Merge patch series "RISC-V: Probe for misaligned access speed"
[linux-block.git] / fs / hugetlbfs / inode.c
CommitLineData
1da177e4
LT
1/*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
6d49e352 4 * Nadia Yvette Chambers, 2002
1da177e4
LT
5 *
6 * Copyright (C) 2002 Linus Torvalds.
3e89e1c5 7 * License: GPL
1da177e4
LT
8 */
9
9b857d26
AM
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
1da177e4
LT
12#include <linux/thread_info.h>
13#include <asm/current.h>
70c3547e 14#include <linux/falloc.h>
1da177e4
LT
15#include <linux/fs.h>
16#include <linux/mount.h>
17#include <linux/file.h>
e73a75fa 18#include <linux/kernel.h>
1da177e4
LT
19#include <linux/writeback.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/init.h>
23#include <linux/string.h>
16f7e0fe 24#include <linux/capability.h>
e73a75fa 25#include <linux/ctype.h>
1da177e4
LT
26#include <linux/backing-dev.h>
27#include <linux/hugetlb.h>
28#include <linux/pagevec.h>
32021982 29#include <linux/fs_parser.h>
036e0856 30#include <linux/mman.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/dnotify.h>
33#include <linux/statfs.h>
34#include <linux/security.h>
1fd7317d 35#include <linux/magic.h>
290408d4 36#include <linux/migrate.h>
34d0640e 37#include <linux/uio.h>
1da177e4 38
7c0f6ba6 39#include <linux/uaccess.h>
88590253 40#include <linux/sched/mm.h>
1da177e4 41
f5e54d6e 42static const struct address_space_operations hugetlbfs_aops;
4b6f5d20 43const struct file_operations hugetlbfs_file_operations;
92e1d5be
AV
44static const struct inode_operations hugetlbfs_dir_inode_operations;
45static const struct inode_operations hugetlbfs_inode_operations;
1da177e4 46
32021982
DH
47enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48
49struct hugetlbfs_fs_context {
4a25220d 50 struct hstate *hstate;
32021982
DH
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
4a25220d
DH
53 long max_hpages;
54 long nr_inodes;
55 long min_hpages;
32021982
DH
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
4a25220d
DH
58 kuid_t uid;
59 kgid_t gid;
60 umode_t mode;
a1d776ee
DG
61};
62
1da177e4
LT
63int sysctl_hugetlb_shm_group;
64
32021982
DH
65enum hugetlb_param {
66 Opt_gid,
67 Opt_min_size,
68 Opt_mode,
69 Opt_nr_inodes,
70 Opt_pagesize,
71 Opt_size,
72 Opt_uid,
e73a75fa
RD
73};
74
d7167b14 75static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
32021982
DH
76 fsparam_u32 ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
e0f7e2b2 78 fsparam_u32oct("mode", Opt_mode),
32021982
DH
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_u32 ("uid", Opt_uid),
83 {}
84};
85
70c3547e
MK
86#ifdef CONFIG_NUMA
87static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 struct inode *inode, pgoff_t index)
89{
90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 index);
92}
93
94static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95{
96 mpol_cond_put(vma->vm_policy);
97}
98#else
99static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 struct inode *inode, pgoff_t index)
101{
102}
103
104static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105{
106}
107#endif
108
63489f8e
MK
109/*
110 * Mask used when checking the page offset value passed in via system
111 * calls. This value will be converted to a loff_t which is signed.
112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113 * value. The extra bit (- 1 in the shift value) is to take the sign
114 * bit into account.
115 */
116#define PGOFF_LOFFT_MAX \
117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118
1da177e4
LT
119static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120{
496ad9aa 121 struct inode *inode = file_inode(file);
22247efd 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4
LT
123 loff_t len, vma_len;
124 int ret;
a5516438 125 struct hstate *h = hstate_file(file);
1da177e4 126
68589bc3 127 /*
dec4ad86
DG
128 * vma address alignment (but not the pgoff alignment) has
129 * already been checked by prepare_hugepage_range. If you add
130 * any error returns here, do so after setting VM_HUGETLB, so
131 * is_vm_hugetlb_page tests below unmap_region go the right
45e55300 132 * way when do_mmap unwinds (may be important on powerpc
dec4ad86 133 * and ia64).
68589bc3 134 */
1c71222e 135 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
68589bc3 136 vma->vm_ops = &hugetlb_vm_ops;
1da177e4 137
22247efd
PX
138 ret = seal_check_future_write(info->seals, vma);
139 if (ret)
140 return ret;
141
045c7a3f 142 /*
63489f8e 143 * page based offset in vm_pgoff could be sufficiently large to
5df63c2a
MK
144 * overflow a loff_t when converted to byte offset. This can
145 * only happen on architectures where sizeof(loff_t) ==
146 * sizeof(unsigned long). So, only check in those instances.
045c7a3f 147 */
5df63c2a
MK
148 if (sizeof(unsigned long) == sizeof(loff_t)) {
149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 return -EINVAL;
151 }
045c7a3f 152
63489f8e 153 /* must be huge page aligned */
2b37c35e 154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
dec4ad86
DG
155 return -EINVAL;
156
1da177e4 157 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
045c7a3f
MK
158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 /* check for overflow */
160 if (len < vma_len)
161 return -EINVAL;
1da177e4 162
5955102c 163 inode_lock(inode);
1da177e4 164 file_accessed(file);
1da177e4
LT
165
166 ret = -ENOMEM;
33b8f84a 167 if (!hugetlb_reserve_pages(inode,
a5516438 168 vma->vm_pgoff >> huge_page_order(h),
5a6fe125
MG
169 len >> huge_page_shift(h), vma,
170 vma->vm_flags))
a43a8c39 171 goto out;
b45b5bd6 172
4c887265 173 ret = 0;
b6174df5 174 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
045c7a3f 175 i_size_write(inode, len);
1da177e4 176out:
5955102c 177 inode_unlock(inode);
1da177e4
LT
178
179 return ret;
180}
181
182/*
3e4e28c5 183 * Called under mmap_write_lock(mm).
1da177e4
LT
184 */
185
88590253
SH
186static unsigned long
187hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 unsigned long len, unsigned long pgoff, unsigned long flags)
189{
190 struct hstate *h = hstate_file(file);
191 struct vm_unmapped_area_info info;
192
193 info.flags = 0;
194 info.length = len;
195 info.low_limit = current->mm->mmap_base;
2cb4de08 196 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
197 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 info.align_offset = 0;
199 return vm_unmapped_area(&info);
200}
201
202static unsigned long
203hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 unsigned long len, unsigned long pgoff, unsigned long flags)
205{
206 struct hstate *h = hstate_file(file);
207 struct vm_unmapped_area_info info;
208
209 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 info.length = len;
6b008640 211 info.low_limit = PAGE_SIZE;
5f24d5a5 212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
88590253
SH
213 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 info.align_offset = 0;
215 addr = vm_unmapped_area(&info);
216
217 /*
218 * A failed mmap() very likely causes application failure,
219 * so fall back to the bottom-up function here. This scenario
220 * can happen with large stack limits and large mmap()
221 * allocations.
222 */
223 if (unlikely(offset_in_page(addr))) {
224 VM_BUG_ON(addr != -ENOMEM);
225 info.flags = 0;
226 info.low_limit = current->mm->mmap_base;
2cb4de08 227 info.high_limit = arch_get_mmap_end(addr, len, flags);
88590253
SH
228 addr = vm_unmapped_area(&info);
229 }
230
231 return addr;
232}
233
4b439e25
CL
234unsigned long
235generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 unsigned long len, unsigned long pgoff,
237 unsigned long flags)
1da177e4
LT
238{
239 struct mm_struct *mm = current->mm;
240 struct vm_area_struct *vma;
a5516438 241 struct hstate *h = hstate_file(file);
2cb4de08 242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1da177e4 243
a5516438 244 if (len & ~huge_page_mask(h))
1da177e4
LT
245 return -EINVAL;
246 if (len > TASK_SIZE)
247 return -ENOMEM;
248
036e0856 249 if (flags & MAP_FIXED) {
a5516438 250 if (prepare_hugepage_range(file, addr, len))
036e0856
BH
251 return -EINVAL;
252 return addr;
253 }
254
1da177e4 255 if (addr) {
a5516438 256 addr = ALIGN(addr, huge_page_size(h));
1da177e4 257 vma = find_vma(mm, addr);
5f24d5a5 258 if (mmap_end - len >= addr &&
1be7107f 259 (!vma || addr + len <= vm_start_gap(vma)))
1da177e4
LT
260 return addr;
261 }
262
88590253
SH
263 /*
264 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 * If architectures have special needs, they should define their own
266 * version of hugetlb_get_unmapped_area.
267 */
268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 pgoff, flags);
271 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 pgoff, flags);
1da177e4 273}
4b439e25
CL
274
275#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276static unsigned long
277hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 unsigned long len, unsigned long pgoff,
279 unsigned long flags)
280{
281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282}
1da177e4
LT
283#endif
284
38c1ddbd
JY
285/*
286 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
287 * Returns the maximum number of bytes one can read without touching the 1st raw
288 * HWPOISON subpage.
289 *
290 * The implementation borrows the iteration logic from copy_page_to_iter*.
291 */
292static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
293{
294 size_t n = 0;
295 size_t res = 0;
296
297 /* First subpage to start the loop. */
298 page += offset / PAGE_SIZE;
299 offset %= PAGE_SIZE;
300 while (1) {
301 if (is_raw_hwpoison_page_in_hugepage(page))
302 break;
303
304 /* Safe to read n bytes without touching HWPOISON subpage. */
305 n = min(bytes, (size_t)PAGE_SIZE - offset);
306 res += n;
307 bytes -= n;
308 if (!bytes || !n)
309 break;
310 offset += n;
311 if (offset == PAGE_SIZE) {
312 page++;
313 offset = 0;
314 }
315 }
316
317 return res;
318}
319
e63e1e5a
BP
320/*
321 * Support for read() - Find the page attached to f_mapping and copy out the
445c8098 322 * data. This provides functionality similar to filemap_read().
e63e1e5a 323 */
34d0640e 324static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
e63e1e5a 325{
34d0640e
AV
326 struct file *file = iocb->ki_filp;
327 struct hstate *h = hstate_file(file);
328 struct address_space *mapping = file->f_mapping;
e63e1e5a 329 struct inode *inode = mapping->host;
34d0640e
AV
330 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
331 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
e63e1e5a
BP
332 unsigned long end_index;
333 loff_t isize;
334 ssize_t retval = 0;
335
34d0640e 336 while (iov_iter_count(to)) {
e63e1e5a 337 struct page *page;
38c1ddbd 338 size_t nr, copied, want;
e63e1e5a
BP
339
340 /* nr is the maximum number of bytes to copy from this page */
a5516438 341 nr = huge_page_size(h);
a05b0855
AK
342 isize = i_size_read(inode);
343 if (!isize)
34d0640e 344 break;
a05b0855 345 end_index = (isize - 1) >> huge_page_shift(h);
34d0640e
AV
346 if (index > end_index)
347 break;
348 if (index == end_index) {
a5516438 349 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
a05b0855 350 if (nr <= offset)
34d0640e 351 break;
e63e1e5a
BP
352 }
353 nr = nr - offset;
354
355 /* Find the page */
a05b0855 356 page = find_lock_page(mapping, index);
e63e1e5a
BP
357 if (unlikely(page == NULL)) {
358 /*
359 * We have a HOLE, zero out the user-buffer for the
360 * length of the hole or request.
361 */
34d0640e 362 copied = iov_iter_zero(nr, to);
e63e1e5a 363 } else {
a05b0855
AK
364 unlock_page(page);
365
38c1ddbd
JY
366 if (!PageHWPoison(page))
367 want = nr;
368 else {
369 /*
370 * Adjust how many bytes safe to read without
371 * touching the 1st raw HWPOISON subpage after
372 * offset.
373 */
374 want = adjust_range_hwpoison(page, offset, nr);
375 if (want == 0) {
376 put_page(page);
377 retval = -EIO;
378 break;
379 }
8625147c
JH
380 }
381
e63e1e5a
BP
382 /*
383 * We have the page, copy it to user space buffer.
384 */
38c1ddbd 385 copied = copy_page_to_iter(page, offset, want, to);
09cbfeaf 386 put_page(page);
e63e1e5a 387 }
34d0640e
AV
388 offset += copied;
389 retval += copied;
390 if (copied != nr && iov_iter_count(to)) {
391 if (!retval)
392 retval = -EFAULT;
393 break;
e63e1e5a 394 }
a5516438
AK
395 index += offset >> huge_page_shift(h);
396 offset &= ~huge_page_mask(h);
e63e1e5a 397 }
34d0640e 398 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
e63e1e5a
BP
399 return retval;
400}
401
800d15a5
NP
402static int hugetlbfs_write_begin(struct file *file,
403 struct address_space *mapping,
9d6b0cd7 404 loff_t pos, unsigned len,
800d15a5 405 struct page **pagep, void **fsdata)
1da177e4
LT
406{
407 return -EINVAL;
408}
409
800d15a5
NP
410static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
411 loff_t pos, unsigned len, unsigned copied,
412 struct page *page, void *fsdata)
1da177e4 413{
800d15a5 414 BUG();
1da177e4
LT
415 return -EINVAL;
416}
417
ece62684 418static void hugetlb_delete_from_page_cache(struct folio *folio)
1da177e4 419{
ece62684
SK
420 folio_clear_dirty(folio);
421 folio_clear_uptodate(folio);
422 filemap_remove_folio(folio);
1da177e4
LT
423}
424
378397cc
MK
425/*
426 * Called with i_mmap_rwsem held for inode based vma maps. This makes
427 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
428 * mutex for the page in the mapping. So, we can not race with page being
429 * faulted into the vma.
430 */
431static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
432 unsigned long addr, struct page *page)
433{
434 pte_t *ptep, pte;
435
9c67a207 436 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
378397cc
MK
437 if (!ptep)
438 return false;
439
440 pte = huge_ptep_get(ptep);
441 if (huge_pte_none(pte) || !pte_present(pte))
442 return false;
443
444 if (pte_page(pte) == page)
445 return true;
446
447 return false;
448}
449
450/*
451 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
452 * No, because the interval tree returns us only those vmas
453 * which overlap the truncated area starting at pgoff,
454 * and no vma on a 32-bit arch can span beyond the 4GB.
455 */
456static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
457{
243b1f2d
PX
458 unsigned long offset = 0;
459
378397cc 460 if (vma->vm_pgoff < start)
243b1f2d
PX
461 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
462
463 return vma->vm_start + offset;
378397cc
MK
464}
465
466static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
467{
468 unsigned long t_end;
469
470 if (!end)
471 return vma->vm_end;
472
473 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
474 if (t_end > vma->vm_end)
475 t_end = vma->vm_end;
476 return t_end;
477}
478
479/*
480 * Called with hugetlb fault mutex held. Therefore, no more mappings to
481 * this folio can be created while executing the routine.
482 */
483static void hugetlb_unmap_file_folio(struct hstate *h,
484 struct address_space *mapping,
485 struct folio *folio, pgoff_t index)
486{
487 struct rb_root_cached *root = &mapping->i_mmap;
40549ba8 488 struct hugetlb_vma_lock *vma_lock;
378397cc
MK
489 struct page *page = &folio->page;
490 struct vm_area_struct *vma;
491 unsigned long v_start;
492 unsigned long v_end;
493 pgoff_t start, end;
494
495 start = index * pages_per_huge_page(h);
496 end = (index + 1) * pages_per_huge_page(h);
497
498 i_mmap_lock_write(mapping);
40549ba8
MK
499retry:
500 vma_lock = NULL;
378397cc
MK
501 vma_interval_tree_foreach(vma, root, start, end - 1) {
502 v_start = vma_offset_start(vma, start);
503 v_end = vma_offset_end(vma, end);
504
243b1f2d 505 if (!hugetlb_vma_maps_page(vma, v_start, page))
378397cc
MK
506 continue;
507
40549ba8
MK
508 if (!hugetlb_vma_trylock_write(vma)) {
509 vma_lock = vma->vm_private_data;
510 /*
511 * If we can not get vma lock, we need to drop
512 * immap_sema and take locks in order. First,
513 * take a ref on the vma_lock structure so that
514 * we can be guaranteed it will not go away when
515 * dropping immap_sema.
516 */
517 kref_get(&vma_lock->refs);
518 break;
519 }
520
243b1f2d
PX
521 unmap_hugepage_range(vma, v_start, v_end, NULL,
522 ZAP_FLAG_DROP_MARKER);
40549ba8 523 hugetlb_vma_unlock_write(vma);
378397cc
MK
524 }
525
526 i_mmap_unlock_write(mapping);
40549ba8
MK
527
528 if (vma_lock) {
529 /*
530 * Wait on vma_lock. We know it is still valid as we have
531 * a reference. We must 'open code' vma locking as we do
532 * not know if vma_lock is still attached to vma.
533 */
534 down_write(&vma_lock->rw_sema);
535 i_mmap_lock_write(mapping);
536
537 vma = vma_lock->vma;
538 if (!vma) {
539 /*
540 * If lock is no longer attached to vma, then just
541 * unlock, drop our reference and retry looking for
542 * other vmas.
543 */
544 up_write(&vma_lock->rw_sema);
545 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
546 goto retry;
547 }
548
549 /*
550 * vma_lock is still attached to vma. Check to see if vma
551 * still maps page and if so, unmap.
552 */
553 v_start = vma_offset_start(vma, start);
554 v_end = vma_offset_end(vma, end);
243b1f2d
PX
555 if (hugetlb_vma_maps_page(vma, v_start, page))
556 unmap_hugepage_range(vma, v_start, v_end, NULL,
557 ZAP_FLAG_DROP_MARKER);
40549ba8
MK
558
559 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
560 hugetlb_vma_unlock_write(vma);
561
562 goto retry;
563 }
378397cc
MK
564}
565
4aae8d1c 566static void
05e90bd0
PX
567hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
568 zap_flags_t zap_flags)
4aae8d1c
MK
569{
570 struct vm_area_struct *vma;
571
572 /*
d6aba4c8
SC
573 * end == 0 indicates that the entire range after start should be
574 * unmapped. Note, end is exclusive, whereas the interval tree takes
575 * an inclusive "last".
4aae8d1c 576 */
d6aba4c8 577 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
378397cc 578 unsigned long v_start;
4aae8d1c
MK
579 unsigned long v_end;
580
40549ba8
MK
581 if (!hugetlb_vma_trylock_write(vma))
582 continue;
583
378397cc
MK
584 v_start = vma_offset_start(vma, start);
585 v_end = vma_offset_end(vma, end);
4aae8d1c 586
243b1f2d 587 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
40549ba8
MK
588
589 /*
590 * Note that vma lock only exists for shared/non-private
591 * vmas. Therefore, lock is not held when calling
592 * unmap_hugepage_range for private vmas.
593 */
594 hugetlb_vma_unlock_write(vma);
4aae8d1c
MK
595 }
596}
b5cec28d 597
c8627228
MK
598/*
599 * Called with hugetlb fault mutex held.
600 * Returns true if page was actually removed, false otherwise.
601 */
602static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
603 struct address_space *mapping,
604 struct folio *folio, pgoff_t index,
605 bool truncate_op)
606{
607 bool ret = false;
608
609 /*
610 * If folio is mapped, it was faulted in after being
611 * unmapped in caller. Unmap (again) while holding
612 * the fault mutex. The mutex will prevent faults
613 * until we finish removing the folio.
614 */
378397cc
MK
615 if (unlikely(folio_mapped(folio)))
616 hugetlb_unmap_file_folio(h, mapping, folio, index);
c8627228
MK
617
618 folio_lock(folio);
619 /*
fa27759a
MK
620 * We must remove the folio from page cache before removing
621 * the region/ reserve map (hugetlb_unreserve_pages). In
622 * rare out of memory conditions, removal of the region/reserve
623 * map could fail. Correspondingly, the subpool and global
624 * reserve usage count can need to be adjusted.
c8627228 625 */
ece62684
SK
626 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
627 hugetlb_delete_from_page_cache(folio);
fa27759a
MK
628 ret = true;
629 if (!truncate_op) {
630 if (unlikely(hugetlb_unreserve_pages(inode, index,
631 index + 1, 1)))
632 hugetlb_fix_reserve_counts(inode);
c8627228
MK
633 }
634
635 folio_unlock(folio);
636 return ret;
637}
638
b5cec28d
MK
639/*
640 * remove_inode_hugepages handles two distinct cases: truncation and hole
641 * punch. There are subtle differences in operation for each case.
4aae8d1c 642 *
b5cec28d
MK
643 * truncation is indicated by end of range being LLONG_MAX
644 * In this case, we first scan the range and release found pages.
1935ebd3 645 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
c8627228
MK
646 * maps and global counts. Page faults can race with truncation.
647 * During faults, hugetlb_no_page() checks i_size before page allocation,
648 * and again after obtaining page table lock. It will 'back out'
649 * allocations in the truncated range.
b5cec28d
MK
650 * hole punch is indicated if end is not LLONG_MAX
651 * In the hole punch case we scan the range and release found pages.
1935ebd3
ML
652 * Only when releasing a page is the associated region/reserve map
653 * deleted. The region/reserve map for ranges without associated
e7c58097
MK
654 * pages are not modified. Page faults can race with hole punch.
655 * This is indicated if we find a mapped page.
b5cec28d
MK
656 * Note: If the passed end of range value is beyond the end of file, but
657 * not LLONG_MAX this routine still performs a hole punch operation.
658 */
659static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
660 loff_t lend)
1da177e4 661{
a5516438 662 struct hstate *h = hstate_inode(inode);
b45b5bd6 663 struct address_space *mapping = &inode->i_data;
a5516438 664 const pgoff_t start = lstart >> huge_page_shift(h);
b5cec28d 665 const pgoff_t end = lend >> huge_page_shift(h);
1508062e 666 struct folio_batch fbatch;
d72dc8a2 667 pgoff_t next, index;
a43a8c39 668 int i, freed = 0;
b5cec28d 669 bool truncate_op = (lend == LLONG_MAX);
1da177e4 670
1508062e 671 folio_batch_init(&fbatch);
1da177e4 672 next = start;
1508062e
MWO
673 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
674 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
675 struct folio *folio = fbatch.folios[i];
d4241a04 676 u32 hash = 0;
b5cec28d 677
1508062e 678 index = folio->index;
188a3972
MK
679 hash = hugetlb_fault_mutex_hash(mapping, index);
680 mutex_lock(&hugetlb_fault_mutex_table[hash]);
e7c58097 681
4aae8d1c 682 /*
c8627228 683 * Remove folio that was part of folio_batch.
4aae8d1c 684 */
c8627228
MK
685 if (remove_inode_single_folio(h, inode, mapping, folio,
686 index, truncate_op))
687 freed++;
688
188a3972 689 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
1da177e4 690 }
1508062e 691 folio_batch_release(&fbatch);
1817889e 692 cond_resched();
1da177e4 693 }
b5cec28d
MK
694
695 if (truncate_op)
696 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
1da177e4
LT
697}
698
2bbbda30 699static void hugetlbfs_evict_inode(struct inode *inode)
1da177e4 700{
9119a41e
JK
701 struct resv_map *resv_map;
702
b5cec28d 703 remove_inode_hugepages(inode, 0, LLONG_MAX);
f27a5136
MK
704
705 /*
706 * Get the resv_map from the address space embedded in the inode.
707 * This is the address space which points to any resv_map allocated
708 * at inode creation time. If this is a device special inode,
709 * i_mapping may not point to the original address space.
710 */
711 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
712 /* Only regular and link inodes have associated reserve maps */
9119a41e
JK
713 if (resv_map)
714 resv_map_release(&resv_map->refs);
dbd5768f 715 clear_inode(inode);
149f4211
CH
716}
717
e5d319de 718static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
1da177e4 719{
856fc295 720 pgoff_t pgoff;
1da177e4 721 struct address_space *mapping = inode->i_mapping;
a5516438 722 struct hstate *h = hstate_inode(inode);
1da177e4 723
a5516438 724 BUG_ON(offset & ~huge_page_mask(h));
856fc295 725 pgoff = offset >> PAGE_SHIFT;
1da177e4 726
87bf91d3 727 i_size_write(inode, offset);
188a3972 728 i_mmap_lock_write(mapping);
f808c13f 729 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
05e90bd0
PX
730 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
731 ZAP_FLAG_DROP_MARKER);
c86aa7bb 732 i_mmap_unlock_write(mapping);
e7c58097 733 remove_inode_hugepages(inode, offset, LLONG_MAX);
1da177e4
LT
734}
735
68d32527
MK
736static void hugetlbfs_zero_partial_page(struct hstate *h,
737 struct address_space *mapping,
738 loff_t start,
739 loff_t end)
740{
741 pgoff_t idx = start >> huge_page_shift(h);
742 struct folio *folio;
743
744 folio = filemap_lock_folio(mapping, idx);
66dabbb6 745 if (IS_ERR(folio))
68d32527
MK
746 return;
747
748 start = start & ~huge_page_mask(h);
749 end = end & ~huge_page_mask(h);
750 if (!end)
751 end = huge_page_size(h);
752
753 folio_zero_segment(folio, (size_t)start, (size_t)end);
754
755 folio_unlock(folio);
756 folio_put(folio);
757}
758
70c3547e
MK
759static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
760{
68d32527
MK
761 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
762 struct address_space *mapping = inode->i_mapping;
70c3547e
MK
763 struct hstate *h = hstate_inode(inode);
764 loff_t hpage_size = huge_page_size(h);
765 loff_t hole_start, hole_end;
766
767 /*
68d32527 768 * hole_start and hole_end indicate the full pages within the hole.
70c3547e
MK
769 */
770 hole_start = round_up(offset, hpage_size);
771 hole_end = round_down(offset + len, hpage_size);
772
68d32527
MK
773 inode_lock(inode);
774
775 /* protected by i_rwsem */
776 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
777 inode_unlock(inode);
778 return -EPERM;
779 }
70c3547e 780
68d32527 781 i_mmap_lock_write(mapping);
ff62a342 782
68d32527
MK
783 /* If range starts before first full page, zero partial page. */
784 if (offset < hole_start)
785 hugetlbfs_zero_partial_page(h, mapping,
786 offset, min(offset + len, hole_start));
ff62a342 787
68d32527
MK
788 /* Unmap users of full pages in the hole. */
789 if (hole_end > hole_start) {
f808c13f 790 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
70c3547e 791 hugetlb_vmdelete_list(&mapping->i_mmap,
05e90bd0
PX
792 hole_start >> PAGE_SHIFT,
793 hole_end >> PAGE_SHIFT, 0);
70c3547e
MK
794 }
795
68d32527
MK
796 /* If range extends beyond last full page, zero partial page. */
797 if ((offset + len) > hole_end && (offset + len) > hole_start)
798 hugetlbfs_zero_partial_page(h, mapping,
799 hole_end, offset + len);
800
801 i_mmap_unlock_write(mapping);
802
803 /* Remove full pages from the file. */
804 if (hole_end > hole_start)
805 remove_inode_hugepages(inode, hole_start, hole_end);
806
807 inode_unlock(inode);
808
70c3547e
MK
809 return 0;
810}
811
812static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
813 loff_t len)
814{
815 struct inode *inode = file_inode(file);
ff62a342 816 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
70c3547e
MK
817 struct address_space *mapping = inode->i_mapping;
818 struct hstate *h = hstate_inode(inode);
819 struct vm_area_struct pseudo_vma;
820 struct mm_struct *mm = current->mm;
821 loff_t hpage_size = huge_page_size(h);
822 unsigned long hpage_shift = huge_page_shift(h);
823 pgoff_t start, index, end;
824 int error;
825 u32 hash;
826
827 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
828 return -EOPNOTSUPP;
829
830 if (mode & FALLOC_FL_PUNCH_HOLE)
831 return hugetlbfs_punch_hole(inode, offset, len);
832
833 /*
834 * Default preallocate case.
835 * For this range, start is rounded down and end is rounded up
836 * as well as being converted to page offsets.
837 */
838 start = offset >> hpage_shift;
839 end = (offset + len + hpage_size - 1) >> hpage_shift;
840
5955102c 841 inode_lock(inode);
70c3547e
MK
842
843 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
844 error = inode_newsize_ok(inode, offset + len);
845 if (error)
846 goto out;
847
ff62a342
MAL
848 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
849 error = -EPERM;
850 goto out;
851 }
852
70c3547e
MK
853 /*
854 * Initialize a pseudo vma as this is required by the huge page
855 * allocation routines. If NUMA is configured, use page index
856 * as input to create an allocation policy.
857 */
2c4541e2 858 vma_init(&pseudo_vma, mm);
1c71222e 859 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
70c3547e
MK
860 pseudo_vma.vm_file = file;
861
862 for (index = start; index < end; index++) {
863 /*
864 * This is supposed to be the vaddr where the page is being
865 * faulted in, but we have no vaddr here.
866 */
d0ce0e47 867 struct folio *folio;
70c3547e 868 unsigned long addr;
70c3547e
MK
869
870 cond_resched();
871
872 /*
873 * fallocate(2) manpage permits EINTR; we may have been
874 * interrupted because we are using up too much memory.
875 */
876 if (signal_pending(current)) {
877 error = -EINTR;
878 break;
879 }
880
70c3547e
MK
881 /* addr is the offset within the file (zero based) */
882 addr = index * hpage_size;
883
188a3972 884 /* mutex taken here, fault path and hole punch */
188b04a7 885 hash = hugetlb_fault_mutex_hash(mapping, index);
70c3547e
MK
886 mutex_lock(&hugetlb_fault_mutex_table[hash]);
887
888 /* See if already present in mapping to avoid alloc/free */
fd4aed8d
MK
889 folio = filemap_get_folio(mapping, index);
890 if (!IS_ERR(folio)) {
891 folio_put(folio);
70c3547e 892 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
70c3547e
MK
893 continue;
894 }
895
88ce3fef 896 /*
d0ce0e47 897 * Allocate folio without setting the avoid_reserve argument.
88ce3fef
ML
898 * There certainly are no reserves associated with the
899 * pseudo_vma. However, there could be shared mappings with
900 * reserves for the file at the inode level. If we fallocate
d0ce0e47 901 * folios in these areas, we need to consume the reserves
88ce3fef
ML
902 * to keep reservation accounting consistent.
903 */
adef0803 904 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
d0ce0e47 905 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
70c3547e 906 hugetlb_drop_vma_policy(&pseudo_vma);
d0ce0e47 907 if (IS_ERR(folio)) {
70c3547e 908 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
d0ce0e47 909 error = PTR_ERR(folio);
70c3547e
MK
910 goto out;
911 }
d0ce0e47
SK
912 clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
913 __folio_mark_uptodate(folio);
9b91c0e2 914 error = hugetlb_add_to_page_cache(folio, mapping, index);
70c3547e 915 if (unlikely(error)) {
d2d7bb44 916 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
d0ce0e47 917 folio_put(folio);
70c3547e
MK
918 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
919 goto out;
920 }
921
922 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
923
d0ce0e47 924 folio_set_hugetlb_migratable(folio);
70c3547e 925 /*
d0ce0e47
SK
926 * folio_unlock because locked by hugetlb_add_to_page_cache()
927 * folio_put() due to reference from alloc_hugetlb_folio()
70c3547e 928 */
d0ce0e47
SK
929 folio_unlock(folio);
930 folio_put(folio);
70c3547e
MK
931 }
932
933 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
934 i_size_write(inode, offset + len);
a72a7dea 935 inode_set_ctime_current(inode);
70c3547e 936out:
5955102c 937 inode_unlock(inode);
70c3547e
MK
938 return error;
939}
940
c1632a0f 941static int hugetlbfs_setattr(struct mnt_idmap *idmap,
549c7297 942 struct dentry *dentry, struct iattr *attr)
1da177e4 943{
2b0143b5 944 struct inode *inode = d_inode(dentry);
a5516438 945 struct hstate *h = hstate_inode(inode);
1da177e4
LT
946 int error;
947 unsigned int ia_valid = attr->ia_valid;
ff62a342 948 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1da177e4 949
c1632a0f 950 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1da177e4 951 if (error)
1025774c 952 return error;
1da177e4
LT
953
954 if (ia_valid & ATTR_SIZE) {
ff62a342
MAL
955 loff_t oldsize = inode->i_size;
956 loff_t newsize = attr->ia_size;
957
958 if (newsize & ~huge_page_mask(h))
1025774c 959 return -EINVAL;
398c0da7 960 /* protected by i_rwsem */
ff62a342
MAL
961 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
962 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
963 return -EPERM;
e5d319de 964 hugetlb_vmtruncate(inode, newsize);
1da177e4 965 }
1025774c 966
c1632a0f 967 setattr_copy(&nop_mnt_idmap, inode, attr);
1025774c
CH
968 mark_inode_dirty(inode);
969 return 0;
1da177e4
LT
970}
971
7d54fa64 972static struct inode *hugetlbfs_get_root(struct super_block *sb,
32021982 973 struct hugetlbfs_fs_context *ctx)
1da177e4
LT
974{
975 struct inode *inode;
1da177e4
LT
976
977 inode = new_inode(sb);
978 if (inode) {
85fe4025 979 inode->i_ino = get_next_ino();
32021982
DH
980 inode->i_mode = S_IFDIR | ctx->mode;
981 inode->i_uid = ctx->uid;
982 inode->i_gid = ctx->gid;
a72a7dea 983 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
7d54fa64
AV
984 inode->i_op = &hugetlbfs_dir_inode_operations;
985 inode->i_fop = &simple_dir_operations;
986 /* directory inodes start off with i_nlink == 2 (for "." entry) */
987 inc_nlink(inode);
65ed7601 988 lockdep_annotate_inode_mutex_key(inode);
7d54fa64
AV
989 }
990 return inode;
991}
992
b610ded7 993/*
c8c06efa 994 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
b610ded7 995 * be taken from reclaim -- unlike regular filesystems. This needs an
88f306b6 996 * annotation because huge_pmd_share() does an allocation under hugetlb's
c8c06efa 997 * i_mmap_rwsem.
b610ded7 998 */
c8c06efa 999static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
b610ded7 1000
7d54fa64
AV
1001static struct inode *hugetlbfs_get_inode(struct super_block *sb,
1002 struct inode *dir,
18df2252 1003 umode_t mode, dev_t dev)
7d54fa64
AV
1004{
1005 struct inode *inode;
58b6e5e8 1006 struct resv_map *resv_map = NULL;
9119a41e 1007
58b6e5e8
MK
1008 /*
1009 * Reserve maps are only needed for inodes that can have associated
1010 * page allocations.
1011 */
1012 if (S_ISREG(mode) || S_ISLNK(mode)) {
1013 resv_map = resv_map_alloc();
1014 if (!resv_map)
1015 return NULL;
1016 }
7d54fa64
AV
1017
1018 inode = new_inode(sb);
1019 if (inode) {
ff62a342
MAL
1020 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1021
7d54fa64 1022 inode->i_ino = get_next_ino();
f2d40141 1023 inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
c8c06efa
DB
1024 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1025 &hugetlbfs_i_mmap_rwsem_key);
1da177e4 1026 inode->i_mapping->a_ops = &hugetlbfs_aops;
a72a7dea 1027 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
9119a41e 1028 inode->i_mapping->private_data = resv_map;
ff62a342 1029 info->seals = F_SEAL_SEAL;
1da177e4
LT
1030 switch (mode & S_IFMT) {
1031 default:
1032 init_special_inode(inode, mode, dev);
1033 break;
1034 case S_IFREG:
1035 inode->i_op = &hugetlbfs_inode_operations;
1036 inode->i_fop = &hugetlbfs_file_operations;
1037 break;
1038 case S_IFDIR:
1039 inode->i_op = &hugetlbfs_dir_inode_operations;
1040 inode->i_fop = &simple_dir_operations;
1041
1042 /* directory inodes start off with i_nlink == 2 (for "." entry) */
d8c76e6f 1043 inc_nlink(inode);
1da177e4
LT
1044 break;
1045 case S_IFLNK:
1046 inode->i_op = &page_symlink_inode_operations;
21fc61c7 1047 inode_nohighmem(inode);
1da177e4
LT
1048 break;
1049 }
e096d0c7 1050 lockdep_annotate_inode_mutex_key(inode);
58b6e5e8
MK
1051 } else {
1052 if (resv_map)
1053 kref_put(&resv_map->refs, resv_map_release);
1054 }
9119a41e 1055
1da177e4
LT
1056 return inode;
1057}
1058
1059/*
1060 * File creation. Allocate an inode, and we're done..
1061 */
5ebb29be 1062static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
19ee5345 1063 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4
LT
1064{
1065 struct inode *inode;
7d54fa64
AV
1066
1067 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
19ee5345
AV
1068 if (!inode)
1069 return -ENOSPC;
a72a7dea 1070 dir->i_mtime = inode_set_ctime_current(dir);
19ee5345
AV
1071 d_instantiate(dentry, inode);
1072 dget(dentry);/* Extra count - pin the dentry in core */
1073 return 0;
1ab5b82f
PS
1074}
1075
c54bd91e 1076static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
549c7297 1077 struct dentry *dentry, umode_t mode)
1da177e4 1078{
5ebb29be 1079 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
549c7297 1080 mode | S_IFDIR, 0);
1da177e4 1081 if (!retval)
d8c76e6f 1082 inc_nlink(dir);
1da177e4
LT
1083 return retval;
1084}
1085
6c960e68 1086static int hugetlbfs_create(struct mnt_idmap *idmap,
549c7297
CB
1087 struct inode *dir, struct dentry *dentry,
1088 umode_t mode, bool excl)
1da177e4 1089{
5ebb29be 1090 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
1091}
1092
011e2b71 1093static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
863f144f 1094 struct inode *dir, struct file *file,
549c7297 1095 umode_t mode)
1ab5b82f 1096{
19ee5345
AV
1097 struct inode *inode;
1098
1099 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1100 if (!inode)
1101 return -ENOSPC;
a72a7dea 1102 dir->i_mtime = inode_set_ctime_current(dir);
863f144f
MS
1103 d_tmpfile(file, inode);
1104 return finish_open_simple(file, 0);
1ab5b82f
PS
1105}
1106
7a77db95 1107static int hugetlbfs_symlink(struct mnt_idmap *idmap,
549c7297
CB
1108 struct inode *dir, struct dentry *dentry,
1109 const char *symname)
1da177e4
LT
1110{
1111 struct inode *inode;
1112 int error = -ENOSPC;
1da177e4 1113
7d54fa64 1114 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1da177e4
LT
1115 if (inode) {
1116 int l = strlen(symname)+1;
1117 error = page_symlink(inode, symname, l);
1118 if (!error) {
1119 d_instantiate(dentry, inode);
1120 dget(dentry);
1121 } else
1122 iput(inode);
1123 }
a72a7dea 1124 dir->i_mtime = inode_set_ctime_current(dir);
1da177e4
LT
1125
1126 return error;
1127}
1128
b890ec2a
MWO
1129#ifdef CONFIG_MIGRATION
1130static int hugetlbfs_migrate_folio(struct address_space *mapping,
1131 struct folio *dst, struct folio *src,
a6bc32b8 1132 enum migrate_mode mode)
290408d4
NH
1133{
1134 int rc;
1135
b890ec2a 1136 rc = migrate_huge_page_move_mapping(mapping, dst, src);
78bd5209 1137 if (rc != MIGRATEPAGE_SUCCESS)
290408d4 1138 return rc;
cb6acd01 1139
149562f7
SK
1140 if (hugetlb_folio_subpool(src)) {
1141 hugetlb_set_folio_subpool(dst,
1142 hugetlb_folio_subpool(src));
1143 hugetlb_set_folio_subpool(src, NULL);
cb6acd01
MK
1144 }
1145
2916ecc0 1146 if (mode != MIGRATE_SYNC_NO_COPY)
b890ec2a 1147 folio_migrate_copy(dst, src);
2916ecc0 1148 else
b890ec2a 1149 folio_migrate_flags(dst, src);
290408d4 1150
78bd5209 1151 return MIGRATEPAGE_SUCCESS;
290408d4 1152}
b890ec2a
MWO
1153#else
1154#define hugetlbfs_migrate_folio NULL
1155#endif
290408d4 1156
78bb9203
NH
1157static int hugetlbfs_error_remove_page(struct address_space *mapping,
1158 struct page *page)
1159{
78bb9203
NH
1160 return 0;
1161}
1162
4a25220d
DH
1163/*
1164 * Display the mount options in /proc/mounts.
1165 */
1166static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1167{
1168 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1169 struct hugepage_subpool *spool = sbinfo->spool;
1170 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1171 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1172 char mod;
1173
1174 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1175 seq_printf(m, ",uid=%u",
1176 from_kuid_munged(&init_user_ns, sbinfo->uid));
1177 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1178 seq_printf(m, ",gid=%u",
1179 from_kgid_munged(&init_user_ns, sbinfo->gid));
1180 if (sbinfo->mode != 0755)
1181 seq_printf(m, ",mode=%o", sbinfo->mode);
1182 if (sbinfo->max_inodes != -1)
1183 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1184
1185 hpage_size /= 1024;
1186 mod = 'K';
1187 if (hpage_size >= 1024) {
1188 hpage_size /= 1024;
1189 mod = 'M';
1190 }
1191 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1192 if (spool) {
1193 if (spool->max_hpages != -1)
1194 seq_printf(m, ",size=%llu",
1195 (unsigned long long)spool->max_hpages << hpage_shift);
1196 if (spool->min_hpages != -1)
1197 seq_printf(m, ",min_size=%llu",
1198 (unsigned long long)spool->min_hpages << hpage_shift);
1199 }
1200 return 0;
1201}
1202
726c3342 1203static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1204{
726c3342 1205 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
2b0143b5 1206 struct hstate *h = hstate_inode(d_inode(dentry));
1da177e4
LT
1207
1208 buf->f_type = HUGETLBFS_MAGIC;
a5516438 1209 buf->f_bsize = huge_page_size(h);
1da177e4
LT
1210 if (sbinfo) {
1211 spin_lock(&sbinfo->stat_lock);
11680763 1212 /* If no limits set, just report 0 or -1 for max/free/used
74a8a65c 1213 * blocks, like simple_statfs() */
90481622
DG
1214 if (sbinfo->spool) {
1215 long free_pages;
1216
4b25f030 1217 spin_lock_irq(&sbinfo->spool->lock);
90481622
DG
1218 buf->f_blocks = sbinfo->spool->max_hpages;
1219 free_pages = sbinfo->spool->max_hpages
1220 - sbinfo->spool->used_hpages;
1221 buf->f_bavail = buf->f_bfree = free_pages;
4b25f030 1222 spin_unlock_irq(&sbinfo->spool->lock);
74a8a65c
DG
1223 buf->f_files = sbinfo->max_inodes;
1224 buf->f_ffree = sbinfo->free_inodes;
1225 }
1da177e4
LT
1226 spin_unlock(&sbinfo->stat_lock);
1227 }
1228 buf->f_namelen = NAME_MAX;
1229 return 0;
1230}
1231
1232static void hugetlbfs_put_super(struct super_block *sb)
1233{
1234 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1235
1236 if (sbi) {
1237 sb->s_fs_info = NULL;
90481622
DG
1238
1239 if (sbi->spool)
1240 hugepage_put_subpool(sbi->spool);
1241
1da177e4
LT
1242 kfree(sbi);
1243 }
1244}
1245
96527980
CH
1246static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1247{
1248 if (sbinfo->free_inodes >= 0) {
1249 spin_lock(&sbinfo->stat_lock);
1250 if (unlikely(!sbinfo->free_inodes)) {
1251 spin_unlock(&sbinfo->stat_lock);
1252 return 0;
1253 }
1254 sbinfo->free_inodes--;
1255 spin_unlock(&sbinfo->stat_lock);
1256 }
1257
1258 return 1;
1259}
1260
1261static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1262{
1263 if (sbinfo->free_inodes >= 0) {
1264 spin_lock(&sbinfo->stat_lock);
1265 sbinfo->free_inodes++;
1266 spin_unlock(&sbinfo->stat_lock);
1267 }
1268}
1269
1270
e18b890b 1271static struct kmem_cache *hugetlbfs_inode_cachep;
1da177e4
LT
1272
1273static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1274{
96527980 1275 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1da177e4
LT
1276 struct hugetlbfs_inode_info *p;
1277
96527980
CH
1278 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1279 return NULL;
fd60b288 1280 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
96527980
CH
1281 if (unlikely(!p)) {
1282 hugetlbfs_inc_free_inodes(sbinfo);
1da177e4 1283 return NULL;
96527980 1284 }
4742a35d
MK
1285
1286 /*
1287 * Any time after allocation, hugetlbfs_destroy_inode can be called
1288 * for the inode. mpol_free_shared_policy is unconditionally called
1289 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1290 * in case of a quick call to destroy.
1291 *
1292 * Note that the policy is initialized even if we are creating a
1293 * private inode. This simplifies hugetlbfs_destroy_inode.
1294 */
1295 mpol_shared_policy_init(&p->policy, NULL);
1296
1da177e4
LT
1297 return &p->vfs_inode;
1298}
1299
b62de322 1300static void hugetlbfs_free_inode(struct inode *inode)
fa0d7e3d 1301{
fa0d7e3d
NP
1302 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1303}
1304
1da177e4
LT
1305static void hugetlbfs_destroy_inode(struct inode *inode)
1306{
96527980 1307 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1da177e4 1308 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1da177e4
LT
1309}
1310
f5e54d6e 1311static const struct address_space_operations hugetlbfs_aops = {
800d15a5
NP
1312 .write_begin = hugetlbfs_write_begin,
1313 .write_end = hugetlbfs_write_end,
46de8b97 1314 .dirty_folio = noop_dirty_folio,
b890ec2a 1315 .migrate_folio = hugetlbfs_migrate_folio,
78bb9203 1316 .error_remove_page = hugetlbfs_error_remove_page,
1da177e4
LT
1317};
1318
96527980 1319
51cc5068 1320static void init_once(void *foo)
96527980 1321{
dbaf7dc9 1322 struct hugetlbfs_inode_info *ei = foo;
96527980 1323
a35afb83 1324 inode_init_once(&ei->vfs_inode);
96527980
CH
1325}
1326
4b6f5d20 1327const struct file_operations hugetlbfs_file_operations = {
34d0640e 1328 .read_iter = hugetlbfs_read_iter,
1da177e4 1329 .mmap = hugetlbfs_file_mmap,
1b061d92 1330 .fsync = noop_fsync,
1da177e4 1331 .get_unmapped_area = hugetlb_get_unmapped_area,
70c3547e
MK
1332 .llseek = default_llseek,
1333 .fallocate = hugetlbfs_fallocate,
1da177e4
LT
1334};
1335
92e1d5be 1336static const struct inode_operations hugetlbfs_dir_inode_operations = {
1da177e4
LT
1337 .create = hugetlbfs_create,
1338 .lookup = simple_lookup,
1339 .link = simple_link,
1340 .unlink = simple_unlink,
1341 .symlink = hugetlbfs_symlink,
1342 .mkdir = hugetlbfs_mkdir,
1343 .rmdir = simple_rmdir,
1344 .mknod = hugetlbfs_mknod,
1345 .rename = simple_rename,
1346 .setattr = hugetlbfs_setattr,
1ab5b82f 1347 .tmpfile = hugetlbfs_tmpfile,
1da177e4
LT
1348};
1349
92e1d5be 1350static const struct inode_operations hugetlbfs_inode_operations = {
1da177e4
LT
1351 .setattr = hugetlbfs_setattr,
1352};
1353
ee9b6d61 1354static const struct super_operations hugetlbfs_ops = {
1da177e4 1355 .alloc_inode = hugetlbfs_alloc_inode,
b62de322 1356 .free_inode = hugetlbfs_free_inode,
1da177e4 1357 .destroy_inode = hugetlbfs_destroy_inode,
2bbbda30 1358 .evict_inode = hugetlbfs_evict_inode,
1da177e4 1359 .statfs = hugetlbfs_statfs,
1da177e4 1360 .put_super = hugetlbfs_put_super,
4a25220d 1361 .show_options = hugetlbfs_show_options,
1da177e4
LT
1362};
1363
7ca02d0a
MK
1364/*
1365 * Convert size option passed from command line to number of huge pages
1366 * in the pool specified by hstate. Size option could be in bytes
1367 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1368 */
4a25220d 1369static long
7ca02d0a 1370hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
4a25220d 1371 enum hugetlbfs_size_type val_type)
7ca02d0a
MK
1372{
1373 if (val_type == NO_SIZE)
1374 return -1;
1375
1376 if (val_type == SIZE_PERCENT) {
1377 size_opt <<= huge_page_shift(h);
1378 size_opt *= h->max_huge_pages;
1379 do_div(size_opt, 100);
1380 }
1381
1382 size_opt >>= huge_page_shift(h);
1383 return size_opt;
1384}
1385
32021982
DH
1386/*
1387 * Parse one mount parameter.
1388 */
1389static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1da177e4 1390{
32021982
DH
1391 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1392 struct fs_parse_result result;
1393 char *rest;
1394 unsigned long ps;
1395 int opt;
1396
d7167b14 1397 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
32021982
DH
1398 if (opt < 0)
1399 return opt;
1400
1401 switch (opt) {
1402 case Opt_uid:
1403 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1404 if (!uid_valid(ctx->uid))
1405 goto bad_val;
1da177e4 1406 return 0;
1da177e4 1407
32021982
DH
1408 case Opt_gid:
1409 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1410 if (!gid_valid(ctx->gid))
1411 goto bad_val;
1412 return 0;
e73a75fa 1413
32021982
DH
1414 case Opt_mode:
1415 ctx->mode = result.uint_32 & 01777U;
1416 return 0;
e73a75fa 1417
32021982
DH
1418 case Opt_size:
1419 /* memparse() will accept a K/M/G without a digit */
26215b7e 1420 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1421 goto bad_val;
1422 ctx->max_size_opt = memparse(param->string, &rest);
1423 ctx->max_val_type = SIZE_STD;
1424 if (*rest == '%')
1425 ctx->max_val_type = SIZE_PERCENT;
1426 return 0;
e73a75fa 1427
32021982
DH
1428 case Opt_nr_inodes:
1429 /* memparse() will accept a K/M/G without a digit */
26215b7e 1430 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1431 goto bad_val;
1432 ctx->nr_inodes = memparse(param->string, &rest);
1433 return 0;
e73a75fa 1434
32021982
DH
1435 case Opt_pagesize:
1436 ps = memparse(param->string, &rest);
1437 ctx->hstate = size_to_hstate(ps);
1438 if (!ctx->hstate) {
d0036517 1439 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
32021982 1440 return -EINVAL;
e73a75fa 1441 }
32021982 1442 return 0;
1da177e4 1443
32021982
DH
1444 case Opt_min_size:
1445 /* memparse() will accept a K/M/G without a digit */
26215b7e 1446 if (!param->string || !isdigit(param->string[0]))
32021982
DH
1447 goto bad_val;
1448 ctx->min_size_opt = memparse(param->string, &rest);
1449 ctx->min_val_type = SIZE_STD;
1450 if (*rest == '%')
1451 ctx->min_val_type = SIZE_PERCENT;
1452 return 0;
e73a75fa 1453
32021982
DH
1454 default:
1455 return -EINVAL;
1456 }
a137e1cc 1457
32021982 1458bad_val:
b5db30cf 1459 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
32021982
DH
1460 param->string, param->key);
1461}
7ca02d0a 1462
32021982
DH
1463/*
1464 * Validate the parsed options.
1465 */
1466static int hugetlbfs_validate(struct fs_context *fc)
1467{
1468 struct hugetlbfs_fs_context *ctx = fc->fs_private;
a137e1cc 1469
7ca02d0a
MK
1470 /*
1471 * Use huge page pool size (in hstate) to convert the size
1472 * options to number of huge pages. If NO_SIZE, -1 is returned.
1473 */
32021982
DH
1474 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1475 ctx->max_size_opt,
1476 ctx->max_val_type);
1477 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1478 ctx->min_size_opt,
1479 ctx->min_val_type);
7ca02d0a
MK
1480
1481 /*
1482 * If max_size was specified, then min_size must be smaller
1483 */
32021982
DH
1484 if (ctx->max_val_type > NO_SIZE &&
1485 ctx->min_hpages > ctx->max_hpages) {
1486 pr_err("Minimum size can not be greater than maximum size\n");
7ca02d0a 1487 return -EINVAL;
a137e1cc
AK
1488 }
1489
1da177e4
LT
1490 return 0;
1491}
1492
1493static int
32021982 1494hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 1495{
32021982 1496 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1da177e4
LT
1497 struct hugetlbfs_sb_info *sbinfo;
1498
1da177e4
LT
1499 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1500 if (!sbinfo)
1501 return -ENOMEM;
1502 sb->s_fs_info = sbinfo;
1503 spin_lock_init(&sbinfo->stat_lock);
32021982
DH
1504 sbinfo->hstate = ctx->hstate;
1505 sbinfo->max_inodes = ctx->nr_inodes;
1506 sbinfo->free_inodes = ctx->nr_inodes;
1507 sbinfo->spool = NULL;
1508 sbinfo->uid = ctx->uid;
1509 sbinfo->gid = ctx->gid;
1510 sbinfo->mode = ctx->mode;
4a25220d 1511
7ca02d0a
MK
1512 /*
1513 * Allocate and initialize subpool if maximum or minimum size is
1935ebd3 1514 * specified. Any needed reservations (for minimum size) are taken
445c8098 1515 * when the subpool is created.
7ca02d0a 1516 */
32021982
DH
1517 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1518 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1519 ctx->max_hpages,
1520 ctx->min_hpages);
90481622
DG
1521 if (!sbinfo->spool)
1522 goto out_free;
1523 }
1da177e4 1524 sb->s_maxbytes = MAX_LFS_FILESIZE;
32021982
DH
1525 sb->s_blocksize = huge_page_size(ctx->hstate);
1526 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1da177e4
LT
1527 sb->s_magic = HUGETLBFS_MAGIC;
1528 sb->s_op = &hugetlbfs_ops;
1529 sb->s_time_gran = 1;
15568299
MK
1530
1531 /*
1532 * Due to the special and limited functionality of hugetlbfs, it does
1533 * not work well as a stacking filesystem.
1534 */
1535 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
32021982 1536 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
48fde701 1537 if (!sb->s_root)
1da177e4 1538 goto out_free;
1da177e4
LT
1539 return 0;
1540out_free:
6e6870d4 1541 kfree(sbinfo->spool);
1da177e4
LT
1542 kfree(sbinfo);
1543 return -ENOMEM;
1544}
1545
32021982
DH
1546static int hugetlbfs_get_tree(struct fs_context *fc)
1547{
1548 int err = hugetlbfs_validate(fc);
1549 if (err)
1550 return err;
2ac295d4 1551 return get_tree_nodev(fc, hugetlbfs_fill_super);
32021982
DH
1552}
1553
1554static void hugetlbfs_fs_context_free(struct fs_context *fc)
1555{
1556 kfree(fc->fs_private);
1557}
1558
1559static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1560 .free = hugetlbfs_fs_context_free,
1561 .parse_param = hugetlbfs_parse_param,
1562 .get_tree = hugetlbfs_get_tree,
1563};
1564
1565static int hugetlbfs_init_fs_context(struct fs_context *fc)
1da177e4 1566{
32021982
DH
1567 struct hugetlbfs_fs_context *ctx;
1568
1569 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1570 if (!ctx)
1571 return -ENOMEM;
1572
1573 ctx->max_hpages = -1; /* No limit on size by default */
1574 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1575 ctx->uid = current_fsuid();
1576 ctx->gid = current_fsgid();
1577 ctx->mode = 0755;
1578 ctx->hstate = &default_hstate;
1579 ctx->min_hpages = -1; /* No default minimum size */
1580 ctx->max_val_type = NO_SIZE;
1581 ctx->min_val_type = NO_SIZE;
1582 fc->fs_private = ctx;
1583 fc->ops = &hugetlbfs_fs_context_ops;
1584 return 0;
1da177e4
LT
1585}
1586
1587static struct file_system_type hugetlbfs_fs_type = {
32021982
DH
1588 .name = "hugetlbfs",
1589 .init_fs_context = hugetlbfs_init_fs_context,
d7167b14 1590 .parameters = hugetlb_fs_parameters,
32021982 1591 .kill_sb = kill_litter_super,
1da177e4
LT
1592};
1593
42d7395f 1594static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1da177e4 1595
ef1ff6b8 1596static int can_do_hugetlb_shm(void)
1da177e4 1597{
a0eb3a05
EB
1598 kgid_t shm_group;
1599 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1600 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1da177e4
LT
1601}
1602
42d7395f
AK
1603static int get_hstate_idx(int page_size_log)
1604{
af73e4d9 1605 struct hstate *h = hstate_sizelog(page_size_log);
42d7395f 1606
42d7395f
AK
1607 if (!h)
1608 return -1;
04adbc3f 1609 return hstate_index(h);
42d7395f
AK
1610}
1611
af73e4d9
NH
1612/*
1613 * Note that size should be aligned to proper hugepage size in caller side,
1614 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1615 */
1616struct file *hugetlb_file_setup(const char *name, size_t size,
83c1fd76 1617 vm_flags_t acctflag, int creat_flags,
1618 int page_size_log)
1da177e4 1619{
1da177e4 1620 struct inode *inode;
e68375c8 1621 struct vfsmount *mnt;
42d7395f 1622 int hstate_idx;
e68375c8 1623 struct file *file;
42d7395f
AK
1624
1625 hstate_idx = get_hstate_idx(page_size_log);
1626 if (hstate_idx < 0)
1627 return ERR_PTR(-ENODEV);
1da177e4 1628
e68375c8
AV
1629 mnt = hugetlbfs_vfsmount[hstate_idx];
1630 if (!mnt)
5bc98594
AM
1631 return ERR_PTR(-ENOENT);
1632
ef1ff6b8 1633 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
83c1fd76 1634 struct ucounts *ucounts = current_ucounts();
1635
1636 if (user_shm_lock(size, ucounts)) {
1637 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
21a3c273 1638 current->comm, current->pid);
83c1fd76 1639 user_shm_unlock(size, ucounts);
353d5c30 1640 }
83c1fd76 1641 return ERR_PTR(-EPERM);
2584e517 1642 }
1da177e4 1643
39b65252 1644 file = ERR_PTR(-ENOSPC);
e68375c8 1645 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1da177e4 1646 if (!inode)
e68375c8 1647 goto out;
e1832f29
SS
1648 if (creat_flags == HUGETLB_SHMFS_INODE)
1649 inode->i_flags |= S_PRIVATE;
1da177e4 1650
1da177e4 1651 inode->i_size = size;
6d6b77f1 1652 clear_nlink(inode);
ce8d2cdf 1653
33b8f84a 1654 if (!hugetlb_reserve_pages(inode, 0,
e68375c8
AV
1655 size >> huge_page_shift(hstate_inode(inode)), NULL,
1656 acctflag))
1657 file = ERR_PTR(-ENOMEM);
1658 else
1659 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1660 &hugetlbfs_file_operations);
1661 if (!IS_ERR(file))
1662 return file;
1da177e4 1663
b45b5bd6 1664 iput(inode);
e68375c8 1665out:
39b65252 1666 return file;
1da177e4
LT
1667}
1668
32021982
DH
1669static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1670{
1671 struct fs_context *fc;
1672 struct vfsmount *mnt;
1673
1674 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1675 if (IS_ERR(fc)) {
1676 mnt = ERR_CAST(fc);
1677 } else {
1678 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1679 ctx->hstate = h;
1680 mnt = fc_mount(fc);
1681 put_fs_context(fc);
1682 }
1683 if (IS_ERR(mnt))
a25fddce 1684 pr_err("Cannot mount internal hugetlbfs for page size %luK",
d0036517 1685 huge_page_size(h) / SZ_1K);
32021982
DH
1686 return mnt;
1687}
1688
1da177e4
LT
1689static int __init init_hugetlbfs_fs(void)
1690{
32021982 1691 struct vfsmount *mnt;
42d7395f 1692 struct hstate *h;
1da177e4 1693 int error;
42d7395f 1694 int i;
1da177e4 1695
457c1b27 1696 if (!hugepages_supported()) {
9b857d26 1697 pr_info("disabling because there are no supported hugepage sizes\n");
457c1b27
NA
1698 return -ENOTSUPP;
1699 }
1700
d1d5e05f 1701 error = -ENOMEM;
1da177e4
LT
1702 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1703 sizeof(struct hugetlbfs_inode_info),
5d097056 1704 0, SLAB_ACCOUNT, init_once);
1da177e4 1705 if (hugetlbfs_inode_cachep == NULL)
8fc312b3 1706 goto out;
1da177e4
LT
1707
1708 error = register_filesystem(&hugetlbfs_fs_type);
1709 if (error)
8fc312b3 1710 goto out_free;
1da177e4 1711
8fc312b3 1712 /* default hstate mount is required */
3b2275a8 1713 mnt = mount_one_hugetlbfs(&default_hstate);
8fc312b3
MK
1714 if (IS_ERR(mnt)) {
1715 error = PTR_ERR(mnt);
1716 goto out_unreg;
1717 }
1718 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1719
1720 /* other hstates are optional */
42d7395f
AK
1721 i = 0;
1722 for_each_hstate(h) {
15f0ec94
JS
1723 if (i == default_hstate_idx) {
1724 i++;
8fc312b3 1725 continue;
15f0ec94 1726 }
8fc312b3 1727
32021982 1728 mnt = mount_one_hugetlbfs(h);
8fc312b3
MK
1729 if (IS_ERR(mnt))
1730 hugetlbfs_vfsmount[i] = NULL;
1731 else
1732 hugetlbfs_vfsmount[i] = mnt;
42d7395f
AK
1733 i++;
1734 }
32021982
DH
1735
1736 return 0;
1da177e4 1737
8fc312b3
MK
1738 out_unreg:
1739 (void)unregister_filesystem(&hugetlbfs_fs_type);
1740 out_free:
d1d5e05f 1741 kmem_cache_destroy(hugetlbfs_inode_cachep);
8fc312b3 1742 out:
1da177e4
LT
1743 return error;
1744}
3e89e1c5 1745fs_initcall(init_hugetlbfs_fs)