Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-block.git] / fs / gfs2 / lock_dlm.c
CommitLineData
f057f6cd
SW
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
e0c2a9aa 3 * Copyright 2004-2011 Red Hat, Inc.
f057f6cd
SW
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
d77d1b58
JP
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
f057f6cd
SW
12#include <linux/fs.h>
13#include <linux/dlm.h>
5a0e3ad6 14#include <linux/slab.h>
f057f6cd 15#include <linux/types.h>
e0c2a9aa 16#include <linux/delay.h>
f057f6cd 17#include <linux/gfs2_ondisk.h>
174cd4b1 18#include <linux/sched/signal.h>
f057f6cd
SW
19
20#include "incore.h"
21#include "glock.h"
22#include "util.h"
e0c2a9aa 23#include "sys.h"
a245769f 24#include "trace_gfs2.h"
f057f6cd 25
a245769f
SW
26/**
27 * gfs2_update_stats - Update time based stats
28 * @mv: Pointer to mean/variance structure to update
29 * @sample: New data to include
30 *
31 * @delta is the difference between the current rtt sample and the
32 * running average srtt. We add 1/8 of that to the srtt in order to
c9ea8c8b 33 * update the current srtt estimate. The variance estimate is a bit
a245769f
SW
34 * more complicated. We subtract the abs value of the @delta from
35 * the current variance estimate and add 1/4 of that to the running
36 * total.
37 *
38 * Note that the index points at the array entry containing the smoothed
39 * mean value, and the variance is always in the following entry
40 *
41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43 * they are not scaled fixed point.
44 */
45
46static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
47 s64 sample)
48{
49 s64 delta = sample - s->stats[index];
50 s->stats[index] += (delta >> 3);
51 index++;
79211c8e 52 s->stats[index] += ((abs(delta) - s->stats[index]) >> 2);
a245769f
SW
53}
54
55/**
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
58 *
59 * This assumes that gl->gl_dstamp has been set earlier.
60 *
61 * The rtt (lock round trip time) is an estimate of the time
62 * taken to perform a dlm lock request. We update it on each
63 * reply from the dlm.
64 *
65 * The blocking flag is set on the glock for all dlm requests
66 * which may potentially block due to lock requests from other nodes.
67 * DLM requests where the current lock state is exclusive, the
68 * requested state is null (or unlocked) or where the TRY or
69 * TRY_1CB flags are set are classified as non-blocking. All
70 * other DLM requests are counted as (potentially) blocking.
71 */
72static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
73{
74 struct gfs2_pcpu_lkstats *lks;
75 const unsigned gltype = gl->gl_name.ln_type;
76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
78 s64 rtt;
79
80 preempt_disable();
81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
15562c43 82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
a245769f
SW
83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
85 preempt_enable();
86
87 trace_gfs2_glock_lock_time(gl, rtt);
88}
89
90/**
91 * gfs2_update_request_times - Update locking statistics
92 * @gl: The glock to update
93 *
94 * The irt (lock inter-request times) measures the average time
95 * between requests to the dlm. It is updated immediately before
96 * each dlm call.
97 */
98
99static inline void gfs2_update_request_times(struct gfs2_glock *gl)
100{
101 struct gfs2_pcpu_lkstats *lks;
102 const unsigned gltype = gl->gl_name.ln_type;
103 ktime_t dstamp;
104 s64 irt;
105
106 preempt_disable();
107 dstamp = gl->gl_dstamp;
108 gl->gl_dstamp = ktime_get_real();
109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
15562c43 110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
a245769f
SW
111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
113 preempt_enable();
114}
115
f057f6cd
SW
116static void gdlm_ast(void *arg)
117{
118 struct gfs2_glock *gl = arg;
119 unsigned ret = gl->gl_state;
120
a245769f 121 gfs2_update_reply_times(gl);
f057f6cd
SW
122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
123
4e2f8849
DT
124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
f057f6cd
SW
126
127 switch (gl->gl_lksb.sb_status) {
128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
fc0e38da 129 gfs2_glock_free(gl);
f057f6cd
SW
130 return;
131 case -DLM_ECANCEL: /* Cancel while getting lock */
132 ret |= LM_OUT_CANCELED;
133 goto out;
134 case -EAGAIN: /* Try lock fails */
1fea7c25 135 case -EDEADLK: /* Deadlock detected */
f057f6cd 136 goto out;
1fea7c25 137 case -ETIMEDOUT: /* Canceled due to timeout */
f057f6cd
SW
138 ret |= LM_OUT_ERROR;
139 goto out;
140 case 0: /* Success */
141 break;
142 default: /* Something unexpected */
143 BUG();
144 }
145
02ffad08 146 ret = gl->gl_req;
f057f6cd 147 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
02ffad08 148 if (gl->gl_req == LM_ST_SHARED)
f057f6cd 149 ret = LM_ST_DEFERRED;
02ffad08 150 else if (gl->gl_req == LM_ST_DEFERRED)
f057f6cd
SW
151 ret = LM_ST_SHARED;
152 else
153 BUG();
154 }
155
156 set_bit(GLF_INITIAL, &gl->gl_flags);
157 gfs2_glock_complete(gl, ret);
158 return;
159out:
160 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
161 gl->gl_lksb.sb_lkid = 0;
162 gfs2_glock_complete(gl, ret);
163}
164
165static void gdlm_bast(void *arg, int mode)
166{
167 struct gfs2_glock *gl = arg;
168
169 switch (mode) {
170 case DLM_LOCK_EX:
171 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
172 break;
173 case DLM_LOCK_CW:
174 gfs2_glock_cb(gl, LM_ST_DEFERRED);
175 break;
176 case DLM_LOCK_PR:
177 gfs2_glock_cb(gl, LM_ST_SHARED);
178 break;
179 default:
e54c78a2 180 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
f057f6cd
SW
181 BUG();
182 }
183}
184
185/* convert gfs lock-state to dlm lock-mode */
186
e54c78a2 187static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
f057f6cd
SW
188{
189 switch (lmstate) {
190 case LM_ST_UNLOCKED:
191 return DLM_LOCK_NL;
192 case LM_ST_EXCLUSIVE:
193 return DLM_LOCK_EX;
194 case LM_ST_DEFERRED:
195 return DLM_LOCK_CW;
196 case LM_ST_SHARED:
197 return DLM_LOCK_PR;
198 }
e54c78a2 199 fs_err(sdp, "unknown LM state %d\n", lmstate);
f057f6cd
SW
200 BUG();
201 return -1;
202}
203
4c569a72 204static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
f057f6cd
SW
205 const int req)
206{
dba2d70c
DT
207 u32 lkf = 0;
208
4e2f8849 209 if (gl->gl_lksb.sb_lvbptr)
dba2d70c 210 lkf |= DLM_LKF_VALBLK;
f057f6cd
SW
211
212 if (gfs_flags & LM_FLAG_TRY)
213 lkf |= DLM_LKF_NOQUEUE;
214
215 if (gfs_flags & LM_FLAG_TRY_1CB) {
216 lkf |= DLM_LKF_NOQUEUE;
217 lkf |= DLM_LKF_NOQUEUEBAST;
218 }
219
220 if (gfs_flags & LM_FLAG_PRIORITY) {
221 lkf |= DLM_LKF_NOORDER;
222 lkf |= DLM_LKF_HEADQUE;
223 }
224
225 if (gfs_flags & LM_FLAG_ANY) {
226 if (req == DLM_LOCK_PR)
227 lkf |= DLM_LKF_ALTCW;
228 else if (req == DLM_LOCK_CW)
229 lkf |= DLM_LKF_ALTPR;
230 else
231 BUG();
232 }
233
dba2d70c 234 if (gl->gl_lksb.sb_lkid != 0) {
f057f6cd 235 lkf |= DLM_LKF_CONVERT;
4c569a72
BP
236 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
237 lkf |= DLM_LKF_QUECVT;
238 }
f057f6cd 239
f057f6cd
SW
240 return lkf;
241}
242
a245769f
SW
243static void gfs2_reverse_hex(char *c, u64 value)
244{
ec148752 245 *c = '0';
a245769f
SW
246 while (value) {
247 *c-- = hex_asc[value & 0x0f];
248 value >>= 4;
249 }
250}
251
921169ca
SW
252static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
253 unsigned int flags)
f057f6cd 254{
15562c43 255 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
f057f6cd
SW
256 int req;
257 u32 lkf;
a245769f 258 char strname[GDLM_STRNAME_BYTES] = "";
f057f6cd 259
e54c78a2 260 req = make_mode(gl->gl_name.ln_sbd, req_state);
4c569a72 261 lkf = make_flags(gl, flags, req);
a245769f
SW
262 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
263 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
264 if (gl->gl_lksb.sb_lkid) {
265 gfs2_update_request_times(gl);
266 } else {
267 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
268 strname[GDLM_STRNAME_BYTES - 1] = '\0';
269 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
270 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
271 gl->gl_dstamp = ktime_get_real();
272 }
f057f6cd
SW
273 /*
274 * Submit the actual lock request.
275 */
276
a245769f 277 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
921169ca 278 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
f057f6cd
SW
279}
280
bc015cb8 281static void gdlm_put_lock(struct gfs2_glock *gl)
f057f6cd 282{
15562c43 283 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
e402746a 284 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
d4e0bfec 285 int lvb_needs_unlock = 0;
f057f6cd
SW
286 int error;
287
288 if (gl->gl_lksb.sb_lkid == 0) {
fc0e38da 289 gfs2_glock_free(gl);
f057f6cd
SW
290 return;
291 }
292
a245769f
SW
293 clear_bit(GLF_BLOCKING, &gl->gl_flags);
294 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
296 gfs2_update_request_times(gl);
fb6791d1
DT
297
298 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
d4e0bfec
DT
299
300 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
301 lvb_needs_unlock = 1;
302
fb6791d1 303 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
d4e0bfec 304 !lvb_needs_unlock) {
fb6791d1
DT
305 gfs2_glock_free(gl);
306 return;
307 }
308
f057f6cd
SW
309 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
310 NULL, gl);
311 if (error) {
e54c78a2 312 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
d77d1b58 313 gl->gl_name.ln_type,
f057f6cd
SW
314 (unsigned long long)gl->gl_name.ln_number, error);
315 return;
316 }
317}
318
319static void gdlm_cancel(struct gfs2_glock *gl)
320{
15562c43 321 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
f057f6cd
SW
322 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
323}
324
e0c2a9aa
DT
325/*
326 * dlm/gfs2 recovery coordination using dlm_recover callbacks
327 *
328 * 1. dlm_controld sees lockspace members change
329 * 2. dlm_controld blocks dlm-kernel locking activity
330 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
331 * 4. dlm_controld starts and finishes its own user level recovery
332 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
333 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
334 * 7. dlm_recoverd does its own lock recovery
335 * 8. dlm_recoverd unblocks dlm-kernel locking activity
336 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
337 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
338 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
339 * 12. gfs2_recover dequeues and recovers journals of failed nodes
340 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
341 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
342 * 15. gfs2_control unblocks normal locking when all journals are recovered
343 *
344 * - failures during recovery
345 *
346 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
347 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
348 * recovering for a prior failure. gfs2_control needs a way to detect
349 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
350 * the recover_block and recover_start values.
351 *
352 * recover_done() provides a new lockspace generation number each time it
353 * is called (step 9). This generation number is saved as recover_start.
354 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
355 * recover_block = recover_start. So, while recover_block is equal to
356 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
357 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
358 *
359 * - more specific gfs2 steps in sequence above
360 *
361 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
362 * 6. recover_slot records any failed jids (maybe none)
363 * 9. recover_done sets recover_start = new generation number
364 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
365 * 12. gfs2_recover does journal recoveries for failed jids identified above
366 * 14. gfs2_control clears control_lock lvb bits for recovered jids
367 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
368 * again) then do nothing, otherwise if recover_start > recover_block
369 * then clear BLOCK_LOCKS.
370 *
371 * - parallel recovery steps across all nodes
372 *
373 * All nodes attempt to update the control_lock lvb with the new generation
374 * number and jid bits, but only the first to get the control_lock EX will
375 * do so; others will see that it's already done (lvb already contains new
376 * generation number.)
377 *
378 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
379 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
380 * . One node gets control_lock first and writes the lvb, others see it's done
381 * . All nodes attempt to recover jids for which they see control_lock bits set
382 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
383 * . All nodes will eventually see all lvb bits clear and unblock locks
384 *
385 * - is there a problem with clearing an lvb bit that should be set
386 * and missing a journal recovery?
387 *
388 * 1. jid fails
389 * 2. lvb bit set for step 1
390 * 3. jid recovered for step 1
391 * 4. jid taken again (new mount)
392 * 5. jid fails (for step 4)
393 * 6. lvb bit set for step 5 (will already be set)
394 * 7. lvb bit cleared for step 3
395 *
396 * This is not a problem because the failure in step 5 does not
397 * require recovery, because the mount in step 4 could not have
398 * progressed far enough to unblock locks and access the fs. The
399 * control_mount() function waits for all recoveries to be complete
400 * for the latest lockspace generation before ever unblocking locks
401 * and returning. The mount in step 4 waits until the recovery in
402 * step 1 is done.
403 *
404 * - special case of first mounter: first node to mount the fs
405 *
406 * The first node to mount a gfs2 fs needs to check all the journals
407 * and recover any that need recovery before other nodes are allowed
408 * to mount the fs. (Others may begin mounting, but they must wait
409 * for the first mounter to be done before taking locks on the fs
410 * or accessing the fs.) This has two parts:
411 *
412 * 1. The mounted_lock tells a node it's the first to mount the fs.
413 * Each node holds the mounted_lock in PR while it's mounted.
414 * Each node tries to acquire the mounted_lock in EX when it mounts.
415 * If a node is granted the mounted_lock EX it means there are no
416 * other mounted nodes (no PR locks exist), and it is the first mounter.
417 * The mounted_lock is demoted to PR when first recovery is done, so
418 * others will fail to get an EX lock, but will get a PR lock.
419 *
420 * 2. The control_lock blocks others in control_mount() while the first
421 * mounter is doing first mount recovery of all journals.
422 * A mounting node needs to acquire control_lock in EX mode before
423 * it can proceed. The first mounter holds control_lock in EX while doing
424 * the first mount recovery, blocking mounts from other nodes, then demotes
425 * control_lock to NL when it's done (others_may_mount/first_done),
426 * allowing other nodes to continue mounting.
427 *
428 * first mounter:
429 * control_lock EX/NOQUEUE success
430 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
431 * set first=1
432 * do first mounter recovery
433 * mounted_lock EX->PR
434 * control_lock EX->NL, write lvb generation
435 *
436 * other mounter:
437 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
438 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
439 * mounted_lock PR/NOQUEUE success
440 * read lvb generation
441 * control_lock EX->NL
442 * set first=0
443 *
444 * - mount during recovery
445 *
446 * If a node mounts while others are doing recovery (not first mounter),
447 * the mounting node will get its initial recover_done() callback without
448 * having seen any previous failures/callbacks.
449 *
450 * It must wait for all recoveries preceding its mount to be finished
451 * before it unblocks locks. It does this by repeating the "other mounter"
452 * steps above until the lvb generation number is >= its mount generation
453 * number (from initial recover_done) and all lvb bits are clear.
454 *
455 * - control_lock lvb format
456 *
457 * 4 bytes generation number: the latest dlm lockspace generation number
458 * from recover_done callback. Indicates the jid bitmap has been updated
459 * to reflect all slot failures through that generation.
460 * 4 bytes unused.
461 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
462 * that jid N needs recovery.
463 */
464
465#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
466
467static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
468 char *lvb_bits)
469{
951b4bd5 470 __le32 gen;
e0c2a9aa 471 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
951b4bd5 472 memcpy(&gen, lvb_bits, sizeof(__le32));
e0c2a9aa
DT
473 *lvb_gen = le32_to_cpu(gen);
474}
475
476static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
477 char *lvb_bits)
478{
951b4bd5 479 __le32 gen;
e0c2a9aa
DT
480 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
481 gen = cpu_to_le32(lvb_gen);
951b4bd5 482 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
e0c2a9aa
DT
483}
484
485static int all_jid_bits_clear(char *lvb)
486{
4146c3d4
AM
487 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
488 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
e0c2a9aa
DT
489}
490
491static void sync_wait_cb(void *arg)
492{
493 struct lm_lockstruct *ls = arg;
494 complete(&ls->ls_sync_wait);
495}
496
497static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
f057f6cd
SW
498{
499 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
500 int error;
501
e0c2a9aa
DT
502 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
503 if (error) {
504 fs_err(sdp, "%s lkid %x error %d\n",
505 name, lksb->sb_lkid, error);
506 return error;
507 }
508
509 wait_for_completion(&ls->ls_sync_wait);
510
511 if (lksb->sb_status != -DLM_EUNLOCK) {
512 fs_err(sdp, "%s lkid %x status %d\n",
513 name, lksb->sb_lkid, lksb->sb_status);
514 return -1;
515 }
516 return 0;
517}
518
519static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
520 unsigned int num, struct dlm_lksb *lksb, char *name)
521{
522 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
523 char strname[GDLM_STRNAME_BYTES];
524 int error, status;
525
526 memset(strname, 0, GDLM_STRNAME_BYTES);
527 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
528
529 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
530 strname, GDLM_STRNAME_BYTES - 1,
531 0, sync_wait_cb, ls, NULL);
532 if (error) {
533 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
534 name, lksb->sb_lkid, flags, mode, error);
535 return error;
536 }
537
538 wait_for_completion(&ls->ls_sync_wait);
539
540 status = lksb->sb_status;
541
542 if (status && status != -EAGAIN) {
543 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
544 name, lksb->sb_lkid, flags, mode, status);
545 }
546
547 return status;
548}
549
550static int mounted_unlock(struct gfs2_sbd *sdp)
551{
552 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
553 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
554}
555
556static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
557{
558 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
559 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
560 &ls->ls_mounted_lksb, "mounted_lock");
561}
562
563static int control_unlock(struct gfs2_sbd *sdp)
564{
565 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
566 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
567}
568
569static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
570{
571 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
572 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
573 &ls->ls_control_lksb, "control_lock");
574}
575
576static void gfs2_control_func(struct work_struct *work)
577{
578 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
579 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
580 uint32_t block_gen, start_gen, lvb_gen, flags;
581 int recover_set = 0;
582 int write_lvb = 0;
583 int recover_size;
584 int i, error;
585
586 spin_lock(&ls->ls_recover_spin);
587 /*
588 * No MOUNT_DONE means we're still mounting; control_mount()
589 * will set this flag, after which this thread will take over
590 * all further clearing of BLOCK_LOCKS.
591 *
592 * FIRST_MOUNT means this node is doing first mounter recovery,
593 * for which recovery control is handled by
594 * control_mount()/control_first_done(), not this thread.
595 */
596 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
597 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
598 spin_unlock(&ls->ls_recover_spin);
599 return;
600 }
601 block_gen = ls->ls_recover_block;
602 start_gen = ls->ls_recover_start;
603 spin_unlock(&ls->ls_recover_spin);
604
605 /*
606 * Equal block_gen and start_gen implies we are between
607 * recover_prep and recover_done callbacks, which means
608 * dlm recovery is in progress and dlm locking is blocked.
609 * There's no point trying to do any work until recover_done.
610 */
611
612 if (block_gen == start_gen)
613 return;
614
615 /*
616 * Propagate recover_submit[] and recover_result[] to lvb:
617 * dlm_recoverd adds to recover_submit[] jids needing recovery
618 * gfs2_recover adds to recover_result[] journal recovery results
619 *
620 * set lvb bit for jids in recover_submit[] if the lvb has not
621 * yet been updated for the generation of the failure
622 *
623 * clear lvb bit for jids in recover_result[] if the result of
624 * the journal recovery is SUCCESS
625 */
626
627 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
628 if (error) {
629 fs_err(sdp, "control lock EX error %d\n", error);
630 return;
631 }
632
57c7310b 633 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
634
635 spin_lock(&ls->ls_recover_spin);
636 if (block_gen != ls->ls_recover_block ||
637 start_gen != ls->ls_recover_start) {
638 fs_info(sdp, "recover generation %u block1 %u %u\n",
639 start_gen, block_gen, ls->ls_recover_block);
640 spin_unlock(&ls->ls_recover_spin);
641 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
642 return;
643 }
644
645 recover_size = ls->ls_recover_size;
646
647 if (lvb_gen <= start_gen) {
648 /*
649 * Clear lvb bits for jids we've successfully recovered.
650 * Because all nodes attempt to recover failed journals,
651 * a journal can be recovered multiple times successfully
652 * in succession. Only the first will really do recovery,
653 * the others find it clean, but still report a successful
654 * recovery. So, another node may have already recovered
655 * the jid and cleared the lvb bit for it.
656 */
657 for (i = 0; i < recover_size; i++) {
658 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
659 continue;
660
661 ls->ls_recover_result[i] = 0;
662
57c7310b 663 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
e0c2a9aa
DT
664 continue;
665
57c7310b 666 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
e0c2a9aa
DT
667 write_lvb = 1;
668 }
669 }
670
671 if (lvb_gen == start_gen) {
672 /*
673 * Failed slots before start_gen are already set in lvb.
674 */
675 for (i = 0; i < recover_size; i++) {
676 if (!ls->ls_recover_submit[i])
677 continue;
678 if (ls->ls_recover_submit[i] < lvb_gen)
679 ls->ls_recover_submit[i] = 0;
680 }
681 } else if (lvb_gen < start_gen) {
682 /*
683 * Failed slots before start_gen are not yet set in lvb.
684 */
685 for (i = 0; i < recover_size; i++) {
686 if (!ls->ls_recover_submit[i])
687 continue;
688 if (ls->ls_recover_submit[i] < start_gen) {
689 ls->ls_recover_submit[i] = 0;
57c7310b 690 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
e0c2a9aa
DT
691 }
692 }
693 /* even if there are no bits to set, we need to write the
694 latest generation to the lvb */
695 write_lvb = 1;
696 } else {
697 /*
698 * we should be getting a recover_done() for lvb_gen soon
699 */
700 }
701 spin_unlock(&ls->ls_recover_spin);
702
703 if (write_lvb) {
57c7310b 704 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
705 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
706 } else {
707 flags = DLM_LKF_CONVERT;
708 }
709
710 error = control_lock(sdp, DLM_LOCK_NL, flags);
711 if (error) {
712 fs_err(sdp, "control lock NL error %d\n", error);
713 return;
714 }
715
716 /*
717 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
718 * and clear a jid bit in the lvb if the recovery is a success.
719 * Eventually all journals will be recovered, all jid bits will
720 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
721 */
722
723 for (i = 0; i < recover_size; i++) {
57c7310b 724 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
e0c2a9aa
DT
725 fs_info(sdp, "recover generation %u jid %d\n",
726 start_gen, i);
727 gfs2_recover_set(sdp, i);
728 recover_set++;
729 }
730 }
731 if (recover_set)
732 return;
733
734 /*
735 * No more jid bits set in lvb, all recovery is done, unblock locks
736 * (unless a new recover_prep callback has occured blocking locks
737 * again while working above)
738 */
739
740 spin_lock(&ls->ls_recover_spin);
741 if (ls->ls_recover_block == block_gen &&
742 ls->ls_recover_start == start_gen) {
743 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
744 spin_unlock(&ls->ls_recover_spin);
745 fs_info(sdp, "recover generation %u done\n", start_gen);
746 gfs2_glock_thaw(sdp);
747 } else {
748 fs_info(sdp, "recover generation %u block2 %u %u\n",
749 start_gen, block_gen, ls->ls_recover_block);
750 spin_unlock(&ls->ls_recover_spin);
751 }
752}
753
754static int control_mount(struct gfs2_sbd *sdp)
755{
756 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
757 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
758 int mounted_mode;
759 int retries = 0;
760 int error;
761
762 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
763 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
764 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
765 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
766 init_completion(&ls->ls_sync_wait);
767
768 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
769
770 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
771 if (error) {
772 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
773 return error;
774 }
775
776 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
777 if (error) {
778 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
779 control_unlock(sdp);
780 return error;
781 }
782 mounted_mode = DLM_LOCK_NL;
783
784restart:
785 if (retries++ && signal_pending(current)) {
786 error = -EINTR;
787 goto fail;
788 }
789
790 /*
791 * We always start with both locks in NL. control_lock is
792 * demoted to NL below so we don't need to do it here.
793 */
794
795 if (mounted_mode != DLM_LOCK_NL) {
796 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
797 if (error)
798 goto fail;
799 mounted_mode = DLM_LOCK_NL;
800 }
801
802 /*
803 * Other nodes need to do some work in dlm recovery and gfs2_control
804 * before the recover_done and control_lock will be ready for us below.
805 * A delay here is not required but often avoids having to retry.
806 */
807
808 msleep_interruptible(500);
809
810 /*
811 * Acquire control_lock in EX and mounted_lock in either EX or PR.
812 * control_lock lvb keeps track of any pending journal recoveries.
813 * mounted_lock indicates if any other nodes have the fs mounted.
814 */
815
816 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
817 if (error == -EAGAIN) {
818 goto restart;
819 } else if (error) {
820 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
821 goto fail;
822 }
823
4a772772
BP
824 /**
825 * If we're a spectator, we don't want to take the lock in EX because
826 * we cannot do the first-mount responsibility it implies: recovery.
827 */
828 if (sdp->sd_args.ar_spectator)
829 goto locks_done;
830
e0c2a9aa
DT
831 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
832 if (!error) {
833 mounted_mode = DLM_LOCK_EX;
834 goto locks_done;
835 } else if (error != -EAGAIN) {
836 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
837 goto fail;
838 }
839
840 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
841 if (!error) {
842 mounted_mode = DLM_LOCK_PR;
843 goto locks_done;
844 } else {
845 /* not even -EAGAIN should happen here */
846 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
847 goto fail;
848 }
849
850locks_done:
851 /*
852 * If we got both locks above in EX, then we're the first mounter.
853 * If not, then we need to wait for the control_lock lvb to be
854 * updated by other mounted nodes to reflect our mount generation.
855 *
856 * In simple first mounter cases, first mounter will see zero lvb_gen,
857 * but in cases where all existing nodes leave/fail before mounting
858 * nodes finish control_mount, then all nodes will be mounting and
859 * lvb_gen will be non-zero.
860 */
861
57c7310b 862 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
863
864 if (lvb_gen == 0xFFFFFFFF) {
865 /* special value to force mount attempts to fail */
866 fs_err(sdp, "control_mount control_lock disabled\n");
867 error = -EINVAL;
868 goto fail;
869 }
870
871 if (mounted_mode == DLM_LOCK_EX) {
872 /* first mounter, keep both EX while doing first recovery */
873 spin_lock(&ls->ls_recover_spin);
874 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
875 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
876 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
877 spin_unlock(&ls->ls_recover_spin);
878 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
879 return 0;
880 }
881
882 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
883 if (error)
884 goto fail;
885
886 /*
887 * We are not first mounter, now we need to wait for the control_lock
888 * lvb generation to be >= the generation from our first recover_done
889 * and all lvb bits to be clear (no pending journal recoveries.)
890 */
891
57c7310b 892 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
e0c2a9aa
DT
893 /* journals need recovery, wait until all are clear */
894 fs_info(sdp, "control_mount wait for journal recovery\n");
895 goto restart;
896 }
897
898 spin_lock(&ls->ls_recover_spin);
899 block_gen = ls->ls_recover_block;
900 start_gen = ls->ls_recover_start;
901 mount_gen = ls->ls_recover_mount;
902
903 if (lvb_gen < mount_gen) {
904 /* wait for mounted nodes to update control_lock lvb to our
905 generation, which might include new recovery bits set */
4a772772
BP
906 if (sdp->sd_args.ar_spectator) {
907 fs_info(sdp, "Recovery is required. Waiting for a "
908 "non-spectator to mount.\n");
909 msleep_interruptible(1000);
910 } else {
911 fs_info(sdp, "control_mount wait1 block %u start %u "
912 "mount %u lvb %u flags %lx\n", block_gen,
913 start_gen, mount_gen, lvb_gen,
914 ls->ls_recover_flags);
915 }
e0c2a9aa
DT
916 spin_unlock(&ls->ls_recover_spin);
917 goto restart;
918 }
919
920 if (lvb_gen != start_gen) {
921 /* wait for mounted nodes to update control_lock lvb to the
922 latest recovery generation */
923 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
924 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
925 lvb_gen, ls->ls_recover_flags);
926 spin_unlock(&ls->ls_recover_spin);
927 goto restart;
928 }
929
930 if (block_gen == start_gen) {
931 /* dlm recovery in progress, wait for it to finish */
932 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
933 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
934 lvb_gen, ls->ls_recover_flags);
935 spin_unlock(&ls->ls_recover_spin);
936 goto restart;
f057f6cd
SW
937 }
938
e0c2a9aa
DT
939 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
940 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
941 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
942 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
943 spin_unlock(&ls->ls_recover_spin);
944 return 0;
945
946fail:
947 mounted_unlock(sdp);
948 control_unlock(sdp);
949 return error;
950}
951
e0c2a9aa
DT
952static int control_first_done(struct gfs2_sbd *sdp)
953{
954 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
955 uint32_t start_gen, block_gen;
956 int error;
957
958restart:
959 spin_lock(&ls->ls_recover_spin);
960 start_gen = ls->ls_recover_start;
961 block_gen = ls->ls_recover_block;
962
963 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
964 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
965 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
966 /* sanity check, should not happen */
967 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
968 start_gen, block_gen, ls->ls_recover_flags);
969 spin_unlock(&ls->ls_recover_spin);
970 control_unlock(sdp);
971 return -1;
972 }
973
974 if (start_gen == block_gen) {
975 /*
976 * Wait for the end of a dlm recovery cycle to switch from
977 * first mounter recovery. We can ignore any recover_slot
978 * callbacks between the recover_prep and next recover_done
979 * because we are still the first mounter and any failed nodes
980 * have not fully mounted, so they don't need recovery.
981 */
982 spin_unlock(&ls->ls_recover_spin);
983 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
984
985 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
74316201 986 TASK_UNINTERRUPTIBLE);
e0c2a9aa
DT
987 goto restart;
988 }
989
990 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
991 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
992 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
993 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
994 spin_unlock(&ls->ls_recover_spin);
995
57c7310b
DT
996 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
997 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
998
999 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1000 if (error)
1001 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1002
1003 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
f057f6cd 1004 if (error)
e0c2a9aa 1005 fs_err(sdp, "control_first_done control NL error %d\n", error);
f057f6cd
SW
1006
1007 return error;
1008}
1009
e0c2a9aa
DT
1010/*
1011 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1012 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1013 * gfs2 jids start at 0, so jid = slot - 1)
1014 */
1015
1016#define RECOVER_SIZE_INC 16
1017
1018static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1019 int num_slots)
1020{
1021 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1022 uint32_t *submit = NULL;
1023 uint32_t *result = NULL;
1024 uint32_t old_size, new_size;
1025 int i, max_jid;
1026
57c7310b
DT
1027 if (!ls->ls_lvb_bits) {
1028 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1029 if (!ls->ls_lvb_bits)
1030 return -ENOMEM;
1031 }
1032
e0c2a9aa
DT
1033 max_jid = 0;
1034 for (i = 0; i < num_slots; i++) {
1035 if (max_jid < slots[i].slot - 1)
1036 max_jid = slots[i].slot - 1;
1037 }
1038
1039 old_size = ls->ls_recover_size;
1040
1041 if (old_size >= max_jid + 1)
1042 return 0;
1043
1044 new_size = old_size + RECOVER_SIZE_INC;
1045
6ec43b18
FF
1046 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1047 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
e0c2a9aa
DT
1048 if (!submit || !result) {
1049 kfree(submit);
1050 kfree(result);
1051 return -ENOMEM;
1052 }
1053
1054 spin_lock(&ls->ls_recover_spin);
1055 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1056 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1057 kfree(ls->ls_recover_submit);
1058 kfree(ls->ls_recover_result);
1059 ls->ls_recover_submit = submit;
1060 ls->ls_recover_result = result;
1061 ls->ls_recover_size = new_size;
1062 spin_unlock(&ls->ls_recover_spin);
1063 return 0;
1064}
1065
1066static void free_recover_size(struct lm_lockstruct *ls)
1067{
57c7310b 1068 kfree(ls->ls_lvb_bits);
e0c2a9aa
DT
1069 kfree(ls->ls_recover_submit);
1070 kfree(ls->ls_recover_result);
1071 ls->ls_recover_submit = NULL;
1072 ls->ls_recover_result = NULL;
1073 ls->ls_recover_size = 0;
cc1dfa8b 1074 ls->ls_lvb_bits = NULL;
e0c2a9aa
DT
1075}
1076
1077/* dlm calls before it does lock recovery */
1078
1079static void gdlm_recover_prep(void *arg)
1080{
1081 struct gfs2_sbd *sdp = arg;
1082 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1083
1084 spin_lock(&ls->ls_recover_spin);
1085 ls->ls_recover_block = ls->ls_recover_start;
1086 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1087
1088 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1089 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1090 spin_unlock(&ls->ls_recover_spin);
1091 return;
1092 }
1093 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1094 spin_unlock(&ls->ls_recover_spin);
1095}
1096
1097/* dlm calls after recover_prep has been completed on all lockspace members;
1098 identifies slot/jid of failed member */
1099
1100static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1101{
1102 struct gfs2_sbd *sdp = arg;
1103 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1104 int jid = slot->slot - 1;
1105
1106 spin_lock(&ls->ls_recover_spin);
1107 if (ls->ls_recover_size < jid + 1) {
af38816e 1108 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
e0c2a9aa
DT
1109 jid, ls->ls_recover_block, ls->ls_recover_size);
1110 spin_unlock(&ls->ls_recover_spin);
1111 return;
1112 }
1113
1114 if (ls->ls_recover_submit[jid]) {
ad781971 1115 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
e0c2a9aa
DT
1116 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1117 }
1118 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1119 spin_unlock(&ls->ls_recover_spin);
1120}
1121
1122/* dlm calls after recover_slot and after it completes lock recovery */
1123
1124static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1125 int our_slot, uint32_t generation)
1126{
1127 struct gfs2_sbd *sdp = arg;
1128 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1129
1130 /* ensure the ls jid arrays are large enough */
1131 set_recover_size(sdp, slots, num_slots);
1132
1133 spin_lock(&ls->ls_recover_spin);
1134 ls->ls_recover_start = generation;
1135
1136 if (!ls->ls_recover_mount) {
1137 ls->ls_recover_mount = generation;
1138 ls->ls_jid = our_slot - 1;
1139 }
1140
1141 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1142 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1143
1144 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
4e857c58 1145 smp_mb__after_atomic();
e0c2a9aa
DT
1146 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1147 spin_unlock(&ls->ls_recover_spin);
1148}
1149
1150/* gfs2_recover thread has a journal recovery result */
1151
1152static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1153 unsigned int result)
1154{
1155 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1156
1157 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1158 return;
1159
1160 /* don't care about the recovery of own journal during mount */
1161 if (jid == ls->ls_jid)
1162 return;
1163
1164 spin_lock(&ls->ls_recover_spin);
1165 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1166 spin_unlock(&ls->ls_recover_spin);
1167 return;
1168 }
1169 if (ls->ls_recover_size < jid + 1) {
af38816e 1170 fs_err(sdp, "recovery_result jid %d short size %d\n",
e0c2a9aa
DT
1171 jid, ls->ls_recover_size);
1172 spin_unlock(&ls->ls_recover_spin);
1173 return;
1174 }
1175
1176 fs_info(sdp, "recover jid %d result %s\n", jid,
1177 result == LM_RD_GAVEUP ? "busy" : "success");
1178
1179 ls->ls_recover_result[jid] = result;
1180
1181 /* GAVEUP means another node is recovering the journal; delay our
1182 next attempt to recover it, to give the other node a chance to
1183 finish before trying again */
1184
1185 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1186 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1187 result == LM_RD_GAVEUP ? HZ : 0);
1188 spin_unlock(&ls->ls_recover_spin);
1189}
1190
27c3b415 1191static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
e0c2a9aa
DT
1192 .recover_prep = gdlm_recover_prep,
1193 .recover_slot = gdlm_recover_slot,
1194 .recover_done = gdlm_recover_done,
1195};
1196
1197static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1198{
1199 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1200 char cluster[GFS2_LOCKNAME_LEN];
1201 const char *fsname;
1202 uint32_t flags;
1203 int error, ops_result;
1204
1205 /*
1206 * initialize everything
1207 */
1208
1209 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1210 spin_lock_init(&ls->ls_recover_spin);
1211 ls->ls_recover_flags = 0;
1212 ls->ls_recover_mount = 0;
1213 ls->ls_recover_start = 0;
1214 ls->ls_recover_block = 0;
1215 ls->ls_recover_size = 0;
1216 ls->ls_recover_submit = NULL;
1217 ls->ls_recover_result = NULL;
57c7310b 1218 ls->ls_lvb_bits = NULL;
e0c2a9aa
DT
1219
1220 error = set_recover_size(sdp, NULL, 0);
1221 if (error)
1222 goto fail;
1223
1224 /*
1225 * prepare dlm_new_lockspace args
1226 */
1227
1228 fsname = strchr(table, ':');
1229 if (!fsname) {
1230 fs_info(sdp, "no fsname found\n");
1231 error = -EINVAL;
1232 goto fail_free;
1233 }
1234 memset(cluster, 0, sizeof(cluster));
1235 memcpy(cluster, table, strlen(table) - strlen(fsname));
1236 fsname++;
1237
1238 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
e0c2a9aa
DT
1239
1240 /*
1241 * create/join lockspace
1242 */
1243
1244 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1245 &gdlm_lockspace_ops, sdp, &ops_result,
1246 &ls->ls_dlm);
1247 if (error) {
1248 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1249 goto fail_free;
1250 }
1251
1252 if (ops_result < 0) {
1253 /*
1254 * dlm does not support ops callbacks,
1255 * old dlm_controld/gfs_controld are used, try without ops.
1256 */
1257 fs_info(sdp, "dlm lockspace ops not used\n");
1258 free_recover_size(ls);
1259 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1260 return 0;
1261 }
1262
1263 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1264 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1265 error = -EINVAL;
1266 goto fail_release;
1267 }
1268
1269 /*
1270 * control_mount() uses control_lock to determine first mounter,
1271 * and for later mounts, waits for any recoveries to be cleared.
1272 */
1273
1274 error = control_mount(sdp);
1275 if (error) {
1276 fs_err(sdp, "mount control error %d\n", error);
1277 goto fail_release;
1278 }
1279
1280 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1281 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
4e857c58 1282 smp_mb__after_atomic();
e0c2a9aa
DT
1283 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1284 return 0;
1285
1286fail_release:
1287 dlm_release_lockspace(ls->ls_dlm, 2);
1288fail_free:
1289 free_recover_size(ls);
1290fail:
1291 return error;
1292}
1293
1294static void gdlm_first_done(struct gfs2_sbd *sdp)
1295{
1296 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1297 int error;
1298
1299 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1300 return;
1301
1302 error = control_first_done(sdp);
1303 if (error)
1304 fs_err(sdp, "mount first_done error %d\n", error);
1305}
1306
f057f6cd
SW
1307static void gdlm_unmount(struct gfs2_sbd *sdp)
1308{
1309 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1310
e0c2a9aa
DT
1311 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1312 goto release;
1313
1314 /* wait for gfs2_control_wq to be done with this mount */
1315
1316 spin_lock(&ls->ls_recover_spin);
1317 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1318 spin_unlock(&ls->ls_recover_spin);
43829731 1319 flush_delayed_work(&sdp->sd_control_work);
e0c2a9aa
DT
1320
1321 /* mounted_lock and control_lock will be purged in dlm recovery */
1322release:
f057f6cd
SW
1323 if (ls->ls_dlm) {
1324 dlm_release_lockspace(ls->ls_dlm, 2);
1325 ls->ls_dlm = NULL;
1326 }
e0c2a9aa
DT
1327
1328 free_recover_size(ls);
f057f6cd
SW
1329}
1330
1331static const match_table_t dlm_tokens = {
1332 { Opt_jid, "jid=%d"},
1333 { Opt_id, "id=%d"},
1334 { Opt_first, "first=%d"},
1335 { Opt_nodir, "nodir=%d"},
1336 { Opt_err, NULL },
1337};
1338
1339const struct lm_lockops gfs2_dlm_ops = {
1340 .lm_proto_name = "lock_dlm",
1341 .lm_mount = gdlm_mount,
e0c2a9aa
DT
1342 .lm_first_done = gdlm_first_done,
1343 .lm_recovery_result = gdlm_recovery_result,
f057f6cd
SW
1344 .lm_unmount = gdlm_unmount,
1345 .lm_put_lock = gdlm_put_lock,
1346 .lm_lock = gdlm_lock,
1347 .lm_cancel = gdlm_cancel,
1348 .lm_tokens = &dlm_tokens,
1349};
1350