Merge tag 'erofs-for-6.8-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / fs / gfs2 / file.c
CommitLineData
7336d0e6 1// SPDX-License-Identifier: GPL-2.0-only
b3b94faa
DT
2/*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3a8a9a10 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
b3b94faa
DT
5 */
6
b3b94faa
DT
7#include <linux/slab.h>
8#include <linux/spinlock.h>
8d098070 9#include <linux/compat.h>
b3b94faa
DT
10#include <linux/completion.h>
11#include <linux/buffer_head.h>
12#include <linux/pagemap.h>
13#include <linux/uio.h>
14#include <linux/blkdev.h>
15#include <linux/mm.h>
f58ba889 16#include <linux/mount.h>
18ec7d5c 17#include <linux/fs.h>
5970e15d 18#include <linux/filelock.h>
5c676f6d 19#include <linux/gfs2_ondisk.h>
2fe17c10
CH
20#include <linux/falloc.h>
21#include <linux/swap.h>
71b86f56 22#include <linux/crc32.h>
33c3de32 23#include <linux/writeback.h>
7c0f6ba6 24#include <linux/uaccess.h>
f057f6cd
SW
25#include <linux/dlm.h>
26#include <linux/dlm_plock.h>
2ddfbdd6 27#include <linux/delay.h>
64bc06bb 28#include <linux/backing-dev.h>
88b631cb 29#include <linux/fileattr.h>
b3b94faa
DT
30
31#include "gfs2.h"
5c676f6d 32#include "incore.h"
b3b94faa 33#include "bmap.h"
64bc06bb 34#include "aops.h"
b3b94faa
DT
35#include "dir.h"
36#include "glock.h"
37#include "glops.h"
38#include "inode.h"
b3b94faa
DT
39#include "log.h"
40#include "meta_io.h"
b3b94faa
DT
41#include "quota.h"
42#include "rgrp.h"
43#include "trans.h"
5c676f6d 44#include "util.h"
b3b94faa 45
b3b94faa
DT
46/**
47 * gfs2_llseek - seek to a location in a file
48 * @file: the file
49 * @offset: the offset
965c8e59 50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
b3b94faa
DT
51 *
52 * SEEK_END requires the glock for the file because it references the
53 * file's size.
54 *
55 * Returns: The new offset, or errno
56 */
57
965c8e59 58static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
b3b94faa 59{
feaa7bba 60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
b3b94faa
DT
61 struct gfs2_holder i_gh;
62 loff_t error;
63
965c8e59 64 switch (whence) {
3a27411c 65 case SEEK_END:
b3b94faa
DT
66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 &i_gh);
68 if (!error) {
965c8e59 69 error = generic_file_llseek(file, offset, whence);
b3b94faa
DT
70 gfs2_glock_dq_uninit(&i_gh);
71 }
9453615a 72 break;
3a27411c
AG
73
74 case SEEK_DATA:
75 error = gfs2_seek_data(file, offset);
76 break;
77
78 case SEEK_HOLE:
79 error = gfs2_seek_hole(file, offset);
80 break;
81
9453615a
SW
82 case SEEK_CUR:
83 case SEEK_SET:
3a27411c
AG
84 /*
85 * These don't reference inode->i_size and don't depend on the
86 * block mapping, so we don't need the glock.
87 */
965c8e59 88 error = generic_file_llseek(file, offset, whence);
9453615a
SW
89 break;
90 default:
91 error = -EINVAL;
92 }
b3b94faa
DT
93
94 return error;
95}
96
b3b94faa 97/**
d81a8ef5 98 * gfs2_readdir - Iterator for a directory
b3b94faa 99 * @file: The directory to read from
d81a8ef5 100 * @ctx: What to feed directory entries to
b3b94faa
DT
101 *
102 * Returns: errno
103 */
104
d81a8ef5 105static int gfs2_readdir(struct file *file, struct dir_context *ctx)
b3b94faa 106{
71b86f56 107 struct inode *dir = file->f_mapping->host;
feaa7bba 108 struct gfs2_inode *dip = GFS2_I(dir);
b3b94faa 109 struct gfs2_holder d_gh;
b3b94faa
DT
110 int error;
111
d81a8ef5
AV
112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113 if (error)
b3b94faa 114 return error;
b3b94faa 115
d81a8ef5 116 error = gfs2_dir_read(dir, ctx, &file->f_ra);
b3b94faa
DT
117
118 gfs2_glock_dq_uninit(&d_gh);
119
b3b94faa
DT
120 return error;
121}
122
c551f66c
LJ
123/*
124 * struct fsflag_gfs2flag
128e5eba 125 *
b16f7e57
AG
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
128e5eba 128 */
b16f7e57
AG
129static struct {
130 u32 fsflag;
131 u32 gfsflag;
132} fsflag_gfs2flag[] = {
133 {FS_SYNC_FL, GFS2_DIF_SYNC},
134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 {FS_INDEX_FL, GFS2_DIF_EXHASH},
138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
7ea9ea83 140};
71b86f56 141
5aca2842
DW
142static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
143{
144 int i;
145 u32 fsflags = 0;
146
147 if (S_ISDIR(inode->i_mode))
148 gfsflags &= ~GFS2_DIF_JDATA;
149 else
150 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
151
152 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
153 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
154 fsflags |= fsflag_gfs2flag[i].fsflag;
155 return fsflags;
156}
157
88b631cb 158int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
71b86f56 159{
88b631cb 160 struct inode *inode = d_inode(dentry);
feaa7bba 161 struct gfs2_inode *ip = GFS2_I(inode);
71b86f56 162 struct gfs2_holder gh;
5aca2842
DW
163 int error;
164 u32 fsflags;
71b86f56 165
88b631cb
MS
166 if (d_is_special(dentry))
167 return -ENOTTY;
168
719ee344
SW
169 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
170 error = gfs2_glock_nq(&gh);
71b86f56 171 if (error)
9c7fe835 172 goto out_uninit;
907b9bce 173
5aca2842 174 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
b16f7e57 175
88b631cb 176 fileattr_fill_flags(fa, fsflags);
71b86f56 177
3cc3f710 178 gfs2_glock_dq(&gh);
9c7fe835 179out_uninit:
71b86f56
SW
180 gfs2_holder_uninit(&gh);
181 return error;
182}
183
6b124d8d
SW
184void gfs2_set_inode_flags(struct inode *inode)
185{
186 struct gfs2_inode *ip = GFS2_I(inode);
6b124d8d
SW
187 unsigned int flags = inode->i_flags;
188
9964afbb
SW
189 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
190 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
01e64ee4 191 flags |= S_NOSEC;
383f01fb 192 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
6b124d8d 193 flags |= S_IMMUTABLE;
383f01fb 194 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
6b124d8d 195 flags |= S_APPEND;
383f01fb 196 if (ip->i_diskflags & GFS2_DIF_NOATIME)
6b124d8d 197 flags |= S_NOATIME;
383f01fb 198 if (ip->i_diskflags & GFS2_DIF_SYNC)
6b124d8d
SW
199 flags |= S_SYNC;
200 inode->i_flags = flags;
201}
202
71b86f56
SW
203/* Flags that can be set by user space */
204#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
71b86f56
SW
205 GFS2_DIF_IMMUTABLE| \
206 GFS2_DIF_APPENDONLY| \
207 GFS2_DIF_NOATIME| \
208 GFS2_DIF_SYNC| \
23d0bb83 209 GFS2_DIF_TOPDIR| \
71b86f56
SW
210 GFS2_DIF_INHERIT_JDATA)
211
212/**
9dd868e1 213 * do_gfs2_set_flags - set flags on an inode
0f1616f6 214 * @inode: The inode
9dd868e1 215 * @reqflags: The flags to set
71b86f56
SW
216 * @mask: Indicates which flags are valid
217 *
218 */
a500bd31 219static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
71b86f56 220{
feaa7bba
SW
221 struct gfs2_inode *ip = GFS2_I(inode);
222 struct gfs2_sbd *sdp = GFS2_SB(inode);
71b86f56
SW
223 struct buffer_head *bh;
224 struct gfs2_holder gh;
225 int error;
88b631cb 226 u32 new_flags, flags;
71b86f56 227
f58ba889
MS
228 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
229 if (error)
88b631cb 230 return error;
7df0e039
SW
231
232 error = 0;
383f01fb 233 flags = ip->i_diskflags;
55eccc6d 234 new_flags = (flags & ~mask) | (reqflags & mask);
71b86f56
SW
235 if ((new_flags ^ flags) == 0)
236 goto out;
237
b9cb9813 238 if (!IS_IMMUTABLE(inode)) {
4609e1f1 239 error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE);
b9cb9813
SW
240 if (error)
241 goto out;
242 }
5561093e 243 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
cc555b09 244 if (new_flags & GFS2_DIF_JDATA)
c1696fb8 245 gfs2_log_flush(sdp, ip->i_gl,
805c0907
BP
246 GFS2_LOG_HEAD_FLUSH_NORMAL |
247 GFS2_LFC_SET_FLAGS);
5561093e
SW
248 error = filemap_fdatawrite(inode->i_mapping);
249 if (error)
250 goto out;
251 error = filemap_fdatawait(inode->i_mapping);
252 if (error)
253 goto out;
cc555b09
BP
254 if (new_flags & GFS2_DIF_JDATA)
255 gfs2_ordered_del_inode(ip);
5561093e 256 }
55eccc6d 257 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
71b86f56
SW
258 if (error)
259 goto out;
55eccc6d
SW
260 error = gfs2_meta_inode_buffer(ip, &bh);
261 if (error)
262 goto out_trans_end;
8a8b8d91 263 inode_set_ctime_current(inode);
350a9b0a 264 gfs2_trans_add_meta(ip->i_gl, bh);
383f01fb 265 ip->i_diskflags = new_flags;
539e5d6b 266 gfs2_dinode_out(ip, bh->b_data);
71b86f56 267 brelse(bh);
6b124d8d 268 gfs2_set_inode_flags(inode);
5561093e 269 gfs2_set_aops(inode);
55eccc6d
SW
270out_trans_end:
271 gfs2_trans_end(sdp);
71b86f56
SW
272out:
273 gfs2_glock_dq_uninit(&gh);
274 return error;
275}
276
8782a9ae 277int gfs2_fileattr_set(struct mnt_idmap *idmap,
88b631cb 278 struct dentry *dentry, struct fileattr *fa)
71b86f56 279{
88b631cb
MS
280 struct inode *inode = d_inode(dentry);
281 u32 fsflags = fa->flags, gfsflags = 0;
b16f7e57
AG
282 u32 mask;
283 int i;
7df0e039 284
88b631cb
MS
285 if (d_is_special(dentry))
286 return -ENOTTY;
287
288 if (fileattr_has_fsx(fa))
289 return -EOPNOTSUPP;
7df0e039 290
b16f7e57
AG
291 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
292 if (fsflags & fsflag_gfs2flag[i].fsflag) {
293 fsflags &= ~fsflag_gfs2flag[i].fsflag;
294 gfsflags |= fsflag_gfs2flag[i].gfsflag;
295 }
296 }
297 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
298 return -EINVAL;
299
300 mask = GFS2_FLAGS_USER_SET;
301 if (S_ISDIR(inode->i_mode)) {
302 mask &= ~GFS2_DIF_JDATA;
303 } else {
304 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
305 if (gfsflags & GFS2_DIF_TOPDIR)
306 return -EINVAL;
307 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
b9af7ca6 308 }
b16f7e57 309
a500bd31 310 return do_gfs2_set_flags(inode, gfsflags, mask);
71b86f56
SW
311}
312
6ddc5c3d
SW
313static int gfs2_getlabel(struct file *filp, char __user *label)
314{
315 struct inode *inode = file_inode(filp);
316 struct gfs2_sbd *sdp = GFS2_SB(inode);
317
318 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
319 return -EFAULT;
320
321 return 0;
322}
323
b09e593d 324static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
71b86f56
SW
325{
326 switch(cmd) {
66fc061b
SW
327 case FITRIM:
328 return gfs2_fitrim(filp, (void __user *)arg);
6ddc5c3d
SW
329 case FS_IOC_GETFSLABEL:
330 return gfs2_getlabel(filp, (char __user *)arg);
71b86f56 331 }
6ddc5c3d 332
71b86f56
SW
333 return -ENOTTY;
334}
335
8d098070
AB
336#ifdef CONFIG_COMPAT
337static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
338{
339 switch(cmd) {
8d098070
AB
340 /* Keep this list in sync with gfs2_ioctl */
341 case FITRIM:
342 case FS_IOC_GETFSLABEL:
343 break;
344 default:
345 return -ENOIOCTLCMD;
346 }
347
348 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
349}
350#else
351#define gfs2_compat_ioctl NULL
352#endif
353
da1dfb6a
SW
354/**
355 * gfs2_size_hint - Give a hint to the size of a write request
9dd868e1 356 * @filep: The struct file
da1dfb6a
SW
357 * @offset: The file offset of the write
358 * @size: The length of the write
359 *
360 * When we are about to do a write, this function records the total
361 * write size in order to provide a suitable hint to the lower layers
362 * about how many blocks will be required.
363 *
364 */
365
366static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
367{
496ad9aa 368 struct inode *inode = file_inode(filep);
da1dfb6a
SW
369 struct gfs2_sbd *sdp = GFS2_SB(inode);
370 struct gfs2_inode *ip = GFS2_I(inode);
371 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
372 int hint = min_t(size_t, INT_MAX, blks);
373
21f09c43
AG
374 if (hint > atomic_read(&ip->i_sizehint))
375 atomic_set(&ip->i_sizehint, hint);
da1dfb6a
SW
376}
377
3cc3f710 378/**
35af80ae 379 * gfs2_allocate_page_backing - Allocate blocks for a write fault
3cc3f710 380 * @page: The (locked) page to allocate backing for
f53056c4 381 * @length: Size of the allocation
3cc3f710 382 *
35af80ae
CH
383 * We try to allocate all the blocks required for the page in one go. This
384 * might fail for various reasons, so we keep trying until all the blocks to
385 * back this page are allocated. If some of the blocks are already allocated,
386 * that is ok too.
3cc3f710 387 */
f53056c4 388static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
3cc3f710 389{
35af80ae 390 u64 pos = page_offset(page);
3cc3f710
SW
391
392 do {
35af80ae
CH
393 struct iomap iomap = { };
394
54992257 395 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
3cc3f710 396 return -EIO;
35af80ae 397
f53056c4
AG
398 if (length < iomap.length)
399 iomap.length = length;
400 length -= iomap.length;
35af80ae 401 pos += iomap.length;
f53056c4 402 } while (length > 0);
35af80ae 403
3cc3f710
SW
404 return 0;
405}
406
407/**
408 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
9dd868e1 409 * @vmf: The virtual memory fault containing the page to become writable
3cc3f710
SW
410 *
411 * When the page becomes writable, we need to ensure that we have
412 * blocks allocated on disk to back that page.
413 */
414
109dbb1e 415static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
3cc3f710 416{
c2ec175c 417 struct page *page = vmf->page;
11bac800 418 struct inode *inode = file_inode(vmf->vma->vm_file);
3cc3f710
SW
419 struct gfs2_inode *ip = GFS2_I(inode);
420 struct gfs2_sbd *sdp = GFS2_SB(inode);
f7e4c610 421 struct gfs2_alloc_parms ap = {};
184b4e60 422 u64 offset = page_offset(page);
3cc3f710 423 unsigned int data_blocks, ind_blocks, rblocks;
0fc3bcd6 424 vm_fault_t ret = VM_FAULT_LOCKED;
3cc3f710 425 struct gfs2_holder gh;
184b4e60 426 unsigned int length;
13d921e3 427 loff_t size;
0fc3bcd6 428 int err;
3cc3f710 429
39263d5e 430 sb_start_pagefault(inode->i_sb);
13d921e3 431
719ee344 432 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
0fc3bcd6
AG
433 err = gfs2_glock_nq(&gh);
434 if (err) {
2ba39cc4 435 ret = vmf_fs_error(err);
2b3dcf35 436 goto out_uninit;
0fc3bcd6 437 }
3cc3f710 438
184b4e60
AG
439 /* Check page index against inode size */
440 size = i_size_read(inode);
441 if (offset >= size) {
0fc3bcd6 442 ret = VM_FAULT_SIGBUS;
184b4e60
AG
443 goto out_unlock;
444 }
445
d7c436cd 446 /* Update file times before taking page lock */
11bac800 447 file_update_time(vmf->vma->vm_file);
d7c436cd 448
184b4e60 449 /* page is wholly or partially inside EOF */
d3c51c55
AG
450 if (size - offset < PAGE_SIZE)
451 length = size - offset;
184b4e60
AG
452 else
453 length = PAGE_SIZE;
454
455 gfs2_size_hint(vmf->vma->vm_file, offset, length);
456
9c538837
SW
457 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
458 set_bit(GIF_SW_PAGED, &ip->i_flags);
459
184b4e60
AG
460 /*
461 * iomap_writepage / iomap_writepages currently don't support inline
462 * files, so always unstuff here.
463 */
464
465 if (!gfs2_is_stuffed(ip) &&
466 !gfs2_write_alloc_required(ip, offset, length)) {
13d921e3
SW
467 lock_page(page);
468 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
0fc3bcd6 469 ret = VM_FAULT_NOPAGE;
13d921e3
SW
470 unlock_page(page);
471 }
3cc3f710 472 goto out_unlock;
13d921e3
SW
473 }
474
0fc3bcd6
AG
475 err = gfs2_rindex_update(sdp);
476 if (err) {
2ba39cc4 477 ret = vmf_fs_error(err);
6dbd8224 478 goto out_unlock;
0fc3bcd6 479 }
6dbd8224 480
184b4e60 481 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
7b9cff46 482 ap.target = data_blocks + ind_blocks;
0fc3bcd6
AG
483 err = gfs2_quota_lock_check(ip, &ap);
484 if (err) {
2ba39cc4 485 ret = vmf_fs_error(err);
b8fbf471 486 goto out_unlock;
0fc3bcd6
AG
487 }
488 err = gfs2_inplace_reserve(ip, &ap);
489 if (err) {
2ba39cc4 490 ret = vmf_fs_error(err);
3cc3f710 491 goto out_quota_unlock;
0fc3bcd6 492 }
3cc3f710
SW
493
494 rblocks = RES_DINODE + ind_blocks;
495 if (gfs2_is_jdata(ip))
496 rblocks += data_blocks ? data_blocks : 1;
bf97b673 497 if (ind_blocks || data_blocks) {
3cc3f710 498 rblocks += RES_STATFS + RES_QUOTA;
71f890f7 499 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
bf97b673 500 }
0fc3bcd6
AG
501 err = gfs2_trans_begin(sdp, rblocks, 0);
502 if (err) {
2ba39cc4 503 ret = vmf_fs_error(err);
3cc3f710 504 goto out_trans_fail;
0fc3bcd6 505 }
3cc3f710 506
64090cbe
AG
507 /* Unstuff, if required, and allocate backing blocks for page */
508 if (gfs2_is_stuffed(ip)) {
7a607a41 509 err = gfs2_unstuff_dinode(ip);
64090cbe 510 if (err) {
2ba39cc4 511 ret = vmf_fs_error(err);
64090cbe
AG
512 goto out_trans_end;
513 }
514 }
515
3cc3f710 516 lock_page(page);
13d921e3
SW
517 /* If truncated, we must retry the operation, we may have raced
518 * with the glock demotion code.
519 */
0fc3bcd6
AG
520 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
521 ret = VM_FAULT_NOPAGE;
64090cbe 522 goto out_page_locked;
0fc3bcd6 523 }
13d921e3 524
0fc3bcd6
AG
525 err = gfs2_allocate_page_backing(page, length);
526 if (err)
2ba39cc4 527 ret = vmf_fs_error(err);
3cc3f710 528
64090cbe 529out_page_locked:
0fc3bcd6 530 if (ret != VM_FAULT_LOCKED)
13d921e3 531 unlock_page(page);
64090cbe 532out_trans_end:
3cc3f710
SW
533 gfs2_trans_end(sdp);
534out_trans_fail:
535 gfs2_inplace_release(ip);
536out_quota_unlock:
537 gfs2_quota_unlock(ip);
3cc3f710
SW
538out_unlock:
539 gfs2_glock_dq(&gh);
2b3dcf35 540out_uninit:
3cc3f710 541 gfs2_holder_uninit(&gh);
0fc3bcd6 542 if (ret == VM_FAULT_LOCKED) {
13d921e3 543 set_page_dirty(page);
1d1d1a76 544 wait_for_stable_page(page);
13d921e3 545 }
39263d5e 546 sb_end_pagefault(inode->i_sb);
0fc3bcd6 547 return ret;
3cc3f710
SW
548}
549
20f82999
AG
550static vm_fault_t gfs2_fault(struct vm_fault *vmf)
551{
552 struct inode *inode = file_inode(vmf->vma->vm_file);
553 struct gfs2_inode *ip = GFS2_I(inode);
554 struct gfs2_holder gh;
555 vm_fault_t ret;
556 int err;
557
d5b81454 558 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
20f82999
AG
559 err = gfs2_glock_nq(&gh);
560 if (err) {
2ba39cc4 561 ret = vmf_fs_error(err);
20f82999
AG
562 goto out_uninit;
563 }
564 ret = filemap_fault(vmf);
565 gfs2_glock_dq(&gh);
566out_uninit:
567 gfs2_holder_uninit(&gh);
568 return ret;
569}
570
f0f37e2f 571static const struct vm_operations_struct gfs2_vm_ops = {
20f82999 572 .fault = gfs2_fault,
f1820361 573 .map_pages = filemap_map_pages,
3cc3f710
SW
574 .page_mkwrite = gfs2_page_mkwrite,
575};
576
b3b94faa 577/**
c551f66c 578 * gfs2_mmap
b3b94faa
DT
579 * @file: The file to map
580 * @vma: The VMA which described the mapping
581 *
48bf2b17
SW
582 * There is no need to get a lock here unless we should be updating
583 * atime. We ignore any locking errors since the only consequence is
584 * a missed atime update (which will just be deferred until later).
585 *
586 * Returns: 0
b3b94faa
DT
587 */
588
589static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
590{
feaa7bba 591 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
b3b94faa 592
b9c93bb7
SW
593 if (!(file->f_flags & O_NOATIME) &&
594 !IS_NOATIME(&ip->i_inode)) {
48bf2b17
SW
595 struct gfs2_holder i_gh;
596 int error;
b3b94faa 597
3d162688
BM
598 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
599 &i_gh);
b9c93bb7
SW
600 if (error)
601 return error;
3d162688
BM
602 /* grab lock to update inode */
603 gfs2_glock_dq_uninit(&i_gh);
604 file_accessed(file);
48bf2b17 605 }
3cc3f710 606 vma->vm_ops = &gfs2_vm_ops;
b3b94faa 607
48bf2b17 608 return 0;
b3b94faa
DT
609}
610
611/**
6d4ade98
SW
612 * gfs2_open_common - This is common to open and atomic_open
613 * @inode: The inode being opened
614 * @file: The file being opened
b3b94faa 615 *
6d4ade98
SW
616 * This maybe called under a glock or not depending upon how it has
617 * been called. We must always be called under a glock for regular
618 * files, however. For other file types, it does not matter whether
619 * we hold the glock or not.
620 *
621 * Returns: Error code or 0 for success
b3b94faa
DT
622 */
623
6d4ade98 624int gfs2_open_common(struct inode *inode, struct file *file)
b3b94faa 625{
b3b94faa 626 struct gfs2_file *fp;
6d4ade98
SW
627 int ret;
628
629 if (S_ISREG(inode->i_mode)) {
630 ret = generic_file_open(inode, file);
631 if (ret)
632 return ret;
7b7b06d5
CH
633
634 if (!gfs2_is_jdata(GFS2_I(inode)))
635 file->f_mode |= FMODE_CAN_ODIRECT;
6d4ade98 636 }
b3b94faa 637
6d4ade98 638 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
b3b94faa
DT
639 if (!fp)
640 return -ENOMEM;
641
f55ab26a 642 mutex_init(&fp->f_fl_mutex);
b3b94faa 643
feaa7bba 644 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
5c676f6d 645 file->private_data = fp;
2fba46a0
BP
646 if (file->f_mode & FMODE_WRITE) {
647 ret = gfs2_qa_get(GFS2_I(inode));
648 if (ret)
649 goto fail;
650 }
6d4ade98 651 return 0;
2fba46a0
BP
652
653fail:
654 kfree(file->private_data);
655 file->private_data = NULL;
656 return ret;
6d4ade98
SW
657}
658
659/**
660 * gfs2_open - open a file
661 * @inode: the inode to open
662 * @file: the struct file for this opening
663 *
664 * After atomic_open, this function is only used for opening files
665 * which are already cached. We must still get the glock for regular
666 * files to ensure that we have the file size uptodate for the large
667 * file check which is in the common code. That is only an issue for
668 * regular files though.
669 *
670 * Returns: errno
671 */
672
673static int gfs2_open(struct inode *inode, struct file *file)
674{
675 struct gfs2_inode *ip = GFS2_I(inode);
676 struct gfs2_holder i_gh;
677 int error;
678 bool need_unlock = false;
b3b94faa 679
b60623c2 680 if (S_ISREG(ip->i_inode.i_mode)) {
b3b94faa
DT
681 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
682 &i_gh);
683 if (error)
6d4ade98
SW
684 return error;
685 need_unlock = true;
686 }
b3b94faa 687
6d4ade98 688 error = gfs2_open_common(inode, file);
b3b94faa 689
6d4ade98 690 if (need_unlock)
b3b94faa 691 gfs2_glock_dq_uninit(&i_gh);
b3b94faa 692
b3b94faa
DT
693 return error;
694}
695
696/**
df3fd117 697 * gfs2_release - called to close a struct file
b3b94faa
DT
698 * @inode: the inode the struct file belongs to
699 * @file: the struct file being closed
700 *
701 * Returns: errno
702 */
703
df3fd117 704static int gfs2_release(struct inode *inode, struct file *file)
b3b94faa 705{
0a305e49 706 struct gfs2_inode *ip = GFS2_I(inode);
b3b94faa 707
8e2e0047 708 kfree(file->private_data);
5c676f6d 709 file->private_data = NULL;
b3b94faa 710
d3add1a9
BP
711 if (file->f_mode & FMODE_WRITE) {
712 if (gfs2_rs_active(&ip->i_res))
7336905a 713 gfs2_rs_delete(ip);
1595548f 714 gfs2_qa_put(ip);
d3add1a9 715 }
b3b94faa
DT
716 return 0;
717}
718
719/**
720 * gfs2_fsync - sync the dirty data for a file (across the cluster)
02c24a82
JB
721 * @file: the file that points to the dentry
722 * @start: the start position in the file to sync
723 * @end: the end position in the file to sync
dba898b0 724 * @datasync: set if we can ignore timestamp changes
b3b94faa 725 *
2f0264d5
SW
726 * We split the data flushing here so that we don't wait for the data
727 * until after we've also sent the metadata to disk. Note that for
728 * data=ordered, we will write & wait for the data at the log flush
729 * stage anyway, so this is unlikely to make much of a difference
730 * except in the data=writeback case.
731 *
732 * If the fdatawrite fails due to any reason except -EIO, we will
733 * continue the remainder of the fsync, although we'll still report
734 * the error at the end. This is to match filemap_write_and_wait_range()
735 * behaviour.
34126f9f 736 *
b3b94faa
DT
737 * Returns: errno
738 */
739
02c24a82
JB
740static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
741 int datasync)
b3b94faa 742{
2f0264d5
SW
743 struct address_space *mapping = file->f_mapping;
744 struct inode *inode = mapping->host;
3aac630b 745 int sync_state = inode->i_state & I_DIRTY;
dba898b0 746 struct gfs2_inode *ip = GFS2_I(inode);
87654896 747 int ret = 0, ret1 = 0;
b3b94faa 748
2f0264d5
SW
749 if (mapping->nrpages) {
750 ret1 = filemap_fdatawrite_range(mapping, start, end);
751 if (ret1 == -EIO)
752 return ret1;
753 }
02c24a82 754
0c901809
BM
755 if (!gfs2_is_jdata(ip))
756 sync_state &= ~I_DIRTY_PAGES;
dba898b0 757 if (datasync)
3aac630b 758 sync_state &= ~I_DIRTY_SYNC;
b3b94faa 759
dba898b0
SW
760 if (sync_state) {
761 ret = sync_inode_metadata(inode, 1);
b5b24d7a 762 if (ret)
dba898b0 763 return ret;
f1818529 764 if (gfs2_is_jdata(ip))
d07a6ac7
JL
765 ret = file_write_and_wait(file);
766 if (ret)
767 return ret;
b5b24d7a 768 gfs2_ail_flush(ip->i_gl, 1);
33c3de32
SW
769 }
770
2f0264d5 771 if (mapping->nrpages)
d07a6ac7 772 ret = file_fdatawait_range(file, start, end);
2f0264d5
SW
773
774 return ret ? ret : ret1;
b3b94faa
DT
775}
776
72382264 777static inline bool should_fault_in_pages(struct iov_iter *i,
324d116c 778 struct kiocb *iocb,
00bfe02f
AG
779 size_t *prev_count,
780 size_t *window_size)
781{
00bfe02f 782 size_t count = iov_iter_count(i);
bb7f5d96 783 size_t size, offs;
00bfe02f 784
fa5dfa64 785 if (!count)
00bfe02f 786 return false;
fcb14cb1 787 if (!user_backed_iter(i))
00bfe02f
AG
788 return false;
789
fa58cc88
AG
790 /*
791 * Try to fault in multiple pages initially. When that doesn't result
792 * in any progress, fall back to a single page.
793 */
bb7f5d96 794 size = PAGE_SIZE;
324d116c 795 offs = offset_in_page(iocb->ki_pos);
fa58cc88 796 if (*prev_count != count) {
bb7f5d96 797 size_t nr_dirtied;
00bfe02f 798
00bfe02f 799 nr_dirtied = max(current->nr_dirtied_pause -
bb7f5d96 800 current->nr_dirtied, 8);
324d116c 801 size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
00bfe02f
AG
802 }
803
804 *prev_count = count;
bb7f5d96 805 *window_size = size - offs;
00bfe02f
AG
806 return true;
807}
808
4c5c3010
AG
809static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
810 struct gfs2_holder *gh)
967bcc91
AG
811{
812 struct file *file = iocb->ki_filp;
813 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
b01b2d72 814 size_t prev_count = 0, window_size = 0;
42e4c3bd 815 size_t read = 0;
967bcc91
AG
816 ssize_t ret;
817
b01b2d72
AG
818 /*
819 * In this function, we disable page faults when we're holding the
820 * inode glock while doing I/O. If a page fault occurs, we indicate
821 * that the inode glock may be dropped, fault in the pages manually,
822 * and retry.
823 *
824 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
825 * physical as well as manual page faults, and we need to disable both
826 * kinds.
827 *
828 * For direct I/O, gfs2 takes the inode glock in deferred mode. This
829 * locking mode is compatible with other deferred holders, so multiple
830 * processes and nodes can do direct I/O to a file at the same time.
831 * There's no guarantee that reads or writes will be atomic. Any
832 * coordination among readers and writers needs to happen externally.
833 */
834
835 if (!iov_iter_count(to))
967bcc91
AG
836 return 0; /* skip atime */
837
4c5c3010 838 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
b01b2d72 839retry:
4c5c3010 840 ret = gfs2_glock_nq(gh);
967bcc91
AG
841 if (ret)
842 goto out_uninit;
b01b2d72
AG
843 pagefault_disable();
844 to->nofault = true;
845 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
786f847f 846 IOMAP_DIO_PARTIAL, NULL, read);
b01b2d72
AG
847 to->nofault = false;
848 pagefault_enable();
72382264
AG
849 if (ret <= 0 && ret != -EFAULT)
850 goto out_unlock;
53bb540f 851 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
b01b2d72 852 if (ret > 0)
42e4c3bd 853 read = ret;
b01b2d72 854
324d116c 855 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
e1fa9ea8 856 gfs2_glock_dq(gh);
6d22ff47 857 window_size -= fault_in_iov_iter_writeable(to, window_size);
e1fa9ea8 858 if (window_size)
124c458a 859 goto retry;
b01b2d72 860 }
72382264 861out_unlock:
b01b2d72
AG
862 if (gfs2_holder_queued(gh))
863 gfs2_glock_dq(gh);
967bcc91 864out_uninit:
4c5c3010 865 gfs2_holder_uninit(gh);
53bb540f 866 /* User space doesn't expect partial success. */
b01b2d72
AG
867 if (ret < 0)
868 return ret;
42e4c3bd 869 return read;
967bcc91
AG
870}
871
4c5c3010
AG
872static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
873 struct gfs2_holder *gh)
967bcc91
AG
874{
875 struct file *file = iocb->ki_filp;
876 struct inode *inode = file->f_mapping->host;
877 struct gfs2_inode *ip = GFS2_I(inode);
b01b2d72 878 size_t prev_count = 0, window_size = 0;
42e4c3bd 879 size_t written = 0;
fa58cc88 880 bool enough_retries;
967bcc91
AG
881 ssize_t ret;
882
b01b2d72
AG
883 /*
884 * In this function, we disable page faults when we're holding the
885 * inode glock while doing I/O. If a page fault occurs, we indicate
886 * that the inode glock may be dropped, fault in the pages manually,
887 * and retry.
888 *
889 * For writes, iomap_dio_rw only triggers manual page faults, so we
890 * don't need to disable physical ones.
891 */
892
967bcc91
AG
893 /*
894 * Deferred lock, even if its a write, since we do no allocation on
895 * this path. All we need to change is the atime, and this lock mode
896 * ensures that other nodes have flushed their buffered read caches
897 * (i.e. their page cache entries for this inode). We do not,
898 * unfortunately, have the option of only flushing a range like the
899 * VFS does.
900 */
4c5c3010 901 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
b01b2d72 902retry:
4c5c3010 903 ret = gfs2_glock_nq(gh);
967bcc91
AG
904 if (ret)
905 goto out_uninit;
967bcc91 906 /* Silently fall back to buffered I/O when writing beyond EOF */
b01b2d72 907 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
72382264 908 goto out_unlock;
967bcc91 909
b01b2d72
AG
910 from->nofault = true;
911 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
786f847f 912 IOMAP_DIO_PARTIAL, NULL, written);
b01b2d72 913 from->nofault = false;
72382264
AG
914 if (ret <= 0) {
915 if (ret == -ENOTBLK)
916 ret = 0;
917 if (ret != -EFAULT)
918 goto out_unlock;
919 }
53bb540f 920 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
b01b2d72 921 if (ret > 0)
42e4c3bd 922 written = ret;
b01b2d72 923
fa58cc88
AG
924 enough_retries = prev_count == iov_iter_count(from) &&
925 window_size <= PAGE_SIZE;
324d116c 926 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
e1fa9ea8 927 gfs2_glock_dq(gh);
6d22ff47 928 window_size -= fault_in_iov_iter_readable(from, window_size);
fa58cc88
AG
929 if (window_size) {
930 if (!enough_retries)
931 goto retry;
932 /* fall back to buffered I/O */
933 ret = 0;
934 }
b01b2d72 935 }
72382264 936out_unlock:
b01b2d72
AG
937 if (gfs2_holder_queued(gh))
938 gfs2_glock_dq(gh);
967bcc91 939out_uninit:
4c5c3010 940 gfs2_holder_uninit(gh);
53bb540f 941 /* User space doesn't expect partial success. */
b01b2d72
AG
942 if (ret < 0)
943 return ret;
42e4c3bd 944 return written;
967bcc91
AG
945}
946
947static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
948{
20f82999
AG
949 struct gfs2_inode *ip;
950 struct gfs2_holder gh;
00bfe02f 951 size_t prev_count = 0, window_size = 0;
42e4c3bd 952 size_t read = 0;
967bcc91
AG
953 ssize_t ret;
954
00bfe02f
AG
955 /*
956 * In this function, we disable page faults when we're holding the
957 * inode glock while doing I/O. If a page fault occurs, we indicate
958 * that the inode glock may be dropped, fault in the pages manually,
959 * and retry.
960 */
961
11661835
AG
962 if (iocb->ki_flags & IOCB_DIRECT)
963 return gfs2_file_direct_read(iocb, to, &gh);
964
52f3f033 965 pagefault_disable();
20f82999
AG
966 iocb->ki_flags |= IOCB_NOIO;
967 ret = generic_file_read_iter(iocb, to);
968 iocb->ki_flags &= ~IOCB_NOIO;
52f3f033 969 pagefault_enable();
20f82999
AG
970 if (ret >= 0) {
971 if (!iov_iter_count(to))
972 return ret;
42e4c3bd 973 read = ret;
52f3f033 974 } else if (ret != -EFAULT) {
20f82999
AG
975 if (ret != -EAGAIN)
976 return ret;
977 if (iocb->ki_flags & IOCB_NOWAIT)
978 return ret;
979 }
980 ip = GFS2_I(iocb->ki_filp->f_mapping->host);
981 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
00bfe02f 982retry:
20f82999
AG
983 ret = gfs2_glock_nq(&gh);
984 if (ret)
985 goto out_uninit;
00bfe02f 986 pagefault_disable();
20f82999 987 ret = generic_file_read_iter(iocb, to);
00bfe02f 988 pagefault_enable();
72382264
AG
989 if (ret <= 0 && ret != -EFAULT)
990 goto out_unlock;
20f82999 991 if (ret > 0)
42e4c3bd 992 read += ret;
00bfe02f 993
324d116c 994 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
e1fa9ea8 995 gfs2_glock_dq(&gh);
6d22ff47 996 window_size -= fault_in_iov_iter_writeable(to, window_size);
e1fa9ea8 997 if (window_size)
124c458a 998 goto retry;
00bfe02f 999 }
72382264 1000out_unlock:
00bfe02f
AG
1001 if (gfs2_holder_queued(&gh))
1002 gfs2_glock_dq(&gh);
20f82999
AG
1003out_uninit:
1004 gfs2_holder_uninit(&gh);
42e4c3bd 1005 return read ? read : ret;
967bcc91
AG
1006}
1007
1b223f70
AG
1008static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
1009 struct iov_iter *from,
1010 struct gfs2_holder *gh)
2eb7509a
AG
1011{
1012 struct file *file = iocb->ki_filp;
1013 struct inode *inode = file_inode(file);
b924bdab
AG
1014 struct gfs2_inode *ip = GFS2_I(inode);
1015 struct gfs2_sbd *sdp = GFS2_SB(inode);
1b223f70 1016 struct gfs2_holder *statfs_gh = NULL;
00bfe02f 1017 size_t prev_count = 0, window_size = 0;
554c577c 1018 size_t orig_count = iov_iter_count(from);
42e4c3bd 1019 size_t written = 0;
2eb7509a
AG
1020 ssize_t ret;
1021
00bfe02f
AG
1022 /*
1023 * In this function, we disable page faults when we're holding the
1024 * inode glock while doing I/O. If a page fault occurs, we indicate
1025 * that the inode glock may be dropped, fault in the pages manually,
1026 * and retry.
1027 */
1028
1b223f70
AG
1029 if (inode == sdp->sd_rindex) {
1030 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1031 if (!statfs_gh)
1032 return -ENOMEM;
1033 }
1034
1035 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
fa5dfa64 1036 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
c8ed1b35 1037retry:
fa5dfa64 1038 window_size -= fault_in_iov_iter_readable(from, window_size);
fa5dfa64
AG
1039 if (!window_size) {
1040 ret = -EFAULT;
e1fa9ea8 1041 goto out_uninit;
fa5dfa64 1042 }
fa5dfa64
AG
1043 from->count = min(from->count, window_size);
1044 }
e1fa9ea8
AG
1045 ret = gfs2_glock_nq(gh);
1046 if (ret)
1047 goto out_uninit;
fa5dfa64 1048
b924bdab
AG
1049 if (inode == sdp->sd_rindex) {
1050 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1051
1052 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1b223f70 1053 GL_NOCACHE, statfs_gh);
b924bdab
AG
1054 if (ret)
1055 goto out_unlock;
1056 }
1057
00bfe02f 1058 pagefault_disable();
2eb7509a 1059 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
00bfe02f 1060 pagefault_enable();
219580ee 1061 if (ret > 0)
42e4c3bd 1062 written += ret;
b924bdab 1063
1b223f70
AG
1064 if (inode == sdp->sd_rindex)
1065 gfs2_glock_dq_uninit(statfs_gh);
b924bdab 1066
72382264
AG
1067 if (ret <= 0 && ret != -EFAULT)
1068 goto out_unlock;
1069
42e4c3bd 1070 from->count = orig_count - written;
e1fa9ea8
AG
1071 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1072 gfs2_glock_dq(gh);
1073 goto retry;
1074 }
b924bdab 1075out_unlock:
00bfe02f
AG
1076 if (gfs2_holder_queued(gh))
1077 gfs2_glock_dq(gh);
b924bdab 1078out_uninit:
1b223f70 1079 gfs2_holder_uninit(gh);
ab37c305 1080 kfree(statfs_gh);
42e4c3bd
AG
1081 from->count = orig_count - written;
1082 return written ? written : ret;
2eb7509a
AG
1083}
1084
56aa616a 1085/**
da56e45b 1086 * gfs2_file_write_iter - Perform a write to a file
56aa616a 1087 * @iocb: The io context
64bc06bb 1088 * @from: The data to write
56aa616a
SW
1089 *
1090 * We have to do a lock/unlock here to refresh the inode size for
1091 * O_APPEND writes, otherwise we can land up writing at the wrong
1092 * offset. There is still a race, but provided the app is using its
1093 * own file locking, this will make O_APPEND work as expected.
1094 *
1095 */
1096
da56e45b 1097static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
56aa616a
SW
1098{
1099 struct file *file = iocb->ki_filp;
64bc06bb
AG
1100 struct inode *inode = file_inode(file);
1101 struct gfs2_inode *ip = GFS2_I(inode);
4c5c3010 1102 struct gfs2_holder gh;
6e5e41e2 1103 ssize_t ret;
0a305e49 1104
da56e45b 1105 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
da1dfb6a 1106
2ba48ce5 1107 if (iocb->ki_flags & IOCB_APPEND) {
56aa616a
SW
1108 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1109 if (ret)
4bd684bc 1110 return ret;
56aa616a
SW
1111 gfs2_glock_dq_uninit(&gh);
1112 }
1113
64bc06bb
AG
1114 inode_lock(inode);
1115 ret = generic_write_checks(iocb, from);
1116 if (ret <= 0)
4c0e8dda 1117 goto out_unlock;
64bc06bb
AG
1118
1119 ret = file_remove_privs(file);
1120 if (ret)
4c0e8dda 1121 goto out_unlock;
64bc06bb 1122
967bcc91
AG
1123 if (iocb->ki_flags & IOCB_DIRECT) {
1124 struct address_space *mapping = file->f_mapping;
6e5e41e2 1125 ssize_t buffered, ret2;
967bcc91 1126
089f4eb0
AG
1127 /*
1128 * Note that under direct I/O, we don't allow and inode
1129 * timestamp updates, so we're not calling file_update_time()
1130 * here.
1131 */
1132
4c5c3010 1133 ret = gfs2_file_direct_write(iocb, from, &gh);
6e5e41e2 1134 if (ret < 0 || !iov_iter_count(from))
4c0e8dda 1135 goto out_unlock;
967bcc91 1136
6e5e41e2 1137 iocb->ki_flags |= IOCB_DSYNC;
1b223f70 1138 buffered = gfs2_file_buffered_write(iocb, from, &gh);
43a511c4
AG
1139 if (unlikely(buffered <= 0)) {
1140 if (!ret)
1141 ret = buffered;
4c0e8dda 1142 goto out_unlock;
43a511c4 1143 }
967bcc91
AG
1144
1145 /*
1146 * We need to ensure that the page cache pages are written to
1147 * disk and invalidated to preserve the expected O_DIRECT
6e5e41e2
AG
1148 * semantics. If the writeback or invalidate fails, only report
1149 * the direct I/O range as we don't know if the buffered pages
1150 * made it to disk.
967bcc91 1151 */
6e5e41e2
AG
1152 ret2 = generic_write_sync(iocb, buffered);
1153 invalidate_mapping_pages(mapping,
1154 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
1155 (iocb->ki_pos - 1) >> PAGE_SHIFT);
1156 if (!ret || ret2 > 0)
1157 ret += ret2;
967bcc91 1158 } else {
089f4eb0
AG
1159 ret = file_update_time(file);
1160 if (ret)
1161 goto out_unlock;
1162
1b223f70 1163 ret = gfs2_file_buffered_write(iocb, from, &gh);
2eb7509a 1164 if (likely(ret > 0))
6e5e41e2 1165 ret = generic_write_sync(iocb, ret);
967bcc91 1166 }
64bc06bb 1167
4c0e8dda 1168out_unlock:
64bc06bb 1169 inode_unlock(inode);
6e5e41e2 1170 return ret;
56aa616a
SW
1171}
1172
2fe17c10
CH
1173static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1174 int mode)
1175{
fffb6412 1176 struct super_block *sb = inode->i_sb;
2fe17c10 1177 struct gfs2_inode *ip = GFS2_I(inode);
fffb6412 1178 loff_t end = offset + len;
2fe17c10
CH
1179 struct buffer_head *dibh;
1180 int error;
2fe17c10
CH
1181
1182 error = gfs2_meta_inode_buffer(ip, &dibh);
1183 if (unlikely(error))
64dd153c 1184 return error;
2fe17c10 1185
350a9b0a 1186 gfs2_trans_add_meta(ip->i_gl, dibh);
2fe17c10
CH
1187
1188 if (gfs2_is_stuffed(ip)) {
7a607a41 1189 error = gfs2_unstuff_dinode(ip);
2fe17c10
CH
1190 if (unlikely(error))
1191 goto out;
1192 }
1193
fffb6412 1194 while (offset < end) {
c2589282
AG
1195 struct iomap iomap = { };
1196
54992257 1197 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
fffb6412 1198 if (error)
64dd153c 1199 goto out;
fffb6412 1200 offset = iomap.offset + iomap.length;
d505a96a 1201 if (!(iomap.flags & IOMAP_F_NEW))
64dd153c 1202 continue;
fffb6412
AG
1203 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1204 iomap.length >> inode->i_blkbits,
1205 GFP_NOFS);
1206 if (error) {
1207 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
2fe17c10 1208 goto out;
64dd153c 1209 }
2fe17c10 1210 }
2fe17c10 1211out:
64dd153c 1212 brelse(dibh);
2fe17c10
CH
1213 return error;
1214}
f3b64b57 1215
d9be0cda
AD
1216/**
1217 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1218 * blocks, determine how many bytes can be written.
1219 * @ip: The inode in question.
1220 * @len: Max cap of bytes. What we return in *len must be <= this.
1221 * @data_blocks: Compute and return the number of data blocks needed
1222 * @ind_blocks: Compute and return the number of indirect blocks needed
1223 * @max_blocks: The total blocks available to work with.
1224 *
1225 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1226 */
1227static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1228 unsigned int *data_blocks, unsigned int *ind_blocks,
1229 unsigned int max_blocks)
2fe17c10 1230{
d9be0cda 1231 loff_t max = *len;
2fe17c10 1232 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2fe17c10
CH
1233 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1234
1235 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1236 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1237 max_data -= tmp;
1238 }
d9be0cda 1239
2fe17c10
CH
1240 *data_blocks = max_data;
1241 *ind_blocks = max_blocks - max_data;
1242 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1243 if (*len > max) {
1244 *len = max;
1245 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1246 }
1247}
1248
9c9f1159 1249static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
2fe17c10 1250{
496ad9aa 1251 struct inode *inode = file_inode(file);
2fe17c10
CH
1252 struct gfs2_sbd *sdp = GFS2_SB(inode);
1253 struct gfs2_inode *ip = GFS2_I(inode);
f7e4c610 1254 struct gfs2_alloc_parms ap = {};
2fe17c10 1255 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
174d1232 1256 loff_t bytes, max_bytes, max_blks;
2fe17c10 1257 int error;
4442f2e0
SW
1258 const loff_t pos = offset;
1259 const loff_t count = len;
6905d9e4 1260 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
2fe17c10 1261 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
64dd153c 1262 loff_t max_chunk_size = UINT_MAX & bsize_mask;
a0846a53 1263
2fe17c10
CH
1264 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1265
6905d9e4 1266 offset &= bsize_mask;
2fe17c10
CH
1267
1268 len = next - offset;
1269 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1270 if (!bytes)
1271 bytes = UINT_MAX;
6905d9e4
BM
1272 bytes &= bsize_mask;
1273 if (bytes == 0)
1274 bytes = sdp->sd_sb.sb_bsize;
2fe17c10 1275
da1dfb6a 1276 gfs2_size_hint(file, offset, len);
8e2e0047 1277
d9be0cda
AD
1278 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1279 ap.min_target = data_blocks + ind_blocks;
1280
2fe17c10
CH
1281 while (len > 0) {
1282 if (len < bytes)
1283 bytes = len;
58a7d5fb
BM
1284 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1285 len -= bytes;
1286 offset += bytes;
1287 continue;
1288 }
d9be0cda
AD
1289
1290 /* We need to determine how many bytes we can actually
1291 * fallocate without exceeding quota or going over the
1292 * end of the fs. We start off optimistically by assuming
1293 * we can write max_bytes */
1294 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1295
1296 /* Since max_bytes is most likely a theoretical max, we
1297 * calculate a more realistic 'bytes' to serve as a good
1298 * starting point for the number of bytes we may be able
1299 * to write */
2fe17c10 1300 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
7b9cff46 1301 ap.target = data_blocks + ind_blocks;
b8fbf471
AD
1302
1303 error = gfs2_quota_lock_check(ip, &ap);
2fe17c10 1304 if (error)
9c9f1159 1305 return error;
d9be0cda
AD
1306 /* ap.allowed tells us how many blocks quota will allow
1307 * us to write. Check if this reduces max_blks */
174d1232
AG
1308 max_blks = UINT_MAX;
1309 if (ap.allowed)
d9be0cda 1310 max_blks = ap.allowed;
2fe17c10 1311
7b9cff46 1312 error = gfs2_inplace_reserve(ip, &ap);
d9be0cda 1313 if (error)
2fe17c10 1314 goto out_qunlock;
d9be0cda
AD
1315
1316 /* check if the selected rgrp limits our max_blks further */
725d0e9d
AG
1317 if (ip->i_res.rs_reserved < max_blks)
1318 max_blks = ip->i_res.rs_reserved;
d9be0cda
AD
1319
1320 /* Almost done. Calculate bytes that can be written using
1321 * max_blks. We also recompute max_bytes, data_blocks and
1322 * ind_blocks */
1323 calc_max_reserv(ip, &max_bytes, &data_blocks,
1324 &ind_blocks, max_blks);
2fe17c10
CH
1325
1326 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
71f890f7 1327 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
2fe17c10
CH
1328 if (gfs2_is_jdata(ip))
1329 rblocks += data_blocks ? data_blocks : 1;
1330
1331 error = gfs2_trans_begin(sdp, rblocks,
45eb0504 1332 PAGE_SIZE >> inode->i_blkbits);
2fe17c10
CH
1333 if (error)
1334 goto out_trans_fail;
1335
1336 error = fallocate_chunk(inode, offset, max_bytes, mode);
1337 gfs2_trans_end(sdp);
1338
1339 if (error)
1340 goto out_trans_fail;
1341
1342 len -= max_bytes;
1343 offset += max_bytes;
1344 gfs2_inplace_release(ip);
1345 gfs2_quota_unlock(ip);
2fe17c10 1346 }
4442f2e0 1347
0a6a4abc 1348 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1885867b 1349 i_size_write(inode, pos + count);
0a6a4abc
AG
1350 file_update_time(file);
1351 mark_inode_dirty(inode);
1885867b 1352
dde0c2e7
CH
1353 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1354 return vfs_fsync_range(file, pos, pos + count - 1,
1355 (file->f_flags & __O_SYNC) ? 0 : 1);
1356 return 0;
2fe17c10
CH
1357
1358out_trans_fail:
1359 gfs2_inplace_release(ip);
1360out_qunlock:
1361 gfs2_quota_unlock(ip);
9c9f1159
AP
1362 return error;
1363}
1364
1365static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1366{
1367 struct inode *inode = file_inode(file);
d4d7fc12 1368 struct gfs2_sbd *sdp = GFS2_SB(inode);
9c9f1159
AP
1369 struct gfs2_inode *ip = GFS2_I(inode);
1370 struct gfs2_holder gh;
1371 int ret;
1372
4e56a641 1373 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
d4d7fc12
AP
1374 return -EOPNOTSUPP;
1375 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1376 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
9c9f1159
AP
1377 return -EOPNOTSUPP;
1378
5955102c 1379 inode_lock(inode);
9c9f1159
AP
1380
1381 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1382 ret = gfs2_glock_nq(&gh);
1383 if (ret)
1384 goto out_uninit;
1385
1386 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1387 (offset + len) > inode->i_size) {
1388 ret = inode_newsize_ok(inode, offset + len);
1389 if (ret)
1390 goto out_unlock;
1391 }
1392
1393 ret = get_write_access(inode);
1394 if (ret)
1395 goto out_unlock;
1396
4e56a641
AG
1397 if (mode & FALLOC_FL_PUNCH_HOLE) {
1398 ret = __gfs2_punch_hole(file, offset, len);
1399 } else {
4e56a641 1400 ret = __gfs2_fallocate(file, mode, offset, len);
4e56a641
AG
1401 if (ret)
1402 gfs2_rs_deltree(&ip->i_res);
1403 }
a097dc7e 1404
9c9f1159 1405 put_write_access(inode);
2fe17c10 1406out_unlock:
a0846a53 1407 gfs2_glock_dq(&gh);
2fe17c10 1408out_uninit:
a0846a53 1409 gfs2_holder_uninit(&gh);
5955102c 1410 inode_unlock(inode);
9c9f1159 1411 return ret;
2fe17c10
CH
1412}
1413
f1ea6f4e
BP
1414static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1415 struct file *out, loff_t *ppos,
1416 size_t len, unsigned int flags)
1417{
2fba46a0 1418 ssize_t ret;
f1ea6f4e 1419
f1ea6f4e
BP
1420 gfs2_size_hint(out, *ppos, len);
1421
2fba46a0 1422 ret = iter_file_splice_write(pipe, out, ppos, len, flags);
2fba46a0 1423 return ret;
f1ea6f4e
BP
1424}
1425
f057f6cd
SW
1426#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1427
b3b94faa
DT
1428/**
1429 * gfs2_lock - acquire/release a posix lock on a file
1430 * @file: the file pointer
1431 * @cmd: either modify or retrieve lock state, possibly wait
1432 * @fl: type and range of lock
1433 *
1434 * Returns: errno
1435 */
1436
1437static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1438{
feaa7bba
SW
1439 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1440 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
f057f6cd 1441 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
b3b94faa 1442
b3b94faa
DT
1443 if (!(fl->fl_flags & FL_POSIX))
1444 return -ENOLCK;
4d927b03 1445 if (gfs2_withdrawing_or_withdrawn(sdp)) {
c2952d20 1446 if (fl->fl_type == F_UNLCK)
4f656367 1447 locks_lock_file_wait(file, fl);
f057f6cd 1448 return -EIO;
c2952d20 1449 }
dc52cd2e
AA
1450 if (cmd == F_CANCELLK)
1451 return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl);
1452 else if (IS_GETLK(cmd))
f057f6cd 1453 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
b3b94faa 1454 else if (fl->fl_type == F_UNLCK)
f057f6cd 1455 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
b3b94faa 1456 else
f057f6cd 1457 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
b3b94faa
DT
1458}
1459
56535dc6
AG
1460static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh)
1461{
4ad02083 1462 struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl);
56535dc6
AG
1463
1464 /*
1465 * Make sure gfs2_glock_put() won't sleep under the file->f_lock
1466 * spinlock.
1467 */
1468
56535dc6
AG
1469 spin_lock(&file->f_lock);
1470 gfs2_holder_uninit(fl_gh);
1471 spin_unlock(&file->f_lock);
1472 gfs2_glock_put(gl);
1473}
1474
b3b94faa
DT
1475static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1476{
5c676f6d 1477 struct gfs2_file *fp = file->private_data;
b3b94faa 1478 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
496ad9aa 1479 struct gfs2_inode *ip = GFS2_I(file_inode(file));
b3b94faa
DT
1480 struct gfs2_glock *gl;
1481 unsigned int state;
b58bf407 1482 u16 flags;
b3b94faa 1483 int error = 0;
2ddfbdd6 1484 int sleeptime;
b3b94faa
DT
1485
1486 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
b582d5f0
AG
1487 flags = GL_EXACT | GL_NOPID;
1488 if (!IS_SETLKW(cmd))
1489 flags |= LM_FLAG_TRY_1CB;
b3b94faa 1490
f55ab26a 1491 mutex_lock(&fp->f_fl_mutex);
b3b94faa 1492
283c9a97 1493 if (gfs2_holder_initialized(fl_gh)) {
4d62d3f7 1494 struct file_lock request;
b3b94faa
DT
1495 if (fl_gh->gh_state == state)
1496 goto out;
4d62d3f7
N
1497 locks_init_lock(&request);
1498 request.fl_type = F_UNLCK;
1499 request.fl_flags = FL_FLOCK;
1500 locks_lock_file_wait(file, &request);
5bef3e7c 1501 gfs2_glock_dq(fl_gh);
b4c20166 1502 gfs2_holder_reinit(state, flags, fl_gh);
b3b94faa 1503 } else {
6802e340
SW
1504 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1505 &gfs2_flock_glops, CREATE, &gl);
b3b94faa
DT
1506 if (error)
1507 goto out;
56535dc6 1508 spin_lock(&file->f_lock);
b4c20166 1509 gfs2_holder_init(gl, state, flags, fl_gh);
56535dc6 1510 spin_unlock(&file->f_lock);
b4c20166 1511 gfs2_glock_put(gl);
b3b94faa 1512 }
2ddfbdd6
BP
1513 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1514 error = gfs2_glock_nq(fl_gh);
1515 if (error != GLR_TRYFAILED)
1516 break;
b582d5f0
AG
1517 fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB;
1518 fl_gh->gh_flags |= LM_FLAG_TRY;
2ddfbdd6
BP
1519 msleep(sleeptime);
1520 }
b3b94faa 1521 if (error) {
56535dc6 1522 __flock_holder_uninit(file, fl_gh);
b3b94faa
DT
1523 if (error == GLR_TRYFAILED)
1524 error = -EAGAIN;
1525 } else {
4f656367 1526 error = locks_lock_file_wait(file, fl);
feaa7bba 1527 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
b3b94faa
DT
1528 }
1529
420b9e5e 1530out:
f55ab26a 1531 mutex_unlock(&fp->f_fl_mutex);
b3b94faa
DT
1532 return error;
1533}
1534
1535static void do_unflock(struct file *file, struct file_lock *fl)
1536{
5c676f6d 1537 struct gfs2_file *fp = file->private_data;
b3b94faa
DT
1538 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1539
f55ab26a 1540 mutex_lock(&fp->f_fl_mutex);
4f656367 1541 locks_lock_file_wait(file, fl);
6df9f9a2 1542 if (gfs2_holder_initialized(fl_gh)) {
2ddfbdd6 1543 gfs2_glock_dq(fl_gh);
56535dc6 1544 __flock_holder_uninit(file, fl_gh);
0a33443b 1545 }
f55ab26a 1546 mutex_unlock(&fp->f_fl_mutex);
b3b94faa
DT
1547}
1548
1549/**
1550 * gfs2_flock - acquire/release a flock lock on a file
1551 * @file: the file pointer
1552 * @cmd: either modify or retrieve lock state, possibly wait
1553 * @fl: type and range of lock
1554 *
1555 * Returns: errno
1556 */
1557
1558static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1559{
b3b94faa
DT
1560 if (!(fl->fl_flags & FL_FLOCK))
1561 return -ENOLCK;
b3b94faa 1562
b3b94faa
DT
1563 if (fl->fl_type == F_UNLCK) {
1564 do_unflock(file, fl);
1565 return 0;
d00223f1 1566 } else {
b3b94faa 1567 return do_flock(file, cmd, fl);
d00223f1 1568 }
b3b94faa
DT
1569}
1570
10d21988 1571const struct file_operations gfs2_file_fops = {
26c1a574 1572 .llseek = gfs2_llseek,
967bcc91 1573 .read_iter = gfs2_file_read_iter,
da56e45b 1574 .write_iter = gfs2_file_write_iter,
3e08773c 1575 .iopoll = iocb_bio_iopoll,
26c1a574 1576 .unlocked_ioctl = gfs2_ioctl,
8d098070 1577 .compat_ioctl = gfs2_compat_ioctl,
26c1a574
SW
1578 .mmap = gfs2_mmap,
1579 .open = gfs2_open,
df3fd117 1580 .release = gfs2_release,
26c1a574
SW
1581 .fsync = gfs2_fsync,
1582 .lock = gfs2_lock,
26c1a574 1583 .flock = gfs2_flock,
0be84321 1584 .splice_read = copy_splice_read,
f42a69fa 1585 .splice_write = gfs2_file_splice_write,
1c994a09 1586 .setlease = simple_nosetlease,
2fe17c10 1587 .fallocate = gfs2_fallocate,
b3b94faa
DT
1588};
1589
10d21988 1590const struct file_operations gfs2_dir_fops = {
1d1bb236 1591 .iterate_shared = gfs2_readdir,
26c1a574 1592 .unlocked_ioctl = gfs2_ioctl,
8d098070 1593 .compat_ioctl = gfs2_compat_ioctl,
26c1a574 1594 .open = gfs2_open,
df3fd117 1595 .release = gfs2_release,
26c1a574
SW
1596 .fsync = gfs2_fsync,
1597 .lock = gfs2_lock,
1598 .flock = gfs2_flock,
6038f373 1599 .llseek = default_llseek,
b3b94faa
DT
1600};
1601
f057f6cd
SW
1602#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1603
10d21988 1604const struct file_operations gfs2_file_fops_nolock = {
c97bfe43 1605 .llseek = gfs2_llseek,
967bcc91 1606 .read_iter = gfs2_file_read_iter,
da56e45b 1607 .write_iter = gfs2_file_write_iter,
3e08773c 1608 .iopoll = iocb_bio_iopoll,
c97bfe43 1609 .unlocked_ioctl = gfs2_ioctl,
8d098070 1610 .compat_ioctl = gfs2_compat_ioctl,
c97bfe43
WC
1611 .mmap = gfs2_mmap,
1612 .open = gfs2_open,
df3fd117 1613 .release = gfs2_release,
c97bfe43 1614 .fsync = gfs2_fsync,
0be84321 1615 .splice_read = copy_splice_read,
f42a69fa 1616 .splice_write = gfs2_file_splice_write,
f057f6cd 1617 .setlease = generic_setlease,
2fe17c10 1618 .fallocate = gfs2_fallocate,
c97bfe43
WC
1619};
1620
10d21988 1621const struct file_operations gfs2_dir_fops_nolock = {
1d1bb236 1622 .iterate_shared = gfs2_readdir,
c97bfe43 1623 .unlocked_ioctl = gfs2_ioctl,
8d098070 1624 .compat_ioctl = gfs2_compat_ioctl,
c97bfe43 1625 .open = gfs2_open,
df3fd117 1626 .release = gfs2_release,
c97bfe43 1627 .fsync = gfs2_fsync,
6038f373 1628 .llseek = default_llseek,
c97bfe43
WC
1629};
1630