blkcg: add missing NULL check in ioc_cpd_alloc()
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
0dc83bd3 45 unsigned long *older_than_this;
c4a77a6c 46 enum writeback_sync_modes sync_mode;
6e6938b6 47 unsigned int tagged_writepages:1;
52957fe1
HS
48 unsigned int for_kupdate:1;
49 unsigned int range_cyclic:1;
50 unsigned int for_background:1;
7747bd4b 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 52 unsigned int auto_free:1; /* free on completion */
0e175a18 53 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 54
8010c3b6 55 struct list_head list; /* pending work list */
cc395d7f 56 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
57};
58
a2f48706
TT
59/*
60 * If an inode is constantly having its pages dirtied, but then the
61 * updates stop dirtytime_expire_interval seconds in the past, it's
62 * possible for the worst case time between when an inode has its
63 * timestamps updated and when they finally get written out to be two
64 * dirtytime_expire_intervals. We set the default to 12 hours (in
65 * seconds), which means most of the time inodes will have their
66 * timestamps written to disk after 12 hours, but in the worst case a
67 * few inodes might not their timestamps updated for 24 hours.
68 */
69unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
7ccf19a8
NP
71static inline struct inode *wb_inode(struct list_head *head)
72{
c7f54084 73 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
74}
75
15eb77a0
WF
76/*
77 * Include the creation of the trace points after defining the
78 * wb_writeback_work structure and inline functions so that the definition
79 * remains local to this file.
80 */
81#define CREATE_TRACE_POINTS
82#include <trace/events/writeback.h>
83
774016b2
SW
84EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
d6c10f1f
TH
86static bool wb_io_lists_populated(struct bdi_writeback *wb)
87{
88 if (wb_has_dirty_io(wb)) {
89 return false;
90 } else {
91 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 92 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
93 atomic_long_add(wb->avg_write_bandwidth,
94 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
95 return true;
96 }
97}
98
99static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100{
101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 103 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 106 }
d6c10f1f
TH
107}
108
109/**
c7f54084 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
111 * @inode: inode to be moved
112 * @wb: target bdi_writeback
bbbc3c1c 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 114 *
c7f54084 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
116 * Returns %true if @inode is the first occupant of the !dirty_time IO
117 * lists; otherwise, %false.
118 */
c7f54084 119static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
120 struct bdi_writeback *wb,
121 struct list_head *head)
122{
123 assert_spin_locked(&wb->list_lock);
124
c7f54084 125 list_move(&inode->i_io_list, head);
d6c10f1f
TH
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133}
134
135/**
c7f54084 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
137 * @inode: inode to be removed
138 * @wb: bdi_writeback @inode is being removed from
139 *
140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141 * clear %WB_has_dirty_io if all are empty afterwards.
142 */
c7f54084 143static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
144 struct bdi_writeback *wb)
145{
146 assert_spin_locked(&wb->list_lock);
147
c7f54084 148 list_del_init(&inode->i_io_list);
d6c10f1f
TH
149 wb_io_lists_depopulated(wb);
150}
151
f0054bb1 152static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 153{
f0054bb1
TH
154 spin_lock_bh(&wb->work_lock);
155 if (test_bit(WB_registered, &wb->state))
156 mod_delayed_work(bdi_wq, &wb->dwork, 0);
157 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
158}
159
4a3a485b
TE
160static void finish_writeback_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162{
163 struct wb_completion *done = work->done;
164
165 if (work->auto_free)
166 kfree(work);
167 if (done && atomic_dec_and_test(&done->cnt))
5b9cce4c 168 wake_up_all(done->waitq);
4a3a485b
TE
169}
170
f0054bb1
TH
171static void wb_queue_work(struct bdi_writeback *wb,
172 struct wb_writeback_work *work)
6585027a 173{
5634cc2a 174 trace_writeback_queue(wb, work);
6585027a 175
cc395d7f
TH
176 if (work->done)
177 atomic_inc(&work->done->cnt);
4a3a485b
TE
178
179 spin_lock_bh(&wb->work_lock);
180
181 if (test_bit(WB_registered, &wb->state)) {
182 list_add_tail(&work->list, &wb->work_list);
183 mod_delayed_work(bdi_wq, &wb->dwork, 0);
184 } else
185 finish_writeback_work(wb, work);
186
f0054bb1 187 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
188}
189
cc395d7f
TH
190/**
191 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
192 * @done: target wb_completion
193 *
194 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
195 * set to @done, which should have been initialized with
196 * DEFINE_WB_COMPLETION(). This function returns after all such work items
197 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
198 * automatically on completion.
199 */
5b9cce4c 200void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
201{
202 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 203 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
204}
205
703c2708
TH
206#ifdef CONFIG_CGROUP_WRITEBACK
207
55a694df
TH
208/*
209 * Parameters for foreign inode detection, see wbc_detach_inode() to see
210 * how they're used.
211 *
212 * These paramters are inherently heuristical as the detection target
213 * itself is fuzzy. All we want to do is detaching an inode from the
214 * current owner if it's being written to by some other cgroups too much.
215 *
216 * The current cgroup writeback is built on the assumption that multiple
217 * cgroups writing to the same inode concurrently is very rare and a mode
218 * of operation which isn't well supported. As such, the goal is not
219 * taking too long when a different cgroup takes over an inode while
220 * avoiding too aggressive flip-flops from occasional foreign writes.
221 *
222 * We record, very roughly, 2s worth of IO time history and if more than
223 * half of that is foreign, trigger the switch. The recording is quantized
224 * to 16 slots. To avoid tiny writes from swinging the decision too much,
225 * writes smaller than 1/8 of avg size are ignored.
226 */
2a814908
TH
227#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 229#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
230#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
6444f47e 239#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 240
a1a0e23e
TH
241static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242static struct workqueue_struct *isw_wq;
243
21c6321f
TH
244void __inode_attach_wb(struct inode *inode, struct page *page)
245{
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272}
9b0eb69b 273EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 274
87e1d789
TH
275/**
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
278 *
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
282 */
283static struct bdi_writeback *
284locked_inode_to_wb_and_lock_list(struct inode *inode)
285 __releases(&inode->i_lock)
286 __acquires(&wb->list_lock)
287{
288 while (true) {
289 struct bdi_writeback *wb = inode_to_wb(inode);
290
291 /*
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
296 */
297 wb_get(wb);
298 spin_unlock(&inode->i_lock);
299 spin_lock(&wb->list_lock);
87e1d789 300
aaa2cacf 301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
302 if (likely(wb == inode->i_wb)) {
303 wb_put(wb); /* @inode already has ref */
304 return wb;
305 }
87e1d789
TH
306
307 spin_unlock(&wb->list_lock);
614a4e37 308 wb_put(wb);
87e1d789
TH
309 cpu_relax();
310 spin_lock(&inode->i_lock);
311 }
312}
313
314/**
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
317 *
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 * on entry.
320 */
321static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 __acquires(&wb->list_lock)
323{
324 spin_lock(&inode->i_lock);
325 return locked_inode_to_wb_and_lock_list(inode);
326}
327
682aa8e1
TH
328struct inode_switch_wbs_context {
329 struct inode *inode;
330 struct bdi_writeback *new_wb;
331
332 struct rcu_head rcu_head;
333 struct work_struct work;
334};
335
7fc5854f
TH
336static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337{
338 down_write(&bdi->wb_switch_rwsem);
339}
340
341static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342{
343 up_write(&bdi->wb_switch_rwsem);
344}
345
682aa8e1
TH
346static void inode_switch_wbs_work_fn(struct work_struct *work)
347{
348 struct inode_switch_wbs_context *isw =
349 container_of(work, struct inode_switch_wbs_context, work);
350 struct inode *inode = isw->inode;
7fc5854f 351 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
352 struct address_space *mapping = inode->i_mapping;
353 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 354 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
355 XA_STATE(xas, &mapping->i_pages, 0);
356 struct page *page;
d10c8095 357 bool switched = false;
682aa8e1 358
7fc5854f
TH
359 /*
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
362 */
363 down_read(&bdi->wb_switch_rwsem);
364
682aa8e1
TH
365 /*
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 369 * synchronizing against the i_pages lock.
d10c8095 370 *
b93b0163 371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
682aa8e1 374 */
d10c8095
TH
375 if (old_wb < new_wb) {
376 spin_lock(&old_wb->list_lock);
377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 } else {
379 spin_lock(&new_wb->list_lock);
380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 }
682aa8e1 382 spin_lock(&inode->i_lock);
b93b0163 383 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
384
385 /*
386 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 387 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
388 */
389 if (unlikely(inode->i_state & I_FREEING))
390 goto skip_switch;
391
392 /*
393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 395 * pages actually under writeback.
d10c8095 396 */
04edf02c
MW
397 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
398 if (PageDirty(page)) {
3e8f399d
NB
399 dec_wb_stat(old_wb, WB_RECLAIMABLE);
400 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
401 }
402 }
403
04edf02c
MW
404 xas_set(&xas, 0);
405 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406 WARN_ON_ONCE(!PageWriteback(page));
407 dec_wb_stat(old_wb, WB_WRITEBACK);
408 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
409 }
410
411 wb_get(new_wb);
412
413 /*
414 * Transfer to @new_wb's IO list if necessary. The specific list
415 * @inode was on is ignored and the inode is put on ->b_dirty which
416 * is always correct including from ->b_dirty_time. The transfer
417 * preserves @inode->dirtied_when ordering.
418 */
c7f54084 419 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
420 struct inode *pos;
421
c7f54084 422 inode_io_list_del_locked(inode, old_wb);
d10c8095 423 inode->i_wb = new_wb;
c7f54084 424 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
425 if (time_after_eq(inode->dirtied_when,
426 pos->dirtied_when))
427 break;
c7f54084 428 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
429 } else {
430 inode->i_wb = new_wb;
431 }
682aa8e1 432
d10c8095 433 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
434 inode->i_wb_frn_winner = 0;
435 inode->i_wb_frn_avg_time = 0;
436 inode->i_wb_frn_history = 0;
d10c8095
TH
437 switched = true;
438skip_switch:
682aa8e1
TH
439 /*
440 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
441 * ensures that the new wb is visible if they see !I_WB_SWITCH.
442 */
443 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
444
b93b0163 445 xa_unlock_irq(&mapping->i_pages);
682aa8e1 446 spin_unlock(&inode->i_lock);
d10c8095
TH
447 spin_unlock(&new_wb->list_lock);
448 spin_unlock(&old_wb->list_lock);
682aa8e1 449
7fc5854f
TH
450 up_read(&bdi->wb_switch_rwsem);
451
d10c8095
TH
452 if (switched) {
453 wb_wakeup(new_wb);
454 wb_put(old_wb);
455 }
682aa8e1 456 wb_put(new_wb);
d10c8095
TH
457
458 iput(inode);
682aa8e1 459 kfree(isw);
a1a0e23e
TH
460
461 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
462}
463
464static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
465{
466 struct inode_switch_wbs_context *isw = container_of(rcu_head,
467 struct inode_switch_wbs_context, rcu_head);
468
469 /* needs to grab bh-unsafe locks, bounce to work item */
470 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 471 queue_work(isw_wq, &isw->work);
682aa8e1
TH
472}
473
474/**
475 * inode_switch_wbs - change the wb association of an inode
476 * @inode: target inode
477 * @new_wb_id: ID of the new wb
478 *
479 * Switch @inode's wb association to the wb identified by @new_wb_id. The
480 * switching is performed asynchronously and may fail silently.
481 */
482static void inode_switch_wbs(struct inode *inode, int new_wb_id)
483{
484 struct backing_dev_info *bdi = inode_to_bdi(inode);
485 struct cgroup_subsys_state *memcg_css;
486 struct inode_switch_wbs_context *isw;
487
488 /* noop if seems to be already in progress */
489 if (inode->i_state & I_WB_SWITCH)
490 return;
491
6444f47e
TH
492 /* avoid queueing a new switch if too many are already in flight */
493 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
494 return;
495
682aa8e1
TH
496 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
497 if (!isw)
6444f47e 498 return;
682aa8e1
TH
499
500 /* find and pin the new wb */
501 rcu_read_lock();
502 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
503 if (memcg_css)
504 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
505 rcu_read_unlock();
506 if (!isw->new_wb)
507 goto out_free;
508
509 /* while holding I_WB_SWITCH, no one else can update the association */
510 spin_lock(&inode->i_lock);
1751e8a6 511 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
512 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
513 inode_to_wb(inode) == isw->new_wb) {
514 spin_unlock(&inode->i_lock);
515 goto out_free;
516 }
682aa8e1 517 inode->i_state |= I_WB_SWITCH;
74524955 518 __iget(inode);
682aa8e1
TH
519 spin_unlock(&inode->i_lock);
520
682aa8e1
TH
521 isw->inode = inode;
522
523 /*
524 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
525 * the RCU protected stat update paths to grab the i_page
526 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
527 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
528 */
529 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
530
531 atomic_inc(&isw_nr_in_flight);
6444f47e 532 return;
682aa8e1
TH
533
534out_free:
535 if (isw->new_wb)
536 wb_put(isw->new_wb);
537 kfree(isw);
538}
539
b16b1deb
TH
540/**
541 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
542 * @wbc: writeback_control of interest
543 * @inode: target inode
544 *
545 * @inode is locked and about to be written back under the control of @wbc.
546 * Record @inode's writeback context into @wbc and unlock the i_lock. On
547 * writeback completion, wbc_detach_inode() should be called. This is used
548 * to track the cgroup writeback context.
549 */
550void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
551 struct inode *inode)
552{
dd73e4b7
TH
553 if (!inode_cgwb_enabled(inode)) {
554 spin_unlock(&inode->i_lock);
555 return;
556 }
557
b16b1deb 558 wbc->wb = inode_to_wb(inode);
2a814908
TH
559 wbc->inode = inode;
560
561 wbc->wb_id = wbc->wb->memcg_css->id;
562 wbc->wb_lcand_id = inode->i_wb_frn_winner;
563 wbc->wb_tcand_id = 0;
564 wbc->wb_bytes = 0;
565 wbc->wb_lcand_bytes = 0;
566 wbc->wb_tcand_bytes = 0;
567
b16b1deb
TH
568 wb_get(wbc->wb);
569 spin_unlock(&inode->i_lock);
e8a7abf5
TH
570
571 /*
572 * A dying wb indicates that the memcg-blkcg mapping has changed
573 * and a new wb is already serving the memcg. Switch immediately.
574 */
575 if (unlikely(wb_dying(wbc->wb)))
576 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 577}
9b0eb69b 578EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
579
580/**
2a814908
TH
581 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
582 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
583 *
584 * To be called after a writeback attempt of an inode finishes and undoes
585 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
586 *
587 * As concurrent write sharing of an inode is expected to be very rare and
588 * memcg only tracks page ownership on first-use basis severely confining
589 * the usefulness of such sharing, cgroup writeback tracks ownership
590 * per-inode. While the support for concurrent write sharing of an inode
591 * is deemed unnecessary, an inode being written to by different cgroups at
592 * different points in time is a lot more common, and, more importantly,
593 * charging only by first-use can too readily lead to grossly incorrect
594 * behaviors (single foreign page can lead to gigabytes of writeback to be
595 * incorrectly attributed).
596 *
597 * To resolve this issue, cgroup writeback detects the majority dirtier of
598 * an inode and transfers the ownership to it. To avoid unnnecessary
599 * oscillation, the detection mechanism keeps track of history and gives
600 * out the switch verdict only if the foreign usage pattern is stable over
601 * a certain amount of time and/or writeback attempts.
602 *
603 * On each writeback attempt, @wbc tries to detect the majority writer
604 * using Boyer-Moore majority vote algorithm. In addition to the byte
605 * count from the majority voting, it also counts the bytes written for the
606 * current wb and the last round's winner wb (max of last round's current
607 * wb, the winner from two rounds ago, and the last round's majority
608 * candidate). Keeping track of the historical winner helps the algorithm
609 * to semi-reliably detect the most active writer even when it's not the
610 * absolute majority.
611 *
612 * Once the winner of the round is determined, whether the winner is
613 * foreign or not and how much IO time the round consumed is recorded in
614 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
615 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
616 */
617void wbc_detach_inode(struct writeback_control *wbc)
618{
2a814908
TH
619 struct bdi_writeback *wb = wbc->wb;
620 struct inode *inode = wbc->inode;
dd73e4b7
TH
621 unsigned long avg_time, max_bytes, max_time;
622 u16 history;
2a814908
TH
623 int max_id;
624
dd73e4b7
TH
625 if (!wb)
626 return;
627
628 history = inode->i_wb_frn_history;
629 avg_time = inode->i_wb_frn_avg_time;
630
2a814908
TH
631 /* pick the winner of this round */
632 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
633 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
634 max_id = wbc->wb_id;
635 max_bytes = wbc->wb_bytes;
636 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
637 max_id = wbc->wb_lcand_id;
638 max_bytes = wbc->wb_lcand_bytes;
639 } else {
640 max_id = wbc->wb_tcand_id;
641 max_bytes = wbc->wb_tcand_bytes;
642 }
643
644 /*
645 * Calculate the amount of IO time the winner consumed and fold it
646 * into the running average kept per inode. If the consumed IO
647 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
648 * deciding whether to switch or not. This is to prevent one-off
649 * small dirtiers from skewing the verdict.
650 */
651 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
652 wb->avg_write_bandwidth);
653 if (avg_time)
654 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
655 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
656 else
657 avg_time = max_time; /* immediate catch up on first run */
658
659 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
660 int slots;
661
662 /*
663 * The switch verdict is reached if foreign wb's consume
664 * more than a certain proportion of IO time in a
665 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
666 * history mask where each bit represents one sixteenth of
667 * the period. Determine the number of slots to shift into
668 * history from @max_time.
669 */
670 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
671 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
672 history <<= slots;
673 if (wbc->wb_id != max_id)
674 history |= (1U << slots) - 1;
675
676 /*
677 * Switch if the current wb isn't the consistent winner.
678 * If there are multiple closely competing dirtiers, the
679 * inode may switch across them repeatedly over time, which
680 * is okay. The main goal is avoiding keeping an inode on
681 * the wrong wb for an extended period of time.
682 */
682aa8e1
TH
683 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
684 inode_switch_wbs(inode, max_id);
2a814908
TH
685 }
686
687 /*
688 * Multiple instances of this function may race to update the
689 * following fields but we don't mind occassional inaccuracies.
690 */
691 inode->i_wb_frn_winner = max_id;
692 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
693 inode->i_wb_frn_history = history;
694
b16b1deb
TH
695 wb_put(wbc->wb);
696 wbc->wb = NULL;
697}
9b0eb69b 698EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 699
2a814908 700/**
34e51a5e 701 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
702 * @wbc: writeback_control of the writeback in progress
703 * @page: page being written out
704 * @bytes: number of bytes being written out
705 *
706 * @bytes from @page are about to written out during the writeback
707 * controlled by @wbc. Keep the book for foreign inode detection. See
708 * wbc_detach_inode().
709 */
34e51a5e
TH
710void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
711 size_t bytes)
2a814908 712{
66311422 713 struct cgroup_subsys_state *css;
2a814908
TH
714 int id;
715
716 /*
717 * pageout() path doesn't attach @wbc to the inode being written
718 * out. This is intentional as we don't want the function to block
719 * behind a slow cgroup. Ultimately, we want pageout() to kick off
720 * regular writeback instead of writing things out itself.
721 */
27b36d8f 722 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
723 return;
724
66311422
TH
725 css = mem_cgroup_css_from_page(page);
726 /* dead cgroups shouldn't contribute to inode ownership arbitration */
727 if (!(css->flags & CSS_ONLINE))
728 return;
729
730 id = css->id;
2a814908
TH
731
732 if (id == wbc->wb_id) {
733 wbc->wb_bytes += bytes;
734 return;
735 }
736
737 if (id == wbc->wb_lcand_id)
738 wbc->wb_lcand_bytes += bytes;
739
740 /* Boyer-Moore majority vote algorithm */
741 if (!wbc->wb_tcand_bytes)
742 wbc->wb_tcand_id = id;
743 if (id == wbc->wb_tcand_id)
744 wbc->wb_tcand_bytes += bytes;
745 else
746 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
747}
34e51a5e 748EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 749
703c2708
TH
750/**
751 * inode_congested - test whether an inode is congested
60292bcc 752 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
753 * @cong_bits: mask of WB_[a]sync_congested bits to test
754 *
755 * Tests whether @inode is congested. @cong_bits is the mask of congestion
756 * bits to test and the return value is the mask of set bits.
757 *
758 * If cgroup writeback is enabled for @inode, the congestion state is
759 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
760 * associated with @inode is congested; otherwise, the root wb's congestion
761 * state is used.
60292bcc
TH
762 *
763 * @inode is allowed to be NULL as this function is often called on
764 * mapping->host which is NULL for the swapper space.
703c2708
TH
765 */
766int inode_congested(struct inode *inode, int cong_bits)
767{
5cb8b824
TH
768 /*
769 * Once set, ->i_wb never becomes NULL while the inode is alive.
770 * Start transaction iff ->i_wb is visible.
771 */
aaa2cacf 772 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 773 struct bdi_writeback *wb;
2e898e4c
GT
774 struct wb_lock_cookie lock_cookie = {};
775 bool congested;
5cb8b824 776
2e898e4c 777 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 778 congested = wb_congested(wb, cong_bits);
2e898e4c 779 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 780 return congested;
703c2708
TH
781 }
782
783 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
784}
785EXPORT_SYMBOL_GPL(inode_congested);
786
f2b65121
TH
787/**
788 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
789 * @wb: target bdi_writeback to split @nr_pages to
790 * @nr_pages: number of pages to write for the whole bdi
791 *
792 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
793 * relation to the total write bandwidth of all wb's w/ dirty inodes on
794 * @wb->bdi.
795 */
796static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
797{
798 unsigned long this_bw = wb->avg_write_bandwidth;
799 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
800
801 if (nr_pages == LONG_MAX)
802 return LONG_MAX;
803
804 /*
805 * This may be called on clean wb's and proportional distribution
806 * may not make sense, just use the original @nr_pages in those
807 * cases. In general, we wanna err on the side of writing more.
808 */
809 if (!tot_bw || this_bw >= tot_bw)
810 return nr_pages;
811 else
812 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
813}
814
db125360
TH
815/**
816 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
817 * @bdi: target backing_dev_info
818 * @base_work: wb_writeback_work to issue
819 * @skip_if_busy: skip wb's which already have writeback in progress
820 *
821 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
822 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
823 * distributed to the busy wbs according to each wb's proportion in the
824 * total active write bandwidth of @bdi.
825 */
826static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
827 struct wb_writeback_work *base_work,
828 bool skip_if_busy)
829{
b817525a 830 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
831 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
832 struct bdi_writeback, bdi_node);
db125360
TH
833
834 might_sleep();
db125360
TH
835restart:
836 rcu_read_lock();
b817525a 837 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 838 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
839 struct wb_writeback_work fallback_work;
840 struct wb_writeback_work *work;
841 long nr_pages;
842
b817525a
TH
843 if (last_wb) {
844 wb_put(last_wb);
845 last_wb = NULL;
846 }
847
006a0973
TH
848 /* SYNC_ALL writes out I_DIRTY_TIME too */
849 if (!wb_has_dirty_io(wb) &&
850 (base_work->sync_mode == WB_SYNC_NONE ||
851 list_empty(&wb->b_dirty_time)))
852 continue;
853 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
854 continue;
855
8a1270cd
TH
856 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
857
858 work = kmalloc(sizeof(*work), GFP_ATOMIC);
859 if (work) {
860 *work = *base_work;
861 work->nr_pages = nr_pages;
862 work->auto_free = 1;
863 wb_queue_work(wb, work);
864 continue;
db125360 865 }
8a1270cd
TH
866
867 /* alloc failed, execute synchronously using on-stack fallback */
868 work = &fallback_work;
869 *work = *base_work;
870 work->nr_pages = nr_pages;
871 work->auto_free = 0;
872 work->done = &fallback_work_done;
873
874 wb_queue_work(wb, work);
875
b817525a
TH
876 /*
877 * Pin @wb so that it stays on @bdi->wb_list. This allows
878 * continuing iteration from @wb after dropping and
879 * regrabbing rcu read lock.
880 */
881 wb_get(wb);
882 last_wb = wb;
883
8a1270cd 884 rcu_read_unlock();
5b9cce4c 885 wb_wait_for_completion(&fallback_work_done);
8a1270cd 886 goto restart;
db125360
TH
887 }
888 rcu_read_unlock();
b817525a
TH
889
890 if (last_wb)
891 wb_put(last_wb);
db125360
TH
892}
893
d62241c7
TH
894/**
895 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
896 * @bdi_id: target bdi id
897 * @memcg_id: target memcg css id
898 * @nr_pages: number of pages to write, 0 for best-effort dirty flushing
899 * @reason: reason why some writeback work initiated
900 * @done: target wb_completion
901 *
902 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
903 * with the specified parameters.
904 */
905int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
906 enum wb_reason reason, struct wb_completion *done)
907{
908 struct backing_dev_info *bdi;
909 struct cgroup_subsys_state *memcg_css;
910 struct bdi_writeback *wb;
911 struct wb_writeback_work *work;
912 int ret;
913
914 /* lookup bdi and memcg */
915 bdi = bdi_get_by_id(bdi_id);
916 if (!bdi)
917 return -ENOENT;
918
919 rcu_read_lock();
920 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
921 if (memcg_css && !css_tryget(memcg_css))
922 memcg_css = NULL;
923 rcu_read_unlock();
924 if (!memcg_css) {
925 ret = -ENOENT;
926 goto out_bdi_put;
927 }
928
929 /*
930 * And find the associated wb. If the wb isn't there already
931 * there's nothing to flush, don't create one.
932 */
933 wb = wb_get_lookup(bdi, memcg_css);
934 if (!wb) {
935 ret = -ENOENT;
936 goto out_css_put;
937 }
938
939 /*
940 * If @nr is zero, the caller is attempting to write out most of
941 * the currently dirty pages. Let's take the current dirty page
942 * count and inflate it by 25% which should be large enough to
943 * flush out most dirty pages while avoiding getting livelocked by
944 * concurrent dirtiers.
945 */
946 if (!nr) {
947 unsigned long filepages, headroom, dirty, writeback;
948
949 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
950 &writeback);
951 nr = dirty * 10 / 8;
952 }
953
954 /* issue the writeback work */
955 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
956 if (work) {
957 work->nr_pages = nr;
958 work->sync_mode = WB_SYNC_NONE;
959 work->range_cyclic = 1;
960 work->reason = reason;
961 work->done = done;
962 work->auto_free = 1;
963 wb_queue_work(wb, work);
964 ret = 0;
965 } else {
966 ret = -ENOMEM;
967 }
968
969 wb_put(wb);
970out_css_put:
971 css_put(memcg_css);
972out_bdi_put:
973 bdi_put(bdi);
974 return ret;
975}
976
a1a0e23e
TH
977/**
978 * cgroup_writeback_umount - flush inode wb switches for umount
979 *
980 * This function is called when a super_block is about to be destroyed and
981 * flushes in-flight inode wb switches. An inode wb switch goes through
982 * RCU and then workqueue, so the two need to be flushed in order to ensure
983 * that all previously scheduled switches are finished. As wb switches are
984 * rare occurrences and synchronize_rcu() can take a while, perform
985 * flushing iff wb switches are in flight.
986 */
987void cgroup_writeback_umount(void)
988{
989 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
990 /*
991 * Use rcu_barrier() to wait for all pending callbacks to
992 * ensure that all in-flight wb switches are in the workqueue.
993 */
994 rcu_barrier();
a1a0e23e
TH
995 flush_workqueue(isw_wq);
996 }
997}
998
999static int __init cgroup_writeback_init(void)
1000{
1001 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1002 if (!isw_wq)
1003 return -ENOMEM;
1004 return 0;
1005}
1006fs_initcall(cgroup_writeback_init);
1007
f2b65121
TH
1008#else /* CONFIG_CGROUP_WRITEBACK */
1009
7fc5854f
TH
1010static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1011static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1012
87e1d789
TH
1013static struct bdi_writeback *
1014locked_inode_to_wb_and_lock_list(struct inode *inode)
1015 __releases(&inode->i_lock)
1016 __acquires(&wb->list_lock)
1017{
1018 struct bdi_writeback *wb = inode_to_wb(inode);
1019
1020 spin_unlock(&inode->i_lock);
1021 spin_lock(&wb->list_lock);
1022 return wb;
1023}
1024
1025static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1026 __acquires(&wb->list_lock)
1027{
1028 struct bdi_writeback *wb = inode_to_wb(inode);
1029
1030 spin_lock(&wb->list_lock);
1031 return wb;
1032}
1033
f2b65121
TH
1034static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1035{
1036 return nr_pages;
1037}
1038
db125360
TH
1039static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1040 struct wb_writeback_work *base_work,
1041 bool skip_if_busy)
1042{
1043 might_sleep();
1044
006a0973 1045 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1046 base_work->auto_free = 0;
db125360
TH
1047 wb_queue_work(&bdi->wb, base_work);
1048 }
1049}
1050
703c2708
TH
1051#endif /* CONFIG_CGROUP_WRITEBACK */
1052
e8e8a0c6
JA
1053/*
1054 * Add in the number of potentially dirty inodes, because each inode
1055 * write can dirty pagecache in the underlying blockdev.
1056 */
1057static unsigned long get_nr_dirty_pages(void)
1058{
1059 return global_node_page_state(NR_FILE_DIRTY) +
1060 global_node_page_state(NR_UNSTABLE_NFS) +
1061 get_nr_dirty_inodes();
1062}
1063
1064static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1065{
c00ddad3
TH
1066 if (!wb_has_dirty_io(wb))
1067 return;
1068
aac8d41c
JA
1069 /*
1070 * All callers of this function want to start writeback of all
1071 * dirty pages. Places like vmscan can call this at a very
1072 * high frequency, causing pointless allocations of tons of
1073 * work items and keeping the flusher threads busy retrieving
1074 * that work. Ensure that we only allow one of them pending and
85009b4f 1075 * inflight at the time.
aac8d41c 1076 */
85009b4f
JA
1077 if (test_bit(WB_start_all, &wb->state) ||
1078 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1079 return;
1080
85009b4f
JA
1081 wb->start_all_reason = reason;
1082 wb_wakeup(wb);
c5444198 1083}
d3ddec76 1084
c5444198 1085/**
9ecf4866
TH
1086 * wb_start_background_writeback - start background writeback
1087 * @wb: bdi_writback to write from
c5444198
CH
1088 *
1089 * Description:
6585027a 1090 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1091 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1092 * some IO is happening if we are over background dirty threshold.
1093 * Caller need not hold sb s_umount semaphore.
c5444198 1094 */
9ecf4866 1095void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1096{
6585027a
JK
1097 /*
1098 * We just wake up the flusher thread. It will perform background
1099 * writeback as soon as there is no other work to do.
1100 */
5634cc2a 1101 trace_writeback_wake_background(wb);
9ecf4866 1102 wb_wakeup(wb);
1da177e4
LT
1103}
1104
a66979ab
DC
1105/*
1106 * Remove the inode from the writeback list it is on.
1107 */
c7f54084 1108void inode_io_list_del(struct inode *inode)
a66979ab 1109{
87e1d789 1110 struct bdi_writeback *wb;
f758eeab 1111
87e1d789 1112 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1113 inode_io_list_del_locked(inode, wb);
52ebea74 1114 spin_unlock(&wb->list_lock);
a66979ab
DC
1115}
1116
6c60d2b5
DC
1117/*
1118 * mark an inode as under writeback on the sb
1119 */
1120void sb_mark_inode_writeback(struct inode *inode)
1121{
1122 struct super_block *sb = inode->i_sb;
1123 unsigned long flags;
1124
1125 if (list_empty(&inode->i_wb_list)) {
1126 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1127 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1128 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1129 trace_sb_mark_inode_writeback(inode);
1130 }
6c60d2b5
DC
1131 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1132 }
1133}
1134
1135/*
1136 * clear an inode as under writeback on the sb
1137 */
1138void sb_clear_inode_writeback(struct inode *inode)
1139{
1140 struct super_block *sb = inode->i_sb;
1141 unsigned long flags;
1142
1143 if (!list_empty(&inode->i_wb_list)) {
1144 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1145 if (!list_empty(&inode->i_wb_list)) {
1146 list_del_init(&inode->i_wb_list);
1147 trace_sb_clear_inode_writeback(inode);
1148 }
6c60d2b5
DC
1149 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1150 }
1151}
1152
6610a0bc
AM
1153/*
1154 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1155 * furthest end of its superblock's dirty-inode list.
1156 *
1157 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1158 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1159 * the case then the inode must have been redirtied while it was being written
1160 * out and we don't reset its dirtied_when.
1161 */
f758eeab 1162static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1163{
03ba3782 1164 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1165 struct inode *tail;
6610a0bc 1166
7ccf19a8 1167 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1168 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1169 inode->dirtied_when = jiffies;
1170 }
c7f54084 1171 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1172}
1173
c986d1e2 1174/*
66f3b8e2 1175 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1176 */
f758eeab 1177static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1178{
c7f54084 1179 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1180}
1181
1c0eeaf5
JE
1182static void inode_sync_complete(struct inode *inode)
1183{
365b94ae 1184 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1185 /* If inode is clean an unused, put it into LRU now... */
1186 inode_add_lru(inode);
365b94ae 1187 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1188 smp_mb();
1189 wake_up_bit(&inode->i_state, __I_SYNC);
1190}
1191
d2caa3c5
JL
1192static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1193{
1194 bool ret = time_after(inode->dirtied_when, t);
1195#ifndef CONFIG_64BIT
1196 /*
1197 * For inodes being constantly redirtied, dirtied_when can get stuck.
1198 * It _appears_ to be in the future, but is actually in distant past.
1199 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1200 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1201 */
1202 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1203#endif
1204 return ret;
1205}
1206
0ae45f63
TT
1207#define EXPIRE_DIRTY_ATIME 0x0001
1208
2c136579 1209/*
0e2f2b23 1210 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1211 * @delaying_queue to @dispatch_queue.
2c136579 1212 */
e84d0a4f 1213static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1214 struct list_head *dispatch_queue,
0ae45f63 1215 int flags,
ad4e38dd 1216 struct wb_writeback_work *work)
2c136579 1217{
0ae45f63
TT
1218 unsigned long *older_than_this = NULL;
1219 unsigned long expire_time;
5c03449d
SL
1220 LIST_HEAD(tmp);
1221 struct list_head *pos, *node;
cf137307 1222 struct super_block *sb = NULL;
5c03449d 1223 struct inode *inode;
cf137307 1224 int do_sb_sort = 0;
e84d0a4f 1225 int moved = 0;
5c03449d 1226
0ae45f63
TT
1227 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1228 older_than_this = work->older_than_this;
a2f48706
TT
1229 else if (!work->for_sync) {
1230 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1231 older_than_this = &expire_time;
1232 }
2c136579 1233 while (!list_empty(delaying_queue)) {
7ccf19a8 1234 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1235 if (older_than_this &&
1236 inode_dirtied_after(inode, *older_than_this))
2c136579 1237 break;
c7f54084 1238 list_move(&inode->i_io_list, &tmp);
a8855990 1239 moved++;
0ae45f63
TT
1240 if (flags & EXPIRE_DIRTY_ATIME)
1241 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1242 if (sb_is_blkdev_sb(inode->i_sb))
1243 continue;
cf137307
JA
1244 if (sb && sb != inode->i_sb)
1245 do_sb_sort = 1;
1246 sb = inode->i_sb;
5c03449d
SL
1247 }
1248
cf137307
JA
1249 /* just one sb in list, splice to dispatch_queue and we're done */
1250 if (!do_sb_sort) {
1251 list_splice(&tmp, dispatch_queue);
e84d0a4f 1252 goto out;
cf137307
JA
1253 }
1254
5c03449d
SL
1255 /* Move inodes from one superblock together */
1256 while (!list_empty(&tmp)) {
7ccf19a8 1257 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1258 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1259 inode = wb_inode(pos);
5c03449d 1260 if (inode->i_sb == sb)
c7f54084 1261 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1262 }
2c136579 1263 }
e84d0a4f
WF
1264out:
1265 return moved;
2c136579
FW
1266}
1267
1268/*
1269 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1270 * Before
1271 * newly dirtied b_dirty b_io b_more_io
1272 * =============> gf edc BA
1273 * After
1274 * newly dirtied b_dirty b_io b_more_io
1275 * =============> g fBAedc
1276 * |
1277 * +--> dequeue for IO
2c136579 1278 */
ad4e38dd 1279static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1280{
e84d0a4f 1281 int moved;
0ae45f63 1282
f758eeab 1283 assert_spin_locked(&wb->list_lock);
4ea879b9 1284 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1285 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1286 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1287 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1288 if (moved)
1289 wb_io_lists_populated(wb);
ad4e38dd 1290 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1291}
1292
a9185b41 1293static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1294{
9fb0a7da
TH
1295 int ret;
1296
1297 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1298 trace_writeback_write_inode_start(inode, wbc);
1299 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1300 trace_writeback_write_inode(inode, wbc);
1301 return ret;
1302 }
03ba3782 1303 return 0;
08d8e974 1304}
08d8e974 1305
1da177e4 1306/*
169ebd90
JK
1307 * Wait for writeback on an inode to complete. Called with i_lock held.
1308 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1309 */
169ebd90
JK
1310static void __inode_wait_for_writeback(struct inode *inode)
1311 __releases(inode->i_lock)
1312 __acquires(inode->i_lock)
01c03194
CH
1313{
1314 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1315 wait_queue_head_t *wqh;
1316
1317 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1318 while (inode->i_state & I_SYNC) {
1319 spin_unlock(&inode->i_lock);
74316201
N
1320 __wait_on_bit(wqh, &wq, bit_wait,
1321 TASK_UNINTERRUPTIBLE);
250df6ed 1322 spin_lock(&inode->i_lock);
58a9d3d8 1323 }
01c03194
CH
1324}
1325
169ebd90
JK
1326/*
1327 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1328 */
1329void inode_wait_for_writeback(struct inode *inode)
1330{
1331 spin_lock(&inode->i_lock);
1332 __inode_wait_for_writeback(inode);
1333 spin_unlock(&inode->i_lock);
1334}
1335
1336/*
1337 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1338 * held and drops it. It is aimed for callers not holding any inode reference
1339 * so once i_lock is dropped, inode can go away.
1340 */
1341static void inode_sleep_on_writeback(struct inode *inode)
1342 __releases(inode->i_lock)
1343{
1344 DEFINE_WAIT(wait);
1345 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1346 int sleep;
1347
1348 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1349 sleep = inode->i_state & I_SYNC;
1350 spin_unlock(&inode->i_lock);
1351 if (sleep)
1352 schedule();
1353 finish_wait(wqh, &wait);
1354}
1355
ccb26b5a
JK
1356/*
1357 * Find proper writeback list for the inode depending on its current state and
1358 * possibly also change of its state while we were doing writeback. Here we
1359 * handle things such as livelock prevention or fairness of writeback among
1360 * inodes. This function can be called only by flusher thread - noone else
1361 * processes all inodes in writeback lists and requeueing inodes behind flusher
1362 * thread's back can have unexpected consequences.
1363 */
1364static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1365 struct writeback_control *wbc)
1366{
1367 if (inode->i_state & I_FREEING)
1368 return;
1369
1370 /*
1371 * Sync livelock prevention. Each inode is tagged and synced in one
1372 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1373 * the dirty time to prevent enqueue and sync it again.
1374 */
1375 if ((inode->i_state & I_DIRTY) &&
1376 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1377 inode->dirtied_when = jiffies;
1378
4f8ad655
JK
1379 if (wbc->pages_skipped) {
1380 /*
1381 * writeback is not making progress due to locked
1382 * buffers. Skip this inode for now.
1383 */
1384 redirty_tail(inode, wb);
1385 return;
1386 }
1387
ccb26b5a
JK
1388 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1389 /*
1390 * We didn't write back all the pages. nfs_writepages()
1391 * sometimes bales out without doing anything.
1392 */
1393 if (wbc->nr_to_write <= 0) {
1394 /* Slice used up. Queue for next turn. */
1395 requeue_io(inode, wb);
1396 } else {
1397 /*
1398 * Writeback blocked by something other than
1399 * congestion. Delay the inode for some time to
1400 * avoid spinning on the CPU (100% iowait)
1401 * retrying writeback of the dirty page/inode
1402 * that cannot be performed immediately.
1403 */
1404 redirty_tail(inode, wb);
1405 }
1406 } else if (inode->i_state & I_DIRTY) {
1407 /*
1408 * Filesystems can dirty the inode during writeback operations,
1409 * such as delayed allocation during submission or metadata
1410 * updates after data IO completion.
1411 */
1412 redirty_tail(inode, wb);
0ae45f63 1413 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1414 inode->dirtied_when = jiffies;
c7f54084 1415 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1416 } else {
1417 /* The inode is clean. Remove from writeback lists. */
c7f54084 1418 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1419 }
1420}
1421
01c03194 1422/*
4f8ad655
JK
1423 * Write out an inode and its dirty pages. Do not update the writeback list
1424 * linkage. That is left to the caller. The caller is also responsible for
1425 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1426 */
1427static int
cd8ed2a4 1428__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1429{
1da177e4 1430 struct address_space *mapping = inode->i_mapping;
251d6a47 1431 long nr_to_write = wbc->nr_to_write;
01c03194 1432 unsigned dirty;
1da177e4
LT
1433 int ret;
1434
4f8ad655 1435 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1436
9fb0a7da
TH
1437 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1438
1da177e4
LT
1439 ret = do_writepages(mapping, wbc);
1440
26821ed4
CH
1441 /*
1442 * Make sure to wait on the data before writing out the metadata.
1443 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1444 * I/O completion. We don't do it for sync(2) writeback because it has a
1445 * separate, external IO completion path and ->sync_fs for guaranteeing
1446 * inode metadata is written back correctly.
26821ed4 1447 */
7747bd4b 1448 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1449 int err = filemap_fdatawait(mapping);
1da177e4
LT
1450 if (ret == 0)
1451 ret = err;
1452 }
1453
5547e8aa
DM
1454 /*
1455 * Some filesystems may redirty the inode during the writeback
1456 * due to delalloc, clear dirty metadata flags right before
1457 * write_inode()
1458 */
250df6ed 1459 spin_lock(&inode->i_lock);
9c6ac78e 1460
5547e8aa 1461 dirty = inode->i_state & I_DIRTY;
a2f48706 1462 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1463 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1464 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1465 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1466 unlikely(time_after(jiffies,
1467 (inode->dirtied_time_when +
1468 dirtytime_expire_interval * HZ)))) {
1469 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1470 trace_writeback_lazytime(inode);
1471 }
1472 } else
1473 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1474 inode->i_state &= ~dirty;
9c6ac78e
TH
1475
1476 /*
1477 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1478 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1479 * either they see the I_DIRTY bits cleared or we see the dirtied
1480 * inode.
1481 *
1482 * I_DIRTY_PAGES is always cleared together above even if @mapping
1483 * still has dirty pages. The flag is reinstated after smp_mb() if
1484 * necessary. This guarantees that either __mark_inode_dirty()
1485 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1486 */
1487 smp_mb();
1488
1489 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1490 inode->i_state |= I_DIRTY_PAGES;
1491
250df6ed 1492 spin_unlock(&inode->i_lock);
9c6ac78e 1493
0ae45f63
TT
1494 if (dirty & I_DIRTY_TIME)
1495 mark_inode_dirty_sync(inode);
26821ed4 1496 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1497 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1498 int err = write_inode(inode, wbc);
1da177e4
LT
1499 if (ret == 0)
1500 ret = err;
1501 }
4f8ad655
JK
1502 trace_writeback_single_inode(inode, wbc, nr_to_write);
1503 return ret;
1504}
1505
1506/*
1507 * Write out an inode's dirty pages. Either the caller has an active reference
1508 * on the inode or the inode has I_WILL_FREE set.
1509 *
1510 * This function is designed to be called for writing back one inode which
1511 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1512 * and does more profound writeback list handling in writeback_sb_inodes().
1513 */
aaf25593
TH
1514static int writeback_single_inode(struct inode *inode,
1515 struct writeback_control *wbc)
4f8ad655 1516{
aaf25593 1517 struct bdi_writeback *wb;
4f8ad655
JK
1518 int ret = 0;
1519
1520 spin_lock(&inode->i_lock);
1521 if (!atomic_read(&inode->i_count))
1522 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1523 else
1524 WARN_ON(inode->i_state & I_WILL_FREE);
1525
1526 if (inode->i_state & I_SYNC) {
1527 if (wbc->sync_mode != WB_SYNC_ALL)
1528 goto out;
1529 /*
169ebd90
JK
1530 * It's a data-integrity sync. We must wait. Since callers hold
1531 * inode reference or inode has I_WILL_FREE set, it cannot go
1532 * away under us.
4f8ad655 1533 */
169ebd90 1534 __inode_wait_for_writeback(inode);
4f8ad655
JK
1535 }
1536 WARN_ON(inode->i_state & I_SYNC);
1537 /*
f9b0e058
JK
1538 * Skip inode if it is clean and we have no outstanding writeback in
1539 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1540 * function since flusher thread may be doing for example sync in
1541 * parallel and if we move the inode, it could get skipped. So here we
1542 * make sure inode is on some writeback list and leave it there unless
1543 * we have completely cleaned the inode.
4f8ad655 1544 */
0ae45f63 1545 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1546 (wbc->sync_mode != WB_SYNC_ALL ||
1547 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1548 goto out;
1549 inode->i_state |= I_SYNC;
b16b1deb 1550 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1551
cd8ed2a4 1552 ret = __writeback_single_inode(inode, wbc);
1da177e4 1553
b16b1deb 1554 wbc_detach_inode(wbc);
aaf25593
TH
1555
1556 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1557 spin_lock(&inode->i_lock);
4f8ad655
JK
1558 /*
1559 * If inode is clean, remove it from writeback lists. Otherwise don't
1560 * touch it. See comment above for explanation.
1561 */
0ae45f63 1562 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1563 inode_io_list_del_locked(inode, wb);
4f8ad655 1564 spin_unlock(&wb->list_lock);
1c0eeaf5 1565 inode_sync_complete(inode);
4f8ad655
JK
1566out:
1567 spin_unlock(&inode->i_lock);
1da177e4
LT
1568 return ret;
1569}
1570
a88a341a 1571static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1572 struct wb_writeback_work *work)
d46db3d5
WF
1573{
1574 long pages;
1575
1576 /*
1577 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1578 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1579 * here avoids calling into writeback_inodes_wb() more than once.
1580 *
1581 * The intended call sequence for WB_SYNC_ALL writeback is:
1582 *
1583 * wb_writeback()
1584 * writeback_sb_inodes() <== called only once
1585 * write_cache_pages() <== called once for each inode
1586 * (quickly) tag currently dirty pages
1587 * (maybe slowly) sync all tagged pages
1588 */
1589 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1590 pages = LONG_MAX;
1a12d8bd 1591 else {
a88a341a 1592 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1593 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1594 pages = min(pages, work->nr_pages);
1595 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1596 MIN_WRITEBACK_PAGES);
1597 }
d46db3d5
WF
1598
1599 return pages;
1600}
1601
f11c9c5c
ES
1602/*
1603 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1604 *
d46db3d5 1605 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1606 *
1607 * NOTE! This is called with wb->list_lock held, and will
1608 * unlock and relock that for each inode it ends up doing
1609 * IO for.
f11c9c5c 1610 */
d46db3d5
WF
1611static long writeback_sb_inodes(struct super_block *sb,
1612 struct bdi_writeback *wb,
1613 struct wb_writeback_work *work)
1da177e4 1614{
d46db3d5
WF
1615 struct writeback_control wbc = {
1616 .sync_mode = work->sync_mode,
1617 .tagged_writepages = work->tagged_writepages,
1618 .for_kupdate = work->for_kupdate,
1619 .for_background = work->for_background,
7747bd4b 1620 .for_sync = work->for_sync,
d46db3d5
WF
1621 .range_cyclic = work->range_cyclic,
1622 .range_start = 0,
1623 .range_end = LLONG_MAX,
1624 };
1625 unsigned long start_time = jiffies;
1626 long write_chunk;
1627 long wrote = 0; /* count both pages and inodes */
1628
03ba3782 1629 while (!list_empty(&wb->b_io)) {
7ccf19a8 1630 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1631 struct bdi_writeback *tmp_wb;
edadfb10
CH
1632
1633 if (inode->i_sb != sb) {
d46db3d5 1634 if (work->sb) {
edadfb10
CH
1635 /*
1636 * We only want to write back data for this
1637 * superblock, move all inodes not belonging
1638 * to it back onto the dirty list.
1639 */
f758eeab 1640 redirty_tail(inode, wb);
edadfb10
CH
1641 continue;
1642 }
1643
1644 /*
1645 * The inode belongs to a different superblock.
1646 * Bounce back to the caller to unpin this and
1647 * pin the next superblock.
1648 */
d46db3d5 1649 break;
edadfb10
CH
1650 }
1651
9843b76a 1652 /*
331cbdee
WL
1653 * Don't bother with new inodes or inodes being freed, first
1654 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1655 * kind writeout is handled by the freer.
1656 */
250df6ed 1657 spin_lock(&inode->i_lock);
9843b76a 1658 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1659 spin_unlock(&inode->i_lock);
fcc5c222 1660 redirty_tail(inode, wb);
7ef0d737
NP
1661 continue;
1662 }
cc1676d9
JK
1663 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1664 /*
1665 * If this inode is locked for writeback and we are not
1666 * doing writeback-for-data-integrity, move it to
1667 * b_more_io so that writeback can proceed with the
1668 * other inodes on s_io.
1669 *
1670 * We'll have another go at writing back this inode
1671 * when we completed a full scan of b_io.
1672 */
1673 spin_unlock(&inode->i_lock);
1674 requeue_io(inode, wb);
1675 trace_writeback_sb_inodes_requeue(inode);
1676 continue;
1677 }
f0d07b7f
JK
1678 spin_unlock(&wb->list_lock);
1679
4f8ad655
JK
1680 /*
1681 * We already requeued the inode if it had I_SYNC set and we
1682 * are doing WB_SYNC_NONE writeback. So this catches only the
1683 * WB_SYNC_ALL case.
1684 */
169ebd90
JK
1685 if (inode->i_state & I_SYNC) {
1686 /* Wait for I_SYNC. This function drops i_lock... */
1687 inode_sleep_on_writeback(inode);
1688 /* Inode may be gone, start again */
ead188f9 1689 spin_lock(&wb->list_lock);
169ebd90
JK
1690 continue;
1691 }
4f8ad655 1692 inode->i_state |= I_SYNC;
b16b1deb 1693 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1694
a88a341a 1695 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1696 wbc.nr_to_write = write_chunk;
1697 wbc.pages_skipped = 0;
250df6ed 1698
169ebd90
JK
1699 /*
1700 * We use I_SYNC to pin the inode in memory. While it is set
1701 * evict_inode() will wait so the inode cannot be freed.
1702 */
cd8ed2a4 1703 __writeback_single_inode(inode, &wbc);
250df6ed 1704
b16b1deb 1705 wbc_detach_inode(&wbc);
d46db3d5
WF
1706 work->nr_pages -= write_chunk - wbc.nr_to_write;
1707 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1708
1709 if (need_resched()) {
1710 /*
1711 * We're trying to balance between building up a nice
1712 * long list of IOs to improve our merge rate, and
1713 * getting those IOs out quickly for anyone throttling
1714 * in balance_dirty_pages(). cond_resched() doesn't
1715 * unplug, so get our IOs out the door before we
1716 * give up the CPU.
1717 */
1718 blk_flush_plug(current);
1719 cond_resched();
1720 }
1721
aaf25593
TH
1722 /*
1723 * Requeue @inode if still dirty. Be careful as @inode may
1724 * have been switched to another wb in the meantime.
1725 */
1726 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1727 spin_lock(&inode->i_lock);
0ae45f63 1728 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1729 wrote++;
aaf25593 1730 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1731 inode_sync_complete(inode);
0f1b1fd8 1732 spin_unlock(&inode->i_lock);
590dca3a 1733
aaf25593
TH
1734 if (unlikely(tmp_wb != wb)) {
1735 spin_unlock(&tmp_wb->list_lock);
1736 spin_lock(&wb->list_lock);
1737 }
1738
d46db3d5
WF
1739 /*
1740 * bail out to wb_writeback() often enough to check
1741 * background threshold and other termination conditions.
1742 */
1743 if (wrote) {
1744 if (time_is_before_jiffies(start_time + HZ / 10UL))
1745 break;
1746 if (work->nr_pages <= 0)
1747 break;
8bc3be27 1748 }
1da177e4 1749 }
d46db3d5 1750 return wrote;
f11c9c5c
ES
1751}
1752
d46db3d5
WF
1753static long __writeback_inodes_wb(struct bdi_writeback *wb,
1754 struct wb_writeback_work *work)
f11c9c5c 1755{
d46db3d5
WF
1756 unsigned long start_time = jiffies;
1757 long wrote = 0;
38f21977 1758
f11c9c5c 1759 while (!list_empty(&wb->b_io)) {
7ccf19a8 1760 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1761 struct super_block *sb = inode->i_sb;
9ecc2738 1762
eb6ef3df 1763 if (!trylock_super(sb)) {
0e995816 1764 /*
eb6ef3df 1765 * trylock_super() may fail consistently due to
0e995816
WF
1766 * s_umount being grabbed by someone else. Don't use
1767 * requeue_io() to avoid busy retrying the inode/sb.
1768 */
1769 redirty_tail(inode, wb);
edadfb10 1770 continue;
f11c9c5c 1771 }
d46db3d5 1772 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1773 up_read(&sb->s_umount);
f11c9c5c 1774
d46db3d5
WF
1775 /* refer to the same tests at the end of writeback_sb_inodes */
1776 if (wrote) {
1777 if (time_is_before_jiffies(start_time + HZ / 10UL))
1778 break;
1779 if (work->nr_pages <= 0)
1780 break;
1781 }
f11c9c5c 1782 }
66f3b8e2 1783 /* Leave any unwritten inodes on b_io */
d46db3d5 1784 return wrote;
66f3b8e2
JA
1785}
1786
7d9f073b 1787static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1788 enum wb_reason reason)
edadfb10 1789{
d46db3d5
WF
1790 struct wb_writeback_work work = {
1791 .nr_pages = nr_pages,
1792 .sync_mode = WB_SYNC_NONE,
1793 .range_cyclic = 1,
0e175a18 1794 .reason = reason,
d46db3d5 1795 };
505a666e 1796 struct blk_plug plug;
edadfb10 1797
505a666e 1798 blk_start_plug(&plug);
f758eeab 1799 spin_lock(&wb->list_lock);
424b351f 1800 if (list_empty(&wb->b_io))
ad4e38dd 1801 queue_io(wb, &work);
d46db3d5 1802 __writeback_inodes_wb(wb, &work);
f758eeab 1803 spin_unlock(&wb->list_lock);
505a666e 1804 blk_finish_plug(&plug);
edadfb10 1805
d46db3d5
WF
1806 return nr_pages - work.nr_pages;
1807}
03ba3782 1808
03ba3782
JA
1809/*
1810 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1811 *
03ba3782
JA
1812 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1813 * dirtying-time in the inode's address_space. So this periodic writeback code
1814 * just walks the superblock inode list, writing back any inodes which are
1815 * older than a specific point in time.
66f3b8e2 1816 *
03ba3782
JA
1817 * Try to run once per dirty_writeback_interval. But if a writeback event
1818 * takes longer than a dirty_writeback_interval interval, then leave a
1819 * one-second gap.
66f3b8e2 1820 *
03ba3782
JA
1821 * older_than_this takes precedence over nr_to_write. So we'll only write back
1822 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1823 */
c4a77a6c 1824static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1825 struct wb_writeback_work *work)
66f3b8e2 1826{
e98be2d5 1827 unsigned long wb_start = jiffies;
d46db3d5 1828 long nr_pages = work->nr_pages;
0dc83bd3 1829 unsigned long oldest_jif;
a5989bdc 1830 struct inode *inode;
d46db3d5 1831 long progress;
505a666e 1832 struct blk_plug plug;
66f3b8e2 1833
0dc83bd3
JK
1834 oldest_jif = jiffies;
1835 work->older_than_this = &oldest_jif;
38f21977 1836
505a666e 1837 blk_start_plug(&plug);
e8dfc305 1838 spin_lock(&wb->list_lock);
03ba3782
JA
1839 for (;;) {
1840 /*
d3ddec76 1841 * Stop writeback when nr_pages has been consumed
03ba3782 1842 */
83ba7b07 1843 if (work->nr_pages <= 0)
03ba3782 1844 break;
66f3b8e2 1845
aa373cf5
JK
1846 /*
1847 * Background writeout and kupdate-style writeback may
1848 * run forever. Stop them if there is other work to do
1849 * so that e.g. sync can proceed. They'll be restarted
1850 * after the other works are all done.
1851 */
1852 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1853 !list_empty(&wb->work_list))
aa373cf5
JK
1854 break;
1855
38f21977 1856 /*
d3ddec76
WF
1857 * For background writeout, stop when we are below the
1858 * background dirty threshold
38f21977 1859 */
aa661bbe 1860 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1861 break;
38f21977 1862
1bc36b64
JK
1863 /*
1864 * Kupdate and background works are special and we want to
1865 * include all inodes that need writing. Livelock avoidance is
1866 * handled by these works yielding to any other work so we are
1867 * safe.
1868 */
ba9aa839 1869 if (work->for_kupdate) {
0dc83bd3 1870 oldest_jif = jiffies -
ba9aa839 1871 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1872 } else if (work->for_background)
0dc83bd3 1873 oldest_jif = jiffies;
028c2dd1 1874
5634cc2a 1875 trace_writeback_start(wb, work);
e8dfc305 1876 if (list_empty(&wb->b_io))
ad4e38dd 1877 queue_io(wb, work);
83ba7b07 1878 if (work->sb)
d46db3d5 1879 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1880 else
d46db3d5 1881 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1882 trace_writeback_written(wb, work);
028c2dd1 1883
e98be2d5 1884 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1885
1886 /*
e6fb6da2
WF
1887 * Did we write something? Try for more
1888 *
1889 * Dirty inodes are moved to b_io for writeback in batches.
1890 * The completion of the current batch does not necessarily
1891 * mean the overall work is done. So we keep looping as long
1892 * as made some progress on cleaning pages or inodes.
03ba3782 1893 */
d46db3d5 1894 if (progress)
71fd05a8
JA
1895 continue;
1896 /*
e6fb6da2 1897 * No more inodes for IO, bail
71fd05a8 1898 */
b7a2441f 1899 if (list_empty(&wb->b_more_io))
03ba3782 1900 break;
71fd05a8
JA
1901 /*
1902 * Nothing written. Wait for some inode to
1903 * become available for writeback. Otherwise
1904 * we'll just busyloop.
1905 */
bace9248
TE
1906 trace_writeback_wait(wb, work);
1907 inode = wb_inode(wb->b_more_io.prev);
1908 spin_lock(&inode->i_lock);
1909 spin_unlock(&wb->list_lock);
1910 /* This function drops i_lock... */
1911 inode_sleep_on_writeback(inode);
1912 spin_lock(&wb->list_lock);
03ba3782 1913 }
e8dfc305 1914 spin_unlock(&wb->list_lock);
505a666e 1915 blk_finish_plug(&plug);
03ba3782 1916
d46db3d5 1917 return nr_pages - work->nr_pages;
03ba3782
JA
1918}
1919
1920/*
83ba7b07 1921 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1922 */
f0054bb1 1923static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1924{
83ba7b07 1925 struct wb_writeback_work *work = NULL;
03ba3782 1926
f0054bb1
TH
1927 spin_lock_bh(&wb->work_lock);
1928 if (!list_empty(&wb->work_list)) {
1929 work = list_entry(wb->work_list.next,
83ba7b07
CH
1930 struct wb_writeback_work, list);
1931 list_del_init(&work->list);
03ba3782 1932 }
f0054bb1 1933 spin_unlock_bh(&wb->work_lock);
83ba7b07 1934 return work;
03ba3782
JA
1935}
1936
6585027a
JK
1937static long wb_check_background_flush(struct bdi_writeback *wb)
1938{
aa661bbe 1939 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1940
1941 struct wb_writeback_work work = {
1942 .nr_pages = LONG_MAX,
1943 .sync_mode = WB_SYNC_NONE,
1944 .for_background = 1,
1945 .range_cyclic = 1,
0e175a18 1946 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1947 };
1948
1949 return wb_writeback(wb, &work);
1950 }
1951
1952 return 0;
1953}
1954
03ba3782
JA
1955static long wb_check_old_data_flush(struct bdi_writeback *wb)
1956{
1957 unsigned long expired;
1958 long nr_pages;
1959
69b62d01
JA
1960 /*
1961 * When set to zero, disable periodic writeback
1962 */
1963 if (!dirty_writeback_interval)
1964 return 0;
1965
03ba3782
JA
1966 expired = wb->last_old_flush +
1967 msecs_to_jiffies(dirty_writeback_interval * 10);
1968 if (time_before(jiffies, expired))
1969 return 0;
1970
1971 wb->last_old_flush = jiffies;
cdf01dd5 1972 nr_pages = get_nr_dirty_pages();
03ba3782 1973
c4a77a6c 1974 if (nr_pages) {
83ba7b07 1975 struct wb_writeback_work work = {
c4a77a6c
JA
1976 .nr_pages = nr_pages,
1977 .sync_mode = WB_SYNC_NONE,
1978 .for_kupdate = 1,
1979 .range_cyclic = 1,
0e175a18 1980 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1981 };
1982
83ba7b07 1983 return wb_writeback(wb, &work);
c4a77a6c 1984 }
03ba3782
JA
1985
1986 return 0;
1987}
1988
85009b4f
JA
1989static long wb_check_start_all(struct bdi_writeback *wb)
1990{
1991 long nr_pages;
1992
1993 if (!test_bit(WB_start_all, &wb->state))
1994 return 0;
1995
1996 nr_pages = get_nr_dirty_pages();
1997 if (nr_pages) {
1998 struct wb_writeback_work work = {
1999 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2000 .sync_mode = WB_SYNC_NONE,
2001 .range_cyclic = 1,
2002 .reason = wb->start_all_reason,
2003 };
2004
2005 nr_pages = wb_writeback(wb, &work);
2006 }
2007
2008 clear_bit(WB_start_all, &wb->state);
2009 return nr_pages;
2010}
2011
2012
03ba3782
JA
2013/*
2014 * Retrieve work items and do the writeback they describe
2015 */
25d130ba 2016static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2017{
83ba7b07 2018 struct wb_writeback_work *work;
c4a77a6c 2019 long wrote = 0;
03ba3782 2020
4452226e 2021 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2022 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2023 trace_writeback_exec(wb, work);
83ba7b07 2024 wrote += wb_writeback(wb, work);
4a3a485b 2025 finish_writeback_work(wb, work);
03ba3782
JA
2026 }
2027
85009b4f
JA
2028 /*
2029 * Check for a flush-everything request
2030 */
2031 wrote += wb_check_start_all(wb);
2032
03ba3782
JA
2033 /*
2034 * Check for periodic writeback, kupdated() style
2035 */
2036 wrote += wb_check_old_data_flush(wb);
6585027a 2037 wrote += wb_check_background_flush(wb);
4452226e 2038 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2039
2040 return wrote;
2041}
2042
2043/*
2044 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2045 * reschedules periodically and does kupdated style flushing.
03ba3782 2046 */
f0054bb1 2047void wb_workfn(struct work_struct *work)
03ba3782 2048{
839a8e86
TH
2049 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2050 struct bdi_writeback, dwork);
03ba3782
JA
2051 long pages_written;
2052
f0054bb1 2053 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 2054 current->flags |= PF_SWAPWRITE;
455b2864 2055
839a8e86 2056 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2057 !test_bit(WB_registered, &wb->state))) {
6467716a 2058 /*
f0054bb1 2059 * The normal path. Keep writing back @wb until its
839a8e86 2060 * work_list is empty. Note that this path is also taken
f0054bb1 2061 * if @wb is shutting down even when we're running off the
839a8e86 2062 * rescuer as work_list needs to be drained.
6467716a 2063 */
839a8e86 2064 do {
25d130ba 2065 pages_written = wb_do_writeback(wb);
839a8e86 2066 trace_writeback_pages_written(pages_written);
f0054bb1 2067 } while (!list_empty(&wb->work_list));
839a8e86
TH
2068 } else {
2069 /*
2070 * bdi_wq can't get enough workers and we're running off
2071 * the emergency worker. Don't hog it. Hopefully, 1024 is
2072 * enough for efficient IO.
2073 */
f0054bb1 2074 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2075 WB_REASON_FORKER_THREAD);
455b2864 2076 trace_writeback_pages_written(pages_written);
03ba3782
JA
2077 }
2078
f0054bb1 2079 if (!list_empty(&wb->work_list))
b8b78495 2080 wb_wakeup(wb);
6ca738d6 2081 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2082 wb_wakeup_delayed(wb);
455b2864 2083
839a8e86 2084 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2085}
2086
595043e5
JA
2087/*
2088 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2089 * write back the whole world.
2090 */
2091static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2092 enum wb_reason reason)
595043e5
JA
2093{
2094 struct bdi_writeback *wb;
2095
2096 if (!bdi_has_dirty_io(bdi))
2097 return;
2098
2099 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2100 wb_start_writeback(wb, reason);
595043e5
JA
2101}
2102
2103void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2104 enum wb_reason reason)
2105{
595043e5 2106 rcu_read_lock();
e8e8a0c6 2107 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2108 rcu_read_unlock();
2109}
2110
03ba3782 2111/*
9ba4b2df 2112 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2113 */
9ba4b2df 2114void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2115{
b8c2f347 2116 struct backing_dev_info *bdi;
03ba3782 2117
51350ea0
KK
2118 /*
2119 * If we are expecting writeback progress we must submit plugged IO.
2120 */
2121 if (blk_needs_flush_plug(current))
2122 blk_schedule_flush_plug(current);
2123
b8c2f347 2124 rcu_read_lock();
595043e5 2125 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2126 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2127 rcu_read_unlock();
1da177e4
LT
2128}
2129
a2f48706
TT
2130/*
2131 * Wake up bdi's periodically to make sure dirtytime inodes gets
2132 * written back periodically. We deliberately do *not* check the
2133 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2134 * kernel to be constantly waking up once there are any dirtytime
2135 * inodes on the system. So instead we define a separate delayed work
2136 * function which gets called much more rarely. (By default, only
2137 * once every 12 hours.)
2138 *
2139 * If there is any other write activity going on in the file system,
2140 * this function won't be necessary. But if the only thing that has
2141 * happened on the file system is a dirtytime inode caused by an atime
2142 * update, we need this infrastructure below to make sure that inode
2143 * eventually gets pushed out to disk.
2144 */
2145static void wakeup_dirtytime_writeback(struct work_struct *w);
2146static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2147
2148static void wakeup_dirtytime_writeback(struct work_struct *w)
2149{
2150 struct backing_dev_info *bdi;
2151
2152 rcu_read_lock();
2153 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2154 struct bdi_writeback *wb;
001fe6f6 2155
b817525a 2156 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2157 if (!list_empty(&wb->b_dirty_time))
2158 wb_wakeup(wb);
a2f48706
TT
2159 }
2160 rcu_read_unlock();
2161 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2162}
2163
2164static int __init start_dirtytime_writeback(void)
2165{
2166 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2167 return 0;
2168}
2169__initcall(start_dirtytime_writeback);
2170
1efff914
TT
2171int dirtytime_interval_handler(struct ctl_table *table, int write,
2172 void __user *buffer, size_t *lenp, loff_t *ppos)
2173{
2174 int ret;
2175
2176 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2177 if (ret == 0 && write)
2178 mod_delayed_work(system_wq, &dirtytime_work, 0);
2179 return ret;
2180}
2181
03ba3782
JA
2182static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2183{
2184 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2185 struct dentry *dentry;
2186 const char *name = "?";
2187
2188 dentry = d_find_alias(inode);
2189 if (dentry) {
2190 spin_lock(&dentry->d_lock);
2191 name = (const char *) dentry->d_name.name;
2192 }
2193 printk(KERN_DEBUG
2194 "%s(%d): dirtied inode %lu (%s) on %s\n",
2195 current->comm, task_pid_nr(current), inode->i_ino,
2196 name, inode->i_sb->s_id);
2197 if (dentry) {
2198 spin_unlock(&dentry->d_lock);
2199 dput(dentry);
2200 }
2201 }
2202}
2203
2204/**
0117d427
MCC
2205 * __mark_inode_dirty - internal function
2206 *
2207 * @inode: inode to mark
2208 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2209 *
2210 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2211 * mark_inode_dirty_sync.
1da177e4 2212 *
03ba3782
JA
2213 * Put the inode on the super block's dirty list.
2214 *
2215 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2216 * dirty list only if it is hashed or if it refers to a blockdev.
2217 * If it was not hashed, it will never be added to the dirty list
2218 * even if it is later hashed, as it will have been marked dirty already.
2219 *
2220 * In short, make sure you hash any inodes _before_ you start marking
2221 * them dirty.
1da177e4 2222 *
03ba3782
JA
2223 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2224 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2225 * the kernel-internal blockdev inode represents the dirtying time of the
2226 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2227 * page->mapping->host, so the page-dirtying time is recorded in the internal
2228 * blockdev inode.
1da177e4 2229 */
03ba3782 2230void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2231{
03ba3782 2232 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2233 int dirtytime;
2234
2235 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2236
03ba3782
JA
2237 /*
2238 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2239 * dirty the inode itself
2240 */
0e11f644 2241 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2242 trace_writeback_dirty_inode_start(inode, flags);
2243
03ba3782 2244 if (sb->s_op->dirty_inode)
aa385729 2245 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2246
2247 trace_writeback_dirty_inode(inode, flags);
03ba3782 2248 }
0ae45f63
TT
2249 if (flags & I_DIRTY_INODE)
2250 flags &= ~I_DIRTY_TIME;
2251 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2252
2253 /*
9c6ac78e
TH
2254 * Paired with smp_mb() in __writeback_single_inode() for the
2255 * following lockless i_state test. See there for details.
03ba3782
JA
2256 */
2257 smp_mb();
2258
0ae45f63
TT
2259 if (((inode->i_state & flags) == flags) ||
2260 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2261 return;
2262
2263 if (unlikely(block_dump))
2264 block_dump___mark_inode_dirty(inode);
2265
250df6ed 2266 spin_lock(&inode->i_lock);
0ae45f63
TT
2267 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2268 goto out_unlock_inode;
03ba3782
JA
2269 if ((inode->i_state & flags) != flags) {
2270 const int was_dirty = inode->i_state & I_DIRTY;
2271
52ebea74
TH
2272 inode_attach_wb(inode, NULL);
2273
0ae45f63
TT
2274 if (flags & I_DIRTY_INODE)
2275 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2276 inode->i_state |= flags;
2277
2278 /*
2279 * If the inode is being synced, just update its dirty state.
2280 * The unlocker will place the inode on the appropriate
2281 * superblock list, based upon its state.
2282 */
2283 if (inode->i_state & I_SYNC)
250df6ed 2284 goto out_unlock_inode;
03ba3782
JA
2285
2286 /*
2287 * Only add valid (hashed) inodes to the superblock's
2288 * dirty list. Add blockdev inodes as well.
2289 */
2290 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2291 if (inode_unhashed(inode))
250df6ed 2292 goto out_unlock_inode;
03ba3782 2293 }
a4ffdde6 2294 if (inode->i_state & I_FREEING)
250df6ed 2295 goto out_unlock_inode;
03ba3782
JA
2296
2297 /*
2298 * If the inode was already on b_dirty/b_io/b_more_io, don't
2299 * reposition it (that would break b_dirty time-ordering).
2300 */
2301 if (!was_dirty) {
87e1d789 2302 struct bdi_writeback *wb;
d6c10f1f 2303 struct list_head *dirty_list;
a66979ab 2304 bool wakeup_bdi = false;
253c34e9 2305
87e1d789 2306 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2307
0747259d
TH
2308 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2309 !test_bit(WB_registered, &wb->state),
2310 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2311
2312 inode->dirtied_when = jiffies;
a2f48706
TT
2313 if (dirtytime)
2314 inode->dirtied_time_when = jiffies;
d6c10f1f 2315
0e11f644 2316 if (inode->i_state & I_DIRTY)
0747259d 2317 dirty_list = &wb->b_dirty;
a2f48706 2318 else
0747259d 2319 dirty_list = &wb->b_dirty_time;
d6c10f1f 2320
c7f54084 2321 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2322 dirty_list);
2323
0747259d 2324 spin_unlock(&wb->list_lock);
0ae45f63 2325 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2326
d6c10f1f
TH
2327 /*
2328 * If this is the first dirty inode for this bdi,
2329 * we have to wake-up the corresponding bdi thread
2330 * to make sure background write-back happens
2331 * later.
2332 */
0747259d
TH
2333 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2334 wb_wakeup_delayed(wb);
a66979ab 2335 return;
1da177e4 2336 }
1da177e4 2337 }
250df6ed
DC
2338out_unlock_inode:
2339 spin_unlock(&inode->i_lock);
03ba3782
JA
2340}
2341EXPORT_SYMBOL(__mark_inode_dirty);
2342
e97fedb9
DC
2343/*
2344 * The @s_sync_lock is used to serialise concurrent sync operations
2345 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2346 * Concurrent callers will block on the s_sync_lock rather than doing contending
2347 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2348 * has been issued up to the time this function is enter is guaranteed to be
2349 * completed by the time we have gained the lock and waited for all IO that is
2350 * in progress regardless of the order callers are granted the lock.
2351 */
b6e51316 2352static void wait_sb_inodes(struct super_block *sb)
03ba3782 2353{
6c60d2b5 2354 LIST_HEAD(sync_list);
03ba3782
JA
2355
2356 /*
2357 * We need to be protected against the filesystem going from
2358 * r/o to r/w or vice versa.
2359 */
b6e51316 2360 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2361
e97fedb9 2362 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2363
2364 /*
6c60d2b5
DC
2365 * Splice the writeback list onto a temporary list to avoid waiting on
2366 * inodes that have started writeback after this point.
2367 *
2368 * Use rcu_read_lock() to keep the inodes around until we have a
2369 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2370 * the local list because inodes can be dropped from either by writeback
2371 * completion.
2372 */
2373 rcu_read_lock();
2374 spin_lock_irq(&sb->s_inode_wblist_lock);
2375 list_splice_init(&sb->s_inodes_wb, &sync_list);
2376
2377 /*
2378 * Data integrity sync. Must wait for all pages under writeback, because
2379 * there may have been pages dirtied before our sync call, but which had
2380 * writeout started before we write it out. In which case, the inode
2381 * may not be on the dirty list, but we still have to wait for that
2382 * writeout.
03ba3782 2383 */
6c60d2b5
DC
2384 while (!list_empty(&sync_list)) {
2385 struct inode *inode = list_first_entry(&sync_list, struct inode,
2386 i_wb_list);
250df6ed 2387 struct address_space *mapping = inode->i_mapping;
03ba3782 2388
6c60d2b5
DC
2389 /*
2390 * Move each inode back to the wb list before we drop the lock
2391 * to preserve consistency between i_wb_list and the mapping
2392 * writeback tag. Writeback completion is responsible to remove
2393 * the inode from either list once the writeback tag is cleared.
2394 */
2395 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2396
2397 /*
2398 * The mapping can appear untagged while still on-list since we
2399 * do not have the mapping lock. Skip it here, wb completion
2400 * will remove it.
2401 */
2402 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2403 continue;
2404
2405 spin_unlock_irq(&sb->s_inode_wblist_lock);
2406
250df6ed 2407 spin_lock(&inode->i_lock);
6c60d2b5 2408 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2409 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2410
2411 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2412 continue;
250df6ed 2413 }
03ba3782 2414 __iget(inode);
250df6ed 2415 spin_unlock(&inode->i_lock);
6c60d2b5 2416 rcu_read_unlock();
03ba3782 2417
aa750fd7
JN
2418 /*
2419 * We keep the error status of individual mapping so that
2420 * applications can catch the writeback error using fsync(2).
2421 * See filemap_fdatawait_keep_errors() for details.
2422 */
2423 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2424
2425 cond_resched();
2426
6c60d2b5
DC
2427 iput(inode);
2428
2429 rcu_read_lock();
2430 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2431 }
6c60d2b5
DC
2432 spin_unlock_irq(&sb->s_inode_wblist_lock);
2433 rcu_read_unlock();
e97fedb9 2434 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2435}
2436
f30a7d0c
TH
2437static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2438 enum wb_reason reason, bool skip_if_busy)
1da177e4 2439{
5b9cce4c
TH
2440 struct backing_dev_info *bdi = sb->s_bdi;
2441 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2442 struct wb_writeback_work work = {
6e6938b6
WF
2443 .sb = sb,
2444 .sync_mode = WB_SYNC_NONE,
2445 .tagged_writepages = 1,
2446 .done = &done,
2447 .nr_pages = nr,
0e175a18 2448 .reason = reason,
3c4d7165 2449 };
d8a8559c 2450
e7972912 2451 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2452 return;
cf37e972 2453 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2454
db125360 2455 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2456 wb_wait_for_completion(&done);
e913fc82 2457}
f30a7d0c
TH
2458
2459/**
2460 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2461 * @sb: the superblock
2462 * @nr: the number of pages to write
2463 * @reason: reason why some writeback work initiated
2464 *
2465 * Start writeback on some inodes on this super_block. No guarantees are made
2466 * on how many (if any) will be written, and this function does not wait
2467 * for IO completion of submitted IO.
2468 */
2469void writeback_inodes_sb_nr(struct super_block *sb,
2470 unsigned long nr,
2471 enum wb_reason reason)
2472{
2473 __writeback_inodes_sb_nr(sb, nr, reason, false);
2474}
3259f8be
CM
2475EXPORT_SYMBOL(writeback_inodes_sb_nr);
2476
2477/**
2478 * writeback_inodes_sb - writeback dirty inodes from given super_block
2479 * @sb: the superblock
786228ab 2480 * @reason: reason why some writeback work was initiated
3259f8be
CM
2481 *
2482 * Start writeback on some inodes on this super_block. No guarantees are made
2483 * on how many (if any) will be written, and this function does not wait
2484 * for IO completion of submitted IO.
2485 */
0e175a18 2486void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2487{
0e175a18 2488 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2489}
0e3c9a22 2490EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2491
17bd55d0 2492/**
8264c321 2493 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2494 * @sb: the superblock
8264c321 2495 * @reason: reason why some writeback work was initiated
17bd55d0 2496 *
8264c321 2497 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2498 */
8264c321 2499void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2500{
10ee27a0 2501 if (!down_read_trylock(&sb->s_umount))
8264c321 2502 return;
10ee27a0 2503
8264c321 2504 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2505 up_read(&sb->s_umount);
3259f8be 2506}
10ee27a0 2507EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2508
d8a8559c
JA
2509/**
2510 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2511 * @sb: the superblock
d8a8559c
JA
2512 *
2513 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2514 * super_block.
d8a8559c 2515 */
0dc83bd3 2516void sync_inodes_sb(struct super_block *sb)
d8a8559c 2517{
5b9cce4c
TH
2518 struct backing_dev_info *bdi = sb->s_bdi;
2519 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2520 struct wb_writeback_work work = {
3c4d7165
CH
2521 .sb = sb,
2522 .sync_mode = WB_SYNC_ALL,
2523 .nr_pages = LONG_MAX,
2524 .range_cyclic = 0,
83ba7b07 2525 .done = &done,
0e175a18 2526 .reason = WB_REASON_SYNC,
7747bd4b 2527 .for_sync = 1,
3c4d7165
CH
2528 };
2529
006a0973
TH
2530 /*
2531 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2532 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2533 * bdi_has_dirty() need to be written out too.
2534 */
2535 if (bdi == &noop_backing_dev_info)
6eedc701 2536 return;
cf37e972
CH
2537 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2538
7fc5854f
TH
2539 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2540 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2541 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2542 wb_wait_for_completion(&done);
7fc5854f 2543 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2544
b6e51316 2545 wait_sb_inodes(sb);
1da177e4 2546}
d8a8559c 2547EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2548
1da177e4 2549/**
7f04c26d
AA
2550 * write_inode_now - write an inode to disk
2551 * @inode: inode to write to disk
2552 * @sync: whether the write should be synchronous or not
2553 *
2554 * This function commits an inode to disk immediately if it is dirty. This is
2555 * primarily needed by knfsd.
1da177e4 2556 *
7f04c26d 2557 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2558 */
1da177e4
LT
2559int write_inode_now(struct inode *inode, int sync)
2560{
1da177e4
LT
2561 struct writeback_control wbc = {
2562 .nr_to_write = LONG_MAX,
18914b18 2563 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2564 .range_start = 0,
2565 .range_end = LLONG_MAX,
1da177e4
LT
2566 };
2567
2568 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2569 wbc.nr_to_write = 0;
1da177e4
LT
2570
2571 might_sleep();
aaf25593 2572 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2573}
2574EXPORT_SYMBOL(write_inode_now);
2575
2576/**
2577 * sync_inode - write an inode and its pages to disk.
2578 * @inode: the inode to sync
2579 * @wbc: controls the writeback mode
2580 *
2581 * sync_inode() will write an inode and its pages to disk. It will also
2582 * correctly update the inode on its superblock's dirty inode lists and will
2583 * update inode->i_state.
2584 *
2585 * The caller must have a ref on the inode.
2586 */
2587int sync_inode(struct inode *inode, struct writeback_control *wbc)
2588{
aaf25593 2589 return writeback_single_inode(inode, wbc);
1da177e4
LT
2590}
2591EXPORT_SYMBOL(sync_inode);
c3765016
CH
2592
2593/**
c691b9d9 2594 * sync_inode_metadata - write an inode to disk
c3765016
CH
2595 * @inode: the inode to sync
2596 * @wait: wait for I/O to complete.
2597 *
c691b9d9 2598 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2599 *
2600 * Note: only writes the actual inode, no associated data or other metadata.
2601 */
2602int sync_inode_metadata(struct inode *inode, int wait)
2603{
2604 struct writeback_control wbc = {
2605 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2606 .nr_to_write = 0, /* metadata-only */
2607 };
2608
2609 return sync_inode(inode, &wbc);
2610}
2611EXPORT_SYMBOL(sync_inode_metadata);