567 * Note that vma lock only exists for shared/non-private
568 * vmas. Therefore, lock is not held when calling
569 * unmap_hugepage_range for private vmas.
570 */
571 hugetlb_vma_unlock_write(vma);
4aae8d1c
MK
572 }
573}
b5cec28d 574
c8627228
MK
575/*
576 * Called with hugetlb fault mutex held.
577 * Returns true if page was actually removed, false otherwise.
578 */
579static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
580 struct address_space *mapping,
581 struct folio *folio, pgoff_t index,
582 bool truncate_op)
583{
584 bool ret = false;
585
586 /*
587 * If folio is mapped, it was faulted in after being
588 * unmapped in caller. Unmap (again) while holding
589 * the fault mutex. The mutex will prevent faults
590 * until we finish removing the folio.
591 */
378397cc
MK
592 if (unlikely(folio_mapped(folio)))
593 hugetlb_unmap_file_folio(h, mapping, folio, index);
c8627228
MK
594
595 folio_lock(folio);
596 /*
fa27759a
MK
597 * We must remove the folio from page cache before removing
598 * the region/ reserve map (hugetlb_unreserve_pages). In
599 * rare out of memory conditions, removal of the region/reserve
600 * map could fail. Correspondingly, the subpool and global
601 * reserve usage count can need to be adjusted.
c8627228 602 */
ece62684
SK
603 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
604 hugetlb_delete_from_page_cache(folio);
fa27759a
MK
605 ret = true;
606 if (!truncate_op) {
607 if (unlikely(hugetlb_unreserve_pages(inode, index,
608 index + 1, 1)))
609 hugetlb_fix_reserve_counts(inode);
c8627228
MK
610 }
611
612 folio_unlock(folio);
613 return ret;
614}
615
b5cec28d
MK
616/*
617 * remove_inode_hugepages handles two distinct cases: truncation and hole
618 * punch. There are subtle differences in operation for each case.
4aae8d1c 619 *
b5cec28d
MK
620 * truncation is indicated by end of range being LLONG_MAX
621 * In this case, we first scan the range and release found pages.
1935ebd3 622 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
c8627228
MK
623 * maps and global counts. Page faults can race with truncation.
624 * During faults, hugetlb_no_page() checks i_size before page allocation,
625 * and again after obtaining page table lock. It will 'back out'
626 * allocations in the truncated range.
b5cec28d
MK
627 * hole punch is indicated if end is not LLONG_MAX
628 * In the hole punch case we scan the range and release found pages.
1935ebd3
ML
629 * Only when releasing a page is the associated region/reserve map
630 * deleted. The region/reserve map for ranges without associated
e7c58097
MK
631 * pages are not modified. Page faults can race with hole punch.
632 * This is indicated if we find a mapped page.
b5cec28d
MK
633 * Note: If the passed end of range value is beyond the end of file, but
634 * not LLONG_MAX this routine still performs a hole punch operation.
635 */
636static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
637 loff_t lend)
1da177e4 638{
a5516438 639 struct hstate *h = hstate_inode(inode);
b45b5bd6 640 struct address_space *mapping = &inode->i_data;
a08c7193 641 const pgoff_t end = lend >> PAGE_SHIFT;
1508062e 642 struct folio_batch fbatch;
d72dc8a2 643 pgoff_t next, index;
a43a8c39 644 int i, freed = 0;
b5cec28d 645 bool truncate_op = (lend == LLONG_MAX);
1da177e4 646
1508062e 647 folio_batch_init(&fbatch);
a08c7193 648 next = lstart >> PAGE_SHIFT;
1508062e
MWO
649 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
650 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
651 struct folio *folio = fbatch.folios[i];
d4241a04 652 u32 hash = 0;
b5cec28d 653
a08c7193 654 index = folio->index >> huge_page_order(h);
188a3972
MK
655 hash = hugetlb_fault_mutex_hash(mapping, index);
656 mutex_lock(&hugetlb_fault_mutex_table[hash]);
e7c58097 657
4aae8d1c 658 /*
c8627228 659 * Remove folio that was part of folio_batch.
4aae8d1c 660 */
c8627228
MK
661 if (remove_inode_single_folio(h, inode, mapping, folio,
662 index, truncate_op))
663 freed++;
664
188a3972 665 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
1da177e4 666 }
1508062e 667 folio_batch_release(&fbatch);
1817889e 668 cond_resched();
1da177e4 669 }
b5cec28d
MK
670
671 if (truncate_op)
a08c7193
SK
672 (void)hugetlb_unreserve_pages(inode,
673 lstart >> huge_page_shift(h),
674 LONG_MAX, freed);
1da177e4
LT
675}
676
2bbbda30 677static void hugetlbfs_evict_inode(struct inode *inode)
1da177e4 678{
9119a41e
JK
679 struct resv_map *resv_map;
680
b5cec28d 681 remove_inode_hugepages(inode, 0, LLONG_MAX);
f27a5136
MK
682
683 /*
684 * Get the resv_map from the address space embedded in the inode.
685 * This is the address space which points to any resv_map allocated
686 * at inode creation time. If this is a device special inode,
687 * i_mapping may not point to the original address space.
688 */
600f111e 689 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
f27a5136 690 /* Only regular and link inodes have associated reserve maps */
9119a41e
JK
691 if (resv_map)
692 resv_map_release(&resv_map->refs);
dbd5768f 693 clear_inode(inode);
149f4211
CH
694}
695
e5d319de 696static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
1da177e4 697{
856fc295 698 pgoff_t pgoff;
1da177e4 699 struct address_space *mapping = inode->i_mapping;
a5516438 700 struct hstate *h = hstate_inode(inode);
1da177e4 701
a5516438 702 BUG_ON(offset & ~huge_page_mask(h));
856fc295 703 pgoff = offset >> PAGE_SHIFT;
1da177e4 704
87bf91d3 705 i_size_write(inode, offset);
188a3972 706 i_mmap_lock_write(mapping);
f808c13f 707 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
05e90bd0
PX
708 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
709 ZAP_FLAG_DROP_MARKER);
c86aa7bb 710 i_mmap_unlock_write(mapping);
e7c58097 711 remove_inode_hugepages(inode, offset, LLONG_MAX);
1da177e4
LT
712}
713
68d32527
MK
714static void hugetlbfs_zero_partial_page(struct hstate *h,
715 struct address_space *mapping,
716 loff_t start,
717 loff_t end)
718{
719 pgoff_t idx = start >> huge_page_shift(h);
720 struct folio *folio;
721
a08c7193 722 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
66dabbb6 723 if (IS_ERR(folio))
68d32527
MK
724 return;
725
726 start = start & ~huge_page_mask(h);
727 end = end & ~huge_page_mask(h);
728 if (!end)
729 end = huge_page_size(h);
730
731 folio_zero_segment(folio, (size_t)start, (size_t)end);
732
733 folio_unlock(folio);
734 folio_put(folio);
735}
736
70c3547e
MK
737static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
738{
68d32527
MK
739 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
740 struct address_space *mapping = inode->i_mapping;
70c3547e
MK
741 struct hstate *h = hstate_inode(inode);
742 loff_t hpage_size = huge_page_size(h);
743 loff_t hole_start, hole_end;
744
745 /*
68d32527 746 * hole_start and hole_end indicate the full pages within the hole.
70c3547e
MK
747 */
748 hole_start = round_up(offset, hpage_size);
749 hole_end = round_down(offset + len, hpage_size);
750
68d32527
MK
751 inode_lock(inode);
752
753 /* protected by i_rwsem */
754 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
755 inode_unlock(inode);
756 return -EPERM;
757 }
70c3547e 758
68d32527 759 i_mmap_lock_write(mapping);
ff62a342 760
68d32527
MK
761 /* If range starts before first full page, zero partial page. */
762 if (offset < hole_start)
763 hugetlbfs_zero_partial_page(h, mapping,
764 offset, min(offset + len, hole_start));
ff62a342 765
68d32527
MK
766 /* Unmap users of full pages in the hole. */
767 if (hole_end > hole_start) {
f808c13f 768 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
70c3547e 769 hugetlb_vmdelete_list(&mapping->i_mmap,
05e90bd0
PX
770 hole_start >> PAGE_SHIFT,
771 hole_end >> PAGE_SHIFT, 0);
70c3547e
MK
772 }
773
68d32527
MK
774 /* If range extends beyond last full page, zero partial page. */
775 if ((offset + len) > hole_end && (offset + len) > hole_start)
776 hugetlbfs_zero_partial_page(h, mapping,
777 hole_end, offset + len);
778
779 i_mmap_unlock_write(mapping);
780
781 /* Remove full pages from the file. */
782 if (hole_end > hole_start)
783 remove_inode_hugepages(inode, hole_start, hole_end);
784
785 inode_unlock(inode);
786
70c3547e
MK
787 return 0;
788}
789
790static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
791 loff_t len)
792{
793 struct inode *inode = file_inode(file);
ff62a342 794 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
70c3547e
MK
795 struct address_space *mapping = inode->i_mapping;
796 struct hstate *h = hstate_inode(inode);
797 struct vm_area_struct pseudo_vma;
798 struct mm_struct *mm = current->mm;
799 loff_t hpage_size = huge_page_size(h);
800 unsigned long hpage_shift = huge_page_shift(h);
801 pgoff_t start, index, end;
802 int error;
803 u32 hash;
804
805 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
806 return -EOPNOTSUPP;
807
808 if (mode & FALLOC_FL_PUNCH_HOLE)
809 return hugetlbfs_punch_hole(inode, offset, len);
810
811 /*
812 * Default preallocate case.
813 * For this range, start is rounded down and end is rounded up
814 * as well as being converted to page offsets.
815 */
816 start = offset >> hpage_shift;
817 end = (offset + len + hpage_size - 1) >> hpage_shift;
818
5955102c 819 inode_lock(inode);
70c3547e
MK
820
821 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
822 error = inode_newsize_ok(inode, offset + len);
823 if (error)
824 goto out;
825
ff62a342
MAL
826 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
827 error = -EPERM;
828 goto out;
829 }
830
70c3547e
MK
831 /*
832 * Initialize a pseudo vma as this is required by the huge page
10969b55 833 * allocation routines.
70c3547e 834 */
2c4541e2 835 vma_init(&pseudo_vma, mm);
1c71222e 836 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
70c3547e
MK
837 pseudo_vma.vm_file = file;
838
839 for (index = start; index < end; index++) {
840 /*
841 * This is supposed to be the vaddr where the page is being
842 * faulted in, but we have no vaddr here.
843 */
d0ce0e47 844 struct folio *folio;
70c3547e 845 unsigned long addr;
70c3547e
MK
846
847 cond_resched();
848
849 /*
850 * fallocate(2) manpage permits EINTR; we may have been
851 * interrupted because we are using up too much memory.
852 */
853 if (signal_pending(current)) {
854 error = -EINTR;
855 break;
856 }
857
70c3547e
MK
858 /* addr is the offset within the file (zero based) */
859 addr = index * hpage_size;
860
188a3972 861 /* mutex taken here, fault path and hole punch */
188b04a7 862 hash = hugetlb_fault_mutex_hash(mapping, index);
70c3547e
MK
863 mutex_lock(&hugetlb_fault_mutex_table[hash]);
864
865 /* See if already present in mapping to avoid alloc/free */
a08c7193 866 folio = filemap_get_folio(mapping, index << huge_page_order(h));
fd4aed8d
MK
867 if (!IS_ERR(folio)) {
868 folio_put(folio);
70c3547e 869 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
70c3547e
MK
870 continue;
871 }
872
88ce3fef 873 /*
d0ce0e47 874 * Allocate folio without setting the avoid_reserve argument.
88ce3fef
ML
875 * There certainly are no reserves associated with the
876 * pseudo_vma. However, there could be shared mappings with
877 * reserves for the file at the inode level. If we fallocate
d0ce0e47 878 * folios in these areas, we need to consume the reserves
88ce3fef
ML
879 * to keep reservation accounting consistent.
880 */
d0ce0e47 881 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
d0ce0e47 882 if (IS_ERR(folio)) {
70c3547e 883 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
d0ce0e47 884 error = PTR_ERR(folio);
70c3547e
MK
885 goto out;
886 }
d0ce0e47
SK
887 clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
888 __folio_mark_uptodate(folio);
9b91c0e2 889 error = hugetlb_add_to_page_cache(folio, mapping, index);
70c3547e 890 if (unlikely(error)) {
d2d7bb44 891 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
d0ce0e47 892 folio_put(folio);
70c3547e
MK
893 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
894 goto out;
895 }
896
897 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
898
d0ce0e47 899 folio_set_hugetlb_migratable(folio);
70c3547e 900 /*
d0ce0e47
SK
901 * folio_unlock because locked by hugetlb_add_to_page_cache()
902 * folio_put() due to reference from alloc_hugetlb_folio()
70c3547e 903 */
d0ce0e47
SK
904 folio_unlock(folio);
905 folio_put(folio);
70c3547e
MK
906 }
907
908 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
909 i_size_write(inode, offset + len);
a72a7dea 910 inode_set_ctime_current(inode);
70c3547e 911out:
5955102c 912 inode_unlock(inode);
70c3547e
MK
913 return error;
914}
915
c1632a0f 916static int hugetlbfs_setattr(struct mnt_idmap *idmap,
549c7297 917 struct dentry *dentry, struct iattr *attr)
1da177e4 918{
2b0143b5 919 struct inode *inode = d_inode(dentry);
a5516438 920 struct hstate *h = hstate_inode(inode);
1da177e4
LT
921 int error;
922 unsigned int ia_valid = attr->ia_valid;
ff62a342 923 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4 924
c1632a0f 925 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1da177e4 926 if (error)
1025774c 927 return error;
1da177e4
LT
928
929 if (ia_valid & ATTR_SIZE) {
ff62a342
MAL
930 loff_t oldsize = inode->i_size;
931 loff_t newsize = attr->ia_size;
932
933 if (newsize & ~huge_page_mask(h))
1025774c 934 return -EINVAL;
398c0da7 935 /* protected by i_rwsem */
ff62a342
MAL
936 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
937 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
938 return -EPERM;
e5d319de 939 hugetlb_vmtruncate(inode, newsize);
1da177e4 940 }
1025774c 941
c1632a0f 942 setattr_copy(&nop_mnt_idmap, inode, attr);
1025774c
CH
943 mark_inode_dirty(inode);
944 return 0;
1da177e4
LT
945}
946
7d54fa64 947static struct inode *hugetlbfs_get_root(struct super_block *sb,
32021982 948 struct hugetlbfs_fs_context *ctx)
1da177e4
LT
949{
950 struct inode *inode;
1da177e4
LT
951
952 inode = new_inode(sb);
953 if (inode) {
85fe4025 954 inode->i_ino = get_next_ino();
32021982
DH
955 inode->i_mode = S_IFDIR | ctx->mode;
956 inode->i_uid = ctx->uid;
957 inode->i_gid = ctx->gid;
cfd87e76 958 simple_inode_init_ts(inode);
7d54fa64
AV
959 inode->i_op = &hugetlbfs_dir_inode_operations;
960 inode->i_fop = &simple_dir_operations;
961 /* directory inodes start off with i_nlink == 2 (for "." entry) */
962 inc_nlink(inode);
65ed7601 963 lockdep_annotate_inode_mutex_key(inode);
7d54fa64
AV
964 }
965 return inode;
966}
967
b610ded7 968/*
c8c06efa 969 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
b610ded7 970 * be taken from reclaim -- unlike regular filesystems. This needs an
88f306b6 971 * annotation because huge_pmd_share() does an allocation under hugetlb's
c8c06efa 972 * i_mmap_rwsem.
b610ded7 973 */
c8c06efa 974static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
b610ded7 975
7d54fa64
AV
976static struct inode *hugetlbfs_get_inode(struct super_block *sb,
977 struct inode *dir,
18df2252 978 umode_t mode, dev_t dev)
7d54fa64
AV
979{
980 struct inode *inode;
58b6e5e8 981 struct resv_map *resv_map = NULL;
9119a41e 982
58b6e5e8
MK
983 /*
984 * Reserve maps are only needed for inodes that can have associated
985 * page allocations.
986 */
987 if (S_ISREG(mode) || S_ISLNK(mode)) {
988 resv_map = resv_map_alloc();
989 if (!resv_map)
990 return NULL;
991 }
7d54fa64
AV
992
993 inode = new_inode(sb);
994 if (inode) {
ff62a342
MAL
995 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
996
7d54fa64 997 inode->i_ino = get_next_ino();
f2d40141 998 inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
c8c06efa
DB
999 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1000 &hugetlbfs_i_mmap_rwsem_key);
1da177e4 1001 inode->i_mapping->a_ops = &hugetlbfs_aops;
cfd87e76 1002 simple_inode_init_ts(inode);
600f111e 1003 inode->i_mapping->i_private_data = resv_map;
ff62a342 1004 info->seals = F_SEAL_SEAL;
1da177e4
LT
1005 switch (mode & S_IFMT) {
1006 default:
1007 init_special_inode(inode, mode, dev);
1008 break;
1009 case S_IFREG:
1010 inode->i_op = &hugetlbfs_inode_operations;
1011 inode->i_fop = &hugetlbfs_file_operations;
1012 break;
1013 case S_IFDIR:
1014 inode->i_op = &hugetlbfs_dir_inode_operations;
1015 inode->i_fop = &simple_dir_operations;
1016
1017 /* directory inodes start off with i_nlink == 2 (for "." entry) */
d8c76e6f 1018 inc_nlink(inode);
1da177e4
LT
1019 break;
1020 case S_IFLNK:
1021 inode->i_op = &page_symlink_inode_operations;
21fc61c7 1022 inode_nohighmem(inode);
1da177e4
LT
1023 break;
1024 }
e096d0c7 1025 lockdep_annotate_inode_mutex_key(inode);
58b6e5e8
MK
1026 } else {
1027 if (resv_map)
1028 kref_put(&resv_map->refs, resv_map_release);
1029 }
9119a41e 1030
1da177e4
LT
1031 return inode;
1032}
1033
1034/*
1035 * File creation. Allocate an inode, and we're done..
1036 */
5ebb29be 1037static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
19ee5345 1038 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4
LT
1039{
1040 struct inode *inode;
7d54fa64
AV
1041
1042 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
19ee5345
AV
1043 if (!inode)
1044 return -ENOSPC;
cfd87e76 1045 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
19ee5345
AV
1046 d_instantiate(dentry, inode);
1047 dget(dentry);/* Extra count - pin the dentry in core */
1048 return 0;
1ab5b82f
PS
1049}
1050
c54bd91e 1051static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
549c7297 1052 struct dentry *dentry, umode_t mode)
1da177e4 1053{
5ebb29be 1054 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
549c7297 1055 mode | S_IFDIR, 0);
1da177e4 1056 if (!retval)
d8c76e6f 1057 inc_nlink(dir);
1da177e4
LT
1058 return retval;
1059}
1060
6c960e68 1061static int hugetlbfs_create(struct mnt_idmap *idmap,
549c7297
CB
1062 struct inode *dir, struct dentry *dentry,
1063 umode_t mode, bool excl)
1da177e4 1064{
5ebb29be 1065 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
1066}
1067
011e2b71 1068static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
863f144f 1069 struct inode *dir, struct file *file,
549c7297 1070 umode_t mode)
1ab5b82f 1071{
19ee5345
AV
1072 struct inode *inode;
1073
1074 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1075 if (!inode)
1076 return -ENOSPC;
cfd87e76 1077 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
863f144f
MS
1078 d_tmpfile(file, inode);
1079 return finish_open_simple(file, 0);
1ab5b82f
PS
1080}
1081
7a77db95 1082static int hugetlbfs_symlink(struct mnt_idmap *idmap,
549c7297
CB
1083 struct inode *dir, struct dentry *dentry,
1084 const char *symname)
1da177e4
LT
1085{
1086 struct inode *inode;
1087 int error = -ENOSPC;
1da177e4 1088
7d54fa64 1089 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1da177e4
LT
1090 if (inode) {
1091 int l = strlen(symname)+1;
1092 error = page_symlink(inode, symname, l);
1093 if (!error) {
1094 d_instantiate(dentry, inode);
1095 dget(dentry);
1096 } else
1097 iput(inode);
1098 }
cfd87e76 1099 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1da177e4
LT
1100
1101 return error;
1102}
1103
b890ec2a
MWO
1104#ifdef CONFIG_MIGRATION
1105static int hugetlbfs_migrate_folio(struct address_space *mapping,
1106 struct folio *dst, struct folio *src,
a6bc32b8 1107 enum migrate_mode mode)
290408d4
NH
1108{
1109 int rc;
1110
b890ec2a 1111 rc = migrate_huge_page_move_mapping(mapping, dst, src);
78bd5209 1112 if (rc != MIGRATEPAGE_SUCCESS)
290408d4 1113 return rc;
cb6acd01 1114
149562f7
SK
1115 if (hugetlb_folio_subpool(src)) {
1116 hugetlb_set_folio_subpool(dst,
1117 hugetlb_folio_subpool(src));
1118 hugetlb_set_folio_subpool(src, NULL);
cb6acd01
MK
1119 }
1120
2916ecc0 1121 if (mode != MIGRATE_SYNC_NO_COPY)
b890ec2a 1122 folio_migrate_copy(dst, src);
2916ecc0 1123 else
b890ec2a 1124 folio_migrate_flags(dst, src);
290408d4 1125
78bd5209 1126 return MIGRATEPAGE_SUCCESS;
290408d4 1127}
b890ec2a
MWO
1128#else
1129#define hugetlbfs_migrate_folio NULL
1130#endif
290408d4 1131
af7628d6
MWO
1132static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1133 struct folio *folio)
78bb9203 1134{
78bb9203
NH
1135 return 0;
1136}
1137
4a25220d
DH
1138/*
1139 * Display the mount options in /proc/mounts.
1140 */
1141static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1142{
1143 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1144 struct hugepage_subpool *spool = sbinfo->spool;
1145 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1146 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1147 char mod;
1148
1149 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1150 seq_printf(m, ",uid=%u",
1151 from_kuid_munged(&init_user_ns, sbinfo->uid));
1152 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1153 seq_printf(m, ",gid=%u",
1154 from_kgid_munged(&init_user_ns, sbinfo->gid));
1155 if (sbinfo->mode != 0755)
1156 seq_printf(m, ",mode=%o", sbinfo->mode);
1157 if (sbinfo->max_inodes != -1)
1158 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1159
1160 hpage_size /= 1024;
1161 mod = 'K';
1162 if (hpage_size >= 1024) {
1163 hpage_size /= 1024;
1164 mod = 'M';
1165 }
1166 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1167 if (spool) {
1168 if (spool->max_hpages != -1)
1169 seq_printf(m, ",size=%llu",
1170 (unsigned long long)spool->max_hpages << hpage_shift);
1171 if (spool->min_hpages != -1)
1172 seq_printf(m, ",min_size=%llu",
1173 (unsigned long long)spool->min_hpages << hpage_shift);
1174 }
1175 return 0;
1176}
1177
726c3342 1178static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1179{
726c3342 1180 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
2b0143b5 1181 struct hstate *h = hstate_inode(d_inode(dentry));
ae62bcb5 1182 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1da177e4 1183
ae62bcb5 1184 buf->f_fsid = u64_to_fsid(id);
1da177e4 1185 buf->f_type = HUGETLBFS_MAGIC;
a5516438 1186 buf->f_bsize = huge_page_size(h);
1da177e4
LT
1187 if (sbinfo) {
1188 spin_lock(&sbinfo->stat_lock);
11680763 1189 /* If no limits set, just report 0 or -1 for max/free/used
74a8a65c 1190 * blocks, like simple_statfs() */
90481622
DG
1191 if (sbinfo->spool) {
1192 long free_pages;
1193
4b25f030 1194 spin_lock_irq(&sbinfo->spool->lock);
90481622
DG
1195 buf->f_blocks = sbinfo->spool->max_hpages;
1196 free_pages = sbinfo->spool->max_hpages
1197 - sbinfo->spool->used_hpages;
1198 buf->f_bavail = buf->f_bfree = free_pages;
4b25f030 1199 spin_unlock_irq(&sbinfo->spool->lock);
74a8a65c
DG
1200 buf->f_files = sbinfo->max_inodes;
1201 buf->f_ffree = sbinfo->free_inodes;
1202 }
1da177e4
LT
1203 spin_unlock(&sbinfo->stat_lock);
1204 }
1205 buf->f_namelen = NAME_MAX;
1206 return 0;
1207}
1208
1209static void hugetlbfs_put_super(struct super_block *sb)
1210{
1211 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1212
1213 if (sbi) {
1214 sb->s_fs_info = NULL;
90481622
DG
1215
1216 if (sbi->spool)
1217 hugepage_put_subpool(sbi->spool);
1218
1da177e4
LT
1219 kfree(sbi);
1220 }
1221}
1222
96527980
CH
1223static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1224{
1225 if (sbinfo->free_inodes >= 0) {
1226 spin_lock(&sbinfo->stat_lock);
1227 if (unlikely(!sbinfo->free_inodes)) {
1228 spin_unlock(&sbinfo->stat_lock);
1229 return 0;
1230 }
1231 sbinfo->free_inodes--;
1232 spin_unlock(&sbinfo->stat_lock);
1233 }
1234
1235 return 1;
1236}
1237
1238static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1239{
1240 if (sbinfo->free_inodes >= 0) {
1241 spin_lock(&sbinfo->stat_lock);
1242 sbinfo->free_inodes++;
1243 spin_unlock(&sbinfo->stat_lock);
1244 }
1245}
1246
1247
e18b890b 1248static struct kmem_cache *hugetlbfs_inode_cachep;
1da177e4
LT
1249
1250static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1251{
96527980 1252 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1da177e4
LT
1253 struct hugetlbfs_inode_info *p;
1254
96527980
CH
1255 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1256 return NULL;
fd60b288 1257 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
96527980
CH
1258 if (unlikely(!p)) {
1259 hugetlbfs_inc_free_inodes(sbinfo);
1da177e4 1260 return NULL;
96527980 1261 }
1da177e4
LT
1262 return &p->vfs_inode;
1263}
1264
b62de322 1265static void hugetlbfs_free_inode(struct inode *inode)
fa0d7e3d 1266{
fa0d7e3d
NP
1267 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1268}
1269
1da177e4
LT
1270static void hugetlbfs_destroy_inode(struct inode *inode)
1271{
96527980 1272 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1da177e4
LT
1273}
1274
f5e54d6e 1275static const struct address_space_operations hugetlbfs_aops = {
800d15a5
NP
1276 .write_begin = hugetlbfs_write_begin,
1277 .write_end = hugetlbfs_write_end,
46de8b97 1278 .dirty_folio = noop_dirty_folio,
b890ec2a 1279 .migrate_folio = hugetlbfs_migrate_folio,
af7628d6 1280 .error_remove_folio = hugetlbfs_error_remove_folio,
1da177e4
LT
1281};
1282
96527980 1283
51cc5068 1284static void init_once(void *foo)
96527980 1285{
dbaf7dc9 1286 struct hugetlbfs_inode_info *ei = foo;
96527980 1287
a35afb83 1288 inode_init_once(&ei->vfs_inode);
96527980
CH
1289}
1290
4b6f5d20 1291const struct file_operations hugetlbfs_file_operations = {
34d0640e 1292 .read_iter = hugetlbfs_read_iter,
1da177e4 1293 .mmap = hugetlbfs_file_mmap,
1b061d92 1294 .fsync = noop_fsync,
1da177e4 1295 .get_unmapped_area = hugetlb_get_unmapped_area,
70c3547e
MK
1296 .llseek = default_llseek,
1297 .fallocate = hugetlbfs_fallocate,
1da177e4
LT
1298};
1299
92e1d5be 1300static const struct inode_operations hugetlbfs_dir_inode_operations = {
1da177e4
LT
1301 .create = hugetlbfs_create,
1302 .lookup = simple_lookup,
1303 .link = simple_link,
1304 .unlink = simple_unlink,
1305 .symlink = hugetlbfs_symlink,
1306 .mkdir = hugetlbfs_mkdir,
1307 .rmdir = simple_rmdir,
1308 .mknod = hugetlbfs_mknod,
1309 .rename = simple_rename,
1310 .setattr = hugetlbfs_setattr,
1ab5b82f 1311 .tmpfile = hugetlbfs_tmpfile,
1da177e4
LT
1312};
1313
92e1d5be 1314static const struct inode_operations hugetlbfs_inode_operations = {
1da177e4
LT
1315 .setattr = hugetlbfs_setattr,
1316};
1317
ee9b6d61 1318static const struct super_operations hugetlbfs_ops = {
1da177e4 1319 .alloc_inode = hugetlbfs_alloc_inode,
b62de322 1320 .free_inode = hugetlbfs_free_inode,
1da177e4 1321 .destroy_inode = hugetlbfs_destroy_inode,
2bbbda30 1322 .evict_inode = hugetlbfs_evict_inode,
1da177e4 1323 .statfs = hugetlbfs_statfs,
1da177e4 1324 .put_super = hugetlbfs_put_super,
4a25220d 1325 .show_options = hugetlbfs_show_options,
1da177e4
LT
1326};
1327
7ca02d0a
MK
1328/*
1329 * Convert size option passed from command line to number of huge pages
1330 * in the pool specified by hstate. Size option could be in bytes
1331 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1332 */
4a25220d 1333static long
7ca02d0a 1334hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
4a25220d 1335 enum hugetlbfs_size_type val_type)
7ca02d0a
MK
1336{
1337 if (val_type == NO_SIZE)
1338 return -1;
1339
1340 if (val_type == SIZE_PERCENT) {
1341 size_opt <<= huge_page_shift(h);
1342 size_opt *= h->max_huge_pages;
1343 do_div(size_opt, 100);
1344 }
1345
1346 size_opt >>= huge_page_shift(h);
1347 return size_opt;
1348}
1349
32021982
DH
1350/*
1351 * Parse one mount parameter.
1352 */
1353static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1da177e4 1354{
32021982
DH
1355 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1356 struct fs_parse_result result;
1357 char *rest;
1358 unsigned long ps;
1359 int opt;
1360
d7167b14 1361 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
32021982
DH
1362 if (opt < 0)
1363 return opt;
1364
1365 switch (opt) {
1366 case Opt_uid:
1367 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1368 if (!uid_valid(ctx->uid))
1369 goto bad_val;
1da177e4 1370 return 0;
1da177e4 1371
32021982
DH
1372 case Opt_gid:
1373 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1374 if (!gid_valid(ctx->gid))
1375 goto bad_val;
1376 return 0;
e73a75fa 1377
32021982
DH
1378 case Opt_mode:
1379 ctx->mode = result.uint_32 & 01777U;
1380 return 0;
e73a75fa 1381
32021982
DH
1382 case Opt_size:
1383 /* memparse() will accept a K/M/G without a digit */
26215b7e 1384 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1385 goto bad_val;
1386 ctx->max_size_opt = memparse(param->string, &rest);
1387 ctx->max_val_type = SIZE_STD;
1388 if (*rest == '%')
1389 ctx->max_val_type = SIZE_PERCENT;
1390 return 0;
e73a75fa 1391
32021982
DH
1392 case Opt_nr_inodes:
1393 /* memparse() will accept a K/M/G without a digit */
26215b7e 1394 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1395 goto bad_val;
1396 ctx->nr_inodes = memparse(param->string, &rest);
1397 return 0;
e73a75fa 1398
32021982
DH
1399 case Opt_pagesize:
1400 ps = memparse(param->string, &rest);
1401 ctx->hstate = size_to_hstate(ps);
1402 if (!ctx->hstate) {
d0036517 1403 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
32021982 1404 return -EINVAL;
e73a75fa 1405 }
32021982 1406 return 0;
1da177e4 1407
32021982
DH
1408 case Opt_min_size:
1409 /* memparse() will accept a K/M/G without a digit */
26215b7e 1410 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1411 goto bad_val;
1412 ctx->min_size_opt = memparse(param->string, &rest);
1413 ctx->min_val_type = SIZE_STD;
1414 if (*rest == '%')
1415 ctx->min_val_type = SIZE_PERCENT;
1416 return 0;
e73a75fa 1417
32021982
DH
1418 default:
1419 return -EINVAL;
1420 }
a137e1cc 1421
32021982 1422bad_val:
b5db30cf 1423 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
32021982
DH
1424 param->string, param->key);
1425}
7ca02d0a 1426
32021982
DH
1427/*
1428 * Validate the parsed options.
1429 */
1430static int hugetlbfs_validate(struct fs_context *fc)
1431{
1432 struct hugetlbfs_fs_context *ctx = fc->fs_private;
a137e1cc 1433
7ca02d0a
MK
1434 /*
1435 * Use huge page pool size (in hstate) to convert the size
1436 * options to number of huge pages. If NO_SIZE, -1 is returned.
1437 */
32021982
DH
1438 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1439 ctx->max_size_opt,
1440 ctx->max_val_type);
1441 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1442 ctx->min_size_opt,
1443 ctx->min_val_type);
7ca02d0a
MK
1444
1445 /*
1446 * If max_size was specified, then min_size must be smaller
1447 */
32021982
DH
1448 if (ctx->max_val_type > NO_SIZE &&
1449 ctx->min_hpages > ctx->max_hpages) {
1450 pr_err("Minimum size can not be greater than maximum size\n");
7ca02d0a 1451 return -EINVAL;
a137e1cc
AK
1452 }
1453
1da177e4
LT
1454 return 0;
1455}
1456
1457static int
32021982 1458hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 1459{
32021982 1460 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1da177e4
LT
1461 struct hugetlbfs_sb_info *sbinfo;
1462
1da177e4
LT
1463 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1464 if (!sbinfo)
1465 return -ENOMEM;
1466 sb->s_fs_info = sbinfo;
1467 spin_lock_init(&sbinfo->stat_lock);
32021982
DH
1468 sbinfo->hstate = ctx->hstate;
1469 sbinfo->max_inodes = ctx->nr_inodes;
1470 sbinfo->free_inodes = ctx->nr_inodes;
1471 sbinfo->spool = NULL;
1472 sbinfo->uid = ctx->uid;
1473 sbinfo->gid = ctx->gid;
1474 sbinfo->mode = ctx->mode;
4a25220d 1475
7ca02d0a
MK
1476 /*
1477 * Allocate and initialize subpool if maximum or minimum size is
1935ebd3 1478 * specified. Any needed reservations (for minimum size) are taken
445c8098 1479 * when the subpool is created.
7ca02d0a 1480 */
32021982
DH
1481 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1482 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1483 ctx->max_hpages,
1484 ctx->min_hpages);
90481622
DG
1485 if (!sbinfo->spool)
1486 goto out_free;
1487 }
1da177e4 1488 sb->s_maxbytes = MAX_LFS_FILESIZE;
32021982
DH
1489 sb->s_blocksize = huge_page_size(ctx->hstate);
1490 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1da177e4
LT
1491 sb->s_magic = HUGETLBFS_MAGIC;
1492 sb->s_op = &hugetlbfs_ops;
1493 sb->s_time_gran = 1;
15568299
MK
1494
1495 /*
1496 * Due to the special and limited functionality of hugetlbfs, it does
1497 * not work well as a stacking filesystem.
1498 */
1499 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
32021982 1500 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
48fde701 1501 if (!sb->s_root)
1da177e4 1502 goto out_free;
1da177e4
LT
1503 return 0;
1504out_free:
6e6870d4 1505 kfree(sbinfo->spool);
1da177e4
LT
1506 kfree(sbinfo);
1507 return -ENOMEM;
1508}
1509
32021982
DH
1510static int hugetlbfs_get_tree(struct fs_context *fc)
1511{
1512 int err = hugetlbfs_validate(fc);
1513 if (err)
1514 return err;
2ac295d4 1515 return get_tree_nodev(fc, hugetlbfs_fill_super);
32021982
DH
1516}
1517
1518static void hugetlbfs_fs_context_free(struct fs_context *fc)
1519{
1520 kfree(fc->fs_private);
1521}
1522
1523static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1524 .free = hugetlbfs_fs_context_free,
1525 .parse_param = hugetlbfs_parse_param,
1526 .get_tree = hugetlbfs_get_tree,
1527};
1528
1529static int hugetlbfs_init_fs_context(struct fs_context *fc)
1da177e4 1530{
32021982
DH
1531 struct hugetlbfs_fs_context *ctx;
1532
1533 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1534 if (!ctx)
1535 return -ENOMEM;
1536
1537 ctx->max_hpages = -1; /* No limit on size by default */
1538 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1539 ctx->uid = current_fsuid();
1540 ctx->gid = current_fsgid();
1541 ctx->mode = 0755;
1542 ctx->hstate = &default_hstate;
1543 ctx->min_hpages = -1; /* No default minimum size */
1544 ctx->max_val_type = NO_SIZE;
1545 ctx->min_val_type = NO_SIZE;
1546 fc->fs_private = ctx;
1547 fc->ops = &hugetlbfs_fs_context_ops;
1548 return 0;
1da177e4
LT
1549}
1550
1551static struct file_system_type hugetlbfs_fs_type = {
32021982
DH
1552 .name = "hugetlbfs",
1553 .init_fs_context = hugetlbfs_init_fs_context,
d7167b14 1554 .parameters = hugetlb_fs_parameters,
32021982 1555 .kill_sb = kill_litter_super,
1da177e4
LT
1556};
1557
42d7395f 1558static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1da177e4 1559
ef1ff6b8 1560static int can_do_hugetlb_shm(void)
1da177e4 1561{
a0eb3a05
EB
1562 kgid_t shm_group;
1563 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1564 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1da177e4
LT
1565}
1566
42d7395f
AK
1567static int get_hstate_idx(int page_size_log)
1568{
af73e4d9 1569 struct hstate *h = hstate_sizelog(page_size_log);
42d7395f 1570
42d7395f
AK
1571 if (!h)
1572 return -1;
04adbc3f 1573 return hstate_index(h);
42d7395f
AK
1574}
1575
af73e4d9
NH
1576/*
1577 * Note that size should be aligned to proper hugepage size in caller side,
1578 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1579 */
1580struct file *hugetlb_file_setup(const char *name, size_t size,
83c1fd76 1581 vm_flags_t acctflag, int creat_flags,
1582 int page_size_log)
1da177e4 1583{
1da177e4 1584 struct inode *inode;
e68375c8 1585 struct vfsmount *mnt;
42d7395f 1586 int hstate_idx;
e68375c8 1587 struct file *file;
42d7395f
AK
1588
1589 hstate_idx = get_hstate_idx(page_size_log);
1590 if (hstate_idx < 0)
1591 return ERR_PTR(-ENODEV);
1da177e4 1592
e68375c8
AV
1593 mnt = hugetlbfs_vfsmount[hstate_idx];
1594 if (!mnt)
5bc98594
AM
1595 return ERR_PTR(-ENOENT);
1596
ef1ff6b8 1597 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
83c1fd76 1598 struct ucounts *ucounts = current_ucounts();
1599
1600 if (user_shm_lock(size, ucounts)) {
1601 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
21a3c273 1602 current->comm, current->pid);
83c1fd76 1603 user_shm_unlock(size, ucounts);
353d5c30 1604 }
83c1fd76 1605 return ERR_PTR(-EPERM);
2584e517 1606 }
1da177e4 1607
39b65252 1608 file = ERR_PTR(-ENOSPC);
e68375c8 1609 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1da177e4 1610 if (!inode)
e68375c8 1611 goto out;
e1832f29
SS
1612 if (creat_flags == HUGETLB_SHMFS_INODE)
1613 inode->i_flags |= S_PRIVATE;
1da177e4 1614
1da177e4 1615 inode->i_size = size;
6d6b77f1 1616 clear_nlink(inode);
ce8d2cdf 1617
33b8f84a 1618 if (!hugetlb_reserve_pages(inode, 0,
e68375c8
AV
1619 size >> huge_page_shift(hstate_inode(inode)), NULL,
1620 acctflag))
1621 file = ERR_PTR(-ENOMEM);
1622 else
1623 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1624 &hugetlbfs_file_operations);
1625 if (!IS_ERR(file))
1626 return file;
1da177e4 1627
b45b5bd6 1628 iput(inode);
e68375c8 1629out:
39b65252 1630 return file;
1da177e4
LT
1631}
1632
32021982
DH
1633static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1634{
1635 struct fs_context *fc;
1636 struct vfsmount *mnt;
1637
1638 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1639 if (IS_ERR(fc)) {
1640 mnt = ERR_CAST(fc);
1641 } else {
1642 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1643 ctx->hstate = h;
1644 mnt = fc_mount(fc);
1645 put_fs_context(fc);
1646 }
1647 if (IS_ERR(mnt))
a25fddce 1648 pr_err("Cannot mount internal hugetlbfs for page size %luK",
d0036517 1649 huge_page_size(h) / SZ_1K);
32021982
DH
1650 return mnt;
1651}
1652
1da177e4
LT
1653static int __init init_hugetlbfs_fs(void)
1654{
32021982 1655 struct vfsmount *mnt;
42d7395f 1656 struct hstate *h;
1da177e4 1657 int error;
42d7395f 1658 int i;
1da177e4 1659
457c1b27 1660 if (!hugepages_supported()) {
9b857d26 1661 pr_info("disabling because there are no supported hugepage sizes\n");
457c1b27
NA
1662 return -ENOTSUPP;
1663 }
1664
d1d5e05f 1665 error = -ENOMEM;
1da177e4
LT
1666 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1667 sizeof(struct hugetlbfs_inode_info),
5d097056 1668 0, SLAB_ACCOUNT, init_once);
1da177e4 1669 if (hugetlbfs_inode_cachep == NULL)
8fc312b3 1670 goto out;
1da177e4
LT
1671
1672 error = register_filesystem(&hugetlbfs_fs_type);
1673 if (error)
8fc312b3 1674 goto out_free;
1da177e4 1675
8fc312b3 1676 /* default hstate mount is required */
3b2275a8 1677 mnt = mount_one_hugetlbfs(&default_hstate);
8fc312b3
MK
1678 if (IS_ERR(mnt)) {
1679 error = PTR_ERR(mnt);
1680 goto out_unreg;
1681 }
1682 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1683
1684 /* other hstates are optional */
42d7395f
AK
1685 i = 0;
1686 for_each_hstate(h) {
15f0ec94
JS
1687 if (i == default_hstate_idx) {
1688 i++;
8fc312b3 1689 continue;
15f0ec94 1690 }
8fc312b3 1691
32021982 1692 mnt = mount_one_hugetlbfs(h);
8fc312b3
MK
1693 if (IS_ERR(mnt))
1694 hugetlbfs_vfsmount[i] = NULL;
1695 else
1696 hugetlbfs_vfsmount[i] = mnt;
42d7395f
AK
1697 i++;
1698 }
32021982
DH
1699
1700 return 0;
1da177e4 1701
8fc312b3
MK
1702 out_unreg:
1703 (void)unregister_filesystem(&hugetlbfs_fs_type);
1704 out_free:
d1d5e05f 1705 kmem_cache_destroy(hugetlbfs_inode_cachep);
8fc312b3 1706 out:
1da177e4
LT
1707 return error;
1708}
3e89e1c5 1709fs_initcall(init_hugetlbfs_fs)