writeback, cgroup: support switching multiple inodes at once
[linux-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
6e6938b6 46 unsigned int tagged_writepages:1;
52957fe1
HS
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
7747bd4b 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 51 unsigned int auto_free:1; /* free on completion */
0e175a18 52 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 53
8010c3b6 54 struct list_head list; /* pending work list */
cc395d7f 55 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
56};
57
a2f48706
TT
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
7ccf19a8
NP
70static inline struct inode *wb_inode(struct list_head *head)
71{
c7f54084 72 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
73}
74
15eb77a0
WF
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
774016b2
SW
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
d6c10f1f
TH
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 102 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 105 }
d6c10f1f
TH
106}
107
108/**
c7f54084 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
bbbc3c1c 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 113 *
c7f54084 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
c7f54084 118static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
123
c7f54084 124 list_move(&inode->i_io_list, head);
d6c10f1f
TH
125
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
129
130 wb_io_lists_depopulated(wb);
131 return false;
132}
133
f0054bb1 134static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 135{
f0054bb1
TH
136 spin_lock_bh(&wb->work_lock);
137 if (test_bit(WB_registered, &wb->state))
138 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
140}
141
4a3a485b
TE
142static void finish_writeback_work(struct bdi_writeback *wb,
143 struct wb_writeback_work *work)
144{
145 struct wb_completion *done = work->done;
146
147 if (work->auto_free)
148 kfree(work);
8e00c4e9
TH
149 if (done) {
150 wait_queue_head_t *waitq = done->waitq;
151
152 /* @done can't be accessed after the following dec */
153 if (atomic_dec_and_test(&done->cnt))
154 wake_up_all(waitq);
155 }
4a3a485b
TE
156}
157
f0054bb1
TH
158static void wb_queue_work(struct bdi_writeback *wb,
159 struct wb_writeback_work *work)
6585027a 160{
5634cc2a 161 trace_writeback_queue(wb, work);
6585027a 162
cc395d7f
TH
163 if (work->done)
164 atomic_inc(&work->done->cnt);
4a3a485b
TE
165
166 spin_lock_bh(&wb->work_lock);
167
168 if (test_bit(WB_registered, &wb->state)) {
169 list_add_tail(&work->list, &wb->work_list);
170 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 } else
172 finish_writeback_work(wb, work);
173
f0054bb1 174 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
175}
176
cc395d7f
TH
177/**
178 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
179 * @done: target wb_completion
180 *
181 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
182 * set to @done, which should have been initialized with
183 * DEFINE_WB_COMPLETION(). This function returns after all such work items
184 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
185 * automatically on completion.
186 */
5b9cce4c 187void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
188{
189 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 190 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
191}
192
703c2708
TH
193#ifdef CONFIG_CGROUP_WRITEBACK
194
55a694df
TH
195/*
196 * Parameters for foreign inode detection, see wbc_detach_inode() to see
197 * how they're used.
198 *
199 * These paramters are inherently heuristical as the detection target
200 * itself is fuzzy. All we want to do is detaching an inode from the
201 * current owner if it's being written to by some other cgroups too much.
202 *
203 * The current cgroup writeback is built on the assumption that multiple
204 * cgroups writing to the same inode concurrently is very rare and a mode
205 * of operation which isn't well supported. As such, the goal is not
206 * taking too long when a different cgroup takes over an inode while
207 * avoiding too aggressive flip-flops from occasional foreign writes.
208 *
209 * We record, very roughly, 2s worth of IO time history and if more than
210 * half of that is foreign, trigger the switch. The recording is quantized
211 * to 16 slots. To avoid tiny writes from swinging the decision too much,
212 * writes smaller than 1/8 of avg size are ignored.
213 */
2a814908
TH
214#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
215#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 216#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
217#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218
219#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
220#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 /* each slot's duration is 2s / 16 */
222#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
223 /* if foreign slots >= 8, switch */
224#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 /* one round can affect upto 5 slots */
6444f47e 226#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 227
a1a0e23e
TH
228static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
229static struct workqueue_struct *isw_wq;
230
21c6321f
TH
231void __inode_attach_wb(struct inode *inode, struct page *page)
232{
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259}
9b0eb69b 260EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 261
f3b6a6df
RG
262/**
263 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
264 * @inode: inode of interest with i_lock held
265 * @wb: target bdi_writeback
266 *
267 * Remove the inode from wb's io lists and if necessarily put onto b_attached
268 * list. Only inodes attached to cgwb's are kept on this list.
269 */
270static void inode_cgwb_move_to_attached(struct inode *inode,
271 struct bdi_writeback *wb)
272{
273 assert_spin_locked(&wb->list_lock);
274 assert_spin_locked(&inode->i_lock);
275
276 inode->i_state &= ~I_SYNC_QUEUED;
277 if (wb != &wb->bdi->wb)
278 list_move(&inode->i_io_list, &wb->b_attached);
279 else
280 list_del_init(&inode->i_io_list);
281 wb_io_lists_depopulated(wb);
282}
283
87e1d789
TH
284/**
285 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
286 * @inode: inode of interest with i_lock held
287 *
288 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
289 * held on entry and is released on return. The returned wb is guaranteed
290 * to stay @inode's associated wb until its list_lock is released.
291 */
292static struct bdi_writeback *
293locked_inode_to_wb_and_lock_list(struct inode *inode)
294 __releases(&inode->i_lock)
295 __acquires(&wb->list_lock)
296{
297 while (true) {
298 struct bdi_writeback *wb = inode_to_wb(inode);
299
300 /*
301 * inode_to_wb() association is protected by both
302 * @inode->i_lock and @wb->list_lock but list_lock nests
303 * outside i_lock. Drop i_lock and verify that the
304 * association hasn't changed after acquiring list_lock.
305 */
306 wb_get(wb);
307 spin_unlock(&inode->i_lock);
308 spin_lock(&wb->list_lock);
87e1d789 309
aaa2cacf 310 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
311 if (likely(wb == inode->i_wb)) {
312 wb_put(wb); /* @inode already has ref */
313 return wb;
314 }
87e1d789
TH
315
316 spin_unlock(&wb->list_lock);
614a4e37 317 wb_put(wb);
87e1d789
TH
318 cpu_relax();
319 spin_lock(&inode->i_lock);
320 }
321}
322
323/**
324 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
325 * @inode: inode of interest
326 *
327 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
328 * on entry.
329 */
330static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
331 __acquires(&wb->list_lock)
332{
333 spin_lock(&inode->i_lock);
334 return locked_inode_to_wb_and_lock_list(inode);
335}
336
682aa8e1 337struct inode_switch_wbs_context {
29264d92 338 struct rcu_work work;
f5fbe6b7
RG
339
340 /*
341 * Multiple inodes can be switched at once. The switching procedure
342 * consists of two parts, separated by a RCU grace period. To make
343 * sure that the second part is executed for each inode gone through
344 * the first part, all inode pointers are placed into a NULL-terminated
345 * array embedded into struct inode_switch_wbs_context. Otherwise
346 * an inode could be left in a non-consistent state.
347 */
348 struct bdi_writeback *new_wb;
349 struct inode *inodes[];
682aa8e1
TH
350};
351
7fc5854f
TH
352static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
353{
354 down_write(&bdi->wb_switch_rwsem);
355}
356
357static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
358{
359 up_write(&bdi->wb_switch_rwsem);
360}
361
f5fbe6b7
RG
362static bool inode_do_switch_wbs(struct inode *inode,
363 struct bdi_writeback *old_wb,
72d4512e 364 struct bdi_writeback *new_wb)
682aa8e1 365{
d10c8095 366 struct address_space *mapping = inode->i_mapping;
04edf02c
MW
367 XA_STATE(xas, &mapping->i_pages, 0);
368 struct page *page;
d10c8095 369 bool switched = false;
682aa8e1 370
682aa8e1 371 spin_lock(&inode->i_lock);
b93b0163 372 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
373
374 /*
4ade5867
RG
375 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
376 * path owns the inode and we shouldn't modify ->i_io_list.
d10c8095 377 */
4ade5867 378 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
d10c8095
TH
379 goto skip_switch;
380
3a8e9ac8
TH
381 trace_inode_switch_wbs(inode, old_wb, new_wb);
382
d10c8095
TH
383 /*
384 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
385 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 386 * pages actually under writeback.
d10c8095 387 */
04edf02c
MW
388 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
389 if (PageDirty(page)) {
3e8f399d
NB
390 dec_wb_stat(old_wb, WB_RECLAIMABLE);
391 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
392 }
393 }
394
04edf02c
MW
395 xas_set(&xas, 0);
396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
397 WARN_ON_ONCE(!PageWriteback(page));
398 dec_wb_stat(old_wb, WB_WRITEBACK);
399 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
400 }
401
402 wb_get(new_wb);
403
404 /*
f3b6a6df
RG
405 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
406 * the specific list @inode was on is ignored and the @inode is put on
407 * ->b_dirty which is always correct including from ->b_dirty_time.
408 * The transfer preserves @inode->dirtied_when ordering. If the @inode
409 * was clean, it means it was on the b_attached list, so move it onto
410 * the b_attached list of @new_wb.
d10c8095 411 */
c7f54084 412 if (!list_empty(&inode->i_io_list)) {
d10c8095 413 inode->i_wb = new_wb;
f3b6a6df
RG
414
415 if (inode->i_state & I_DIRTY_ALL) {
416 struct inode *pos;
417
418 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
419 if (time_after_eq(inode->dirtied_when,
420 pos->dirtied_when))
421 break;
422 inode_io_list_move_locked(inode, new_wb,
423 pos->i_io_list.prev);
424 } else {
425 inode_cgwb_move_to_attached(inode, new_wb);
426 }
d10c8095
TH
427 } else {
428 inode->i_wb = new_wb;
429 }
682aa8e1 430
d10c8095 431 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
432 inode->i_wb_frn_winner = 0;
433 inode->i_wb_frn_avg_time = 0;
434 inode->i_wb_frn_history = 0;
d10c8095
TH
435 switched = true;
436skip_switch:
682aa8e1
TH
437 /*
438 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
439 * ensures that the new wb is visible if they see !I_WB_SWITCH.
440 */
441 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
442
b93b0163 443 xa_unlock_irq(&mapping->i_pages);
682aa8e1 444 spin_unlock(&inode->i_lock);
7fc5854f 445
f5fbe6b7 446 return switched;
72d4512e 447}
d10c8095 448
72d4512e
RG
449static void inode_switch_wbs_work_fn(struct work_struct *work)
450{
451 struct inode_switch_wbs_context *isw =
452 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
f5fbe6b7
RG
453 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
454 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
455 struct bdi_writeback *new_wb = isw->new_wb;
456 unsigned long nr_switched = 0;
457 struct inode **inodep;
458
459 /*
460 * If @inode switches cgwb membership while sync_inodes_sb() is
461 * being issued, sync_inodes_sb() might miss it. Synchronize.
462 */
463 down_read(&bdi->wb_switch_rwsem);
464
465 /*
466 * By the time control reaches here, RCU grace period has passed
467 * since I_WB_SWITCH assertion and all wb stat update transactions
468 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
469 * synchronizing against the i_pages lock.
470 *
471 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
472 * gives us exclusion against all wb related operations on @inode
473 * including IO list manipulations and stat updates.
474 */
475 if (old_wb < new_wb) {
476 spin_lock(&old_wb->list_lock);
477 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
478 } else {
479 spin_lock(&new_wb->list_lock);
480 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
481 }
482
483 for (inodep = isw->inodes; *inodep; inodep++) {
484 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
485 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
486 nr_switched++;
487 }
488
489 spin_unlock(&new_wb->list_lock);
490 spin_unlock(&old_wb->list_lock);
491
492 up_read(&bdi->wb_switch_rwsem);
493
494 if (nr_switched) {
495 wb_wakeup(new_wb);
496 wb_put_many(old_wb, nr_switched);
497 }
a1a0e23e 498
f5fbe6b7
RG
499 for (inodep = isw->inodes; *inodep; inodep++)
500 iput(*inodep);
501 wb_put(new_wb);
72d4512e 502 kfree(isw);
a1a0e23e 503 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
504}
505
682aa8e1
TH
506/**
507 * inode_switch_wbs - change the wb association of an inode
508 * @inode: target inode
509 * @new_wb_id: ID of the new wb
510 *
511 * Switch @inode's wb association to the wb identified by @new_wb_id. The
512 * switching is performed asynchronously and may fail silently.
513 */
514static void inode_switch_wbs(struct inode *inode, int new_wb_id)
515{
516 struct backing_dev_info *bdi = inode_to_bdi(inode);
517 struct cgroup_subsys_state *memcg_css;
518 struct inode_switch_wbs_context *isw;
519
520 /* noop if seems to be already in progress */
521 if (inode->i_state & I_WB_SWITCH)
522 return;
523
6444f47e
TH
524 /* avoid queueing a new switch if too many are already in flight */
525 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
526 return;
527
f5fbe6b7 528 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
682aa8e1 529 if (!isw)
6444f47e 530 return;
682aa8e1 531
8826ee4f
RG
532 atomic_inc(&isw_nr_in_flight);
533
682aa8e1
TH
534 /* find and pin the new wb */
535 rcu_read_lock();
536 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
537 if (memcg_css)
538 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
539 rcu_read_unlock();
540 if (!isw->new_wb)
541 goto out_free;
542
543 /* while holding I_WB_SWITCH, no one else can update the association */
544 spin_lock(&inode->i_lock);
1751e8a6 545 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
4ade5867 546 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
a1a0e23e
TH
547 inode_to_wb(inode) == isw->new_wb) {
548 spin_unlock(&inode->i_lock);
549 goto out_free;
550 }
682aa8e1 551 inode->i_state |= I_WB_SWITCH;
74524955 552 __iget(inode);
682aa8e1
TH
553 spin_unlock(&inode->i_lock);
554
f5fbe6b7 555 isw->inodes[0] = inode;
682aa8e1
TH
556
557 /*
558 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
559 * the RCU protected stat update paths to grab the i_page
560 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
561 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
562 */
29264d92
RG
563 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
564 queue_rcu_work(isw_wq, &isw->work);
6444f47e 565 return;
682aa8e1
TH
566
567out_free:
8826ee4f 568 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
569 if (isw->new_wb)
570 wb_put(isw->new_wb);
571 kfree(isw);
572}
573
b16b1deb
TH
574/**
575 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
576 * @wbc: writeback_control of interest
577 * @inode: target inode
578 *
579 * @inode is locked and about to be written back under the control of @wbc.
580 * Record @inode's writeback context into @wbc and unlock the i_lock. On
581 * writeback completion, wbc_detach_inode() should be called. This is used
582 * to track the cgroup writeback context.
583 */
584void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
585 struct inode *inode)
586{
dd73e4b7
TH
587 if (!inode_cgwb_enabled(inode)) {
588 spin_unlock(&inode->i_lock);
589 return;
590 }
591
b16b1deb 592 wbc->wb = inode_to_wb(inode);
2a814908
TH
593 wbc->inode = inode;
594
595 wbc->wb_id = wbc->wb->memcg_css->id;
596 wbc->wb_lcand_id = inode->i_wb_frn_winner;
597 wbc->wb_tcand_id = 0;
598 wbc->wb_bytes = 0;
599 wbc->wb_lcand_bytes = 0;
600 wbc->wb_tcand_bytes = 0;
601
b16b1deb
TH
602 wb_get(wbc->wb);
603 spin_unlock(&inode->i_lock);
e8a7abf5
TH
604
605 /*
65de03e2
TH
606 * A dying wb indicates that either the blkcg associated with the
607 * memcg changed or the associated memcg is dying. In the first
608 * case, a replacement wb should already be available and we should
609 * refresh the wb immediately. In the second case, trying to
610 * refresh will keep failing.
e8a7abf5 611 */
65de03e2 612 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 613 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 614}
9b0eb69b 615EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
616
617/**
2a814908
TH
618 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
619 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
620 *
621 * To be called after a writeback attempt of an inode finishes and undoes
622 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
623 *
624 * As concurrent write sharing of an inode is expected to be very rare and
625 * memcg only tracks page ownership on first-use basis severely confining
626 * the usefulness of such sharing, cgroup writeback tracks ownership
627 * per-inode. While the support for concurrent write sharing of an inode
628 * is deemed unnecessary, an inode being written to by different cgroups at
629 * different points in time is a lot more common, and, more importantly,
630 * charging only by first-use can too readily lead to grossly incorrect
631 * behaviors (single foreign page can lead to gigabytes of writeback to be
632 * incorrectly attributed).
633 *
634 * To resolve this issue, cgroup writeback detects the majority dirtier of
635 * an inode and transfers the ownership to it. To avoid unnnecessary
636 * oscillation, the detection mechanism keeps track of history and gives
637 * out the switch verdict only if the foreign usage pattern is stable over
638 * a certain amount of time and/or writeback attempts.
639 *
640 * On each writeback attempt, @wbc tries to detect the majority writer
641 * using Boyer-Moore majority vote algorithm. In addition to the byte
642 * count from the majority voting, it also counts the bytes written for the
643 * current wb and the last round's winner wb (max of last round's current
644 * wb, the winner from two rounds ago, and the last round's majority
645 * candidate). Keeping track of the historical winner helps the algorithm
646 * to semi-reliably detect the most active writer even when it's not the
647 * absolute majority.
648 *
649 * Once the winner of the round is determined, whether the winner is
650 * foreign or not and how much IO time the round consumed is recorded in
651 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
652 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
653 */
654void wbc_detach_inode(struct writeback_control *wbc)
655{
2a814908
TH
656 struct bdi_writeback *wb = wbc->wb;
657 struct inode *inode = wbc->inode;
dd73e4b7
TH
658 unsigned long avg_time, max_bytes, max_time;
659 u16 history;
2a814908
TH
660 int max_id;
661
dd73e4b7
TH
662 if (!wb)
663 return;
664
665 history = inode->i_wb_frn_history;
666 avg_time = inode->i_wb_frn_avg_time;
667
2a814908
TH
668 /* pick the winner of this round */
669 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
670 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
671 max_id = wbc->wb_id;
672 max_bytes = wbc->wb_bytes;
673 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
674 max_id = wbc->wb_lcand_id;
675 max_bytes = wbc->wb_lcand_bytes;
676 } else {
677 max_id = wbc->wb_tcand_id;
678 max_bytes = wbc->wb_tcand_bytes;
679 }
680
681 /*
682 * Calculate the amount of IO time the winner consumed and fold it
683 * into the running average kept per inode. If the consumed IO
684 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
685 * deciding whether to switch or not. This is to prevent one-off
686 * small dirtiers from skewing the verdict.
687 */
688 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
689 wb->avg_write_bandwidth);
690 if (avg_time)
691 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
692 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
693 else
694 avg_time = max_time; /* immediate catch up on first run */
695
696 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
697 int slots;
698
699 /*
700 * The switch verdict is reached if foreign wb's consume
701 * more than a certain proportion of IO time in a
702 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
703 * history mask where each bit represents one sixteenth of
704 * the period. Determine the number of slots to shift into
705 * history from @max_time.
706 */
707 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
708 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
709 history <<= slots;
710 if (wbc->wb_id != max_id)
711 history |= (1U << slots) - 1;
712
3a8e9ac8
TH
713 if (history)
714 trace_inode_foreign_history(inode, wbc, history);
715
2a814908
TH
716 /*
717 * Switch if the current wb isn't the consistent winner.
718 * If there are multiple closely competing dirtiers, the
719 * inode may switch across them repeatedly over time, which
720 * is okay. The main goal is avoiding keeping an inode on
721 * the wrong wb for an extended period of time.
722 */
682aa8e1
TH
723 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
724 inode_switch_wbs(inode, max_id);
2a814908
TH
725 }
726
727 /*
728 * Multiple instances of this function may race to update the
729 * following fields but we don't mind occassional inaccuracies.
730 */
731 inode->i_wb_frn_winner = max_id;
732 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
733 inode->i_wb_frn_history = history;
734
b16b1deb
TH
735 wb_put(wbc->wb);
736 wbc->wb = NULL;
737}
9b0eb69b 738EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 739
2a814908 740/**
34e51a5e 741 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
742 * @wbc: writeback_control of the writeback in progress
743 * @page: page being written out
744 * @bytes: number of bytes being written out
745 *
746 * @bytes from @page are about to written out during the writeback
747 * controlled by @wbc. Keep the book for foreign inode detection. See
748 * wbc_detach_inode().
749 */
34e51a5e
TH
750void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
751 size_t bytes)
2a814908 752{
66311422 753 struct cgroup_subsys_state *css;
2a814908
TH
754 int id;
755
756 /*
757 * pageout() path doesn't attach @wbc to the inode being written
758 * out. This is intentional as we don't want the function to block
759 * behind a slow cgroup. Ultimately, we want pageout() to kick off
760 * regular writeback instead of writing things out itself.
761 */
27b36d8f 762 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
763 return;
764
66311422
TH
765 css = mem_cgroup_css_from_page(page);
766 /* dead cgroups shouldn't contribute to inode ownership arbitration */
767 if (!(css->flags & CSS_ONLINE))
768 return;
769
770 id = css->id;
2a814908
TH
771
772 if (id == wbc->wb_id) {
773 wbc->wb_bytes += bytes;
774 return;
775 }
776
777 if (id == wbc->wb_lcand_id)
778 wbc->wb_lcand_bytes += bytes;
779
780 /* Boyer-Moore majority vote algorithm */
781 if (!wbc->wb_tcand_bytes)
782 wbc->wb_tcand_id = id;
783 if (id == wbc->wb_tcand_id)
784 wbc->wb_tcand_bytes += bytes;
785 else
786 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
787}
34e51a5e 788EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 789
703c2708
TH
790/**
791 * inode_congested - test whether an inode is congested
60292bcc 792 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
793 * @cong_bits: mask of WB_[a]sync_congested bits to test
794 *
795 * Tests whether @inode is congested. @cong_bits is the mask of congestion
796 * bits to test and the return value is the mask of set bits.
797 *
798 * If cgroup writeback is enabled for @inode, the congestion state is
799 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
800 * associated with @inode is congested; otherwise, the root wb's congestion
801 * state is used.
60292bcc
TH
802 *
803 * @inode is allowed to be NULL as this function is often called on
804 * mapping->host which is NULL for the swapper space.
703c2708
TH
805 */
806int inode_congested(struct inode *inode, int cong_bits)
807{
5cb8b824
TH
808 /*
809 * Once set, ->i_wb never becomes NULL while the inode is alive.
810 * Start transaction iff ->i_wb is visible.
811 */
aaa2cacf 812 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 813 struct bdi_writeback *wb;
2e898e4c
GT
814 struct wb_lock_cookie lock_cookie = {};
815 bool congested;
5cb8b824 816
2e898e4c 817 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 818 congested = wb_congested(wb, cong_bits);
2e898e4c 819 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 820 return congested;
703c2708
TH
821 }
822
823 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
824}
825EXPORT_SYMBOL_GPL(inode_congested);
826
f2b65121
TH
827/**
828 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
829 * @wb: target bdi_writeback to split @nr_pages to
830 * @nr_pages: number of pages to write for the whole bdi
831 *
832 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
833 * relation to the total write bandwidth of all wb's w/ dirty inodes on
834 * @wb->bdi.
835 */
836static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
837{
838 unsigned long this_bw = wb->avg_write_bandwidth;
839 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
840
841 if (nr_pages == LONG_MAX)
842 return LONG_MAX;
843
844 /*
845 * This may be called on clean wb's and proportional distribution
846 * may not make sense, just use the original @nr_pages in those
847 * cases. In general, we wanna err on the side of writing more.
848 */
849 if (!tot_bw || this_bw >= tot_bw)
850 return nr_pages;
851 else
852 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
853}
854
db125360
TH
855/**
856 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
857 * @bdi: target backing_dev_info
858 * @base_work: wb_writeback_work to issue
859 * @skip_if_busy: skip wb's which already have writeback in progress
860 *
861 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
862 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
863 * distributed to the busy wbs according to each wb's proportion in the
864 * total active write bandwidth of @bdi.
865 */
866static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
867 struct wb_writeback_work *base_work,
868 bool skip_if_busy)
869{
b817525a 870 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
871 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
872 struct bdi_writeback, bdi_node);
db125360
TH
873
874 might_sleep();
db125360
TH
875restart:
876 rcu_read_lock();
b817525a 877 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 878 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
879 struct wb_writeback_work fallback_work;
880 struct wb_writeback_work *work;
881 long nr_pages;
882
b817525a
TH
883 if (last_wb) {
884 wb_put(last_wb);
885 last_wb = NULL;
886 }
887
006a0973
TH
888 /* SYNC_ALL writes out I_DIRTY_TIME too */
889 if (!wb_has_dirty_io(wb) &&
890 (base_work->sync_mode == WB_SYNC_NONE ||
891 list_empty(&wb->b_dirty_time)))
892 continue;
893 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
894 continue;
895
8a1270cd
TH
896 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
897
898 work = kmalloc(sizeof(*work), GFP_ATOMIC);
899 if (work) {
900 *work = *base_work;
901 work->nr_pages = nr_pages;
902 work->auto_free = 1;
903 wb_queue_work(wb, work);
904 continue;
db125360 905 }
8a1270cd
TH
906
907 /* alloc failed, execute synchronously using on-stack fallback */
908 work = &fallback_work;
909 *work = *base_work;
910 work->nr_pages = nr_pages;
911 work->auto_free = 0;
912 work->done = &fallback_work_done;
913
914 wb_queue_work(wb, work);
915
b817525a
TH
916 /*
917 * Pin @wb so that it stays on @bdi->wb_list. This allows
918 * continuing iteration from @wb after dropping and
919 * regrabbing rcu read lock.
920 */
921 wb_get(wb);
922 last_wb = wb;
923
8a1270cd 924 rcu_read_unlock();
5b9cce4c 925 wb_wait_for_completion(&fallback_work_done);
8a1270cd 926 goto restart;
db125360
TH
927 }
928 rcu_read_unlock();
b817525a
TH
929
930 if (last_wb)
931 wb_put(last_wb);
db125360
TH
932}
933
d62241c7
TH
934/**
935 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
936 * @bdi_id: target bdi id
937 * @memcg_id: target memcg css id
b46ec1da 938 * @nr: number of pages to write, 0 for best-effort dirty flushing
d62241c7
TH
939 * @reason: reason why some writeback work initiated
940 * @done: target wb_completion
941 *
942 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
943 * with the specified parameters.
944 */
945int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
946 enum wb_reason reason, struct wb_completion *done)
947{
948 struct backing_dev_info *bdi;
949 struct cgroup_subsys_state *memcg_css;
950 struct bdi_writeback *wb;
951 struct wb_writeback_work *work;
952 int ret;
953
954 /* lookup bdi and memcg */
955 bdi = bdi_get_by_id(bdi_id);
956 if (!bdi)
957 return -ENOENT;
958
959 rcu_read_lock();
960 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
961 if (memcg_css && !css_tryget(memcg_css))
962 memcg_css = NULL;
963 rcu_read_unlock();
964 if (!memcg_css) {
965 ret = -ENOENT;
966 goto out_bdi_put;
967 }
968
969 /*
970 * And find the associated wb. If the wb isn't there already
971 * there's nothing to flush, don't create one.
972 */
973 wb = wb_get_lookup(bdi, memcg_css);
974 if (!wb) {
975 ret = -ENOENT;
976 goto out_css_put;
977 }
978
979 /*
980 * If @nr is zero, the caller is attempting to write out most of
981 * the currently dirty pages. Let's take the current dirty page
982 * count and inflate it by 25% which should be large enough to
983 * flush out most dirty pages while avoiding getting livelocked by
984 * concurrent dirtiers.
985 */
986 if (!nr) {
987 unsigned long filepages, headroom, dirty, writeback;
988
989 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
990 &writeback);
991 nr = dirty * 10 / 8;
992 }
993
994 /* issue the writeback work */
995 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
996 if (work) {
997 work->nr_pages = nr;
998 work->sync_mode = WB_SYNC_NONE;
999 work->range_cyclic = 1;
1000 work->reason = reason;
1001 work->done = done;
1002 work->auto_free = 1;
1003 wb_queue_work(wb, work);
1004 ret = 0;
1005 } else {
1006 ret = -ENOMEM;
1007 }
1008
1009 wb_put(wb);
1010out_css_put:
1011 css_put(memcg_css);
1012out_bdi_put:
1013 bdi_put(bdi);
1014 return ret;
1015}
1016
a1a0e23e
TH
1017/**
1018 * cgroup_writeback_umount - flush inode wb switches for umount
1019 *
1020 * This function is called when a super_block is about to be destroyed and
1021 * flushes in-flight inode wb switches. An inode wb switch goes through
1022 * RCU and then workqueue, so the two need to be flushed in order to ensure
1023 * that all previously scheduled switches are finished. As wb switches are
1024 * rare occurrences and synchronize_rcu() can take a while, perform
1025 * flushing iff wb switches are in flight.
1026 */
1027void cgroup_writeback_umount(void)
1028{
592fa002
RG
1029 /*
1030 * SB_ACTIVE should be reliably cleared before checking
1031 * isw_nr_in_flight, see generic_shutdown_super().
1032 */
1033 smp_mb();
1034
a1a0e23e 1035 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1036 /*
1037 * Use rcu_barrier() to wait for all pending callbacks to
1038 * ensure that all in-flight wb switches are in the workqueue.
1039 */
1040 rcu_barrier();
a1a0e23e
TH
1041 flush_workqueue(isw_wq);
1042 }
1043}
1044
1045static int __init cgroup_writeback_init(void)
1046{
1047 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1048 if (!isw_wq)
1049 return -ENOMEM;
1050 return 0;
1051}
1052fs_initcall(cgroup_writeback_init);
1053
f2b65121
TH
1054#else /* CONFIG_CGROUP_WRITEBACK */
1055
7fc5854f
TH
1056static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1057static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1058
f3b6a6df
RG
1059static void inode_cgwb_move_to_attached(struct inode *inode,
1060 struct bdi_writeback *wb)
1061{
1062 assert_spin_locked(&wb->list_lock);
1063 assert_spin_locked(&inode->i_lock);
1064
1065 inode->i_state &= ~I_SYNC_QUEUED;
1066 list_del_init(&inode->i_io_list);
1067 wb_io_lists_depopulated(wb);
1068}
1069
87e1d789
TH
1070static struct bdi_writeback *
1071locked_inode_to_wb_and_lock_list(struct inode *inode)
1072 __releases(&inode->i_lock)
1073 __acquires(&wb->list_lock)
1074{
1075 struct bdi_writeback *wb = inode_to_wb(inode);
1076
1077 spin_unlock(&inode->i_lock);
1078 spin_lock(&wb->list_lock);
1079 return wb;
1080}
1081
1082static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1083 __acquires(&wb->list_lock)
1084{
1085 struct bdi_writeback *wb = inode_to_wb(inode);
1086
1087 spin_lock(&wb->list_lock);
1088 return wb;
1089}
1090
f2b65121
TH
1091static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1092{
1093 return nr_pages;
1094}
1095
db125360
TH
1096static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1097 struct wb_writeback_work *base_work,
1098 bool skip_if_busy)
1099{
1100 might_sleep();
1101
006a0973 1102 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1103 base_work->auto_free = 0;
db125360
TH
1104 wb_queue_work(&bdi->wb, base_work);
1105 }
1106}
1107
703c2708
TH
1108#endif /* CONFIG_CGROUP_WRITEBACK */
1109
e8e8a0c6
JA
1110/*
1111 * Add in the number of potentially dirty inodes, because each inode
1112 * write can dirty pagecache in the underlying blockdev.
1113 */
1114static unsigned long get_nr_dirty_pages(void)
1115{
1116 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1117 get_nr_dirty_inodes();
1118}
1119
1120static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1121{
c00ddad3
TH
1122 if (!wb_has_dirty_io(wb))
1123 return;
1124
aac8d41c
JA
1125 /*
1126 * All callers of this function want to start writeback of all
1127 * dirty pages. Places like vmscan can call this at a very
1128 * high frequency, causing pointless allocations of tons of
1129 * work items and keeping the flusher threads busy retrieving
1130 * that work. Ensure that we only allow one of them pending and
85009b4f 1131 * inflight at the time.
aac8d41c 1132 */
85009b4f
JA
1133 if (test_bit(WB_start_all, &wb->state) ||
1134 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1135 return;
1136
85009b4f
JA
1137 wb->start_all_reason = reason;
1138 wb_wakeup(wb);
c5444198 1139}
d3ddec76 1140
c5444198 1141/**
9ecf4866
TH
1142 * wb_start_background_writeback - start background writeback
1143 * @wb: bdi_writback to write from
c5444198
CH
1144 *
1145 * Description:
6585027a 1146 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1147 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1148 * some IO is happening if we are over background dirty threshold.
1149 * Caller need not hold sb s_umount semaphore.
c5444198 1150 */
9ecf4866 1151void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1152{
6585027a
JK
1153 /*
1154 * We just wake up the flusher thread. It will perform background
1155 * writeback as soon as there is no other work to do.
1156 */
5634cc2a 1157 trace_writeback_wake_background(wb);
9ecf4866 1158 wb_wakeup(wb);
1da177e4
LT
1159}
1160
a66979ab
DC
1161/*
1162 * Remove the inode from the writeback list it is on.
1163 */
c7f54084 1164void inode_io_list_del(struct inode *inode)
a66979ab 1165{
87e1d789 1166 struct bdi_writeback *wb;
f758eeab 1167
87e1d789 1168 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1169 spin_lock(&inode->i_lock);
f3b6a6df
RG
1170
1171 inode->i_state &= ~I_SYNC_QUEUED;
1172 list_del_init(&inode->i_io_list);
1173 wb_io_lists_depopulated(wb);
1174
b35250c0 1175 spin_unlock(&inode->i_lock);
52ebea74 1176 spin_unlock(&wb->list_lock);
a66979ab 1177}
4301efa4 1178EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1179
6c60d2b5
DC
1180/*
1181 * mark an inode as under writeback on the sb
1182 */
1183void sb_mark_inode_writeback(struct inode *inode)
1184{
1185 struct super_block *sb = inode->i_sb;
1186 unsigned long flags;
1187
1188 if (list_empty(&inode->i_wb_list)) {
1189 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1190 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1191 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1192 trace_sb_mark_inode_writeback(inode);
1193 }
6c60d2b5
DC
1194 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1195 }
1196}
1197
1198/*
1199 * clear an inode as under writeback on the sb
1200 */
1201void sb_clear_inode_writeback(struct inode *inode)
1202{
1203 struct super_block *sb = inode->i_sb;
1204 unsigned long flags;
1205
1206 if (!list_empty(&inode->i_wb_list)) {
1207 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1208 if (!list_empty(&inode->i_wb_list)) {
1209 list_del_init(&inode->i_wb_list);
1210 trace_sb_clear_inode_writeback(inode);
1211 }
6c60d2b5
DC
1212 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1213 }
1214}
1215
6610a0bc
AM
1216/*
1217 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1218 * furthest end of its superblock's dirty-inode list.
1219 *
1220 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1221 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1222 * the case then the inode must have been redirtied while it was being written
1223 * out and we don't reset its dirtied_when.
1224 */
b35250c0 1225static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1226{
b35250c0
JK
1227 assert_spin_locked(&inode->i_lock);
1228
03ba3782 1229 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1230 struct inode *tail;
6610a0bc 1231
7ccf19a8 1232 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1233 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1234 inode->dirtied_when = jiffies;
1235 }
c7f54084 1236 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
5afced3b 1237 inode->i_state &= ~I_SYNC_QUEUED;
6610a0bc
AM
1238}
1239
b35250c0
JK
1240static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1241{
1242 spin_lock(&inode->i_lock);
1243 redirty_tail_locked(inode, wb);
1244 spin_unlock(&inode->i_lock);
1245}
1246
c986d1e2 1247/*
66f3b8e2 1248 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1249 */
f758eeab 1250static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1251{
c7f54084 1252 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1253}
1254
1c0eeaf5
JE
1255static void inode_sync_complete(struct inode *inode)
1256{
365b94ae 1257 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1258 /* If inode is clean an unused, put it into LRU now... */
1259 inode_add_lru(inode);
365b94ae 1260 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1261 smp_mb();
1262 wake_up_bit(&inode->i_state, __I_SYNC);
1263}
1264
d2caa3c5
JL
1265static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1266{
1267 bool ret = time_after(inode->dirtied_when, t);
1268#ifndef CONFIG_64BIT
1269 /*
1270 * For inodes being constantly redirtied, dirtied_when can get stuck.
1271 * It _appears_ to be in the future, but is actually in distant past.
1272 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1273 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1274 */
1275 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1276#endif
1277 return ret;
1278}
1279
0ae45f63
TT
1280#define EXPIRE_DIRTY_ATIME 0x0001
1281
2c136579 1282/*
f9cae926 1283 * Move expired (dirtied before dirtied_before) dirty inodes from
697e6fed 1284 * @delaying_queue to @dispatch_queue.
2c136579 1285 */
e84d0a4f 1286static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1287 struct list_head *dispatch_queue,
5fcd5750 1288 unsigned long dirtied_before)
2c136579 1289{
5c03449d
SL
1290 LIST_HEAD(tmp);
1291 struct list_head *pos, *node;
cf137307 1292 struct super_block *sb = NULL;
5c03449d 1293 struct inode *inode;
cf137307 1294 int do_sb_sort = 0;
e84d0a4f 1295 int moved = 0;
5c03449d 1296
2c136579 1297 while (!list_empty(delaying_queue)) {
7ccf19a8 1298 inode = wb_inode(delaying_queue->prev);
f9cae926 1299 if (inode_dirtied_after(inode, dirtied_before))
2c136579 1300 break;
c7f54084 1301 list_move(&inode->i_io_list, &tmp);
a8855990 1302 moved++;
5afced3b 1303 spin_lock(&inode->i_lock);
5afced3b
JK
1304 inode->i_state |= I_SYNC_QUEUED;
1305 spin_unlock(&inode->i_lock);
a8855990
JK
1306 if (sb_is_blkdev_sb(inode->i_sb))
1307 continue;
cf137307
JA
1308 if (sb && sb != inode->i_sb)
1309 do_sb_sort = 1;
1310 sb = inode->i_sb;
5c03449d
SL
1311 }
1312
cf137307
JA
1313 /* just one sb in list, splice to dispatch_queue and we're done */
1314 if (!do_sb_sort) {
1315 list_splice(&tmp, dispatch_queue);
e84d0a4f 1316 goto out;
cf137307
JA
1317 }
1318
5c03449d
SL
1319 /* Move inodes from one superblock together */
1320 while (!list_empty(&tmp)) {
7ccf19a8 1321 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1322 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1323 inode = wb_inode(pos);
5c03449d 1324 if (inode->i_sb == sb)
c7f54084 1325 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1326 }
2c136579 1327 }
e84d0a4f
WF
1328out:
1329 return moved;
2c136579
FW
1330}
1331
1332/*
1333 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1334 * Before
1335 * newly dirtied b_dirty b_io b_more_io
1336 * =============> gf edc BA
1337 * After
1338 * newly dirtied b_dirty b_io b_more_io
1339 * =============> g fBAedc
1340 * |
1341 * +--> dequeue for IO
2c136579 1342 */
f9cae926
JK
1343static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1344 unsigned long dirtied_before)
66f3b8e2 1345{
e84d0a4f 1346 int moved;
f9cae926 1347 unsigned long time_expire_jif = dirtied_before;
0ae45f63 1348
f758eeab 1349 assert_spin_locked(&wb->list_lock);
4ea879b9 1350 list_splice_init(&wb->b_more_io, &wb->b_io);
5fcd5750 1351 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
f9cae926
JK
1352 if (!work->for_sync)
1353 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
0ae45f63 1354 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
5fcd5750 1355 time_expire_jif);
d6c10f1f
TH
1356 if (moved)
1357 wb_io_lists_populated(wb);
f9cae926 1358 trace_writeback_queue_io(wb, work, dirtied_before, moved);
66f3b8e2
JA
1359}
1360
a9185b41 1361static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1362{
9fb0a7da
TH
1363 int ret;
1364
1365 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1366 trace_writeback_write_inode_start(inode, wbc);
1367 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1368 trace_writeback_write_inode(inode, wbc);
1369 return ret;
1370 }
03ba3782 1371 return 0;
08d8e974 1372}
08d8e974 1373
1da177e4 1374/*
169ebd90
JK
1375 * Wait for writeback on an inode to complete. Called with i_lock held.
1376 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1377 */
169ebd90
JK
1378static void __inode_wait_for_writeback(struct inode *inode)
1379 __releases(inode->i_lock)
1380 __acquires(inode->i_lock)
01c03194
CH
1381{
1382 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1383 wait_queue_head_t *wqh;
1384
1385 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1386 while (inode->i_state & I_SYNC) {
1387 spin_unlock(&inode->i_lock);
74316201
N
1388 __wait_on_bit(wqh, &wq, bit_wait,
1389 TASK_UNINTERRUPTIBLE);
250df6ed 1390 spin_lock(&inode->i_lock);
58a9d3d8 1391 }
01c03194
CH
1392}
1393
169ebd90
JK
1394/*
1395 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1396 */
1397void inode_wait_for_writeback(struct inode *inode)
1398{
1399 spin_lock(&inode->i_lock);
1400 __inode_wait_for_writeback(inode);
1401 spin_unlock(&inode->i_lock);
1402}
1403
1404/*
1405 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1406 * held and drops it. It is aimed for callers not holding any inode reference
1407 * so once i_lock is dropped, inode can go away.
1408 */
1409static void inode_sleep_on_writeback(struct inode *inode)
1410 __releases(inode->i_lock)
1411{
1412 DEFINE_WAIT(wait);
1413 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1414 int sleep;
1415
1416 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1417 sleep = inode->i_state & I_SYNC;
1418 spin_unlock(&inode->i_lock);
1419 if (sleep)
1420 schedule();
1421 finish_wait(wqh, &wait);
1422}
1423
ccb26b5a
JK
1424/*
1425 * Find proper writeback list for the inode depending on its current state and
1426 * possibly also change of its state while we were doing writeback. Here we
1427 * handle things such as livelock prevention or fairness of writeback among
1428 * inodes. This function can be called only by flusher thread - noone else
1429 * processes all inodes in writeback lists and requeueing inodes behind flusher
1430 * thread's back can have unexpected consequences.
1431 */
1432static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1433 struct writeback_control *wbc)
1434{
1435 if (inode->i_state & I_FREEING)
1436 return;
1437
1438 /*
1439 * Sync livelock prevention. Each inode is tagged and synced in one
1440 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1441 * the dirty time to prevent enqueue and sync it again.
1442 */
1443 if ((inode->i_state & I_DIRTY) &&
1444 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1445 inode->dirtied_when = jiffies;
1446
4f8ad655
JK
1447 if (wbc->pages_skipped) {
1448 /*
1449 * writeback is not making progress due to locked
1450 * buffers. Skip this inode for now.
1451 */
b35250c0 1452 redirty_tail_locked(inode, wb);
4f8ad655
JK
1453 return;
1454 }
1455
ccb26b5a
JK
1456 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1457 /*
1458 * We didn't write back all the pages. nfs_writepages()
1459 * sometimes bales out without doing anything.
1460 */
1461 if (wbc->nr_to_write <= 0) {
1462 /* Slice used up. Queue for next turn. */
1463 requeue_io(inode, wb);
1464 } else {
1465 /*
1466 * Writeback blocked by something other than
1467 * congestion. Delay the inode for some time to
1468 * avoid spinning on the CPU (100% iowait)
1469 * retrying writeback of the dirty page/inode
1470 * that cannot be performed immediately.
1471 */
b35250c0 1472 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1473 }
1474 } else if (inode->i_state & I_DIRTY) {
1475 /*
1476 * Filesystems can dirty the inode during writeback operations,
1477 * such as delayed allocation during submission or metadata
1478 * updates after data IO completion.
1479 */
b35250c0 1480 redirty_tail_locked(inode, wb);
0ae45f63 1481 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1482 inode->dirtied_when = jiffies;
c7f54084 1483 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1484 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1485 } else {
1486 /* The inode is clean. Remove from writeback lists. */
f3b6a6df 1487 inode_cgwb_move_to_attached(inode, wb);
ccb26b5a
JK
1488 }
1489}
1490
01c03194 1491/*
da0c4c60
EB
1492 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1493 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1494 *
1495 * This doesn't remove the inode from the writeback list it is on, except
1496 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1497 * expiration. The caller is otherwise responsible for writeback list handling.
1498 *
1499 * The caller is also responsible for setting the I_SYNC flag beforehand and
1500 * calling inode_sync_complete() to clear it afterwards.
1da177e4
LT
1501 */
1502static int
cd8ed2a4 1503__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1504{
1da177e4 1505 struct address_space *mapping = inode->i_mapping;
251d6a47 1506 long nr_to_write = wbc->nr_to_write;
01c03194 1507 unsigned dirty;
1da177e4
LT
1508 int ret;
1509
4f8ad655 1510 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1511
9fb0a7da
TH
1512 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1513
1da177e4
LT
1514 ret = do_writepages(mapping, wbc);
1515
26821ed4
CH
1516 /*
1517 * Make sure to wait on the data before writing out the metadata.
1518 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1519 * I/O completion. We don't do it for sync(2) writeback because it has a
1520 * separate, external IO completion path and ->sync_fs for guaranteeing
1521 * inode metadata is written back correctly.
26821ed4 1522 */
7747bd4b 1523 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1524 int err = filemap_fdatawait(mapping);
1da177e4
LT
1525 if (ret == 0)
1526 ret = err;
1527 }
1528
5547e8aa 1529 /*
1e249cb5
EB
1530 * If the inode has dirty timestamps and we need to write them, call
1531 * mark_inode_dirty_sync() to notify the filesystem about it and to
1532 * change I_DIRTY_TIME into I_DIRTY_SYNC.
5547e8aa 1533 */
5fcd5750 1534 if ((inode->i_state & I_DIRTY_TIME) &&
83dc881d 1535 (wbc->sync_mode == WB_SYNC_ALL ||
5fcd5750
JK
1536 time_after(jiffies, inode->dirtied_time_when +
1537 dirtytime_expire_interval * HZ))) {
5fcd5750 1538 trace_writeback_lazytime(inode);
1e249cb5 1539 mark_inode_dirty_sync(inode);
5fcd5750 1540 }
1e249cb5
EB
1541
1542 /*
da0c4c60
EB
1543 * Get and clear the dirty flags from i_state. This needs to be done
1544 * after calling writepages because some filesystems may redirty the
1545 * inode during writepages due to delalloc. It also needs to be done
1546 * after handling timestamp expiration, as that may dirty the inode too.
1e249cb5
EB
1547 */
1548 spin_lock(&inode->i_lock);
1549 dirty = inode->i_state & I_DIRTY;
0ae45f63 1550 inode->i_state &= ~dirty;
9c6ac78e
TH
1551
1552 /*
1553 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1554 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1555 * either they see the I_DIRTY bits cleared or we see the dirtied
1556 * inode.
1557 *
1558 * I_DIRTY_PAGES is always cleared together above even if @mapping
1559 * still has dirty pages. The flag is reinstated after smp_mb() if
1560 * necessary. This guarantees that either __mark_inode_dirty()
1561 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1562 */
1563 smp_mb();
1564
1565 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1566 inode->i_state |= I_DIRTY_PAGES;
1567
250df6ed 1568 spin_unlock(&inode->i_lock);
9c6ac78e 1569
26821ed4 1570 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1571 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1572 int err = write_inode(inode, wbc);
1da177e4
LT
1573 if (ret == 0)
1574 ret = err;
1575 }
4f8ad655
JK
1576 trace_writeback_single_inode(inode, wbc, nr_to_write);
1577 return ret;
1578}
1579
1580/*
da0c4c60
EB
1581 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1582 * the regular batched writeback done by the flusher threads in
1583 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1584 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
4f8ad655 1585 *
da0c4c60
EB
1586 * To prevent the inode from going away, either the caller must have a reference
1587 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
4f8ad655 1588 */
aaf25593
TH
1589static int writeback_single_inode(struct inode *inode,
1590 struct writeback_control *wbc)
4f8ad655 1591{
aaf25593 1592 struct bdi_writeback *wb;
4f8ad655
JK
1593 int ret = 0;
1594
1595 spin_lock(&inode->i_lock);
1596 if (!atomic_read(&inode->i_count))
1597 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1598 else
1599 WARN_ON(inode->i_state & I_WILL_FREE);
1600
1601 if (inode->i_state & I_SYNC) {
4f8ad655 1602 /*
da0c4c60
EB
1603 * Writeback is already running on the inode. For WB_SYNC_NONE,
1604 * that's enough and we can just return. For WB_SYNC_ALL, we
1605 * must wait for the existing writeback to complete, then do
1606 * writeback again if there's anything left.
4f8ad655 1607 */
da0c4c60
EB
1608 if (wbc->sync_mode != WB_SYNC_ALL)
1609 goto out;
169ebd90 1610 __inode_wait_for_writeback(inode);
4f8ad655
JK
1611 }
1612 WARN_ON(inode->i_state & I_SYNC);
1613 /*
da0c4c60
EB
1614 * If the inode is already fully clean, then there's nothing to do.
1615 *
1616 * For data-integrity syncs we also need to check whether any pages are
1617 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1618 * there are any such pages, we'll need to wait for them.
4f8ad655 1619 */
0ae45f63 1620 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1621 (wbc->sync_mode != WB_SYNC_ALL ||
1622 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1623 goto out;
1624 inode->i_state |= I_SYNC;
b16b1deb 1625 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1626
cd8ed2a4 1627 ret = __writeback_single_inode(inode, wbc);
1da177e4 1628
b16b1deb 1629 wbc_detach_inode(wbc);
aaf25593
TH
1630
1631 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1632 spin_lock(&inode->i_lock);
4f8ad655 1633 /*
da0c4c60
EB
1634 * If the inode is now fully clean, then it can be safely removed from
1635 * its writeback list (if any). Otherwise the flusher threads are
1636 * responsible for the writeback lists.
4f8ad655 1637 */
0ae45f63 1638 if (!(inode->i_state & I_DIRTY_ALL))
f3b6a6df 1639 inode_cgwb_move_to_attached(inode, wb);
4f8ad655 1640 spin_unlock(&wb->list_lock);
1c0eeaf5 1641 inode_sync_complete(inode);
4f8ad655
JK
1642out:
1643 spin_unlock(&inode->i_lock);
1da177e4
LT
1644 return ret;
1645}
1646
a88a341a 1647static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1648 struct wb_writeback_work *work)
d46db3d5
WF
1649{
1650 long pages;
1651
1652 /*
1653 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1654 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1655 * here avoids calling into writeback_inodes_wb() more than once.
1656 *
1657 * The intended call sequence for WB_SYNC_ALL writeback is:
1658 *
1659 * wb_writeback()
1660 * writeback_sb_inodes() <== called only once
1661 * write_cache_pages() <== called once for each inode
1662 * (quickly) tag currently dirty pages
1663 * (maybe slowly) sync all tagged pages
1664 */
1665 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1666 pages = LONG_MAX;
1a12d8bd 1667 else {
a88a341a 1668 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1669 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1670 pages = min(pages, work->nr_pages);
1671 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1672 MIN_WRITEBACK_PAGES);
1673 }
d46db3d5
WF
1674
1675 return pages;
1676}
1677
f11c9c5c
ES
1678/*
1679 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1680 *
d46db3d5 1681 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1682 *
1683 * NOTE! This is called with wb->list_lock held, and will
1684 * unlock and relock that for each inode it ends up doing
1685 * IO for.
f11c9c5c 1686 */
d46db3d5
WF
1687static long writeback_sb_inodes(struct super_block *sb,
1688 struct bdi_writeback *wb,
1689 struct wb_writeback_work *work)
1da177e4 1690{
d46db3d5
WF
1691 struct writeback_control wbc = {
1692 .sync_mode = work->sync_mode,
1693 .tagged_writepages = work->tagged_writepages,
1694 .for_kupdate = work->for_kupdate,
1695 .for_background = work->for_background,
7747bd4b 1696 .for_sync = work->for_sync,
d46db3d5
WF
1697 .range_cyclic = work->range_cyclic,
1698 .range_start = 0,
1699 .range_end = LLONG_MAX,
1700 };
1701 unsigned long start_time = jiffies;
1702 long write_chunk;
1703 long wrote = 0; /* count both pages and inodes */
1704
03ba3782 1705 while (!list_empty(&wb->b_io)) {
7ccf19a8 1706 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1707 struct bdi_writeback *tmp_wb;
edadfb10
CH
1708
1709 if (inode->i_sb != sb) {
d46db3d5 1710 if (work->sb) {
edadfb10
CH
1711 /*
1712 * We only want to write back data for this
1713 * superblock, move all inodes not belonging
1714 * to it back onto the dirty list.
1715 */
f758eeab 1716 redirty_tail(inode, wb);
edadfb10
CH
1717 continue;
1718 }
1719
1720 /*
1721 * The inode belongs to a different superblock.
1722 * Bounce back to the caller to unpin this and
1723 * pin the next superblock.
1724 */
d46db3d5 1725 break;
edadfb10
CH
1726 }
1727
9843b76a 1728 /*
331cbdee
WL
1729 * Don't bother with new inodes or inodes being freed, first
1730 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1731 * kind writeout is handled by the freer.
1732 */
250df6ed 1733 spin_lock(&inode->i_lock);
9843b76a 1734 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1735 redirty_tail_locked(inode, wb);
250df6ed 1736 spin_unlock(&inode->i_lock);
7ef0d737
NP
1737 continue;
1738 }
cc1676d9
JK
1739 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1740 /*
1741 * If this inode is locked for writeback and we are not
1742 * doing writeback-for-data-integrity, move it to
1743 * b_more_io so that writeback can proceed with the
1744 * other inodes on s_io.
1745 *
1746 * We'll have another go at writing back this inode
1747 * when we completed a full scan of b_io.
1748 */
1749 spin_unlock(&inode->i_lock);
1750 requeue_io(inode, wb);
1751 trace_writeback_sb_inodes_requeue(inode);
1752 continue;
1753 }
f0d07b7f
JK
1754 spin_unlock(&wb->list_lock);
1755
4f8ad655
JK
1756 /*
1757 * We already requeued the inode if it had I_SYNC set and we
1758 * are doing WB_SYNC_NONE writeback. So this catches only the
1759 * WB_SYNC_ALL case.
1760 */
169ebd90
JK
1761 if (inode->i_state & I_SYNC) {
1762 /* Wait for I_SYNC. This function drops i_lock... */
1763 inode_sleep_on_writeback(inode);
1764 /* Inode may be gone, start again */
ead188f9 1765 spin_lock(&wb->list_lock);
169ebd90
JK
1766 continue;
1767 }
4f8ad655 1768 inode->i_state |= I_SYNC;
b16b1deb 1769 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1770
a88a341a 1771 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1772 wbc.nr_to_write = write_chunk;
1773 wbc.pages_skipped = 0;
250df6ed 1774
169ebd90
JK
1775 /*
1776 * We use I_SYNC to pin the inode in memory. While it is set
1777 * evict_inode() will wait so the inode cannot be freed.
1778 */
cd8ed2a4 1779 __writeback_single_inode(inode, &wbc);
250df6ed 1780
b16b1deb 1781 wbc_detach_inode(&wbc);
d46db3d5
WF
1782 work->nr_pages -= write_chunk - wbc.nr_to_write;
1783 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1784
1785 if (need_resched()) {
1786 /*
1787 * We're trying to balance between building up a nice
1788 * long list of IOs to improve our merge rate, and
1789 * getting those IOs out quickly for anyone throttling
1790 * in balance_dirty_pages(). cond_resched() doesn't
1791 * unplug, so get our IOs out the door before we
1792 * give up the CPU.
1793 */
1794 blk_flush_plug(current);
1795 cond_resched();
1796 }
1797
aaf25593
TH
1798 /*
1799 * Requeue @inode if still dirty. Be careful as @inode may
1800 * have been switched to another wb in the meantime.
1801 */
1802 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1803 spin_lock(&inode->i_lock);
0ae45f63 1804 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1805 wrote++;
aaf25593 1806 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1807 inode_sync_complete(inode);
0f1b1fd8 1808 spin_unlock(&inode->i_lock);
590dca3a 1809
aaf25593
TH
1810 if (unlikely(tmp_wb != wb)) {
1811 spin_unlock(&tmp_wb->list_lock);
1812 spin_lock(&wb->list_lock);
1813 }
1814
d46db3d5
WF
1815 /*
1816 * bail out to wb_writeback() often enough to check
1817 * background threshold and other termination conditions.
1818 */
1819 if (wrote) {
1820 if (time_is_before_jiffies(start_time + HZ / 10UL))
1821 break;
1822 if (work->nr_pages <= 0)
1823 break;
8bc3be27 1824 }
1da177e4 1825 }
d46db3d5 1826 return wrote;
f11c9c5c
ES
1827}
1828
d46db3d5
WF
1829static long __writeback_inodes_wb(struct bdi_writeback *wb,
1830 struct wb_writeback_work *work)
f11c9c5c 1831{
d46db3d5
WF
1832 unsigned long start_time = jiffies;
1833 long wrote = 0;
38f21977 1834
f11c9c5c 1835 while (!list_empty(&wb->b_io)) {
7ccf19a8 1836 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1837 struct super_block *sb = inode->i_sb;
9ecc2738 1838
eb6ef3df 1839 if (!trylock_super(sb)) {
0e995816 1840 /*
eb6ef3df 1841 * trylock_super() may fail consistently due to
0e995816
WF
1842 * s_umount being grabbed by someone else. Don't use
1843 * requeue_io() to avoid busy retrying the inode/sb.
1844 */
1845 redirty_tail(inode, wb);
edadfb10 1846 continue;
f11c9c5c 1847 }
d46db3d5 1848 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1849 up_read(&sb->s_umount);
f11c9c5c 1850
d46db3d5
WF
1851 /* refer to the same tests at the end of writeback_sb_inodes */
1852 if (wrote) {
1853 if (time_is_before_jiffies(start_time + HZ / 10UL))
1854 break;
1855 if (work->nr_pages <= 0)
1856 break;
1857 }
f11c9c5c 1858 }
66f3b8e2 1859 /* Leave any unwritten inodes on b_io */
d46db3d5 1860 return wrote;
66f3b8e2
JA
1861}
1862
7d9f073b 1863static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1864 enum wb_reason reason)
edadfb10 1865{
d46db3d5
WF
1866 struct wb_writeback_work work = {
1867 .nr_pages = nr_pages,
1868 .sync_mode = WB_SYNC_NONE,
1869 .range_cyclic = 1,
0e175a18 1870 .reason = reason,
d46db3d5 1871 };
505a666e 1872 struct blk_plug plug;
edadfb10 1873
505a666e 1874 blk_start_plug(&plug);
f758eeab 1875 spin_lock(&wb->list_lock);
424b351f 1876 if (list_empty(&wb->b_io))
f9cae926 1877 queue_io(wb, &work, jiffies);
d46db3d5 1878 __writeback_inodes_wb(wb, &work);
f758eeab 1879 spin_unlock(&wb->list_lock);
505a666e 1880 blk_finish_plug(&plug);
edadfb10 1881
d46db3d5
WF
1882 return nr_pages - work.nr_pages;
1883}
03ba3782 1884
03ba3782
JA
1885/*
1886 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1887 *
03ba3782
JA
1888 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1889 * dirtying-time in the inode's address_space. So this periodic writeback code
1890 * just walks the superblock inode list, writing back any inodes which are
1891 * older than a specific point in time.
66f3b8e2 1892 *
03ba3782
JA
1893 * Try to run once per dirty_writeback_interval. But if a writeback event
1894 * takes longer than a dirty_writeback_interval interval, then leave a
1895 * one-second gap.
66f3b8e2 1896 *
f9cae926 1897 * dirtied_before takes precedence over nr_to_write. So we'll only write back
03ba3782 1898 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1899 */
c4a77a6c 1900static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1901 struct wb_writeback_work *work)
66f3b8e2 1902{
e98be2d5 1903 unsigned long wb_start = jiffies;
d46db3d5 1904 long nr_pages = work->nr_pages;
f9cae926 1905 unsigned long dirtied_before = jiffies;
a5989bdc 1906 struct inode *inode;
d46db3d5 1907 long progress;
505a666e 1908 struct blk_plug plug;
66f3b8e2 1909
505a666e 1910 blk_start_plug(&plug);
e8dfc305 1911 spin_lock(&wb->list_lock);
03ba3782
JA
1912 for (;;) {
1913 /*
d3ddec76 1914 * Stop writeback when nr_pages has been consumed
03ba3782 1915 */
83ba7b07 1916 if (work->nr_pages <= 0)
03ba3782 1917 break;
66f3b8e2 1918
aa373cf5
JK
1919 /*
1920 * Background writeout and kupdate-style writeback may
1921 * run forever. Stop them if there is other work to do
1922 * so that e.g. sync can proceed. They'll be restarted
1923 * after the other works are all done.
1924 */
1925 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1926 !list_empty(&wb->work_list))
aa373cf5
JK
1927 break;
1928
38f21977 1929 /*
d3ddec76
WF
1930 * For background writeout, stop when we are below the
1931 * background dirty threshold
38f21977 1932 */
aa661bbe 1933 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1934 break;
38f21977 1935
1bc36b64
JK
1936 /*
1937 * Kupdate and background works are special and we want to
1938 * include all inodes that need writing. Livelock avoidance is
1939 * handled by these works yielding to any other work so we are
1940 * safe.
1941 */
ba9aa839 1942 if (work->for_kupdate) {
f9cae926 1943 dirtied_before = jiffies -
ba9aa839 1944 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1945 } else if (work->for_background)
f9cae926 1946 dirtied_before = jiffies;
028c2dd1 1947
5634cc2a 1948 trace_writeback_start(wb, work);
e8dfc305 1949 if (list_empty(&wb->b_io))
f9cae926 1950 queue_io(wb, work, dirtied_before);
83ba7b07 1951 if (work->sb)
d46db3d5 1952 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1953 else
d46db3d5 1954 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1955 trace_writeback_written(wb, work);
028c2dd1 1956
e98be2d5 1957 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1958
1959 /*
e6fb6da2
WF
1960 * Did we write something? Try for more
1961 *
1962 * Dirty inodes are moved to b_io for writeback in batches.
1963 * The completion of the current batch does not necessarily
1964 * mean the overall work is done. So we keep looping as long
1965 * as made some progress on cleaning pages or inodes.
03ba3782 1966 */
d46db3d5 1967 if (progress)
71fd05a8
JA
1968 continue;
1969 /*
e6fb6da2 1970 * No more inodes for IO, bail
71fd05a8 1971 */
b7a2441f 1972 if (list_empty(&wb->b_more_io))
03ba3782 1973 break;
71fd05a8
JA
1974 /*
1975 * Nothing written. Wait for some inode to
1976 * become available for writeback. Otherwise
1977 * we'll just busyloop.
1978 */
bace9248
TE
1979 trace_writeback_wait(wb, work);
1980 inode = wb_inode(wb->b_more_io.prev);
1981 spin_lock(&inode->i_lock);
1982 spin_unlock(&wb->list_lock);
1983 /* This function drops i_lock... */
1984 inode_sleep_on_writeback(inode);
1985 spin_lock(&wb->list_lock);
03ba3782 1986 }
e8dfc305 1987 spin_unlock(&wb->list_lock);
505a666e 1988 blk_finish_plug(&plug);
03ba3782 1989
d46db3d5 1990 return nr_pages - work->nr_pages;
03ba3782
JA
1991}
1992
1993/*
83ba7b07 1994 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1995 */
f0054bb1 1996static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1997{
83ba7b07 1998 struct wb_writeback_work *work = NULL;
03ba3782 1999
f0054bb1
TH
2000 spin_lock_bh(&wb->work_lock);
2001 if (!list_empty(&wb->work_list)) {
2002 work = list_entry(wb->work_list.next,
83ba7b07
CH
2003 struct wb_writeback_work, list);
2004 list_del_init(&work->list);
03ba3782 2005 }
f0054bb1 2006 spin_unlock_bh(&wb->work_lock);
83ba7b07 2007 return work;
03ba3782
JA
2008}
2009
6585027a
JK
2010static long wb_check_background_flush(struct bdi_writeback *wb)
2011{
aa661bbe 2012 if (wb_over_bg_thresh(wb)) {
6585027a
JK
2013
2014 struct wb_writeback_work work = {
2015 .nr_pages = LONG_MAX,
2016 .sync_mode = WB_SYNC_NONE,
2017 .for_background = 1,
2018 .range_cyclic = 1,
0e175a18 2019 .reason = WB_REASON_BACKGROUND,
6585027a
JK
2020 };
2021
2022 return wb_writeback(wb, &work);
2023 }
2024
2025 return 0;
2026}
2027
03ba3782
JA
2028static long wb_check_old_data_flush(struct bdi_writeback *wb)
2029{
2030 unsigned long expired;
2031 long nr_pages;
2032
69b62d01
JA
2033 /*
2034 * When set to zero, disable periodic writeback
2035 */
2036 if (!dirty_writeback_interval)
2037 return 0;
2038
03ba3782
JA
2039 expired = wb->last_old_flush +
2040 msecs_to_jiffies(dirty_writeback_interval * 10);
2041 if (time_before(jiffies, expired))
2042 return 0;
2043
2044 wb->last_old_flush = jiffies;
cdf01dd5 2045 nr_pages = get_nr_dirty_pages();
03ba3782 2046
c4a77a6c 2047 if (nr_pages) {
83ba7b07 2048 struct wb_writeback_work work = {
c4a77a6c
JA
2049 .nr_pages = nr_pages,
2050 .sync_mode = WB_SYNC_NONE,
2051 .for_kupdate = 1,
2052 .range_cyclic = 1,
0e175a18 2053 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2054 };
2055
83ba7b07 2056 return wb_writeback(wb, &work);
c4a77a6c 2057 }
03ba3782
JA
2058
2059 return 0;
2060}
2061
85009b4f
JA
2062static long wb_check_start_all(struct bdi_writeback *wb)
2063{
2064 long nr_pages;
2065
2066 if (!test_bit(WB_start_all, &wb->state))
2067 return 0;
2068
2069 nr_pages = get_nr_dirty_pages();
2070 if (nr_pages) {
2071 struct wb_writeback_work work = {
2072 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2073 .sync_mode = WB_SYNC_NONE,
2074 .range_cyclic = 1,
2075 .reason = wb->start_all_reason,
2076 };
2077
2078 nr_pages = wb_writeback(wb, &work);
2079 }
2080
2081 clear_bit(WB_start_all, &wb->state);
2082 return nr_pages;
2083}
2084
2085
03ba3782
JA
2086/*
2087 * Retrieve work items and do the writeback they describe
2088 */
25d130ba 2089static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2090{
83ba7b07 2091 struct wb_writeback_work *work;
c4a77a6c 2092 long wrote = 0;
03ba3782 2093
4452226e 2094 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2095 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2096 trace_writeback_exec(wb, work);
83ba7b07 2097 wrote += wb_writeback(wb, work);
4a3a485b 2098 finish_writeback_work(wb, work);
03ba3782
JA
2099 }
2100
85009b4f
JA
2101 /*
2102 * Check for a flush-everything request
2103 */
2104 wrote += wb_check_start_all(wb);
2105
03ba3782
JA
2106 /*
2107 * Check for periodic writeback, kupdated() style
2108 */
2109 wrote += wb_check_old_data_flush(wb);
6585027a 2110 wrote += wb_check_background_flush(wb);
4452226e 2111 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2112
2113 return wrote;
2114}
2115
2116/*
2117 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2118 * reschedules periodically and does kupdated style flushing.
03ba3782 2119 */
f0054bb1 2120void wb_workfn(struct work_struct *work)
03ba3782 2121{
839a8e86
TH
2122 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2123 struct bdi_writeback, dwork);
03ba3782
JA
2124 long pages_written;
2125
68f23b89 2126 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
766f9164 2127 current->flags |= PF_SWAPWRITE;
455b2864 2128
839a8e86 2129 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2130 !test_bit(WB_registered, &wb->state))) {
6467716a 2131 /*
f0054bb1 2132 * The normal path. Keep writing back @wb until its
839a8e86 2133 * work_list is empty. Note that this path is also taken
f0054bb1 2134 * if @wb is shutting down even when we're running off the
839a8e86 2135 * rescuer as work_list needs to be drained.
6467716a 2136 */
839a8e86 2137 do {
25d130ba 2138 pages_written = wb_do_writeback(wb);
839a8e86 2139 trace_writeback_pages_written(pages_written);
f0054bb1 2140 } while (!list_empty(&wb->work_list));
839a8e86
TH
2141 } else {
2142 /*
2143 * bdi_wq can't get enough workers and we're running off
2144 * the emergency worker. Don't hog it. Hopefully, 1024 is
2145 * enough for efficient IO.
2146 */
f0054bb1 2147 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2148 WB_REASON_FORKER_THREAD);
455b2864 2149 trace_writeback_pages_written(pages_written);
03ba3782
JA
2150 }
2151
f0054bb1 2152 if (!list_empty(&wb->work_list))
b8b78495 2153 wb_wakeup(wb);
6ca738d6 2154 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2155 wb_wakeup_delayed(wb);
455b2864 2156
839a8e86 2157 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2158}
2159
595043e5
JA
2160/*
2161 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2162 * write back the whole world.
2163 */
2164static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2165 enum wb_reason reason)
595043e5
JA
2166{
2167 struct bdi_writeback *wb;
2168
2169 if (!bdi_has_dirty_io(bdi))
2170 return;
2171
2172 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2173 wb_start_writeback(wb, reason);
595043e5
JA
2174}
2175
2176void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2177 enum wb_reason reason)
2178{
595043e5 2179 rcu_read_lock();
e8e8a0c6 2180 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2181 rcu_read_unlock();
2182}
2183
03ba3782 2184/*
9ba4b2df 2185 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2186 */
9ba4b2df 2187void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2188{
b8c2f347 2189 struct backing_dev_info *bdi;
03ba3782 2190
51350ea0
KK
2191 /*
2192 * If we are expecting writeback progress we must submit plugged IO.
2193 */
2194 if (blk_needs_flush_plug(current))
2195 blk_schedule_flush_plug(current);
2196
b8c2f347 2197 rcu_read_lock();
595043e5 2198 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2199 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2200 rcu_read_unlock();
1da177e4
LT
2201}
2202
a2f48706
TT
2203/*
2204 * Wake up bdi's periodically to make sure dirtytime inodes gets
2205 * written back periodically. We deliberately do *not* check the
2206 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2207 * kernel to be constantly waking up once there are any dirtytime
2208 * inodes on the system. So instead we define a separate delayed work
2209 * function which gets called much more rarely. (By default, only
2210 * once every 12 hours.)
2211 *
2212 * If there is any other write activity going on in the file system,
2213 * this function won't be necessary. But if the only thing that has
2214 * happened on the file system is a dirtytime inode caused by an atime
2215 * update, we need this infrastructure below to make sure that inode
2216 * eventually gets pushed out to disk.
2217 */
2218static void wakeup_dirtytime_writeback(struct work_struct *w);
2219static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2220
2221static void wakeup_dirtytime_writeback(struct work_struct *w)
2222{
2223 struct backing_dev_info *bdi;
2224
2225 rcu_read_lock();
2226 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2227 struct bdi_writeback *wb;
001fe6f6 2228
b817525a 2229 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2230 if (!list_empty(&wb->b_dirty_time))
2231 wb_wakeup(wb);
a2f48706
TT
2232 }
2233 rcu_read_unlock();
2234 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2235}
2236
2237static int __init start_dirtytime_writeback(void)
2238{
2239 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2240 return 0;
2241}
2242__initcall(start_dirtytime_writeback);
2243
1efff914 2244int dirtytime_interval_handler(struct ctl_table *table, int write,
9ca48e20 2245 void *buffer, size_t *lenp, loff_t *ppos)
1efff914
TT
2246{
2247 int ret;
2248
2249 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2250 if (ret == 0 && write)
2251 mod_delayed_work(system_wq, &dirtytime_work, 0);
2252 return ret;
2253}
2254
03ba3782
JA
2255static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2256{
2257 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2258 struct dentry *dentry;
2259 const char *name = "?";
2260
2261 dentry = d_find_alias(inode);
2262 if (dentry) {
2263 spin_lock(&dentry->d_lock);
2264 name = (const char *) dentry->d_name.name;
2265 }
2266 printk(KERN_DEBUG
2267 "%s(%d): dirtied inode %lu (%s) on %s\n",
2268 current->comm, task_pid_nr(current), inode->i_ino,
2269 name, inode->i_sb->s_id);
2270 if (dentry) {
2271 spin_unlock(&dentry->d_lock);
2272 dput(dentry);
2273 }
2274 }
2275}
2276
2277/**
35d14f27 2278 * __mark_inode_dirty - internal function to mark an inode dirty
0117d427
MCC
2279 *
2280 * @inode: inode to mark
35d14f27
EB
2281 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2282 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2283 * with I_DIRTY_PAGES.
0117d427 2284 *
35d14f27
EB
2285 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2286 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
1da177e4 2287 *
35d14f27
EB
2288 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2289 * instead of calling this directly.
03ba3782 2290 *
35d14f27
EB
2291 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2292 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2293 * even if they are later hashed, as they will have been marked dirty already.
03ba3782 2294 *
35d14f27 2295 * In short, ensure you hash any inodes _before_ you start marking them dirty.
1da177e4 2296 *
03ba3782
JA
2297 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2298 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2299 * the kernel-internal blockdev inode represents the dirtying time of the
2300 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2301 * page->mapping->host, so the page-dirtying time is recorded in the internal
2302 * blockdev inode.
1da177e4 2303 */
03ba3782 2304void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2305{
03ba3782 2306 struct super_block *sb = inode->i_sb;
35d14f27 2307 int dirtytime = 0;
0ae45f63
TT
2308
2309 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2310
e2728c56 2311 if (flags & I_DIRTY_INODE) {
35d14f27
EB
2312 /*
2313 * Notify the filesystem about the inode being dirtied, so that
2314 * (if needed) it can update on-disk fields and journal the
2315 * inode. This is only needed when the inode itself is being
2316 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2317 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2318 */
9fb0a7da 2319 trace_writeback_dirty_inode_start(inode, flags);
03ba3782 2320 if (sb->s_op->dirty_inode)
a38ed483 2321 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
9fb0a7da 2322 trace_writeback_dirty_inode(inode, flags);
e2728c56 2323
35d14f27 2324 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63 2325 flags &= ~I_DIRTY_TIME;
35d14f27
EB
2326 } else {
2327 /*
2328 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2329 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2330 * in one call to __mark_inode_dirty().)
2331 */
2332 dirtytime = flags & I_DIRTY_TIME;
2333 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
e2728c56 2334 }
03ba3782
JA
2335
2336 /*
9c6ac78e
TH
2337 * Paired with smp_mb() in __writeback_single_inode() for the
2338 * following lockless i_state test. See there for details.
03ba3782
JA
2339 */
2340 smp_mb();
2341
0ae45f63
TT
2342 if (((inode->i_state & flags) == flags) ||
2343 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2344 return;
2345
2346 if (unlikely(block_dump))
2347 block_dump___mark_inode_dirty(inode);
2348
250df6ed 2349 spin_lock(&inode->i_lock);
0ae45f63
TT
2350 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2351 goto out_unlock_inode;
03ba3782
JA
2352 if ((inode->i_state & flags) != flags) {
2353 const int was_dirty = inode->i_state & I_DIRTY;
2354
52ebea74
TH
2355 inode_attach_wb(inode, NULL);
2356
35d14f27 2357 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63
TT
2358 if (flags & I_DIRTY_INODE)
2359 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2360 inode->i_state |= flags;
2361
2362 /*
5afced3b
JK
2363 * If the inode is queued for writeback by flush worker, just
2364 * update its dirty state. Once the flush worker is done with
2365 * the inode it will place it on the appropriate superblock
2366 * list, based upon its state.
03ba3782 2367 */
5afced3b 2368 if (inode->i_state & I_SYNC_QUEUED)
250df6ed 2369 goto out_unlock_inode;
03ba3782
JA
2370
2371 /*
2372 * Only add valid (hashed) inodes to the superblock's
2373 * dirty list. Add blockdev inodes as well.
2374 */
2375 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2376 if (inode_unhashed(inode))
250df6ed 2377 goto out_unlock_inode;
03ba3782 2378 }
a4ffdde6 2379 if (inode->i_state & I_FREEING)
250df6ed 2380 goto out_unlock_inode;
03ba3782
JA
2381
2382 /*
2383 * If the inode was already on b_dirty/b_io/b_more_io, don't
2384 * reposition it (that would break b_dirty time-ordering).
2385 */
2386 if (!was_dirty) {
87e1d789 2387 struct bdi_writeback *wb;
d6c10f1f 2388 struct list_head *dirty_list;
a66979ab 2389 bool wakeup_bdi = false;
253c34e9 2390
87e1d789 2391 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2392
03ba3782 2393 inode->dirtied_when = jiffies;
a2f48706
TT
2394 if (dirtytime)
2395 inode->dirtied_time_when = jiffies;
d6c10f1f 2396
0e11f644 2397 if (inode->i_state & I_DIRTY)
0747259d 2398 dirty_list = &wb->b_dirty;
a2f48706 2399 else
0747259d 2400 dirty_list = &wb->b_dirty_time;
d6c10f1f 2401
c7f54084 2402 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2403 dirty_list);
2404
0747259d 2405 spin_unlock(&wb->list_lock);
0ae45f63 2406 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2407
d6c10f1f
TH
2408 /*
2409 * If this is the first dirty inode for this bdi,
2410 * we have to wake-up the corresponding bdi thread
2411 * to make sure background write-back happens
2412 * later.
2413 */
f56753ac
CH
2414 if (wakeup_bdi &&
2415 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
0747259d 2416 wb_wakeup_delayed(wb);
a66979ab 2417 return;
1da177e4 2418 }
1da177e4 2419 }
250df6ed
DC
2420out_unlock_inode:
2421 spin_unlock(&inode->i_lock);
03ba3782
JA
2422}
2423EXPORT_SYMBOL(__mark_inode_dirty);
2424
e97fedb9
DC
2425/*
2426 * The @s_sync_lock is used to serialise concurrent sync operations
2427 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2428 * Concurrent callers will block on the s_sync_lock rather than doing contending
2429 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2430 * has been issued up to the time this function is enter is guaranteed to be
2431 * completed by the time we have gained the lock and waited for all IO that is
2432 * in progress regardless of the order callers are granted the lock.
2433 */
b6e51316 2434static void wait_sb_inodes(struct super_block *sb)
03ba3782 2435{
6c60d2b5 2436 LIST_HEAD(sync_list);
03ba3782
JA
2437
2438 /*
2439 * We need to be protected against the filesystem going from
2440 * r/o to r/w or vice versa.
2441 */
b6e51316 2442 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2443
e97fedb9 2444 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2445
2446 /*
6c60d2b5
DC
2447 * Splice the writeback list onto a temporary list to avoid waiting on
2448 * inodes that have started writeback after this point.
2449 *
2450 * Use rcu_read_lock() to keep the inodes around until we have a
2451 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2452 * the local list because inodes can be dropped from either by writeback
2453 * completion.
2454 */
2455 rcu_read_lock();
2456 spin_lock_irq(&sb->s_inode_wblist_lock);
2457 list_splice_init(&sb->s_inodes_wb, &sync_list);
2458
2459 /*
2460 * Data integrity sync. Must wait for all pages under writeback, because
2461 * there may have been pages dirtied before our sync call, but which had
2462 * writeout started before we write it out. In which case, the inode
2463 * may not be on the dirty list, but we still have to wait for that
2464 * writeout.
03ba3782 2465 */
6c60d2b5
DC
2466 while (!list_empty(&sync_list)) {
2467 struct inode *inode = list_first_entry(&sync_list, struct inode,
2468 i_wb_list);
250df6ed 2469 struct address_space *mapping = inode->i_mapping;
03ba3782 2470
6c60d2b5
DC
2471 /*
2472 * Move each inode back to the wb list before we drop the lock
2473 * to preserve consistency between i_wb_list and the mapping
2474 * writeback tag. Writeback completion is responsible to remove
2475 * the inode from either list once the writeback tag is cleared.
2476 */
2477 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2478
2479 /*
2480 * The mapping can appear untagged while still on-list since we
2481 * do not have the mapping lock. Skip it here, wb completion
2482 * will remove it.
2483 */
2484 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2485 continue;
2486
2487 spin_unlock_irq(&sb->s_inode_wblist_lock);
2488
250df6ed 2489 spin_lock(&inode->i_lock);
6c60d2b5 2490 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2491 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2492
2493 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2494 continue;
250df6ed 2495 }
03ba3782 2496 __iget(inode);
250df6ed 2497 spin_unlock(&inode->i_lock);
6c60d2b5 2498 rcu_read_unlock();
03ba3782 2499
aa750fd7
JN
2500 /*
2501 * We keep the error status of individual mapping so that
2502 * applications can catch the writeback error using fsync(2).
2503 * See filemap_fdatawait_keep_errors() for details.
2504 */
2505 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2506
2507 cond_resched();
2508
6c60d2b5
DC
2509 iput(inode);
2510
2511 rcu_read_lock();
2512 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2513 }
6c60d2b5
DC
2514 spin_unlock_irq(&sb->s_inode_wblist_lock);
2515 rcu_read_unlock();
e97fedb9 2516 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2517}
2518
f30a7d0c
TH
2519static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2520 enum wb_reason reason, bool skip_if_busy)
1da177e4 2521{
5b9cce4c
TH
2522 struct backing_dev_info *bdi = sb->s_bdi;
2523 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2524 struct wb_writeback_work work = {
6e6938b6
WF
2525 .sb = sb,
2526 .sync_mode = WB_SYNC_NONE,
2527 .tagged_writepages = 1,
2528 .done = &done,
2529 .nr_pages = nr,
0e175a18 2530 .reason = reason,
3c4d7165 2531 };
d8a8559c 2532
e7972912 2533 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2534 return;
cf37e972 2535 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2536
db125360 2537 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2538 wb_wait_for_completion(&done);
e913fc82 2539}
f30a7d0c
TH
2540
2541/**
2542 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2543 * @sb: the superblock
2544 * @nr: the number of pages to write
2545 * @reason: reason why some writeback work initiated
2546 *
2547 * Start writeback on some inodes on this super_block. No guarantees are made
2548 * on how many (if any) will be written, and this function does not wait
2549 * for IO completion of submitted IO.
2550 */
2551void writeback_inodes_sb_nr(struct super_block *sb,
2552 unsigned long nr,
2553 enum wb_reason reason)
2554{
2555 __writeback_inodes_sb_nr(sb, nr, reason, false);
2556}
3259f8be
CM
2557EXPORT_SYMBOL(writeback_inodes_sb_nr);
2558
2559/**
2560 * writeback_inodes_sb - writeback dirty inodes from given super_block
2561 * @sb: the superblock
786228ab 2562 * @reason: reason why some writeback work was initiated
3259f8be
CM
2563 *
2564 * Start writeback on some inodes on this super_block. No guarantees are made
2565 * on how many (if any) will be written, and this function does not wait
2566 * for IO completion of submitted IO.
2567 */
0e175a18 2568void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2569{
0e175a18 2570 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2571}
0e3c9a22 2572EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2573
17bd55d0 2574/**
8264c321 2575 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2576 * @sb: the superblock
8264c321 2577 * @reason: reason why some writeback work was initiated
17bd55d0 2578 *
8264c321 2579 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2580 */
8264c321 2581void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2582{
10ee27a0 2583 if (!down_read_trylock(&sb->s_umount))
8264c321 2584 return;
10ee27a0 2585
8264c321 2586 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2587 up_read(&sb->s_umount);
3259f8be 2588}
10ee27a0 2589EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2590
d8a8559c
JA
2591/**
2592 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2593 * @sb: the superblock
d8a8559c
JA
2594 *
2595 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2596 * super_block.
d8a8559c 2597 */
0dc83bd3 2598void sync_inodes_sb(struct super_block *sb)
d8a8559c 2599{
5b9cce4c
TH
2600 struct backing_dev_info *bdi = sb->s_bdi;
2601 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2602 struct wb_writeback_work work = {
3c4d7165
CH
2603 .sb = sb,
2604 .sync_mode = WB_SYNC_ALL,
2605 .nr_pages = LONG_MAX,
2606 .range_cyclic = 0,
83ba7b07 2607 .done = &done,
0e175a18 2608 .reason = WB_REASON_SYNC,
7747bd4b 2609 .for_sync = 1,
3c4d7165
CH
2610 };
2611
006a0973
TH
2612 /*
2613 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2614 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2615 * bdi_has_dirty() need to be written out too.
2616 */
2617 if (bdi == &noop_backing_dev_info)
6eedc701 2618 return;
cf37e972
CH
2619 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2620
7fc5854f
TH
2621 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2622 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2623 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2624 wb_wait_for_completion(&done);
7fc5854f 2625 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2626
b6e51316 2627 wait_sb_inodes(sb);
1da177e4 2628}
d8a8559c 2629EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2630
1da177e4 2631/**
7f04c26d
AA
2632 * write_inode_now - write an inode to disk
2633 * @inode: inode to write to disk
2634 * @sync: whether the write should be synchronous or not
2635 *
2636 * This function commits an inode to disk immediately if it is dirty. This is
2637 * primarily needed by knfsd.
1da177e4 2638 *
7f04c26d 2639 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2640 */
1da177e4
LT
2641int write_inode_now(struct inode *inode, int sync)
2642{
1da177e4
LT
2643 struct writeback_control wbc = {
2644 .nr_to_write = LONG_MAX,
18914b18 2645 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2646 .range_start = 0,
2647 .range_end = LLONG_MAX,
1da177e4
LT
2648 };
2649
f56753ac 2650 if (!mapping_can_writeback(inode->i_mapping))
49364ce2 2651 wbc.nr_to_write = 0;
1da177e4
LT
2652
2653 might_sleep();
aaf25593 2654 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2655}
2656EXPORT_SYMBOL(write_inode_now);
2657
2658/**
2659 * sync_inode - write an inode and its pages to disk.
2660 * @inode: the inode to sync
2661 * @wbc: controls the writeback mode
2662 *
2663 * sync_inode() will write an inode and its pages to disk. It will also
2664 * correctly update the inode on its superblock's dirty inode lists and will
2665 * update inode->i_state.
2666 *
2667 * The caller must have a ref on the inode.
2668 */
2669int sync_inode(struct inode *inode, struct writeback_control *wbc)
2670{
aaf25593 2671 return writeback_single_inode(inode, wbc);
1da177e4
LT
2672}
2673EXPORT_SYMBOL(sync_inode);
c3765016
CH
2674
2675/**
c691b9d9 2676 * sync_inode_metadata - write an inode to disk
c3765016
CH
2677 * @inode: the inode to sync
2678 * @wait: wait for I/O to complete.
2679 *
c691b9d9 2680 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2681 *
2682 * Note: only writes the actual inode, no associated data or other metadata.
2683 */
2684int sync_inode_metadata(struct inode *inode, int wait)
2685{
2686 struct writeback_control wbc = {
2687 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2688 .nr_to_write = 0, /* metadata-only */
2689 };
2690
2691 return sync_inode(inode, &wbc);
2692}
2693EXPORT_SYMBOL(sync_inode_metadata);