kernfs: implement kernfs_path_len()
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
0e175a18 56 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 57
8010c3b6 58 struct list_head list; /* pending work list */
cc395d7f 59 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
60};
61
cc395d7f
TH
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
a2f48706
TT
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
7ccf19a8
NP
87static inline struct inode *wb_inode(struct list_head *head)
88{
89 return list_entry(head, struct inode, i_wb_list);
90}
91
15eb77a0
WF
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
774016b2
SW
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
d6c10f1f
TH
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 119 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 122 }
d6c10f1f
TH
123}
124
125/**
126 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135static bool inode_wb_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_wb_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
152 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159static void inode_wb_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_wb_list);
165 wb_io_lists_depopulated(wb);
166}
167
f0054bb1 168static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 169{
f0054bb1
TH
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
174}
175
f0054bb1
TH
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
6585027a 178{
f0054bb1 179 trace_writeback_queue(wb->bdi, work);
6585027a 180
f0054bb1 181 spin_lock_bh(&wb->work_lock);
8a1270cd 182 if (!test_bit(WB_registered, &wb->state))
5acda9d1 183 goto out_unlock;
cc395d7f
TH
184 if (work->done)
185 atomic_inc(&work->done->cnt);
f0054bb1
TH
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 188out_unlock:
f0054bb1 189 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
190}
191
cc395d7f
TH
192/**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205{
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208}
209
703c2708
TH
210#ifdef CONFIG_CGROUP_WRITEBACK
211
2a814908
TH
212/* parameters for foreign inode detection, see wb_detach_inode() */
213#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
21c6321f
TH
226void __inode_attach_wb(struct inode *inode, struct page *page)
227{
228 struct backing_dev_info *bdi = inode_to_bdi(inode);
229 struct bdi_writeback *wb = NULL;
230
231 if (inode_cgwb_enabled(inode)) {
232 struct cgroup_subsys_state *memcg_css;
233
234 if (page) {
235 memcg_css = mem_cgroup_css_from_page(page);
236 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237 } else {
238 /* must pin memcg_css, see wb_get_create() */
239 memcg_css = task_get_css(current, memory_cgrp_id);
240 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241 css_put(memcg_css);
242 }
243 }
244
245 if (!wb)
246 wb = &bdi->wb;
247
248 /*
249 * There may be multiple instances of this function racing to
250 * update the same inode. Use cmpxchg() to tell the winner.
251 */
252 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253 wb_put(wb);
254}
255
87e1d789
TH
256/**
257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258 * @inode: inode of interest with i_lock held
259 *
260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
261 * held on entry and is released on return. The returned wb is guaranteed
262 * to stay @inode's associated wb until its list_lock is released.
263 */
264static struct bdi_writeback *
265locked_inode_to_wb_and_lock_list(struct inode *inode)
266 __releases(&inode->i_lock)
267 __acquires(&wb->list_lock)
268{
269 while (true) {
270 struct bdi_writeback *wb = inode_to_wb(inode);
271
272 /*
273 * inode_to_wb() association is protected by both
274 * @inode->i_lock and @wb->list_lock but list_lock nests
275 * outside i_lock. Drop i_lock and verify that the
276 * association hasn't changed after acquiring list_lock.
277 */
278 wb_get(wb);
279 spin_unlock(&inode->i_lock);
280 spin_lock(&wb->list_lock);
281 wb_put(wb); /* not gonna deref it anymore */
282
aaa2cacf
TH
283 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284 if (likely(wb == inode->i_wb))
87e1d789
TH
285 return wb; /* @inode already has ref */
286
287 spin_unlock(&wb->list_lock);
288 cpu_relax();
289 spin_lock(&inode->i_lock);
290 }
291}
292
293/**
294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295 * @inode: inode of interest
296 *
297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298 * on entry.
299 */
300static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301 __acquires(&wb->list_lock)
302{
303 spin_lock(&inode->i_lock);
304 return locked_inode_to_wb_and_lock_list(inode);
305}
306
682aa8e1
TH
307struct inode_switch_wbs_context {
308 struct inode *inode;
309 struct bdi_writeback *new_wb;
310
311 struct rcu_head rcu_head;
312 struct work_struct work;
313};
314
315static void inode_switch_wbs_work_fn(struct work_struct *work)
316{
317 struct inode_switch_wbs_context *isw =
318 container_of(work, struct inode_switch_wbs_context, work);
319 struct inode *inode = isw->inode;
d10c8095
TH
320 struct address_space *mapping = inode->i_mapping;
321 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 322 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
323 struct radix_tree_iter iter;
324 bool switched = false;
325 void **slot;
682aa8e1
TH
326
327 /*
328 * By the time control reaches here, RCU grace period has passed
329 * since I_WB_SWITCH assertion and all wb stat update transactions
330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 * synchronizing against mapping->tree_lock.
d10c8095
TH
332 *
333 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
334 * gives us exclusion against all wb related operations on @inode
335 * including IO list manipulations and stat updates.
682aa8e1 336 */
d10c8095
TH
337 if (old_wb < new_wb) {
338 spin_lock(&old_wb->list_lock);
339 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
340 } else {
341 spin_lock(&new_wb->list_lock);
342 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
343 }
682aa8e1 344 spin_lock(&inode->i_lock);
d10c8095
TH
345 spin_lock_irq(&mapping->tree_lock);
346
347 /*
348 * Once I_FREEING is visible under i_lock, the eviction path owns
349 * the inode and we shouldn't modify ->i_wb_list.
350 */
351 if (unlikely(inode->i_state & I_FREEING))
352 goto skip_switch;
353
354 /*
355 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
356 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
357 * pages actually under underwriteback.
358 */
359 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
360 PAGECACHE_TAG_DIRTY) {
361 struct page *page = radix_tree_deref_slot_protected(slot,
362 &mapping->tree_lock);
363 if (likely(page) && PageDirty(page)) {
364 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
365 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
366 }
367 }
368
369 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
370 PAGECACHE_TAG_WRITEBACK) {
371 struct page *page = radix_tree_deref_slot_protected(slot,
372 &mapping->tree_lock);
373 if (likely(page)) {
374 WARN_ON_ONCE(!PageWriteback(page));
375 __dec_wb_stat(old_wb, WB_WRITEBACK);
376 __inc_wb_stat(new_wb, WB_WRITEBACK);
377 }
378 }
379
380 wb_get(new_wb);
381
382 /*
383 * Transfer to @new_wb's IO list if necessary. The specific list
384 * @inode was on is ignored and the inode is put on ->b_dirty which
385 * is always correct including from ->b_dirty_time. The transfer
386 * preserves @inode->dirtied_when ordering.
387 */
388 if (!list_empty(&inode->i_wb_list)) {
389 struct inode *pos;
390
391 inode_wb_list_del_locked(inode, old_wb);
392 inode->i_wb = new_wb;
393 list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
394 if (time_after_eq(inode->dirtied_when,
395 pos->dirtied_when))
396 break;
397 inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
398 } else {
399 inode->i_wb = new_wb;
400 }
682aa8e1 401
d10c8095 402 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
403 inode->i_wb_frn_winner = 0;
404 inode->i_wb_frn_avg_time = 0;
405 inode->i_wb_frn_history = 0;
d10c8095
TH
406 switched = true;
407skip_switch:
682aa8e1
TH
408 /*
409 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
410 * ensures that the new wb is visible if they see !I_WB_SWITCH.
411 */
412 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
413
d10c8095 414 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 415 spin_unlock(&inode->i_lock);
d10c8095
TH
416 spin_unlock(&new_wb->list_lock);
417 spin_unlock(&old_wb->list_lock);
682aa8e1 418
d10c8095
TH
419 if (switched) {
420 wb_wakeup(new_wb);
421 wb_put(old_wb);
422 }
682aa8e1 423 wb_put(new_wb);
d10c8095
TH
424
425 iput(inode);
682aa8e1
TH
426 kfree(isw);
427}
428
429static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
430{
431 struct inode_switch_wbs_context *isw = container_of(rcu_head,
432 struct inode_switch_wbs_context, rcu_head);
433
434 /* needs to grab bh-unsafe locks, bounce to work item */
435 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
436 schedule_work(&isw->work);
437}
438
439/**
440 * inode_switch_wbs - change the wb association of an inode
441 * @inode: target inode
442 * @new_wb_id: ID of the new wb
443 *
444 * Switch @inode's wb association to the wb identified by @new_wb_id. The
445 * switching is performed asynchronously and may fail silently.
446 */
447static void inode_switch_wbs(struct inode *inode, int new_wb_id)
448{
449 struct backing_dev_info *bdi = inode_to_bdi(inode);
450 struct cgroup_subsys_state *memcg_css;
451 struct inode_switch_wbs_context *isw;
452
453 /* noop if seems to be already in progress */
454 if (inode->i_state & I_WB_SWITCH)
455 return;
456
457 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
458 if (!isw)
459 return;
460
461 /* find and pin the new wb */
462 rcu_read_lock();
463 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
464 if (memcg_css)
465 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
466 rcu_read_unlock();
467 if (!isw->new_wb)
468 goto out_free;
469
470 /* while holding I_WB_SWITCH, no one else can update the association */
471 spin_lock(&inode->i_lock);
472 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
473 inode_to_wb(inode) == isw->new_wb) {
474 spin_unlock(&inode->i_lock);
475 goto out_free;
476 }
477 inode->i_state |= I_WB_SWITCH;
478 spin_unlock(&inode->i_lock);
479
480 ihold(inode);
481 isw->inode = inode;
482
483 /*
484 * In addition to synchronizing among switchers, I_WB_SWITCH tells
485 * the RCU protected stat update paths to grab the mapping's
486 * tree_lock so that stat transfer can synchronize against them.
487 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
488 */
489 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
490 return;
491
492out_free:
493 if (isw->new_wb)
494 wb_put(isw->new_wb);
495 kfree(isw);
496}
497
b16b1deb
TH
498/**
499 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
500 * @wbc: writeback_control of interest
501 * @inode: target inode
502 *
503 * @inode is locked and about to be written back under the control of @wbc.
504 * Record @inode's writeback context into @wbc and unlock the i_lock. On
505 * writeback completion, wbc_detach_inode() should be called. This is used
506 * to track the cgroup writeback context.
507 */
508void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
509 struct inode *inode)
510{
dd73e4b7
TH
511 if (!inode_cgwb_enabled(inode)) {
512 spin_unlock(&inode->i_lock);
513 return;
514 }
515
b16b1deb 516 wbc->wb = inode_to_wb(inode);
2a814908
TH
517 wbc->inode = inode;
518
519 wbc->wb_id = wbc->wb->memcg_css->id;
520 wbc->wb_lcand_id = inode->i_wb_frn_winner;
521 wbc->wb_tcand_id = 0;
522 wbc->wb_bytes = 0;
523 wbc->wb_lcand_bytes = 0;
524 wbc->wb_tcand_bytes = 0;
525
b16b1deb
TH
526 wb_get(wbc->wb);
527 spin_unlock(&inode->i_lock);
e8a7abf5
TH
528
529 /*
530 * A dying wb indicates that the memcg-blkcg mapping has changed
531 * and a new wb is already serving the memcg. Switch immediately.
532 */
533 if (unlikely(wb_dying(wbc->wb)))
534 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
535}
536
537/**
2a814908
TH
538 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
540 *
541 * To be called after a writeback attempt of an inode finishes and undoes
542 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
543 *
544 * As concurrent write sharing of an inode is expected to be very rare and
545 * memcg only tracks page ownership on first-use basis severely confining
546 * the usefulness of such sharing, cgroup writeback tracks ownership
547 * per-inode. While the support for concurrent write sharing of an inode
548 * is deemed unnecessary, an inode being written to by different cgroups at
549 * different points in time is a lot more common, and, more importantly,
550 * charging only by first-use can too readily lead to grossly incorrect
551 * behaviors (single foreign page can lead to gigabytes of writeback to be
552 * incorrectly attributed).
553 *
554 * To resolve this issue, cgroup writeback detects the majority dirtier of
555 * an inode and transfers the ownership to it. To avoid unnnecessary
556 * oscillation, the detection mechanism keeps track of history and gives
557 * out the switch verdict only if the foreign usage pattern is stable over
558 * a certain amount of time and/or writeback attempts.
559 *
560 * On each writeback attempt, @wbc tries to detect the majority writer
561 * using Boyer-Moore majority vote algorithm. In addition to the byte
562 * count from the majority voting, it also counts the bytes written for the
563 * current wb and the last round's winner wb (max of last round's current
564 * wb, the winner from two rounds ago, and the last round's majority
565 * candidate). Keeping track of the historical winner helps the algorithm
566 * to semi-reliably detect the most active writer even when it's not the
567 * absolute majority.
568 *
569 * Once the winner of the round is determined, whether the winner is
570 * foreign or not and how much IO time the round consumed is recorded in
571 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
572 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
573 */
574void wbc_detach_inode(struct writeback_control *wbc)
575{
2a814908
TH
576 struct bdi_writeback *wb = wbc->wb;
577 struct inode *inode = wbc->inode;
dd73e4b7
TH
578 unsigned long avg_time, max_bytes, max_time;
579 u16 history;
2a814908
TH
580 int max_id;
581
dd73e4b7
TH
582 if (!wb)
583 return;
584
585 history = inode->i_wb_frn_history;
586 avg_time = inode->i_wb_frn_avg_time;
587
2a814908
TH
588 /* pick the winner of this round */
589 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
590 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
591 max_id = wbc->wb_id;
592 max_bytes = wbc->wb_bytes;
593 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
594 max_id = wbc->wb_lcand_id;
595 max_bytes = wbc->wb_lcand_bytes;
596 } else {
597 max_id = wbc->wb_tcand_id;
598 max_bytes = wbc->wb_tcand_bytes;
599 }
600
601 /*
602 * Calculate the amount of IO time the winner consumed and fold it
603 * into the running average kept per inode. If the consumed IO
604 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
605 * deciding whether to switch or not. This is to prevent one-off
606 * small dirtiers from skewing the verdict.
607 */
608 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
609 wb->avg_write_bandwidth);
610 if (avg_time)
611 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
612 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
613 else
614 avg_time = max_time; /* immediate catch up on first run */
615
616 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
617 int slots;
618
619 /*
620 * The switch verdict is reached if foreign wb's consume
621 * more than a certain proportion of IO time in a
622 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
623 * history mask where each bit represents one sixteenth of
624 * the period. Determine the number of slots to shift into
625 * history from @max_time.
626 */
627 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
628 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
629 history <<= slots;
630 if (wbc->wb_id != max_id)
631 history |= (1U << slots) - 1;
632
633 /*
634 * Switch if the current wb isn't the consistent winner.
635 * If there are multiple closely competing dirtiers, the
636 * inode may switch across them repeatedly over time, which
637 * is okay. The main goal is avoiding keeping an inode on
638 * the wrong wb for an extended period of time.
639 */
682aa8e1
TH
640 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
641 inode_switch_wbs(inode, max_id);
2a814908
TH
642 }
643
644 /*
645 * Multiple instances of this function may race to update the
646 * following fields but we don't mind occassional inaccuracies.
647 */
648 inode->i_wb_frn_winner = max_id;
649 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
650 inode->i_wb_frn_history = history;
651
b16b1deb
TH
652 wb_put(wbc->wb);
653 wbc->wb = NULL;
654}
655
2a814908
TH
656/**
657 * wbc_account_io - account IO issued during writeback
658 * @wbc: writeback_control of the writeback in progress
659 * @page: page being written out
660 * @bytes: number of bytes being written out
661 *
662 * @bytes from @page are about to written out during the writeback
663 * controlled by @wbc. Keep the book for foreign inode detection. See
664 * wbc_detach_inode().
665 */
666void wbc_account_io(struct writeback_control *wbc, struct page *page,
667 size_t bytes)
668{
669 int id;
670
671 /*
672 * pageout() path doesn't attach @wbc to the inode being written
673 * out. This is intentional as we don't want the function to block
674 * behind a slow cgroup. Ultimately, we want pageout() to kick off
675 * regular writeback instead of writing things out itself.
676 */
677 if (!wbc->wb)
678 return;
679
680 rcu_read_lock();
681 id = mem_cgroup_css_from_page(page)->id;
682 rcu_read_unlock();
683
684 if (id == wbc->wb_id) {
685 wbc->wb_bytes += bytes;
686 return;
687 }
688
689 if (id == wbc->wb_lcand_id)
690 wbc->wb_lcand_bytes += bytes;
691
692 /* Boyer-Moore majority vote algorithm */
693 if (!wbc->wb_tcand_bytes)
694 wbc->wb_tcand_id = id;
695 if (id == wbc->wb_tcand_id)
696 wbc->wb_tcand_bytes += bytes;
697 else
698 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
699}
5aa2a96b 700EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 701
703c2708
TH
702/**
703 * inode_congested - test whether an inode is congested
60292bcc 704 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
705 * @cong_bits: mask of WB_[a]sync_congested bits to test
706 *
707 * Tests whether @inode is congested. @cong_bits is the mask of congestion
708 * bits to test and the return value is the mask of set bits.
709 *
710 * If cgroup writeback is enabled for @inode, the congestion state is
711 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
712 * associated with @inode is congested; otherwise, the root wb's congestion
713 * state is used.
60292bcc
TH
714 *
715 * @inode is allowed to be NULL as this function is often called on
716 * mapping->host which is NULL for the swapper space.
703c2708
TH
717 */
718int inode_congested(struct inode *inode, int cong_bits)
719{
5cb8b824
TH
720 /*
721 * Once set, ->i_wb never becomes NULL while the inode is alive.
722 * Start transaction iff ->i_wb is visible.
723 */
aaa2cacf 724 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
725 struct bdi_writeback *wb;
726 bool locked, congested;
727
728 wb = unlocked_inode_to_wb_begin(inode, &locked);
729 congested = wb_congested(wb, cong_bits);
730 unlocked_inode_to_wb_end(inode, locked);
731 return congested;
703c2708
TH
732 }
733
734 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
735}
736EXPORT_SYMBOL_GPL(inode_congested);
737
f2b65121
TH
738/**
739 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
740 * @wb: target bdi_writeback to split @nr_pages to
741 * @nr_pages: number of pages to write for the whole bdi
742 *
743 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
744 * relation to the total write bandwidth of all wb's w/ dirty inodes on
745 * @wb->bdi.
746 */
747static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
748{
749 unsigned long this_bw = wb->avg_write_bandwidth;
750 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
751
752 if (nr_pages == LONG_MAX)
753 return LONG_MAX;
754
755 /*
756 * This may be called on clean wb's and proportional distribution
757 * may not make sense, just use the original @nr_pages in those
758 * cases. In general, we wanna err on the side of writing more.
759 */
760 if (!tot_bw || this_bw >= tot_bw)
761 return nr_pages;
762 else
763 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
764}
765
db125360
TH
766/**
767 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
768 * @bdi: target backing_dev_info
769 * @base_work: wb_writeback_work to issue
770 * @skip_if_busy: skip wb's which already have writeback in progress
771 *
772 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
773 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
774 * distributed to the busy wbs according to each wb's proportion in the
775 * total active write bandwidth of @bdi.
776 */
777static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
778 struct wb_writeback_work *base_work,
779 bool skip_if_busy)
780{
1ed8d48c 781 int next_memcg_id = 0;
db125360
TH
782 struct bdi_writeback *wb;
783 struct wb_iter iter;
784
785 might_sleep();
786
787 if (!bdi_has_dirty_io(bdi))
788 return;
789restart:
790 rcu_read_lock();
1ed8d48c 791 bdi_for_each_wb(wb, bdi, &iter, next_memcg_id) {
8a1270cd
TH
792 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
793 struct wb_writeback_work fallback_work;
794 struct wb_writeback_work *work;
795 long nr_pages;
796
db125360
TH
797 if (!wb_has_dirty_io(wb) ||
798 (skip_if_busy && writeback_in_progress(wb)))
799 continue;
800
8a1270cd
TH
801 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
802
803 work = kmalloc(sizeof(*work), GFP_ATOMIC);
804 if (work) {
805 *work = *base_work;
806 work->nr_pages = nr_pages;
807 work->auto_free = 1;
808 wb_queue_work(wb, work);
809 continue;
db125360 810 }
8a1270cd
TH
811
812 /* alloc failed, execute synchronously using on-stack fallback */
813 work = &fallback_work;
814 *work = *base_work;
815 work->nr_pages = nr_pages;
816 work->auto_free = 0;
817 work->done = &fallback_work_done;
818
819 wb_queue_work(wb, work);
820
821 next_memcg_id = wb->memcg_css->id + 1;
822 rcu_read_unlock();
823 wb_wait_for_completion(bdi, &fallback_work_done);
824 goto restart;
db125360
TH
825 }
826 rcu_read_unlock();
827}
828
f2b65121
TH
829#else /* CONFIG_CGROUP_WRITEBACK */
830
87e1d789
TH
831static struct bdi_writeback *
832locked_inode_to_wb_and_lock_list(struct inode *inode)
833 __releases(&inode->i_lock)
834 __acquires(&wb->list_lock)
835{
836 struct bdi_writeback *wb = inode_to_wb(inode);
837
838 spin_unlock(&inode->i_lock);
839 spin_lock(&wb->list_lock);
840 return wb;
841}
842
843static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
844 __acquires(&wb->list_lock)
845{
846 struct bdi_writeback *wb = inode_to_wb(inode);
847
848 spin_lock(&wb->list_lock);
849 return wb;
850}
851
f2b65121
TH
852static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
853{
854 return nr_pages;
855}
856
db125360
TH
857static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
858 struct wb_writeback_work *base_work,
859 bool skip_if_busy)
860{
861 might_sleep();
862
863 if (bdi_has_dirty_io(bdi) &&
864 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
865 base_work->auto_free = 0;
db125360
TH
866 wb_queue_work(&bdi->wb, base_work);
867 }
868}
869
703c2708
TH
870#endif /* CONFIG_CGROUP_WRITEBACK */
871
c00ddad3
TH
872void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
873 bool range_cyclic, enum wb_reason reason)
b6e51316 874{
c00ddad3
TH
875 struct wb_writeback_work *work;
876
877 if (!wb_has_dirty_io(wb))
878 return;
879
880 /*
881 * This is WB_SYNC_NONE writeback, so if allocation fails just
882 * wakeup the thread for old dirty data writeback
883 */
884 work = kzalloc(sizeof(*work), GFP_ATOMIC);
885 if (!work) {
886 trace_writeback_nowork(wb->bdi);
887 wb_wakeup(wb);
888 return;
889 }
890
891 work->sync_mode = WB_SYNC_NONE;
892 work->nr_pages = nr_pages;
893 work->range_cyclic = range_cyclic;
894 work->reason = reason;
ac7b19a3 895 work->auto_free = 1;
c00ddad3
TH
896
897 wb_queue_work(wb, work);
c5444198 898}
d3ddec76 899
c5444198 900/**
9ecf4866
TH
901 * wb_start_background_writeback - start background writeback
902 * @wb: bdi_writback to write from
c5444198
CH
903 *
904 * Description:
6585027a 905 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 906 * this function returns, it is only guaranteed that for given wb
6585027a
JK
907 * some IO is happening if we are over background dirty threshold.
908 * Caller need not hold sb s_umount semaphore.
c5444198 909 */
9ecf4866 910void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 911{
6585027a
JK
912 /*
913 * We just wake up the flusher thread. It will perform background
914 * writeback as soon as there is no other work to do.
915 */
9ecf4866
TH
916 trace_writeback_wake_background(wb->bdi);
917 wb_wakeup(wb);
1da177e4
LT
918}
919
a66979ab
DC
920/*
921 * Remove the inode from the writeback list it is on.
922 */
923void inode_wb_list_del(struct inode *inode)
924{
87e1d789 925 struct bdi_writeback *wb;
f758eeab 926
87e1d789 927 wb = inode_to_wb_and_lock_list(inode);
d6c10f1f 928 inode_wb_list_del_locked(inode, wb);
52ebea74 929 spin_unlock(&wb->list_lock);
a66979ab
DC
930}
931
6610a0bc
AM
932/*
933 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
934 * furthest end of its superblock's dirty-inode list.
935 *
936 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 937 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
938 * the case then the inode must have been redirtied while it was being written
939 * out and we don't reset its dirtied_when.
940 */
f758eeab 941static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 942{
03ba3782 943 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 944 struct inode *tail;
6610a0bc 945
7ccf19a8 946 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 947 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
948 inode->dirtied_when = jiffies;
949 }
d6c10f1f 950 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
951}
952
c986d1e2 953/*
66f3b8e2 954 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 955 */
f758eeab 956static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 957{
d6c10f1f 958 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
959}
960
1c0eeaf5
JE
961static void inode_sync_complete(struct inode *inode)
962{
365b94ae 963 inode->i_state &= ~I_SYNC;
4eff96dd
JK
964 /* If inode is clean an unused, put it into LRU now... */
965 inode_add_lru(inode);
365b94ae 966 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
967 smp_mb();
968 wake_up_bit(&inode->i_state, __I_SYNC);
969}
970
d2caa3c5
JL
971static bool inode_dirtied_after(struct inode *inode, unsigned long t)
972{
973 bool ret = time_after(inode->dirtied_when, t);
974#ifndef CONFIG_64BIT
975 /*
976 * For inodes being constantly redirtied, dirtied_when can get stuck.
977 * It _appears_ to be in the future, but is actually in distant past.
978 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 979 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
980 */
981 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
982#endif
983 return ret;
984}
985
0ae45f63
TT
986#define EXPIRE_DIRTY_ATIME 0x0001
987
2c136579 988/*
0e2f2b23 989 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 990 * @delaying_queue to @dispatch_queue.
2c136579 991 */
e84d0a4f 992static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 993 struct list_head *dispatch_queue,
0ae45f63 994 int flags,
ad4e38dd 995 struct wb_writeback_work *work)
2c136579 996{
0ae45f63
TT
997 unsigned long *older_than_this = NULL;
998 unsigned long expire_time;
5c03449d
SL
999 LIST_HEAD(tmp);
1000 struct list_head *pos, *node;
cf137307 1001 struct super_block *sb = NULL;
5c03449d 1002 struct inode *inode;
cf137307 1003 int do_sb_sort = 0;
e84d0a4f 1004 int moved = 0;
5c03449d 1005
0ae45f63
TT
1006 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1007 older_than_this = work->older_than_this;
a2f48706
TT
1008 else if (!work->for_sync) {
1009 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1010 older_than_this = &expire_time;
1011 }
2c136579 1012 while (!list_empty(delaying_queue)) {
7ccf19a8 1013 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1014 if (older_than_this &&
1015 inode_dirtied_after(inode, *older_than_this))
2c136579 1016 break;
a8855990
JK
1017 list_move(&inode->i_wb_list, &tmp);
1018 moved++;
0ae45f63
TT
1019 if (flags & EXPIRE_DIRTY_ATIME)
1020 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1021 if (sb_is_blkdev_sb(inode->i_sb))
1022 continue;
cf137307
JA
1023 if (sb && sb != inode->i_sb)
1024 do_sb_sort = 1;
1025 sb = inode->i_sb;
5c03449d
SL
1026 }
1027
cf137307
JA
1028 /* just one sb in list, splice to dispatch_queue and we're done */
1029 if (!do_sb_sort) {
1030 list_splice(&tmp, dispatch_queue);
e84d0a4f 1031 goto out;
cf137307
JA
1032 }
1033
5c03449d
SL
1034 /* Move inodes from one superblock together */
1035 while (!list_empty(&tmp)) {
7ccf19a8 1036 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1037 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1038 inode = wb_inode(pos);
5c03449d 1039 if (inode->i_sb == sb)
7ccf19a8 1040 list_move(&inode->i_wb_list, dispatch_queue);
5c03449d 1041 }
2c136579 1042 }
e84d0a4f
WF
1043out:
1044 return moved;
2c136579
FW
1045}
1046
1047/*
1048 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1049 * Before
1050 * newly dirtied b_dirty b_io b_more_io
1051 * =============> gf edc BA
1052 * After
1053 * newly dirtied b_dirty b_io b_more_io
1054 * =============> g fBAedc
1055 * |
1056 * +--> dequeue for IO
2c136579 1057 */
ad4e38dd 1058static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1059{
e84d0a4f 1060 int moved;
0ae45f63 1061
f758eeab 1062 assert_spin_locked(&wb->list_lock);
4ea879b9 1063 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1064 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1065 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1066 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1067 if (moved)
1068 wb_io_lists_populated(wb);
ad4e38dd 1069 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1070}
1071
a9185b41 1072static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1073{
9fb0a7da
TH
1074 int ret;
1075
1076 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1077 trace_writeback_write_inode_start(inode, wbc);
1078 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1079 trace_writeback_write_inode(inode, wbc);
1080 return ret;
1081 }
03ba3782 1082 return 0;
08d8e974 1083}
08d8e974 1084
1da177e4 1085/*
169ebd90
JK
1086 * Wait for writeback on an inode to complete. Called with i_lock held.
1087 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1088 */
169ebd90
JK
1089static void __inode_wait_for_writeback(struct inode *inode)
1090 __releases(inode->i_lock)
1091 __acquires(inode->i_lock)
01c03194
CH
1092{
1093 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1094 wait_queue_head_t *wqh;
1095
1096 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1097 while (inode->i_state & I_SYNC) {
1098 spin_unlock(&inode->i_lock);
74316201
N
1099 __wait_on_bit(wqh, &wq, bit_wait,
1100 TASK_UNINTERRUPTIBLE);
250df6ed 1101 spin_lock(&inode->i_lock);
58a9d3d8 1102 }
01c03194
CH
1103}
1104
169ebd90
JK
1105/*
1106 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1107 */
1108void inode_wait_for_writeback(struct inode *inode)
1109{
1110 spin_lock(&inode->i_lock);
1111 __inode_wait_for_writeback(inode);
1112 spin_unlock(&inode->i_lock);
1113}
1114
1115/*
1116 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1117 * held and drops it. It is aimed for callers not holding any inode reference
1118 * so once i_lock is dropped, inode can go away.
1119 */
1120static void inode_sleep_on_writeback(struct inode *inode)
1121 __releases(inode->i_lock)
1122{
1123 DEFINE_WAIT(wait);
1124 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1125 int sleep;
1126
1127 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1128 sleep = inode->i_state & I_SYNC;
1129 spin_unlock(&inode->i_lock);
1130 if (sleep)
1131 schedule();
1132 finish_wait(wqh, &wait);
1133}
1134
ccb26b5a
JK
1135/*
1136 * Find proper writeback list for the inode depending on its current state and
1137 * possibly also change of its state while we were doing writeback. Here we
1138 * handle things such as livelock prevention or fairness of writeback among
1139 * inodes. This function can be called only by flusher thread - noone else
1140 * processes all inodes in writeback lists and requeueing inodes behind flusher
1141 * thread's back can have unexpected consequences.
1142 */
1143static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1144 struct writeback_control *wbc)
1145{
1146 if (inode->i_state & I_FREEING)
1147 return;
1148
1149 /*
1150 * Sync livelock prevention. Each inode is tagged and synced in one
1151 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1152 * the dirty time to prevent enqueue and sync it again.
1153 */
1154 if ((inode->i_state & I_DIRTY) &&
1155 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1156 inode->dirtied_when = jiffies;
1157
4f8ad655
JK
1158 if (wbc->pages_skipped) {
1159 /*
1160 * writeback is not making progress due to locked
1161 * buffers. Skip this inode for now.
1162 */
1163 redirty_tail(inode, wb);
1164 return;
1165 }
1166
ccb26b5a
JK
1167 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1168 /*
1169 * We didn't write back all the pages. nfs_writepages()
1170 * sometimes bales out without doing anything.
1171 */
1172 if (wbc->nr_to_write <= 0) {
1173 /* Slice used up. Queue for next turn. */
1174 requeue_io(inode, wb);
1175 } else {
1176 /*
1177 * Writeback blocked by something other than
1178 * congestion. Delay the inode for some time to
1179 * avoid spinning on the CPU (100% iowait)
1180 * retrying writeback of the dirty page/inode
1181 * that cannot be performed immediately.
1182 */
1183 redirty_tail(inode, wb);
1184 }
1185 } else if (inode->i_state & I_DIRTY) {
1186 /*
1187 * Filesystems can dirty the inode during writeback operations,
1188 * such as delayed allocation during submission or metadata
1189 * updates after data IO completion.
1190 */
1191 redirty_tail(inode, wb);
0ae45f63 1192 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1193 inode->dirtied_when = jiffies;
d6c10f1f 1194 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1195 } else {
1196 /* The inode is clean. Remove from writeback lists. */
d6c10f1f 1197 inode_wb_list_del_locked(inode, wb);
ccb26b5a
JK
1198 }
1199}
1200
01c03194 1201/*
4f8ad655
JK
1202 * Write out an inode and its dirty pages. Do not update the writeback list
1203 * linkage. That is left to the caller. The caller is also responsible for
1204 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1205 */
1206static int
cd8ed2a4 1207__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1208{
1da177e4 1209 struct address_space *mapping = inode->i_mapping;
251d6a47 1210 long nr_to_write = wbc->nr_to_write;
01c03194 1211 unsigned dirty;
1da177e4
LT
1212 int ret;
1213
4f8ad655 1214 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1215
9fb0a7da
TH
1216 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1217
1da177e4
LT
1218 ret = do_writepages(mapping, wbc);
1219
26821ed4
CH
1220 /*
1221 * Make sure to wait on the data before writing out the metadata.
1222 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1223 * I/O completion. We don't do it for sync(2) writeback because it has a
1224 * separate, external IO completion path and ->sync_fs for guaranteeing
1225 * inode metadata is written back correctly.
26821ed4 1226 */
7747bd4b 1227 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1228 int err = filemap_fdatawait(mapping);
1da177e4
LT
1229 if (ret == 0)
1230 ret = err;
1231 }
1232
5547e8aa
DM
1233 /*
1234 * Some filesystems may redirty the inode during the writeback
1235 * due to delalloc, clear dirty metadata flags right before
1236 * write_inode()
1237 */
250df6ed 1238 spin_lock(&inode->i_lock);
9c6ac78e 1239
5547e8aa 1240 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1241 if (inode->i_state & I_DIRTY_TIME) {
1242 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1243 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1244 unlikely(time_after(jiffies,
1245 (inode->dirtied_time_when +
1246 dirtytime_expire_interval * HZ)))) {
1247 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1248 trace_writeback_lazytime(inode);
1249 }
1250 } else
1251 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1252 inode->i_state &= ~dirty;
9c6ac78e
TH
1253
1254 /*
1255 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1256 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1257 * either they see the I_DIRTY bits cleared or we see the dirtied
1258 * inode.
1259 *
1260 * I_DIRTY_PAGES is always cleared together above even if @mapping
1261 * still has dirty pages. The flag is reinstated after smp_mb() if
1262 * necessary. This guarantees that either __mark_inode_dirty()
1263 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1264 */
1265 smp_mb();
1266
1267 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1268 inode->i_state |= I_DIRTY_PAGES;
1269
250df6ed 1270 spin_unlock(&inode->i_lock);
9c6ac78e 1271
0ae45f63
TT
1272 if (dirty & I_DIRTY_TIME)
1273 mark_inode_dirty_sync(inode);
26821ed4 1274 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1275 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1276 int err = write_inode(inode, wbc);
1da177e4
LT
1277 if (ret == 0)
1278 ret = err;
1279 }
4f8ad655
JK
1280 trace_writeback_single_inode(inode, wbc, nr_to_write);
1281 return ret;
1282}
1283
1284/*
1285 * Write out an inode's dirty pages. Either the caller has an active reference
1286 * on the inode or the inode has I_WILL_FREE set.
1287 *
1288 * This function is designed to be called for writing back one inode which
1289 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1290 * and does more profound writeback list handling in writeback_sb_inodes().
1291 */
1292static int
1293writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1294 struct writeback_control *wbc)
1295{
1296 int ret = 0;
1297
1298 spin_lock(&inode->i_lock);
1299 if (!atomic_read(&inode->i_count))
1300 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1301 else
1302 WARN_ON(inode->i_state & I_WILL_FREE);
1303
1304 if (inode->i_state & I_SYNC) {
1305 if (wbc->sync_mode != WB_SYNC_ALL)
1306 goto out;
1307 /*
169ebd90
JK
1308 * It's a data-integrity sync. We must wait. Since callers hold
1309 * inode reference or inode has I_WILL_FREE set, it cannot go
1310 * away under us.
4f8ad655 1311 */
169ebd90 1312 __inode_wait_for_writeback(inode);
4f8ad655
JK
1313 }
1314 WARN_ON(inode->i_state & I_SYNC);
1315 /*
f9b0e058
JK
1316 * Skip inode if it is clean and we have no outstanding writeback in
1317 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1318 * function since flusher thread may be doing for example sync in
1319 * parallel and if we move the inode, it could get skipped. So here we
1320 * make sure inode is on some writeback list and leave it there unless
1321 * we have completely cleaned the inode.
4f8ad655 1322 */
0ae45f63 1323 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1324 (wbc->sync_mode != WB_SYNC_ALL ||
1325 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1326 goto out;
1327 inode->i_state |= I_SYNC;
b16b1deb 1328 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1329
cd8ed2a4 1330 ret = __writeback_single_inode(inode, wbc);
1da177e4 1331
b16b1deb 1332 wbc_detach_inode(wbc);
f758eeab 1333 spin_lock(&wb->list_lock);
250df6ed 1334 spin_lock(&inode->i_lock);
4f8ad655
JK
1335 /*
1336 * If inode is clean, remove it from writeback lists. Otherwise don't
1337 * touch it. See comment above for explanation.
1338 */
0ae45f63 1339 if (!(inode->i_state & I_DIRTY_ALL))
d6c10f1f 1340 inode_wb_list_del_locked(inode, wb);
4f8ad655 1341 spin_unlock(&wb->list_lock);
1c0eeaf5 1342 inode_sync_complete(inode);
4f8ad655
JK
1343out:
1344 spin_unlock(&inode->i_lock);
1da177e4
LT
1345 return ret;
1346}
1347
a88a341a 1348static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1349 struct wb_writeback_work *work)
d46db3d5
WF
1350{
1351 long pages;
1352
1353 /*
1354 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1355 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1356 * here avoids calling into writeback_inodes_wb() more than once.
1357 *
1358 * The intended call sequence for WB_SYNC_ALL writeback is:
1359 *
1360 * wb_writeback()
1361 * writeback_sb_inodes() <== called only once
1362 * write_cache_pages() <== called once for each inode
1363 * (quickly) tag currently dirty pages
1364 * (maybe slowly) sync all tagged pages
1365 */
1366 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1367 pages = LONG_MAX;
1a12d8bd 1368 else {
a88a341a 1369 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1370 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1371 pages = min(pages, work->nr_pages);
1372 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1373 MIN_WRITEBACK_PAGES);
1374 }
d46db3d5
WF
1375
1376 return pages;
1377}
1378
f11c9c5c
ES
1379/*
1380 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1381 *
d46db3d5 1382 * Return the number of pages and/or inodes written.
f11c9c5c 1383 */
d46db3d5
WF
1384static long writeback_sb_inodes(struct super_block *sb,
1385 struct bdi_writeback *wb,
1386 struct wb_writeback_work *work)
1da177e4 1387{
d46db3d5
WF
1388 struct writeback_control wbc = {
1389 .sync_mode = work->sync_mode,
1390 .tagged_writepages = work->tagged_writepages,
1391 .for_kupdate = work->for_kupdate,
1392 .for_background = work->for_background,
7747bd4b 1393 .for_sync = work->for_sync,
d46db3d5
WF
1394 .range_cyclic = work->range_cyclic,
1395 .range_start = 0,
1396 .range_end = LLONG_MAX,
1397 };
1398 unsigned long start_time = jiffies;
1399 long write_chunk;
1400 long wrote = 0; /* count both pages and inodes */
1401
03ba3782 1402 while (!list_empty(&wb->b_io)) {
7ccf19a8 1403 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1404
1405 if (inode->i_sb != sb) {
d46db3d5 1406 if (work->sb) {
edadfb10
CH
1407 /*
1408 * We only want to write back data for this
1409 * superblock, move all inodes not belonging
1410 * to it back onto the dirty list.
1411 */
f758eeab 1412 redirty_tail(inode, wb);
edadfb10
CH
1413 continue;
1414 }
1415
1416 /*
1417 * The inode belongs to a different superblock.
1418 * Bounce back to the caller to unpin this and
1419 * pin the next superblock.
1420 */
d46db3d5 1421 break;
edadfb10
CH
1422 }
1423
9843b76a 1424 /*
331cbdee
WL
1425 * Don't bother with new inodes or inodes being freed, first
1426 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1427 * kind writeout is handled by the freer.
1428 */
250df6ed 1429 spin_lock(&inode->i_lock);
9843b76a 1430 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1431 spin_unlock(&inode->i_lock);
fcc5c222 1432 redirty_tail(inode, wb);
7ef0d737
NP
1433 continue;
1434 }
cc1676d9
JK
1435 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1436 /*
1437 * If this inode is locked for writeback and we are not
1438 * doing writeback-for-data-integrity, move it to
1439 * b_more_io so that writeback can proceed with the
1440 * other inodes on s_io.
1441 *
1442 * We'll have another go at writing back this inode
1443 * when we completed a full scan of b_io.
1444 */
1445 spin_unlock(&inode->i_lock);
1446 requeue_io(inode, wb);
1447 trace_writeback_sb_inodes_requeue(inode);
1448 continue;
1449 }
f0d07b7f
JK
1450 spin_unlock(&wb->list_lock);
1451
4f8ad655
JK
1452 /*
1453 * We already requeued the inode if it had I_SYNC set and we
1454 * are doing WB_SYNC_NONE writeback. So this catches only the
1455 * WB_SYNC_ALL case.
1456 */
169ebd90
JK
1457 if (inode->i_state & I_SYNC) {
1458 /* Wait for I_SYNC. This function drops i_lock... */
1459 inode_sleep_on_writeback(inode);
1460 /* Inode may be gone, start again */
ead188f9 1461 spin_lock(&wb->list_lock);
169ebd90
JK
1462 continue;
1463 }
4f8ad655 1464 inode->i_state |= I_SYNC;
b16b1deb 1465 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1466
a88a341a 1467 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1468 wbc.nr_to_write = write_chunk;
1469 wbc.pages_skipped = 0;
250df6ed 1470
169ebd90
JK
1471 /*
1472 * We use I_SYNC to pin the inode in memory. While it is set
1473 * evict_inode() will wait so the inode cannot be freed.
1474 */
cd8ed2a4 1475 __writeback_single_inode(inode, &wbc);
250df6ed 1476
b16b1deb 1477 wbc_detach_inode(&wbc);
d46db3d5
WF
1478 work->nr_pages -= write_chunk - wbc.nr_to_write;
1479 wrote += write_chunk - wbc.nr_to_write;
4f8ad655
JK
1480 spin_lock(&wb->list_lock);
1481 spin_lock(&inode->i_lock);
0ae45f63 1482 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1483 wrote++;
4f8ad655
JK
1484 requeue_inode(inode, wb, &wbc);
1485 inode_sync_complete(inode);
0f1b1fd8 1486 spin_unlock(&inode->i_lock);
169ebd90 1487 cond_resched_lock(&wb->list_lock);
d46db3d5
WF
1488 /*
1489 * bail out to wb_writeback() often enough to check
1490 * background threshold and other termination conditions.
1491 */
1492 if (wrote) {
1493 if (time_is_before_jiffies(start_time + HZ / 10UL))
1494 break;
1495 if (work->nr_pages <= 0)
1496 break;
8bc3be27 1497 }
1da177e4 1498 }
d46db3d5 1499 return wrote;
f11c9c5c
ES
1500}
1501
d46db3d5
WF
1502static long __writeback_inodes_wb(struct bdi_writeback *wb,
1503 struct wb_writeback_work *work)
f11c9c5c 1504{
d46db3d5
WF
1505 unsigned long start_time = jiffies;
1506 long wrote = 0;
38f21977 1507
f11c9c5c 1508 while (!list_empty(&wb->b_io)) {
7ccf19a8 1509 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1510 struct super_block *sb = inode->i_sb;
9ecc2738 1511
eb6ef3df 1512 if (!trylock_super(sb)) {
0e995816 1513 /*
eb6ef3df 1514 * trylock_super() may fail consistently due to
0e995816
WF
1515 * s_umount being grabbed by someone else. Don't use
1516 * requeue_io() to avoid busy retrying the inode/sb.
1517 */
1518 redirty_tail(inode, wb);
edadfb10 1519 continue;
f11c9c5c 1520 }
d46db3d5 1521 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1522 up_read(&sb->s_umount);
f11c9c5c 1523
d46db3d5
WF
1524 /* refer to the same tests at the end of writeback_sb_inodes */
1525 if (wrote) {
1526 if (time_is_before_jiffies(start_time + HZ / 10UL))
1527 break;
1528 if (work->nr_pages <= 0)
1529 break;
1530 }
f11c9c5c 1531 }
66f3b8e2 1532 /* Leave any unwritten inodes on b_io */
d46db3d5 1533 return wrote;
66f3b8e2
JA
1534}
1535
7d9f073b 1536static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1537 enum wb_reason reason)
edadfb10 1538{
d46db3d5
WF
1539 struct wb_writeback_work work = {
1540 .nr_pages = nr_pages,
1541 .sync_mode = WB_SYNC_NONE,
1542 .range_cyclic = 1,
0e175a18 1543 .reason = reason,
d46db3d5 1544 };
edadfb10 1545
f758eeab 1546 spin_lock(&wb->list_lock);
424b351f 1547 if (list_empty(&wb->b_io))
ad4e38dd 1548 queue_io(wb, &work);
d46db3d5 1549 __writeback_inodes_wb(wb, &work);
f758eeab 1550 spin_unlock(&wb->list_lock);
edadfb10 1551
d46db3d5
WF
1552 return nr_pages - work.nr_pages;
1553}
03ba3782 1554
03ba3782
JA
1555/*
1556 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1557 *
03ba3782
JA
1558 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1559 * dirtying-time in the inode's address_space. So this periodic writeback code
1560 * just walks the superblock inode list, writing back any inodes which are
1561 * older than a specific point in time.
66f3b8e2 1562 *
03ba3782
JA
1563 * Try to run once per dirty_writeback_interval. But if a writeback event
1564 * takes longer than a dirty_writeback_interval interval, then leave a
1565 * one-second gap.
66f3b8e2 1566 *
03ba3782
JA
1567 * older_than_this takes precedence over nr_to_write. So we'll only write back
1568 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1569 */
c4a77a6c 1570static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1571 struct wb_writeback_work *work)
66f3b8e2 1572{
e98be2d5 1573 unsigned long wb_start = jiffies;
d46db3d5 1574 long nr_pages = work->nr_pages;
0dc83bd3 1575 unsigned long oldest_jif;
a5989bdc 1576 struct inode *inode;
d46db3d5 1577 long progress;
66f3b8e2 1578
0dc83bd3
JK
1579 oldest_jif = jiffies;
1580 work->older_than_this = &oldest_jif;
38f21977 1581
e8dfc305 1582 spin_lock(&wb->list_lock);
03ba3782
JA
1583 for (;;) {
1584 /*
d3ddec76 1585 * Stop writeback when nr_pages has been consumed
03ba3782 1586 */
83ba7b07 1587 if (work->nr_pages <= 0)
03ba3782 1588 break;
66f3b8e2 1589
aa373cf5
JK
1590 /*
1591 * Background writeout and kupdate-style writeback may
1592 * run forever. Stop them if there is other work to do
1593 * so that e.g. sync can proceed. They'll be restarted
1594 * after the other works are all done.
1595 */
1596 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1597 !list_empty(&wb->work_list))
aa373cf5
JK
1598 break;
1599
38f21977 1600 /*
d3ddec76
WF
1601 * For background writeout, stop when we are below the
1602 * background dirty threshold
38f21977 1603 */
aa661bbe 1604 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1605 break;
38f21977 1606
1bc36b64
JK
1607 /*
1608 * Kupdate and background works are special and we want to
1609 * include all inodes that need writing. Livelock avoidance is
1610 * handled by these works yielding to any other work so we are
1611 * safe.
1612 */
ba9aa839 1613 if (work->for_kupdate) {
0dc83bd3 1614 oldest_jif = jiffies -
ba9aa839 1615 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1616 } else if (work->for_background)
0dc83bd3 1617 oldest_jif = jiffies;
028c2dd1 1618
d46db3d5 1619 trace_writeback_start(wb->bdi, work);
e8dfc305 1620 if (list_empty(&wb->b_io))
ad4e38dd 1621 queue_io(wb, work);
83ba7b07 1622 if (work->sb)
d46db3d5 1623 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1624 else
d46db3d5
WF
1625 progress = __writeback_inodes_wb(wb, work);
1626 trace_writeback_written(wb->bdi, work);
028c2dd1 1627
e98be2d5 1628 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1629
1630 /*
e6fb6da2
WF
1631 * Did we write something? Try for more
1632 *
1633 * Dirty inodes are moved to b_io for writeback in batches.
1634 * The completion of the current batch does not necessarily
1635 * mean the overall work is done. So we keep looping as long
1636 * as made some progress on cleaning pages or inodes.
03ba3782 1637 */
d46db3d5 1638 if (progress)
71fd05a8
JA
1639 continue;
1640 /*
e6fb6da2 1641 * No more inodes for IO, bail
71fd05a8 1642 */
b7a2441f 1643 if (list_empty(&wb->b_more_io))
03ba3782 1644 break;
71fd05a8
JA
1645 /*
1646 * Nothing written. Wait for some inode to
1647 * become available for writeback. Otherwise
1648 * we'll just busyloop.
1649 */
71fd05a8 1650 if (!list_empty(&wb->b_more_io)) {
d46db3d5 1651 trace_writeback_wait(wb->bdi, work);
7ccf19a8 1652 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1653 spin_lock(&inode->i_lock);
f0d07b7f 1654 spin_unlock(&wb->list_lock);
169ebd90
JK
1655 /* This function drops i_lock... */
1656 inode_sleep_on_writeback(inode);
f0d07b7f 1657 spin_lock(&wb->list_lock);
03ba3782
JA
1658 }
1659 }
e8dfc305 1660 spin_unlock(&wb->list_lock);
03ba3782 1661
d46db3d5 1662 return nr_pages - work->nr_pages;
03ba3782
JA
1663}
1664
1665/*
83ba7b07 1666 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1667 */
f0054bb1 1668static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1669{
83ba7b07 1670 struct wb_writeback_work *work = NULL;
03ba3782 1671
f0054bb1
TH
1672 spin_lock_bh(&wb->work_lock);
1673 if (!list_empty(&wb->work_list)) {
1674 work = list_entry(wb->work_list.next,
83ba7b07
CH
1675 struct wb_writeback_work, list);
1676 list_del_init(&work->list);
03ba3782 1677 }
f0054bb1 1678 spin_unlock_bh(&wb->work_lock);
83ba7b07 1679 return work;
03ba3782
JA
1680}
1681
cdf01dd5
LT
1682/*
1683 * Add in the number of potentially dirty inodes, because each inode
1684 * write can dirty pagecache in the underlying blockdev.
1685 */
1686static unsigned long get_nr_dirty_pages(void)
1687{
1688 return global_page_state(NR_FILE_DIRTY) +
1689 global_page_state(NR_UNSTABLE_NFS) +
1690 get_nr_dirty_inodes();
1691}
1692
6585027a
JK
1693static long wb_check_background_flush(struct bdi_writeback *wb)
1694{
aa661bbe 1695 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1696
1697 struct wb_writeback_work work = {
1698 .nr_pages = LONG_MAX,
1699 .sync_mode = WB_SYNC_NONE,
1700 .for_background = 1,
1701 .range_cyclic = 1,
0e175a18 1702 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1703 };
1704
1705 return wb_writeback(wb, &work);
1706 }
1707
1708 return 0;
1709}
1710
03ba3782
JA
1711static long wb_check_old_data_flush(struct bdi_writeback *wb)
1712{
1713 unsigned long expired;
1714 long nr_pages;
1715
69b62d01
JA
1716 /*
1717 * When set to zero, disable periodic writeback
1718 */
1719 if (!dirty_writeback_interval)
1720 return 0;
1721
03ba3782
JA
1722 expired = wb->last_old_flush +
1723 msecs_to_jiffies(dirty_writeback_interval * 10);
1724 if (time_before(jiffies, expired))
1725 return 0;
1726
1727 wb->last_old_flush = jiffies;
cdf01dd5 1728 nr_pages = get_nr_dirty_pages();
03ba3782 1729
c4a77a6c 1730 if (nr_pages) {
83ba7b07 1731 struct wb_writeback_work work = {
c4a77a6c
JA
1732 .nr_pages = nr_pages,
1733 .sync_mode = WB_SYNC_NONE,
1734 .for_kupdate = 1,
1735 .range_cyclic = 1,
0e175a18 1736 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1737 };
1738
83ba7b07 1739 return wb_writeback(wb, &work);
c4a77a6c 1740 }
03ba3782
JA
1741
1742 return 0;
1743}
1744
1745/*
1746 * Retrieve work items and do the writeback they describe
1747 */
25d130ba 1748static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1749{
83ba7b07 1750 struct wb_writeback_work *work;
c4a77a6c 1751 long wrote = 0;
03ba3782 1752
4452226e 1753 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1754 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1755 struct wb_completion *done = work->done;
03ba3782 1756
f0054bb1 1757 trace_writeback_exec(wb->bdi, work);
455b2864 1758
83ba7b07 1759 wrote += wb_writeback(wb, work);
03ba3782 1760
8a1270cd 1761 if (work->auto_free)
83ba7b07 1762 kfree(work);
cc395d7f
TH
1763 if (done && atomic_dec_and_test(&done->cnt))
1764 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1765 }
1766
1767 /*
1768 * Check for periodic writeback, kupdated() style
1769 */
1770 wrote += wb_check_old_data_flush(wb);
6585027a 1771 wrote += wb_check_background_flush(wb);
4452226e 1772 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1773
1774 return wrote;
1775}
1776
1777/*
1778 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1779 * reschedules periodically and does kupdated style flushing.
03ba3782 1780 */
f0054bb1 1781void wb_workfn(struct work_struct *work)
03ba3782 1782{
839a8e86
TH
1783 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1784 struct bdi_writeback, dwork);
03ba3782
JA
1785 long pages_written;
1786
f0054bb1 1787 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1788 current->flags |= PF_SWAPWRITE;
455b2864 1789
839a8e86 1790 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1791 !test_bit(WB_registered, &wb->state))) {
6467716a 1792 /*
f0054bb1 1793 * The normal path. Keep writing back @wb until its
839a8e86 1794 * work_list is empty. Note that this path is also taken
f0054bb1 1795 * if @wb is shutting down even when we're running off the
839a8e86 1796 * rescuer as work_list needs to be drained.
6467716a 1797 */
839a8e86 1798 do {
25d130ba 1799 pages_written = wb_do_writeback(wb);
839a8e86 1800 trace_writeback_pages_written(pages_written);
f0054bb1 1801 } while (!list_empty(&wb->work_list));
839a8e86
TH
1802 } else {
1803 /*
1804 * bdi_wq can't get enough workers and we're running off
1805 * the emergency worker. Don't hog it. Hopefully, 1024 is
1806 * enough for efficient IO.
1807 */
f0054bb1 1808 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1809 WB_REASON_FORKER_THREAD);
455b2864 1810 trace_writeback_pages_written(pages_written);
03ba3782
JA
1811 }
1812
f0054bb1 1813 if (!list_empty(&wb->work_list))
6ca738d6
DB
1814 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1815 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1816 wb_wakeup_delayed(wb);
455b2864 1817
839a8e86 1818 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1819}
1820
1821/*
b8c2f347
CH
1822 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1823 * the whole world.
03ba3782 1824 */
0e175a18 1825void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1826{
b8c2f347 1827 struct backing_dev_info *bdi;
03ba3782 1828
47df3dde
JK
1829 if (!nr_pages)
1830 nr_pages = get_nr_dirty_pages();
03ba3782 1831
b8c2f347 1832 rcu_read_lock();
f2b65121
TH
1833 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1834 struct bdi_writeback *wb;
1835 struct wb_iter iter;
1836
1837 if (!bdi_has_dirty_io(bdi))
1838 continue;
1839
1840 bdi_for_each_wb(wb, bdi, &iter, 0)
1841 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1842 false, reason);
1843 }
cfc4ba53 1844 rcu_read_unlock();
1da177e4
LT
1845}
1846
a2f48706
TT
1847/*
1848 * Wake up bdi's periodically to make sure dirtytime inodes gets
1849 * written back periodically. We deliberately do *not* check the
1850 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1851 * kernel to be constantly waking up once there are any dirtytime
1852 * inodes on the system. So instead we define a separate delayed work
1853 * function which gets called much more rarely. (By default, only
1854 * once every 12 hours.)
1855 *
1856 * If there is any other write activity going on in the file system,
1857 * this function won't be necessary. But if the only thing that has
1858 * happened on the file system is a dirtytime inode caused by an atime
1859 * update, we need this infrastructure below to make sure that inode
1860 * eventually gets pushed out to disk.
1861 */
1862static void wakeup_dirtytime_writeback(struct work_struct *w);
1863static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1864
1865static void wakeup_dirtytime_writeback(struct work_struct *w)
1866{
1867 struct backing_dev_info *bdi;
1868
1869 rcu_read_lock();
1870 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6
TH
1871 struct bdi_writeback *wb;
1872 struct wb_iter iter;
1873
1874 bdi_for_each_wb(wb, bdi, &iter, 0)
1875 if (!list_empty(&bdi->wb.b_dirty_time))
1876 wb_wakeup(&bdi->wb);
a2f48706
TT
1877 }
1878 rcu_read_unlock();
1879 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1880}
1881
1882static int __init start_dirtytime_writeback(void)
1883{
1884 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1885 return 0;
1886}
1887__initcall(start_dirtytime_writeback);
1888
1efff914
TT
1889int dirtytime_interval_handler(struct ctl_table *table, int write,
1890 void __user *buffer, size_t *lenp, loff_t *ppos)
1891{
1892 int ret;
1893
1894 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1895 if (ret == 0 && write)
1896 mod_delayed_work(system_wq, &dirtytime_work, 0);
1897 return ret;
1898}
1899
03ba3782
JA
1900static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1901{
1902 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1903 struct dentry *dentry;
1904 const char *name = "?";
1905
1906 dentry = d_find_alias(inode);
1907 if (dentry) {
1908 spin_lock(&dentry->d_lock);
1909 name = (const char *) dentry->d_name.name;
1910 }
1911 printk(KERN_DEBUG
1912 "%s(%d): dirtied inode %lu (%s) on %s\n",
1913 current->comm, task_pid_nr(current), inode->i_ino,
1914 name, inode->i_sb->s_id);
1915 if (dentry) {
1916 spin_unlock(&dentry->d_lock);
1917 dput(dentry);
1918 }
1919 }
1920}
1921
1922/**
1923 * __mark_inode_dirty - internal function
1924 * @inode: inode to mark
1925 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1926 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1927 * mark_inode_dirty_sync.
1da177e4 1928 *
03ba3782
JA
1929 * Put the inode on the super block's dirty list.
1930 *
1931 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1932 * dirty list only if it is hashed or if it refers to a blockdev.
1933 * If it was not hashed, it will never be added to the dirty list
1934 * even if it is later hashed, as it will have been marked dirty already.
1935 *
1936 * In short, make sure you hash any inodes _before_ you start marking
1937 * them dirty.
1da177e4 1938 *
03ba3782
JA
1939 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1940 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1941 * the kernel-internal blockdev inode represents the dirtying time of the
1942 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1943 * page->mapping->host, so the page-dirtying time is recorded in the internal
1944 * blockdev inode.
1da177e4 1945 */
0ae45f63 1946#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 1947void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1948{
03ba3782 1949 struct super_block *sb = inode->i_sb;
0ae45f63
TT
1950 int dirtytime;
1951
1952 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 1953
03ba3782
JA
1954 /*
1955 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1956 * dirty the inode itself
1957 */
0ae45f63 1958 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
1959 trace_writeback_dirty_inode_start(inode, flags);
1960
03ba3782 1961 if (sb->s_op->dirty_inode)
aa385729 1962 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
1963
1964 trace_writeback_dirty_inode(inode, flags);
03ba3782 1965 }
0ae45f63
TT
1966 if (flags & I_DIRTY_INODE)
1967 flags &= ~I_DIRTY_TIME;
1968 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
1969
1970 /*
9c6ac78e
TH
1971 * Paired with smp_mb() in __writeback_single_inode() for the
1972 * following lockless i_state test. See there for details.
03ba3782
JA
1973 */
1974 smp_mb();
1975
0ae45f63
TT
1976 if (((inode->i_state & flags) == flags) ||
1977 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
1978 return;
1979
1980 if (unlikely(block_dump))
1981 block_dump___mark_inode_dirty(inode);
1982
250df6ed 1983 spin_lock(&inode->i_lock);
0ae45f63
TT
1984 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1985 goto out_unlock_inode;
03ba3782
JA
1986 if ((inode->i_state & flags) != flags) {
1987 const int was_dirty = inode->i_state & I_DIRTY;
1988
52ebea74
TH
1989 inode_attach_wb(inode, NULL);
1990
0ae45f63
TT
1991 if (flags & I_DIRTY_INODE)
1992 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
1993 inode->i_state |= flags;
1994
1995 /*
1996 * If the inode is being synced, just update its dirty state.
1997 * The unlocker will place the inode on the appropriate
1998 * superblock list, based upon its state.
1999 */
2000 if (inode->i_state & I_SYNC)
250df6ed 2001 goto out_unlock_inode;
03ba3782
JA
2002
2003 /*
2004 * Only add valid (hashed) inodes to the superblock's
2005 * dirty list. Add blockdev inodes as well.
2006 */
2007 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2008 if (inode_unhashed(inode))
250df6ed 2009 goto out_unlock_inode;
03ba3782 2010 }
a4ffdde6 2011 if (inode->i_state & I_FREEING)
250df6ed 2012 goto out_unlock_inode;
03ba3782
JA
2013
2014 /*
2015 * If the inode was already on b_dirty/b_io/b_more_io, don't
2016 * reposition it (that would break b_dirty time-ordering).
2017 */
2018 if (!was_dirty) {
87e1d789 2019 struct bdi_writeback *wb;
d6c10f1f 2020 struct list_head *dirty_list;
a66979ab 2021 bool wakeup_bdi = false;
253c34e9 2022
87e1d789 2023 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2024
0747259d
TH
2025 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2026 !test_bit(WB_registered, &wb->state),
2027 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2028
2029 inode->dirtied_when = jiffies;
a2f48706
TT
2030 if (dirtytime)
2031 inode->dirtied_time_when = jiffies;
d6c10f1f 2032
a2f48706 2033 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2034 dirty_list = &wb->b_dirty;
a2f48706 2035 else
0747259d 2036 dirty_list = &wb->b_dirty_time;
d6c10f1f 2037
0747259d 2038 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
d6c10f1f
TH
2039 dirty_list);
2040
0747259d 2041 spin_unlock(&wb->list_lock);
0ae45f63 2042 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2043
d6c10f1f
TH
2044 /*
2045 * If this is the first dirty inode for this bdi,
2046 * we have to wake-up the corresponding bdi thread
2047 * to make sure background write-back happens
2048 * later.
2049 */
0747259d
TH
2050 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2051 wb_wakeup_delayed(wb);
a66979ab 2052 return;
1da177e4 2053 }
1da177e4 2054 }
250df6ed
DC
2055out_unlock_inode:
2056 spin_unlock(&inode->i_lock);
253c34e9 2057
03ba3782
JA
2058}
2059EXPORT_SYMBOL(__mark_inode_dirty);
2060
b6e51316 2061static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
2062{
2063 struct inode *inode, *old_inode = NULL;
2064
2065 /*
2066 * We need to be protected against the filesystem going from
2067 * r/o to r/w or vice versa.
2068 */
b6e51316 2069 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2070
55fa6091 2071 spin_lock(&inode_sb_list_lock);
03ba3782
JA
2072
2073 /*
2074 * Data integrity sync. Must wait for all pages under writeback,
2075 * because there may have been pages dirtied before our sync
2076 * call, but which had writeout started before we write it out.
2077 * In which case, the inode may not be on the dirty list, but
2078 * we still have to wait for that writeout.
2079 */
b6e51316 2080 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 2081 struct address_space *mapping = inode->i_mapping;
03ba3782 2082
250df6ed
DC
2083 spin_lock(&inode->i_lock);
2084 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2085 (mapping->nrpages == 0)) {
2086 spin_unlock(&inode->i_lock);
03ba3782 2087 continue;
250df6ed 2088 }
03ba3782 2089 __iget(inode);
250df6ed 2090 spin_unlock(&inode->i_lock);
55fa6091
DC
2091 spin_unlock(&inode_sb_list_lock);
2092
03ba3782 2093 /*
55fa6091
DC
2094 * We hold a reference to 'inode' so it couldn't have been
2095 * removed from s_inodes list while we dropped the
2096 * inode_sb_list_lock. We cannot iput the inode now as we can
2097 * be holding the last reference and we cannot iput it under
2098 * inode_sb_list_lock. So we keep the reference and iput it
2099 * later.
03ba3782
JA
2100 */
2101 iput(old_inode);
2102 old_inode = inode;
2103
2104 filemap_fdatawait(mapping);
2105
2106 cond_resched();
2107
55fa6091 2108 spin_lock(&inode_sb_list_lock);
03ba3782 2109 }
55fa6091 2110 spin_unlock(&inode_sb_list_lock);
03ba3782 2111 iput(old_inode);
1da177e4
LT
2112}
2113
f30a7d0c
TH
2114static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2115 enum wb_reason reason, bool skip_if_busy)
1da177e4 2116{
cc395d7f 2117 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2118 struct wb_writeback_work work = {
6e6938b6
WF
2119 .sb = sb,
2120 .sync_mode = WB_SYNC_NONE,
2121 .tagged_writepages = 1,
2122 .done = &done,
2123 .nr_pages = nr,
0e175a18 2124 .reason = reason,
3c4d7165 2125 };
e7972912 2126 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2127
e7972912 2128 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2129 return;
cf37e972 2130 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2131
db125360 2132 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2133 wb_wait_for_completion(bdi, &done);
e913fc82 2134}
f30a7d0c
TH
2135
2136/**
2137 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2138 * @sb: the superblock
2139 * @nr: the number of pages to write
2140 * @reason: reason why some writeback work initiated
2141 *
2142 * Start writeback on some inodes on this super_block. No guarantees are made
2143 * on how many (if any) will be written, and this function does not wait
2144 * for IO completion of submitted IO.
2145 */
2146void writeback_inodes_sb_nr(struct super_block *sb,
2147 unsigned long nr,
2148 enum wb_reason reason)
2149{
2150 __writeback_inodes_sb_nr(sb, nr, reason, false);
2151}
3259f8be
CM
2152EXPORT_SYMBOL(writeback_inodes_sb_nr);
2153
2154/**
2155 * writeback_inodes_sb - writeback dirty inodes from given super_block
2156 * @sb: the superblock
786228ab 2157 * @reason: reason why some writeback work was initiated
3259f8be
CM
2158 *
2159 * Start writeback on some inodes on this super_block. No guarantees are made
2160 * on how many (if any) will be written, and this function does not wait
2161 * for IO completion of submitted IO.
2162 */
0e175a18 2163void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2164{
0e175a18 2165 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2166}
0e3c9a22 2167EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2168
17bd55d0 2169/**
10ee27a0 2170 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2171 * @sb: the superblock
10ee27a0
MX
2172 * @nr: the number of pages to write
2173 * @reason: the reason of writeback
17bd55d0 2174 *
10ee27a0 2175 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2176 * Returns 1 if writeback was started, 0 if not.
2177 */
f30a7d0c
TH
2178bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2179 enum wb_reason reason)
17bd55d0 2180{
10ee27a0 2181 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2182 return false;
10ee27a0 2183
f30a7d0c 2184 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2185 up_read(&sb->s_umount);
f30a7d0c 2186 return true;
17bd55d0 2187}
10ee27a0 2188EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2189
3259f8be 2190/**
10ee27a0 2191 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2192 * @sb: the superblock
786228ab 2193 * @reason: reason why some writeback work was initiated
3259f8be 2194 *
10ee27a0 2195 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2196 * Returns 1 if writeback was started, 0 if not.
2197 */
f30a7d0c 2198bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2199{
10ee27a0 2200 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2201}
10ee27a0 2202EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2203
d8a8559c
JA
2204/**
2205 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2206 * @sb: the superblock
d8a8559c
JA
2207 *
2208 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2209 * super_block.
d8a8559c 2210 */
0dc83bd3 2211void sync_inodes_sb(struct super_block *sb)
d8a8559c 2212{
cc395d7f 2213 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2214 struct wb_writeback_work work = {
3c4d7165
CH
2215 .sb = sb,
2216 .sync_mode = WB_SYNC_ALL,
2217 .nr_pages = LONG_MAX,
2218 .range_cyclic = 0,
83ba7b07 2219 .done = &done,
0e175a18 2220 .reason = WB_REASON_SYNC,
7747bd4b 2221 .for_sync = 1,
3c4d7165 2222 };
e7972912 2223 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2224
6eedc701 2225 /* Nothing to do? */
e7972912 2226 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2227 return;
cf37e972
CH
2228 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2229
db125360 2230 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2231 wb_wait_for_completion(bdi, &done);
83ba7b07 2232
b6e51316 2233 wait_sb_inodes(sb);
1da177e4 2234}
d8a8559c 2235EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2236
1da177e4 2237/**
7f04c26d
AA
2238 * write_inode_now - write an inode to disk
2239 * @inode: inode to write to disk
2240 * @sync: whether the write should be synchronous or not
2241 *
2242 * This function commits an inode to disk immediately if it is dirty. This is
2243 * primarily needed by knfsd.
1da177e4 2244 *
7f04c26d 2245 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2246 */
1da177e4
LT
2247int write_inode_now(struct inode *inode, int sync)
2248{
f758eeab 2249 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2250 struct writeback_control wbc = {
2251 .nr_to_write = LONG_MAX,
18914b18 2252 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2253 .range_start = 0,
2254 .range_end = LLONG_MAX,
1da177e4
LT
2255 };
2256
2257 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2258 wbc.nr_to_write = 0;
1da177e4
LT
2259
2260 might_sleep();
4f8ad655 2261 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2262}
2263EXPORT_SYMBOL(write_inode_now);
2264
2265/**
2266 * sync_inode - write an inode and its pages to disk.
2267 * @inode: the inode to sync
2268 * @wbc: controls the writeback mode
2269 *
2270 * sync_inode() will write an inode and its pages to disk. It will also
2271 * correctly update the inode on its superblock's dirty inode lists and will
2272 * update inode->i_state.
2273 *
2274 * The caller must have a ref on the inode.
2275 */
2276int sync_inode(struct inode *inode, struct writeback_control *wbc)
2277{
4f8ad655 2278 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2279}
2280EXPORT_SYMBOL(sync_inode);
c3765016
CH
2281
2282/**
c691b9d9 2283 * sync_inode_metadata - write an inode to disk
c3765016
CH
2284 * @inode: the inode to sync
2285 * @wait: wait for I/O to complete.
2286 *
c691b9d9 2287 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2288 *
2289 * Note: only writes the actual inode, no associated data or other metadata.
2290 */
2291int sync_inode_metadata(struct inode *inode, int wait)
2292{
2293 struct writeback_control wbc = {
2294 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2295 .nr_to_write = 0, /* metadata-only */
2296 };
2297
2298 return sync_inode(inode, &wbc);
2299}
2300EXPORT_SYMBOL(sync_inode_metadata);