writeback, cgroup: switch inodes with dirty timestamps to release dying cgwbs
[linux-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
6e6938b6 46 unsigned int tagged_writepages:1;
52957fe1
HS
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
7747bd4b 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 51 unsigned int auto_free:1; /* free on completion */
0e175a18 52 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 53
8010c3b6 54 struct list_head list; /* pending work list */
cc395d7f 55 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
56};
57
a2f48706
TT
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
7ccf19a8
NP
70static inline struct inode *wb_inode(struct list_head *head)
71{
c7f54084 72 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
73}
74
15eb77a0
WF
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
774016b2
SW
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
d6c10f1f
TH
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 102 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 105 }
d6c10f1f
TH
106}
107
108/**
c7f54084 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
bbbc3c1c 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 113 *
c7f54084 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
c7f54084 118static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
10e14073 123 assert_spin_locked(&inode->i_lock);
a9438b44 124 WARN_ON_ONCE(inode->i_state & I_FREEING);
d6c10f1f 125
c7f54084 126 list_move(&inode->i_io_list, head);
d6c10f1f
TH
127
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
131
132 wb_io_lists_depopulated(wb);
133 return false;
134}
135
f0054bb1 136static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 137{
f87904c0 138 spin_lock_irq(&wb->work_lock);
f0054bb1
TH
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
f87904c0 141 spin_unlock_irq(&wb->work_lock);
5acda9d1
JK
142}
143
4a3a485b
TE
144static void finish_writeback_work(struct bdi_writeback *wb,
145 struct wb_writeback_work *work)
146{
147 struct wb_completion *done = work->done;
148
149 if (work->auto_free)
150 kfree(work);
8e00c4e9
TH
151 if (done) {
152 wait_queue_head_t *waitq = done->waitq;
153
154 /* @done can't be accessed after the following dec */
155 if (atomic_dec_and_test(&done->cnt))
156 wake_up_all(waitq);
157 }
4a3a485b
TE
158}
159
f0054bb1
TH
160static void wb_queue_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
6585027a 162{
5634cc2a 163 trace_writeback_queue(wb, work);
6585027a 164
cc395d7f
TH
165 if (work->done)
166 atomic_inc(&work->done->cnt);
4a3a485b 167
f87904c0 168 spin_lock_irq(&wb->work_lock);
4a3a485b
TE
169
170 if (test_bit(WB_registered, &wb->state)) {
171 list_add_tail(&work->list, &wb->work_list);
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 } else
174 finish_writeback_work(wb, work);
175
f87904c0 176 spin_unlock_irq(&wb->work_lock);
1da177e4
LT
177}
178
cc395d7f
TH
179/**
180 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
181 * @done: target wb_completion
182 *
183 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
184 * set to @done, which should have been initialized with
185 * DEFINE_WB_COMPLETION(). This function returns after all such work items
186 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
187 * automatically on completion.
188 */
5b9cce4c 189void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
190{
191 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 192 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
193}
194
703c2708
TH
195#ifdef CONFIG_CGROUP_WRITEBACK
196
55a694df
TH
197/*
198 * Parameters for foreign inode detection, see wbc_detach_inode() to see
199 * how they're used.
200 *
201 * These paramters are inherently heuristical as the detection target
202 * itself is fuzzy. All we want to do is detaching an inode from the
203 * current owner if it's being written to by some other cgroups too much.
204 *
205 * The current cgroup writeback is built on the assumption that multiple
206 * cgroups writing to the same inode concurrently is very rare and a mode
207 * of operation which isn't well supported. As such, the goal is not
208 * taking too long when a different cgroup takes over an inode while
209 * avoiding too aggressive flip-flops from occasional foreign writes.
210 *
211 * We record, very roughly, 2s worth of IO time history and if more than
212 * half of that is foreign, trigger the switch. The recording is quantized
213 * to 16 slots. To avoid tiny writes from swinging the decision too much,
214 * writes smaller than 1/8 of avg size are ignored.
215 */
2a814908
TH
216#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
217#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 218#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
219#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
220
221#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
222#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 /* each slot's duration is 2s / 16 */
224#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
225 /* if foreign slots >= 8, switch */
226#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 /* one round can affect upto 5 slots */
6444f47e 228#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 229
c22d70a1
RG
230/*
231 * Maximum inodes per isw. A specific value has been chosen to make
232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233 */
234#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235 / sizeof(struct inode *))
236
a1a0e23e
TH
237static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238static struct workqueue_struct *isw_wq;
239
9cfb816b 240void __inode_attach_wb(struct inode *inode, struct folio *folio)
21c6321f
TH
241{
242 struct backing_dev_info *bdi = inode_to_bdi(inode);
243 struct bdi_writeback *wb = NULL;
244
245 if (inode_cgwb_enabled(inode)) {
246 struct cgroup_subsys_state *memcg_css;
247
9cfb816b 248 if (folio) {
75376c6f 249 memcg_css = mem_cgroup_css_from_folio(folio);
21c6321f
TH
250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 } else {
252 /* must pin memcg_css, see wb_get_create() */
253 memcg_css = task_get_css(current, memory_cgrp_id);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 css_put(memcg_css);
256 }
257 }
258
259 if (!wb)
260 wb = &bdi->wb;
261
262 /*
263 * There may be multiple instances of this function racing to
264 * update the same inode. Use cmpxchg() to tell the winner.
265 */
266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 wb_put(wb);
268}
9b0eb69b 269EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 270
f3b6a6df
RG
271/**
272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273 * @inode: inode of interest with i_lock held
274 * @wb: target bdi_writeback
275 *
276 * Remove the inode from wb's io lists and if necessarily put onto b_attached
277 * list. Only inodes attached to cgwb's are kept on this list.
278 */
279static void inode_cgwb_move_to_attached(struct inode *inode,
280 struct bdi_writeback *wb)
281{
282 assert_spin_locked(&wb->list_lock);
283 assert_spin_locked(&inode->i_lock);
a9438b44 284 WARN_ON_ONCE(inode->i_state & I_FREEING);
f3b6a6df
RG
285
286 inode->i_state &= ~I_SYNC_QUEUED;
287 if (wb != &wb->bdi->wb)
288 list_move(&inode->i_io_list, &wb->b_attached);
289 else
290 list_del_init(&inode->i_io_list);
291 wb_io_lists_depopulated(wb);
292}
293
87e1d789
TH
294/**
295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296 * @inode: inode of interest with i_lock held
297 *
298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
299 * held on entry and is released on return. The returned wb is guaranteed
300 * to stay @inode's associated wb until its list_lock is released.
301 */
302static struct bdi_writeback *
303locked_inode_to_wb_and_lock_list(struct inode *inode)
304 __releases(&inode->i_lock)
305 __acquires(&wb->list_lock)
306{
307 while (true) {
308 struct bdi_writeback *wb = inode_to_wb(inode);
309
310 /*
311 * inode_to_wb() association is protected by both
312 * @inode->i_lock and @wb->list_lock but list_lock nests
313 * outside i_lock. Drop i_lock and verify that the
314 * association hasn't changed after acquiring list_lock.
315 */
316 wb_get(wb);
317 spin_unlock(&inode->i_lock);
318 spin_lock(&wb->list_lock);
87e1d789 319
aaa2cacf 320 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
321 if (likely(wb == inode->i_wb)) {
322 wb_put(wb); /* @inode already has ref */
323 return wb;
324 }
87e1d789
TH
325
326 spin_unlock(&wb->list_lock);
614a4e37 327 wb_put(wb);
87e1d789
TH
328 cpu_relax();
329 spin_lock(&inode->i_lock);
330 }
331}
332
333/**
334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335 * @inode: inode of interest
336 *
337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338 * on entry.
339 */
340static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 __acquires(&wb->list_lock)
342{
343 spin_lock(&inode->i_lock);
344 return locked_inode_to_wb_and_lock_list(inode);
345}
346
682aa8e1 347struct inode_switch_wbs_context {
29264d92 348 struct rcu_work work;
f5fbe6b7
RG
349
350 /*
351 * Multiple inodes can be switched at once. The switching procedure
352 * consists of two parts, separated by a RCU grace period. To make
353 * sure that the second part is executed for each inode gone through
354 * the first part, all inode pointers are placed into a NULL-terminated
355 * array embedded into struct inode_switch_wbs_context. Otherwise
356 * an inode could be left in a non-consistent state.
357 */
358 struct bdi_writeback *new_wb;
359 struct inode *inodes[];
682aa8e1
TH
360};
361
7fc5854f
TH
362static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363{
364 down_write(&bdi->wb_switch_rwsem);
365}
366
367static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368{
369 up_write(&bdi->wb_switch_rwsem);
370}
371
f5fbe6b7
RG
372static bool inode_do_switch_wbs(struct inode *inode,
373 struct bdi_writeback *old_wb,
72d4512e 374 struct bdi_writeback *new_wb)
682aa8e1 375{
d10c8095 376 struct address_space *mapping = inode->i_mapping;
04edf02c 377 XA_STATE(xas, &mapping->i_pages, 0);
22b3c8d6 378 struct folio *folio;
d10c8095 379 bool switched = false;
682aa8e1 380
682aa8e1 381 spin_lock(&inode->i_lock);
b93b0163 382 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
383
384 /*
4ade5867
RG
385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 * path owns the inode and we shouldn't modify ->i_io_list.
d10c8095 387 */
4ade5867 388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
d10c8095
TH
389 goto skip_switch;
390
3a8e9ac8
TH
391 trace_inode_switch_wbs(inode, old_wb, new_wb);
392
d10c8095
TH
393 /*
394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
22b3c8d6
MWO
395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 * folios actually under writeback.
d10c8095 397 */
22b3c8d6
MWO
398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 if (folio_test_dirty(folio)) {
400 long nr = folio_nr_pages(folio);
401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
d10c8095
TH
403 }
404 }
405
04edf02c 406 xas_set(&xas, 0);
22b3c8d6
MWO
407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 long nr = folio_nr_pages(folio);
409 WARN_ON_ONCE(!folio_test_writeback(folio));
410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
d10c8095
TH
412 }
413
633a2abb
JK
414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 atomic_dec(&old_wb->writeback_inodes);
416 atomic_inc(&new_wb->writeback_inodes);
417 }
418
d10c8095
TH
419 wb_get(new_wb);
420
421 /*
f3b6a6df
RG
422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
423 * the specific list @inode was on is ignored and the @inode is put on
424 * ->b_dirty which is always correct including from ->b_dirty_time.
425 * The transfer preserves @inode->dirtied_when ordering. If the @inode
426 * was clean, it means it was on the b_attached list, so move it onto
427 * the b_attached list of @new_wb.
d10c8095 428 */
c7f54084 429 if (!list_empty(&inode->i_io_list)) {
d10c8095 430 inode->i_wb = new_wb;
f3b6a6df
RG
431
432 if (inode->i_state & I_DIRTY_ALL) {
433 struct inode *pos;
434
435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 if (time_after_eq(inode->dirtied_when,
437 pos->dirtied_when))
438 break;
439 inode_io_list_move_locked(inode, new_wb,
440 pos->i_io_list.prev);
441 } else {
442 inode_cgwb_move_to_attached(inode, new_wb);
443 }
d10c8095
TH
444 } else {
445 inode->i_wb = new_wb;
446 }
682aa8e1 447
d10c8095 448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
449 inode->i_wb_frn_winner = 0;
450 inode->i_wb_frn_avg_time = 0;
451 inode->i_wb_frn_history = 0;
d10c8095
TH
452 switched = true;
453skip_switch:
682aa8e1
TH
454 /*
455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 * ensures that the new wb is visible if they see !I_WB_SWITCH.
457 */
458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
b93b0163 460 xa_unlock_irq(&mapping->i_pages);
682aa8e1 461 spin_unlock(&inode->i_lock);
7fc5854f 462
f5fbe6b7 463 return switched;
72d4512e 464}
d10c8095 465
72d4512e
RG
466static void inode_switch_wbs_work_fn(struct work_struct *work)
467{
468 struct inode_switch_wbs_context *isw =
469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
f5fbe6b7
RG
470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 struct bdi_writeback *new_wb = isw->new_wb;
473 unsigned long nr_switched = 0;
474 struct inode **inodep;
475
476 /*
477 * If @inode switches cgwb membership while sync_inodes_sb() is
478 * being issued, sync_inodes_sb() might miss it. Synchronize.
479 */
480 down_read(&bdi->wb_switch_rwsem);
481
482 /*
483 * By the time control reaches here, RCU grace period has passed
484 * since I_WB_SWITCH assertion and all wb stat update transactions
485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 * synchronizing against the i_pages lock.
487 *
488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 * gives us exclusion against all wb related operations on @inode
490 * including IO list manipulations and stat updates.
491 */
492 if (old_wb < new_wb) {
493 spin_lock(&old_wb->list_lock);
494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495 } else {
496 spin_lock(&new_wb->list_lock);
497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 }
499
500 for (inodep = isw->inodes; *inodep; inodep++) {
501 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 nr_switched++;
504 }
505
506 spin_unlock(&new_wb->list_lock);
507 spin_unlock(&old_wb->list_lock);
508
509 up_read(&bdi->wb_switch_rwsem);
510
511 if (nr_switched) {
512 wb_wakeup(new_wb);
513 wb_put_many(old_wb, nr_switched);
514 }
a1a0e23e 515
f5fbe6b7
RG
516 for (inodep = isw->inodes; *inodep; inodep++)
517 iput(*inodep);
518 wb_put(new_wb);
72d4512e 519 kfree(isw);
a1a0e23e 520 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
521}
522
c22d70a1
RG
523static bool inode_prepare_wbs_switch(struct inode *inode,
524 struct bdi_writeback *new_wb)
525{
526 /*
527 * Paired with smp_mb() in cgroup_writeback_umount().
528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531 */
532 smp_mb();
533
593311e8
RG
534 if (IS_DAX(inode))
535 return false;
536
c22d70a1
RG
537 /* while holding I_WB_SWITCH, no one else can update the association */
538 spin_lock(&inode->i_lock);
539 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 inode_to_wb(inode) == new_wb) {
542 spin_unlock(&inode->i_lock);
543 return false;
544 }
545 inode->i_state |= I_WB_SWITCH;
546 __iget(inode);
547 spin_unlock(&inode->i_lock);
548
549 return true;
550}
551
682aa8e1
TH
552/**
553 * inode_switch_wbs - change the wb association of an inode
554 * @inode: target inode
555 * @new_wb_id: ID of the new wb
556 *
557 * Switch @inode's wb association to the wb identified by @new_wb_id. The
558 * switching is performed asynchronously and may fail silently.
559 */
560static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561{
562 struct backing_dev_info *bdi = inode_to_bdi(inode);
563 struct cgroup_subsys_state *memcg_css;
564 struct inode_switch_wbs_context *isw;
565
566 /* noop if seems to be already in progress */
567 if (inode->i_state & I_WB_SWITCH)
568 return;
569
6444f47e
TH
570 /* avoid queueing a new switch if too many are already in flight */
571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
572 return;
573
98b160c8 574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
682aa8e1 575 if (!isw)
6444f47e 576 return;
682aa8e1 577
8826ee4f
RG
578 atomic_inc(&isw_nr_in_flight);
579
682aa8e1
TH
580 /* find and pin the new wb */
581 rcu_read_lock();
582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
8b0ed844
MS
583 if (memcg_css && !css_tryget(memcg_css))
584 memcg_css = NULL;
682aa8e1 585 rcu_read_unlock();
8b0ed844
MS
586 if (!memcg_css)
587 goto out_free;
588
589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590 css_put(memcg_css);
682aa8e1
TH
591 if (!isw->new_wb)
592 goto out_free;
593
c22d70a1 594 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
a1a0e23e 595 goto out_free;
682aa8e1 596
f5fbe6b7 597 isw->inodes[0] = inode;
682aa8e1
TH
598
599 /*
600 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
601 * the RCU protected stat update paths to grab the i_page
602 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
603 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604 */
29264d92
RG
605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 queue_rcu_work(isw_wq, &isw->work);
6444f47e 607 return;
682aa8e1
TH
608
609out_free:
8826ee4f 610 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
611 if (isw->new_wb)
612 wb_put(isw->new_wb);
613 kfree(isw);
614}
615
6654408a
JX
616static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
617 struct list_head *list, int *nr)
618{
619 struct inode *inode;
620
621 list_for_each_entry(inode, list, i_io_list) {
622 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
623 continue;
624
625 isw->inodes[*nr] = inode;
626 (*nr)++;
627
628 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
629 return true;
630 }
631 return false;
632}
633
c22d70a1
RG
634/**
635 * cleanup_offline_cgwb - detach associated inodes
636 * @wb: target wb
637 *
638 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
639 * to eventually release the dying @wb. Returns %true if not all inodes were
640 * switched and the function has to be restarted.
641 */
642bool cleanup_offline_cgwb(struct bdi_writeback *wb)
643{
644 struct cgroup_subsys_state *memcg_css;
645 struct inode_switch_wbs_context *isw;
c22d70a1
RG
646 int nr;
647 bool restart = false;
648
98b160c8
LB
649 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
650 GFP_KERNEL);
c22d70a1
RG
651 if (!isw)
652 return restart;
653
654 atomic_inc(&isw_nr_in_flight);
655
656 for (memcg_css = wb->memcg_css->parent; memcg_css;
657 memcg_css = memcg_css->parent) {
658 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
659 if (isw->new_wb)
660 break;
661 }
662 if (unlikely(!isw->new_wb))
663 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
664
665 nr = 0;
666 spin_lock(&wb->list_lock);
6654408a
JX
667 /*
668 * In addition to the inodes that have completed writeback, also switch
669 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
670 * inodes won't be written back for a long time when lazytime is
671 * enabled, and thus pinning the dying cgwbs. It won't break the
672 * bandwidth restrictions, as writeback of inode metadata is not
673 * accounted for.
674 */
675 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
676 if (!restart)
677 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
c22d70a1
RG
678 spin_unlock(&wb->list_lock);
679
680 /* no attached inodes? bail out */
681 if (nr == 0) {
682 atomic_dec(&isw_nr_in_flight);
683 wb_put(isw->new_wb);
684 kfree(isw);
685 return restart;
686 }
687
688 /*
689 * In addition to synchronizing among switchers, I_WB_SWITCH tells
690 * the RCU protected stat update paths to grab the i_page
691 * lock so that stat transfer can synchronize against them.
692 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
693 */
694 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
695 queue_rcu_work(isw_wq, &isw->work);
696
697 return restart;
698}
699
b16b1deb
TH
700/**
701 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
702 * @wbc: writeback_control of interest
703 * @inode: target inode
704 *
705 * @inode is locked and about to be written back under the control of @wbc.
706 * Record @inode's writeback context into @wbc and unlock the i_lock. On
707 * writeback completion, wbc_detach_inode() should be called. This is used
708 * to track the cgroup writeback context.
709 */
710void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
711 struct inode *inode)
712{
dd73e4b7
TH
713 if (!inode_cgwb_enabled(inode)) {
714 spin_unlock(&inode->i_lock);
715 return;
716 }
717
b16b1deb 718 wbc->wb = inode_to_wb(inode);
2a814908
TH
719 wbc->inode = inode;
720
721 wbc->wb_id = wbc->wb->memcg_css->id;
722 wbc->wb_lcand_id = inode->i_wb_frn_winner;
723 wbc->wb_tcand_id = 0;
724 wbc->wb_bytes = 0;
725 wbc->wb_lcand_bytes = 0;
726 wbc->wb_tcand_bytes = 0;
727
b16b1deb
TH
728 wb_get(wbc->wb);
729 spin_unlock(&inode->i_lock);
e8a7abf5
TH
730
731 /*
65de03e2
TH
732 * A dying wb indicates that either the blkcg associated with the
733 * memcg changed or the associated memcg is dying. In the first
734 * case, a replacement wb should already be available and we should
735 * refresh the wb immediately. In the second case, trying to
736 * refresh will keep failing.
e8a7abf5 737 */
65de03e2 738 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 739 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 740}
9b0eb69b 741EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
742
743/**
2a814908
TH
744 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
745 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
746 *
747 * To be called after a writeback attempt of an inode finishes and undoes
748 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
749 *
750 * As concurrent write sharing of an inode is expected to be very rare and
751 * memcg only tracks page ownership on first-use basis severely confining
752 * the usefulness of such sharing, cgroup writeback tracks ownership
753 * per-inode. While the support for concurrent write sharing of an inode
754 * is deemed unnecessary, an inode being written to by different cgroups at
755 * different points in time is a lot more common, and, more importantly,
756 * charging only by first-use can too readily lead to grossly incorrect
757 * behaviors (single foreign page can lead to gigabytes of writeback to be
758 * incorrectly attributed).
759 *
760 * To resolve this issue, cgroup writeback detects the majority dirtier of
2999e1e3 761 * an inode and transfers the ownership to it. To avoid unnecessary
2a814908
TH
762 * oscillation, the detection mechanism keeps track of history and gives
763 * out the switch verdict only if the foreign usage pattern is stable over
764 * a certain amount of time and/or writeback attempts.
765 *
766 * On each writeback attempt, @wbc tries to detect the majority writer
767 * using Boyer-Moore majority vote algorithm. In addition to the byte
768 * count from the majority voting, it also counts the bytes written for the
769 * current wb and the last round's winner wb (max of last round's current
770 * wb, the winner from two rounds ago, and the last round's majority
771 * candidate). Keeping track of the historical winner helps the algorithm
772 * to semi-reliably detect the most active writer even when it's not the
773 * absolute majority.
774 *
775 * Once the winner of the round is determined, whether the winner is
776 * foreign or not and how much IO time the round consumed is recorded in
777 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
778 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
779 */
780void wbc_detach_inode(struct writeback_control *wbc)
781{
2a814908
TH
782 struct bdi_writeback *wb = wbc->wb;
783 struct inode *inode = wbc->inode;
dd73e4b7
TH
784 unsigned long avg_time, max_bytes, max_time;
785 u16 history;
2a814908
TH
786 int max_id;
787
dd73e4b7
TH
788 if (!wb)
789 return;
790
791 history = inode->i_wb_frn_history;
792 avg_time = inode->i_wb_frn_avg_time;
793
2a814908
TH
794 /* pick the winner of this round */
795 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
796 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
797 max_id = wbc->wb_id;
798 max_bytes = wbc->wb_bytes;
799 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
800 max_id = wbc->wb_lcand_id;
801 max_bytes = wbc->wb_lcand_bytes;
802 } else {
803 max_id = wbc->wb_tcand_id;
804 max_bytes = wbc->wb_tcand_bytes;
805 }
806
807 /*
808 * Calculate the amount of IO time the winner consumed and fold it
809 * into the running average kept per inode. If the consumed IO
810 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
811 * deciding whether to switch or not. This is to prevent one-off
812 * small dirtiers from skewing the verdict.
813 */
814 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
815 wb->avg_write_bandwidth);
816 if (avg_time)
817 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
818 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
819 else
820 avg_time = max_time; /* immediate catch up on first run */
821
822 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
823 int slots;
824
825 /*
826 * The switch verdict is reached if foreign wb's consume
827 * more than a certain proportion of IO time in a
828 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
829 * history mask where each bit represents one sixteenth of
830 * the period. Determine the number of slots to shift into
831 * history from @max_time.
832 */
833 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
834 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
835 history <<= slots;
836 if (wbc->wb_id != max_id)
837 history |= (1U << slots) - 1;
838
3a8e9ac8
TH
839 if (history)
840 trace_inode_foreign_history(inode, wbc, history);
841
2a814908
TH
842 /*
843 * Switch if the current wb isn't the consistent winner.
844 * If there are multiple closely competing dirtiers, the
845 * inode may switch across them repeatedly over time, which
846 * is okay. The main goal is avoiding keeping an inode on
847 * the wrong wb for an extended period of time.
848 */
3e46c89c 849 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
682aa8e1 850 inode_switch_wbs(inode, max_id);
2a814908
TH
851 }
852
853 /*
854 * Multiple instances of this function may race to update the
855 * following fields but we don't mind occassional inaccuracies.
856 */
857 inode->i_wb_frn_winner = max_id;
858 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
859 inode->i_wb_frn_history = history;
860
b16b1deb
TH
861 wb_put(wbc->wb);
862 wbc->wb = NULL;
863}
9b0eb69b 864EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 865
2a814908 866/**
34e51a5e 867 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
868 * @wbc: writeback_control of the writeback in progress
869 * @page: page being written out
870 * @bytes: number of bytes being written out
871 *
872 * @bytes from @page are about to written out during the writeback
873 * controlled by @wbc. Keep the book for foreign inode detection. See
874 * wbc_detach_inode().
875 */
34e51a5e
TH
876void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
877 size_t bytes)
2a814908 878{
75376c6f 879 struct folio *folio;
66311422 880 struct cgroup_subsys_state *css;
2a814908
TH
881 int id;
882
883 /*
884 * pageout() path doesn't attach @wbc to the inode being written
885 * out. This is intentional as we don't want the function to block
886 * behind a slow cgroup. Ultimately, we want pageout() to kick off
887 * regular writeback instead of writing things out itself.
888 */
27b36d8f 889 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
890 return;
891
75376c6f
MWO
892 folio = page_folio(page);
893 css = mem_cgroup_css_from_folio(folio);
66311422
TH
894 /* dead cgroups shouldn't contribute to inode ownership arbitration */
895 if (!(css->flags & CSS_ONLINE))
896 return;
897
898 id = css->id;
2a814908
TH
899
900 if (id == wbc->wb_id) {
901 wbc->wb_bytes += bytes;
902 return;
903 }
904
905 if (id == wbc->wb_lcand_id)
906 wbc->wb_lcand_bytes += bytes;
907
908 /* Boyer-Moore majority vote algorithm */
909 if (!wbc->wb_tcand_bytes)
910 wbc->wb_tcand_id = id;
911 if (id == wbc->wb_tcand_id)
912 wbc->wb_tcand_bytes += bytes;
913 else
914 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
915}
34e51a5e 916EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 917
f2b65121
TH
918/**
919 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
920 * @wb: target bdi_writeback to split @nr_pages to
921 * @nr_pages: number of pages to write for the whole bdi
922 *
923 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
924 * relation to the total write bandwidth of all wb's w/ dirty inodes on
925 * @wb->bdi.
926 */
927static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
928{
929 unsigned long this_bw = wb->avg_write_bandwidth;
930 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
931
932 if (nr_pages == LONG_MAX)
933 return LONG_MAX;
934
935 /*
936 * This may be called on clean wb's and proportional distribution
937 * may not make sense, just use the original @nr_pages in those
938 * cases. In general, we wanna err on the side of writing more.
939 */
940 if (!tot_bw || this_bw >= tot_bw)
941 return nr_pages;
942 else
943 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
944}
945
db125360
TH
946/**
947 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
948 * @bdi: target backing_dev_info
949 * @base_work: wb_writeback_work to issue
950 * @skip_if_busy: skip wb's which already have writeback in progress
951 *
952 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
953 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
954 * distributed to the busy wbs according to each wb's proportion in the
955 * total active write bandwidth of @bdi.
956 */
957static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
958 struct wb_writeback_work *base_work,
959 bool skip_if_busy)
960{
b817525a 961 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
962 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
963 struct bdi_writeback, bdi_node);
db125360
TH
964
965 might_sleep();
db125360
TH
966restart:
967 rcu_read_lock();
b817525a 968 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 969 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
970 struct wb_writeback_work fallback_work;
971 struct wb_writeback_work *work;
972 long nr_pages;
973
b817525a
TH
974 if (last_wb) {
975 wb_put(last_wb);
976 last_wb = NULL;
977 }
978
006a0973
TH
979 /* SYNC_ALL writes out I_DIRTY_TIME too */
980 if (!wb_has_dirty_io(wb) &&
981 (base_work->sync_mode == WB_SYNC_NONE ||
982 list_empty(&wb->b_dirty_time)))
983 continue;
984 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
985 continue;
986
8a1270cd
TH
987 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
988
989 work = kmalloc(sizeof(*work), GFP_ATOMIC);
990 if (work) {
991 *work = *base_work;
992 work->nr_pages = nr_pages;
993 work->auto_free = 1;
994 wb_queue_work(wb, work);
995 continue;
db125360 996 }
8a1270cd 997
1ba1199e
BL
998 /*
999 * If wb_tryget fails, the wb has been shutdown, skip it.
1000 *
1001 * Pin @wb so that it stays on @bdi->wb_list. This allows
1002 * continuing iteration from @wb after dropping and
1003 * regrabbing rcu read lock.
1004 */
1005 if (!wb_tryget(wb))
1006 continue;
1007
8a1270cd
TH
1008 /* alloc failed, execute synchronously using on-stack fallback */
1009 work = &fallback_work;
1010 *work = *base_work;
1011 work->nr_pages = nr_pages;
1012 work->auto_free = 0;
1013 work->done = &fallback_work_done;
1014
1015 wb_queue_work(wb, work);
b817525a
TH
1016 last_wb = wb;
1017
8a1270cd 1018 rcu_read_unlock();
5b9cce4c 1019 wb_wait_for_completion(&fallback_work_done);
8a1270cd 1020 goto restart;
db125360
TH
1021 }
1022 rcu_read_unlock();
b817525a
TH
1023
1024 if (last_wb)
1025 wb_put(last_wb);
db125360
TH
1026}
1027
d62241c7
TH
1028/**
1029 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1030 * @bdi_id: target bdi id
1031 * @memcg_id: target memcg css id
d62241c7
TH
1032 * @reason: reason why some writeback work initiated
1033 * @done: target wb_completion
1034 *
1035 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1036 * with the specified parameters.
1037 */
7490a2d2 1038int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
d62241c7
TH
1039 enum wb_reason reason, struct wb_completion *done)
1040{
1041 struct backing_dev_info *bdi;
1042 struct cgroup_subsys_state *memcg_css;
1043 struct bdi_writeback *wb;
1044 struct wb_writeback_work *work;
7490a2d2 1045 unsigned long dirty;
d62241c7
TH
1046 int ret;
1047
1048 /* lookup bdi and memcg */
1049 bdi = bdi_get_by_id(bdi_id);
1050 if (!bdi)
1051 return -ENOENT;
1052
1053 rcu_read_lock();
1054 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1055 if (memcg_css && !css_tryget(memcg_css))
1056 memcg_css = NULL;
1057 rcu_read_unlock();
1058 if (!memcg_css) {
1059 ret = -ENOENT;
1060 goto out_bdi_put;
1061 }
1062
1063 /*
1064 * And find the associated wb. If the wb isn't there already
1065 * there's nothing to flush, don't create one.
1066 */
1067 wb = wb_get_lookup(bdi, memcg_css);
1068 if (!wb) {
1069 ret = -ENOENT;
1070 goto out_css_put;
1071 }
1072
1073 /*
7490a2d2 1074 * The caller is attempting to write out most of
d62241c7
TH
1075 * the currently dirty pages. Let's take the current dirty page
1076 * count and inflate it by 25% which should be large enough to
1077 * flush out most dirty pages while avoiding getting livelocked by
1078 * concurrent dirtiers.
7490a2d2
SB
1079 *
1080 * BTW the memcg stats are flushed periodically and this is best-effort
1081 * estimation, so some potential error is ok.
d62241c7 1082 */
7490a2d2
SB
1083 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1084 dirty = dirty * 10 / 8;
d62241c7
TH
1085
1086 /* issue the writeback work */
1087 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1088 if (work) {
7490a2d2 1089 work->nr_pages = dirty;
d62241c7
TH
1090 work->sync_mode = WB_SYNC_NONE;
1091 work->range_cyclic = 1;
1092 work->reason = reason;
1093 work->done = done;
1094 work->auto_free = 1;
1095 wb_queue_work(wb, work);
1096 ret = 0;
1097 } else {
1098 ret = -ENOMEM;
1099 }
1100
1101 wb_put(wb);
1102out_css_put:
1103 css_put(memcg_css);
1104out_bdi_put:
1105 bdi_put(bdi);
1106 return ret;
1107}
1108
a1a0e23e
TH
1109/**
1110 * cgroup_writeback_umount - flush inode wb switches for umount
1111 *
1112 * This function is called when a super_block is about to be destroyed and
1113 * flushes in-flight inode wb switches. An inode wb switch goes through
1114 * RCU and then workqueue, so the two need to be flushed in order to ensure
1115 * that all previously scheduled switches are finished. As wb switches are
1116 * rare occurrences and synchronize_rcu() can take a while, perform
1117 * flushing iff wb switches are in flight.
1118 */
1119void cgroup_writeback_umount(void)
1120{
592fa002
RG
1121 /*
1122 * SB_ACTIVE should be reliably cleared before checking
1123 * isw_nr_in_flight, see generic_shutdown_super().
1124 */
1125 smp_mb();
1126
a1a0e23e 1127 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1128 /*
1129 * Use rcu_barrier() to wait for all pending callbacks to
1130 * ensure that all in-flight wb switches are in the workqueue.
1131 */
1132 rcu_barrier();
a1a0e23e
TH
1133 flush_workqueue(isw_wq);
1134 }
1135}
1136
1137static int __init cgroup_writeback_init(void)
1138{
1139 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1140 if (!isw_wq)
1141 return -ENOMEM;
1142 return 0;
1143}
1144fs_initcall(cgroup_writeback_init);
1145
f2b65121
TH
1146#else /* CONFIG_CGROUP_WRITEBACK */
1147
7fc5854f
TH
1148static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1149static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1150
f3b6a6df
RG
1151static void inode_cgwb_move_to_attached(struct inode *inode,
1152 struct bdi_writeback *wb)
1153{
1154 assert_spin_locked(&wb->list_lock);
1155 assert_spin_locked(&inode->i_lock);
a9438b44 1156 WARN_ON_ONCE(inode->i_state & I_FREEING);
f3b6a6df
RG
1157
1158 inode->i_state &= ~I_SYNC_QUEUED;
1159 list_del_init(&inode->i_io_list);
1160 wb_io_lists_depopulated(wb);
1161}
1162
87e1d789
TH
1163static struct bdi_writeback *
1164locked_inode_to_wb_and_lock_list(struct inode *inode)
1165 __releases(&inode->i_lock)
1166 __acquires(&wb->list_lock)
1167{
1168 struct bdi_writeback *wb = inode_to_wb(inode);
1169
1170 spin_unlock(&inode->i_lock);
1171 spin_lock(&wb->list_lock);
1172 return wb;
1173}
1174
1175static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1176 __acquires(&wb->list_lock)
1177{
1178 struct bdi_writeback *wb = inode_to_wb(inode);
1179
1180 spin_lock(&wb->list_lock);
1181 return wb;
1182}
1183
f2b65121
TH
1184static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1185{
1186 return nr_pages;
1187}
1188
db125360
TH
1189static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1190 struct wb_writeback_work *base_work,
1191 bool skip_if_busy)
1192{
1193 might_sleep();
1194
006a0973 1195 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1196 base_work->auto_free = 0;
db125360
TH
1197 wb_queue_work(&bdi->wb, base_work);
1198 }
1199}
1200
703c2708
TH
1201#endif /* CONFIG_CGROUP_WRITEBACK */
1202
e8e8a0c6
JA
1203/*
1204 * Add in the number of potentially dirty inodes, because each inode
1205 * write can dirty pagecache in the underlying blockdev.
1206 */
1207static unsigned long get_nr_dirty_pages(void)
1208{
1209 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1210 get_nr_dirty_inodes();
1211}
1212
1213static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1214{
c00ddad3
TH
1215 if (!wb_has_dirty_io(wb))
1216 return;
1217
aac8d41c
JA
1218 /*
1219 * All callers of this function want to start writeback of all
1220 * dirty pages. Places like vmscan can call this at a very
1221 * high frequency, causing pointless allocations of tons of
1222 * work items and keeping the flusher threads busy retrieving
1223 * that work. Ensure that we only allow one of them pending and
85009b4f 1224 * inflight at the time.
aac8d41c 1225 */
85009b4f
JA
1226 if (test_bit(WB_start_all, &wb->state) ||
1227 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1228 return;
1229
85009b4f
JA
1230 wb->start_all_reason = reason;
1231 wb_wakeup(wb);
c5444198 1232}
d3ddec76 1233
c5444198 1234/**
9ecf4866
TH
1235 * wb_start_background_writeback - start background writeback
1236 * @wb: bdi_writback to write from
c5444198
CH
1237 *
1238 * Description:
6585027a 1239 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1240 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1241 * some IO is happening if we are over background dirty threshold.
1242 * Caller need not hold sb s_umount semaphore.
c5444198 1243 */
9ecf4866 1244void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1245{
6585027a
JK
1246 /*
1247 * We just wake up the flusher thread. It will perform background
1248 * writeback as soon as there is no other work to do.
1249 */
5634cc2a 1250 trace_writeback_wake_background(wb);
9ecf4866 1251 wb_wakeup(wb);
1da177e4
LT
1252}
1253
a66979ab
DC
1254/*
1255 * Remove the inode from the writeback list it is on.
1256 */
c7f54084 1257void inode_io_list_del(struct inode *inode)
a66979ab 1258{
87e1d789 1259 struct bdi_writeback *wb;
f758eeab 1260
87e1d789 1261 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1262 spin_lock(&inode->i_lock);
f3b6a6df
RG
1263
1264 inode->i_state &= ~I_SYNC_QUEUED;
1265 list_del_init(&inode->i_io_list);
1266 wb_io_lists_depopulated(wb);
1267
b35250c0 1268 spin_unlock(&inode->i_lock);
52ebea74 1269 spin_unlock(&wb->list_lock);
a66979ab 1270}
4301efa4 1271EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1272
6c60d2b5
DC
1273/*
1274 * mark an inode as under writeback on the sb
1275 */
1276void sb_mark_inode_writeback(struct inode *inode)
1277{
1278 struct super_block *sb = inode->i_sb;
1279 unsigned long flags;
1280
1281 if (list_empty(&inode->i_wb_list)) {
1282 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1283 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1284 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1285 trace_sb_mark_inode_writeback(inode);
1286 }
6c60d2b5
DC
1287 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1288 }
1289}
1290
1291/*
1292 * clear an inode as under writeback on the sb
1293 */
1294void sb_clear_inode_writeback(struct inode *inode)
1295{
1296 struct super_block *sb = inode->i_sb;
1297 unsigned long flags;
1298
1299 if (!list_empty(&inode->i_wb_list)) {
1300 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1301 if (!list_empty(&inode->i_wb_list)) {
1302 list_del_init(&inode->i_wb_list);
1303 trace_sb_clear_inode_writeback(inode);
1304 }
6c60d2b5
DC
1305 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1306 }
1307}
1308
6610a0bc
AM
1309/*
1310 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1311 * furthest end of its superblock's dirty-inode list.
1312 *
1313 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1314 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1315 * the case then the inode must have been redirtied while it was being written
1316 * out and we don't reset its dirtied_when.
1317 */
b35250c0 1318static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1319{
b35250c0
JK
1320 assert_spin_locked(&inode->i_lock);
1321
a9438b44
JK
1322 inode->i_state &= ~I_SYNC_QUEUED;
1323 /*
1324 * When the inode is being freed just don't bother with dirty list
1325 * tracking. Flush worker will ignore this inode anyway and it will
1326 * trigger assertions in inode_io_list_move_locked().
1327 */
1328 if (inode->i_state & I_FREEING) {
1329 list_del_init(&inode->i_io_list);
1330 wb_io_lists_depopulated(wb);
1331 return;
1332 }
03ba3782 1333 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1334 struct inode *tail;
6610a0bc 1335
7ccf19a8 1336 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1337 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1338 inode->dirtied_when = jiffies;
1339 }
c7f54084 1340 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1341}
1342
b35250c0
JK
1343static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1344{
1345 spin_lock(&inode->i_lock);
1346 redirty_tail_locked(inode, wb);
1347 spin_unlock(&inode->i_lock);
1348}
1349
c986d1e2 1350/*
66f3b8e2 1351 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1352 */
f758eeab 1353static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1354{
c7f54084 1355 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1356}
1357
1c0eeaf5
JE
1358static void inode_sync_complete(struct inode *inode)
1359{
365b94ae 1360 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1361 /* If inode is clean an unused, put it into LRU now... */
1362 inode_add_lru(inode);
365b94ae 1363 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1364 smp_mb();
1365 wake_up_bit(&inode->i_state, __I_SYNC);
1366}
1367
d2caa3c5
JL
1368static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1369{
1370 bool ret = time_after(inode->dirtied_when, t);
1371#ifndef CONFIG_64BIT
1372 /*
1373 * For inodes being constantly redirtied, dirtied_when can get stuck.
1374 * It _appears_ to be in the future, but is actually in distant past.
1375 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1376 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1377 */
1378 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1379#endif
1380 return ret;
1381}
1382
2c136579 1383/*
f9cae926 1384 * Move expired (dirtied before dirtied_before) dirty inodes from
697e6fed 1385 * @delaying_queue to @dispatch_queue.
2c136579 1386 */
e84d0a4f 1387static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1388 struct list_head *dispatch_queue,
5fcd5750 1389 unsigned long dirtied_before)
2c136579 1390{
5c03449d
SL
1391 LIST_HEAD(tmp);
1392 struct list_head *pos, *node;
cf137307 1393 struct super_block *sb = NULL;
5c03449d 1394 struct inode *inode;
cf137307 1395 int do_sb_sort = 0;
e84d0a4f 1396 int moved = 0;
5c03449d 1397
2c136579 1398 while (!list_empty(delaying_queue)) {
7ccf19a8 1399 inode = wb_inode(delaying_queue->prev);
f9cae926 1400 if (inode_dirtied_after(inode, dirtied_before))
2c136579 1401 break;
10e14073 1402 spin_lock(&inode->i_lock);
c7f54084 1403 list_move(&inode->i_io_list, &tmp);
a8855990 1404 moved++;
5afced3b
JK
1405 inode->i_state |= I_SYNC_QUEUED;
1406 spin_unlock(&inode->i_lock);
a8855990
JK
1407 if (sb_is_blkdev_sb(inode->i_sb))
1408 continue;
cf137307
JA
1409 if (sb && sb != inode->i_sb)
1410 do_sb_sort = 1;
1411 sb = inode->i_sb;
5c03449d
SL
1412 }
1413
cf137307
JA
1414 /* just one sb in list, splice to dispatch_queue and we're done */
1415 if (!do_sb_sort) {
1416 list_splice(&tmp, dispatch_queue);
e84d0a4f 1417 goto out;
cf137307
JA
1418 }
1419
10e14073
JS
1420 /*
1421 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1422 * we don't take inode->i_lock here because it is just a pointless overhead.
1423 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1424 * fully under our control.
1425 */
5c03449d 1426 while (!list_empty(&tmp)) {
7ccf19a8 1427 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1428 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1429 inode = wb_inode(pos);
5c03449d 1430 if (inode->i_sb == sb)
c7f54084 1431 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1432 }
2c136579 1433 }
e84d0a4f
WF
1434out:
1435 return moved;
2c136579
FW
1436}
1437
1438/*
1439 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1440 * Before
1441 * newly dirtied b_dirty b_io b_more_io
1442 * =============> gf edc BA
1443 * After
1444 * newly dirtied b_dirty b_io b_more_io
1445 * =============> g fBAedc
1446 * |
1447 * +--> dequeue for IO
2c136579 1448 */
f9cae926
JK
1449static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1450 unsigned long dirtied_before)
66f3b8e2 1451{
e84d0a4f 1452 int moved;
f9cae926 1453 unsigned long time_expire_jif = dirtied_before;
0ae45f63 1454
f758eeab 1455 assert_spin_locked(&wb->list_lock);
4ea879b9 1456 list_splice_init(&wb->b_more_io, &wb->b_io);
5fcd5750 1457 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
f9cae926
JK
1458 if (!work->for_sync)
1459 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
0ae45f63 1460 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
5fcd5750 1461 time_expire_jif);
d6c10f1f
TH
1462 if (moved)
1463 wb_io_lists_populated(wb);
f9cae926 1464 trace_writeback_queue_io(wb, work, dirtied_before, moved);
66f3b8e2
JA
1465}
1466
a9185b41 1467static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1468{
9fb0a7da
TH
1469 int ret;
1470
1471 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1472 trace_writeback_write_inode_start(inode, wbc);
1473 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1474 trace_writeback_write_inode(inode, wbc);
1475 return ret;
1476 }
03ba3782 1477 return 0;
08d8e974 1478}
08d8e974 1479
1da177e4 1480/*
169ebd90
JK
1481 * Wait for writeback on an inode to complete. Called with i_lock held.
1482 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1483 */
169ebd90
JK
1484static void __inode_wait_for_writeback(struct inode *inode)
1485 __releases(inode->i_lock)
1486 __acquires(inode->i_lock)
01c03194
CH
1487{
1488 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1489 wait_queue_head_t *wqh;
1490
1491 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1492 while (inode->i_state & I_SYNC) {
1493 spin_unlock(&inode->i_lock);
74316201
N
1494 __wait_on_bit(wqh, &wq, bit_wait,
1495 TASK_UNINTERRUPTIBLE);
250df6ed 1496 spin_lock(&inode->i_lock);
58a9d3d8 1497 }
01c03194
CH
1498}
1499
169ebd90
JK
1500/*
1501 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1502 */
1503void inode_wait_for_writeback(struct inode *inode)
1504{
1505 spin_lock(&inode->i_lock);
1506 __inode_wait_for_writeback(inode);
1507 spin_unlock(&inode->i_lock);
1508}
1509
1510/*
1511 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1512 * held and drops it. It is aimed for callers not holding any inode reference
1513 * so once i_lock is dropped, inode can go away.
1514 */
1515static void inode_sleep_on_writeback(struct inode *inode)
1516 __releases(inode->i_lock)
1517{
1518 DEFINE_WAIT(wait);
1519 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1520 int sleep;
1521
1522 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1523 sleep = inode->i_state & I_SYNC;
1524 spin_unlock(&inode->i_lock);
1525 if (sleep)
1526 schedule();
1527 finish_wait(wqh, &wait);
1528}
1529
ccb26b5a
JK
1530/*
1531 * Find proper writeback list for the inode depending on its current state and
1532 * possibly also change of its state while we were doing writeback. Here we
1533 * handle things such as livelock prevention or fairness of writeback among
1534 * inodes. This function can be called only by flusher thread - noone else
1535 * processes all inodes in writeback lists and requeueing inodes behind flusher
1536 * thread's back can have unexpected consequences.
1537 */
1538static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1539 struct writeback_control *wbc)
1540{
1541 if (inode->i_state & I_FREEING)
1542 return;
1543
1544 /*
1545 * Sync livelock prevention. Each inode is tagged and synced in one
1546 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1547 * the dirty time to prevent enqueue and sync it again.
1548 */
1549 if ((inode->i_state & I_DIRTY) &&
1550 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1551 inode->dirtied_when = jiffies;
1552
4f8ad655
JK
1553 if (wbc->pages_skipped) {
1554 /*
1555 * writeback is not making progress due to locked
1556 * buffers. Skip this inode for now.
1557 */
b35250c0 1558 redirty_tail_locked(inode, wb);
4f8ad655
JK
1559 return;
1560 }
1561
ccb26b5a
JK
1562 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1563 /*
1564 * We didn't write back all the pages. nfs_writepages()
1565 * sometimes bales out without doing anything.
1566 */
1567 if (wbc->nr_to_write <= 0) {
1568 /* Slice used up. Queue for next turn. */
1569 requeue_io(inode, wb);
1570 } else {
1571 /*
1572 * Writeback blocked by something other than
1573 * congestion. Delay the inode for some time to
1574 * avoid spinning on the CPU (100% iowait)
1575 * retrying writeback of the dirty page/inode
1576 * that cannot be performed immediately.
1577 */
b35250c0 1578 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1579 }
1580 } else if (inode->i_state & I_DIRTY) {
1581 /*
1582 * Filesystems can dirty the inode during writeback operations,
1583 * such as delayed allocation during submission or metadata
1584 * updates after data IO completion.
1585 */
b35250c0 1586 redirty_tail_locked(inode, wb);
0ae45f63 1587 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1588 inode->dirtied_when = jiffies;
c7f54084 1589 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1590 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1591 } else {
1592 /* The inode is clean. Remove from writeback lists. */
f3b6a6df 1593 inode_cgwb_move_to_attached(inode, wb);
ccb26b5a
JK
1594 }
1595}
1596
01c03194 1597/*
da0c4c60
EB
1598 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1599 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1600 *
1601 * This doesn't remove the inode from the writeback list it is on, except
1602 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1603 * expiration. The caller is otherwise responsible for writeback list handling.
1604 *
1605 * The caller is also responsible for setting the I_SYNC flag beforehand and
1606 * calling inode_sync_complete() to clear it afterwards.
1da177e4
LT
1607 */
1608static int
cd8ed2a4 1609__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1610{
1da177e4 1611 struct address_space *mapping = inode->i_mapping;
251d6a47 1612 long nr_to_write = wbc->nr_to_write;
01c03194 1613 unsigned dirty;
1da177e4
LT
1614 int ret;
1615
4f8ad655 1616 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1617
9fb0a7da
TH
1618 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1619
1da177e4
LT
1620 ret = do_writepages(mapping, wbc);
1621
26821ed4
CH
1622 /*
1623 * Make sure to wait on the data before writing out the metadata.
1624 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1625 * I/O completion. We don't do it for sync(2) writeback because it has a
1626 * separate, external IO completion path and ->sync_fs for guaranteeing
1627 * inode metadata is written back correctly.
26821ed4 1628 */
7747bd4b 1629 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1630 int err = filemap_fdatawait(mapping);
1da177e4
LT
1631 if (ret == 0)
1632 ret = err;
1633 }
1634
5547e8aa 1635 /*
1e249cb5
EB
1636 * If the inode has dirty timestamps and we need to write them, call
1637 * mark_inode_dirty_sync() to notify the filesystem about it and to
1638 * change I_DIRTY_TIME into I_DIRTY_SYNC.
5547e8aa 1639 */
5fcd5750 1640 if ((inode->i_state & I_DIRTY_TIME) &&
83dc881d 1641 (wbc->sync_mode == WB_SYNC_ALL ||
5fcd5750
JK
1642 time_after(jiffies, inode->dirtied_time_when +
1643 dirtytime_expire_interval * HZ))) {
5fcd5750 1644 trace_writeback_lazytime(inode);
1e249cb5 1645 mark_inode_dirty_sync(inode);
5fcd5750 1646 }
1e249cb5
EB
1647
1648 /*
da0c4c60
EB
1649 * Get and clear the dirty flags from i_state. This needs to be done
1650 * after calling writepages because some filesystems may redirty the
1651 * inode during writepages due to delalloc. It also needs to be done
1652 * after handling timestamp expiration, as that may dirty the inode too.
1e249cb5
EB
1653 */
1654 spin_lock(&inode->i_lock);
1655 dirty = inode->i_state & I_DIRTY;
0ae45f63 1656 inode->i_state &= ~dirty;
9c6ac78e
TH
1657
1658 /*
1659 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1660 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1661 * either they see the I_DIRTY bits cleared or we see the dirtied
1662 * inode.
1663 *
1664 * I_DIRTY_PAGES is always cleared together above even if @mapping
1665 * still has dirty pages. The flag is reinstated after smp_mb() if
1666 * necessary. This guarantees that either __mark_inode_dirty()
1667 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1668 */
1669 smp_mb();
1670
1671 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1672 inode->i_state |= I_DIRTY_PAGES;
08276bda
DH
1673 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1674 if (!(inode->i_state & I_DIRTY_PAGES)) {
1675 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1676 wbc->unpinned_fscache_wb = true;
1677 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1678 }
1679 }
9c6ac78e 1680
250df6ed 1681 spin_unlock(&inode->i_lock);
9c6ac78e 1682
26821ed4 1683 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1684 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1685 int err = write_inode(inode, wbc);
1da177e4
LT
1686 if (ret == 0)
1687 ret = err;
1688 }
08276bda 1689 wbc->unpinned_fscache_wb = false;
4f8ad655
JK
1690 trace_writeback_single_inode(inode, wbc, nr_to_write);
1691 return ret;
1692}
1693
1694/*
da0c4c60
EB
1695 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1696 * the regular batched writeback done by the flusher threads in
1697 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1698 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
4f8ad655 1699 *
da0c4c60
EB
1700 * To prevent the inode from going away, either the caller must have a reference
1701 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
4f8ad655 1702 */
aaf25593
TH
1703static int writeback_single_inode(struct inode *inode,
1704 struct writeback_control *wbc)
4f8ad655 1705{
aaf25593 1706 struct bdi_writeback *wb;
4f8ad655
JK
1707 int ret = 0;
1708
1709 spin_lock(&inode->i_lock);
1710 if (!atomic_read(&inode->i_count))
1711 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1712 else
1713 WARN_ON(inode->i_state & I_WILL_FREE);
1714
1715 if (inode->i_state & I_SYNC) {
4f8ad655 1716 /*
da0c4c60
EB
1717 * Writeback is already running on the inode. For WB_SYNC_NONE,
1718 * that's enough and we can just return. For WB_SYNC_ALL, we
1719 * must wait for the existing writeback to complete, then do
1720 * writeback again if there's anything left.
4f8ad655 1721 */
da0c4c60
EB
1722 if (wbc->sync_mode != WB_SYNC_ALL)
1723 goto out;
169ebd90 1724 __inode_wait_for_writeback(inode);
4f8ad655
JK
1725 }
1726 WARN_ON(inode->i_state & I_SYNC);
1727 /*
da0c4c60
EB
1728 * If the inode is already fully clean, then there's nothing to do.
1729 *
1730 * For data-integrity syncs we also need to check whether any pages are
1731 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1732 * there are any such pages, we'll need to wait for them.
4f8ad655 1733 */
0ae45f63 1734 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1735 (wbc->sync_mode != WB_SYNC_ALL ||
1736 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1737 goto out;
1738 inode->i_state |= I_SYNC;
b16b1deb 1739 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1740
cd8ed2a4 1741 ret = __writeback_single_inode(inode, wbc);
1da177e4 1742
b16b1deb 1743 wbc_detach_inode(wbc);
aaf25593
TH
1744
1745 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1746 spin_lock(&inode->i_lock);
4f8ad655 1747 /*
4e3c51f4
SF
1748 * If the inode is freeing, its i_io_list shoudn't be updated
1749 * as it can be finally deleted at this moment.
4f8ad655 1750 */
4e3c51f4
SF
1751 if (!(inode->i_state & I_FREEING)) {
1752 /*
1753 * If the inode is now fully clean, then it can be safely
1754 * removed from its writeback list (if any). Otherwise the
1755 * flusher threads are responsible for the writeback lists.
1756 */
1757 if (!(inode->i_state & I_DIRTY_ALL))
1758 inode_cgwb_move_to_attached(inode, wb);
1759 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1760 if ((inode->i_state & I_DIRTY))
1761 redirty_tail_locked(inode, wb);
1762 else if (inode->i_state & I_DIRTY_TIME) {
1763 inode->dirtied_when = jiffies;
1764 inode_io_list_move_locked(inode,
1765 wb,
1766 &wb->b_dirty_time);
1767 }
cbfecb92
LC
1768 }
1769 }
846a3351 1770
4f8ad655 1771 spin_unlock(&wb->list_lock);
1c0eeaf5 1772 inode_sync_complete(inode);
4f8ad655
JK
1773out:
1774 spin_unlock(&inode->i_lock);
1da177e4
LT
1775 return ret;
1776}
1777
a88a341a 1778static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1779 struct wb_writeback_work *work)
d46db3d5
WF
1780{
1781 long pages;
1782
1783 /*
1784 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1785 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1786 * here avoids calling into writeback_inodes_wb() more than once.
1787 *
1788 * The intended call sequence for WB_SYNC_ALL writeback is:
1789 *
1790 * wb_writeback()
1791 * writeback_sb_inodes() <== called only once
1792 * write_cache_pages() <== called once for each inode
1793 * (quickly) tag currently dirty pages
1794 * (maybe slowly) sync all tagged pages
1795 */
1796 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1797 pages = LONG_MAX;
1a12d8bd 1798 else {
a88a341a 1799 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1800 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1801 pages = min(pages, work->nr_pages);
1802 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1803 MIN_WRITEBACK_PAGES);
1804 }
d46db3d5
WF
1805
1806 return pages;
1807}
1808
f11c9c5c
ES
1809/*
1810 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1811 *
d46db3d5 1812 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1813 *
1814 * NOTE! This is called with wb->list_lock held, and will
1815 * unlock and relock that for each inode it ends up doing
1816 * IO for.
f11c9c5c 1817 */
d46db3d5
WF
1818static long writeback_sb_inodes(struct super_block *sb,
1819 struct bdi_writeback *wb,
1820 struct wb_writeback_work *work)
1da177e4 1821{
d46db3d5
WF
1822 struct writeback_control wbc = {
1823 .sync_mode = work->sync_mode,
1824 .tagged_writepages = work->tagged_writepages,
1825 .for_kupdate = work->for_kupdate,
1826 .for_background = work->for_background,
7747bd4b 1827 .for_sync = work->for_sync,
d46db3d5
WF
1828 .range_cyclic = work->range_cyclic,
1829 .range_start = 0,
1830 .range_end = LLONG_MAX,
1831 };
1832 unsigned long start_time = jiffies;
1833 long write_chunk;
68f4c6eb 1834 long total_wrote = 0; /* count both pages and inodes */
d46db3d5 1835
03ba3782 1836 while (!list_empty(&wb->b_io)) {
7ccf19a8 1837 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1838 struct bdi_writeback *tmp_wb;
68f4c6eb 1839 long wrote;
edadfb10
CH
1840
1841 if (inode->i_sb != sb) {
d46db3d5 1842 if (work->sb) {
edadfb10
CH
1843 /*
1844 * We only want to write back data for this
1845 * superblock, move all inodes not belonging
1846 * to it back onto the dirty list.
1847 */
f758eeab 1848 redirty_tail(inode, wb);
edadfb10
CH
1849 continue;
1850 }
1851
1852 /*
1853 * The inode belongs to a different superblock.
1854 * Bounce back to the caller to unpin this and
1855 * pin the next superblock.
1856 */
d46db3d5 1857 break;
edadfb10
CH
1858 }
1859
9843b76a 1860 /*
331cbdee
WL
1861 * Don't bother with new inodes or inodes being freed, first
1862 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1863 * kind writeout is handled by the freer.
1864 */
250df6ed 1865 spin_lock(&inode->i_lock);
9843b76a 1866 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1867 redirty_tail_locked(inode, wb);
250df6ed 1868 spin_unlock(&inode->i_lock);
7ef0d737
NP
1869 continue;
1870 }
cc1676d9
JK
1871 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1872 /*
1873 * If this inode is locked for writeback and we are not
1874 * doing writeback-for-data-integrity, move it to
1875 * b_more_io so that writeback can proceed with the
1876 * other inodes on s_io.
1877 *
1878 * We'll have another go at writing back this inode
1879 * when we completed a full scan of b_io.
1880 */
cc1676d9 1881 requeue_io(inode, wb);
10e14073 1882 spin_unlock(&inode->i_lock);
cc1676d9
JK
1883 trace_writeback_sb_inodes_requeue(inode);
1884 continue;
1885 }
f0d07b7f
JK
1886 spin_unlock(&wb->list_lock);
1887
4f8ad655
JK
1888 /*
1889 * We already requeued the inode if it had I_SYNC set and we
1890 * are doing WB_SYNC_NONE writeback. So this catches only the
1891 * WB_SYNC_ALL case.
1892 */
169ebd90
JK
1893 if (inode->i_state & I_SYNC) {
1894 /* Wait for I_SYNC. This function drops i_lock... */
1895 inode_sleep_on_writeback(inode);
1896 /* Inode may be gone, start again */
ead188f9 1897 spin_lock(&wb->list_lock);
169ebd90
JK
1898 continue;
1899 }
4f8ad655 1900 inode->i_state |= I_SYNC;
b16b1deb 1901 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1902
a88a341a 1903 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1904 wbc.nr_to_write = write_chunk;
1905 wbc.pages_skipped = 0;
250df6ed 1906
169ebd90
JK
1907 /*
1908 * We use I_SYNC to pin the inode in memory. While it is set
1909 * evict_inode() will wait so the inode cannot be freed.
1910 */
cd8ed2a4 1911 __writeback_single_inode(inode, &wbc);
250df6ed 1912
b16b1deb 1913 wbc_detach_inode(&wbc);
d46db3d5 1914 work->nr_pages -= write_chunk - wbc.nr_to_write;
68f4c6eb
ZC
1915 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1916 wrote = wrote < 0 ? 0 : wrote;
1917 total_wrote += wrote;
590dca3a
CM
1918
1919 if (need_resched()) {
1920 /*
1921 * We're trying to balance between building up a nice
1922 * long list of IOs to improve our merge rate, and
1923 * getting those IOs out quickly for anyone throttling
1924 * in balance_dirty_pages(). cond_resched() doesn't
1925 * unplug, so get our IOs out the door before we
1926 * give up the CPU.
1927 */
aa8dccca 1928 blk_flush_plug(current->plug, false);
590dca3a
CM
1929 cond_resched();
1930 }
1931
aaf25593
TH
1932 /*
1933 * Requeue @inode if still dirty. Be careful as @inode may
1934 * have been switched to another wb in the meantime.
1935 */
1936 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1937 spin_lock(&inode->i_lock);
0ae45f63 1938 if (!(inode->i_state & I_DIRTY_ALL))
68f4c6eb 1939 total_wrote++;
aaf25593 1940 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1941 inode_sync_complete(inode);
0f1b1fd8 1942 spin_unlock(&inode->i_lock);
590dca3a 1943
aaf25593
TH
1944 if (unlikely(tmp_wb != wb)) {
1945 spin_unlock(&tmp_wb->list_lock);
1946 spin_lock(&wb->list_lock);
1947 }
1948
d46db3d5
WF
1949 /*
1950 * bail out to wb_writeback() often enough to check
1951 * background threshold and other termination conditions.
1952 */
68f4c6eb 1953 if (total_wrote) {
d46db3d5
WF
1954 if (time_is_before_jiffies(start_time + HZ / 10UL))
1955 break;
1956 if (work->nr_pages <= 0)
1957 break;
8bc3be27 1958 }
1da177e4 1959 }
68f4c6eb 1960 return total_wrote;
f11c9c5c
ES
1961}
1962
d46db3d5
WF
1963static long __writeback_inodes_wb(struct bdi_writeback *wb,
1964 struct wb_writeback_work *work)
f11c9c5c 1965{
d46db3d5
WF
1966 unsigned long start_time = jiffies;
1967 long wrote = 0;
38f21977 1968
f11c9c5c 1969 while (!list_empty(&wb->b_io)) {
7ccf19a8 1970 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1971 struct super_block *sb = inode->i_sb;
9ecc2738 1972
d8ce82ef 1973 if (!super_trylock_shared(sb)) {
0e995816 1974 /*
d8ce82ef 1975 * super_trylock_shared() may fail consistently due to
0e995816
WF
1976 * s_umount being grabbed by someone else. Don't use
1977 * requeue_io() to avoid busy retrying the inode/sb.
1978 */
1979 redirty_tail(inode, wb);
edadfb10 1980 continue;
f11c9c5c 1981 }
d46db3d5 1982 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1983 up_read(&sb->s_umount);
f11c9c5c 1984
d46db3d5
WF
1985 /* refer to the same tests at the end of writeback_sb_inodes */
1986 if (wrote) {
1987 if (time_is_before_jiffies(start_time + HZ / 10UL))
1988 break;
1989 if (work->nr_pages <= 0)
1990 break;
1991 }
f11c9c5c 1992 }
66f3b8e2 1993 /* Leave any unwritten inodes on b_io */
d46db3d5 1994 return wrote;
66f3b8e2
JA
1995}
1996
7d9f073b 1997static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1998 enum wb_reason reason)
edadfb10 1999{
d46db3d5
WF
2000 struct wb_writeback_work work = {
2001 .nr_pages = nr_pages,
2002 .sync_mode = WB_SYNC_NONE,
2003 .range_cyclic = 1,
0e175a18 2004 .reason = reason,
d46db3d5 2005 };
505a666e 2006 struct blk_plug plug;
edadfb10 2007
505a666e 2008 blk_start_plug(&plug);
f758eeab 2009 spin_lock(&wb->list_lock);
424b351f 2010 if (list_empty(&wb->b_io))
f9cae926 2011 queue_io(wb, &work, jiffies);
d46db3d5 2012 __writeback_inodes_wb(wb, &work);
f758eeab 2013 spin_unlock(&wb->list_lock);
505a666e 2014 blk_finish_plug(&plug);
edadfb10 2015
d46db3d5
WF
2016 return nr_pages - work.nr_pages;
2017}
03ba3782 2018
03ba3782
JA
2019/*
2020 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 2021 *
03ba3782
JA
2022 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2023 * dirtying-time in the inode's address_space. So this periodic writeback code
2024 * just walks the superblock inode list, writing back any inodes which are
2025 * older than a specific point in time.
66f3b8e2 2026 *
03ba3782
JA
2027 * Try to run once per dirty_writeback_interval. But if a writeback event
2028 * takes longer than a dirty_writeback_interval interval, then leave a
2029 * one-second gap.
66f3b8e2 2030 *
f9cae926 2031 * dirtied_before takes precedence over nr_to_write. So we'll only write back
03ba3782 2032 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 2033 */
c4a77a6c 2034static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 2035 struct wb_writeback_work *work)
66f3b8e2 2036{
d46db3d5 2037 long nr_pages = work->nr_pages;
f9cae926 2038 unsigned long dirtied_before = jiffies;
a5989bdc 2039 struct inode *inode;
d46db3d5 2040 long progress;
505a666e 2041 struct blk_plug plug;
66f3b8e2 2042
505a666e 2043 blk_start_plug(&plug);
03ba3782
JA
2044 for (;;) {
2045 /*
d3ddec76 2046 * Stop writeback when nr_pages has been consumed
03ba3782 2047 */
83ba7b07 2048 if (work->nr_pages <= 0)
03ba3782 2049 break;
66f3b8e2 2050
aa373cf5
JK
2051 /*
2052 * Background writeout and kupdate-style writeback may
2053 * run forever. Stop them if there is other work to do
2054 * so that e.g. sync can proceed. They'll be restarted
2055 * after the other works are all done.
2056 */
2057 if ((work->for_background || work->for_kupdate) &&
f0054bb1 2058 !list_empty(&wb->work_list))
aa373cf5
JK
2059 break;
2060
38f21977 2061 /*
d3ddec76
WF
2062 * For background writeout, stop when we are below the
2063 * background dirty threshold
38f21977 2064 */
aa661bbe 2065 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 2066 break;
38f21977 2067
2816ea2a
YA
2068
2069 spin_lock(&wb->list_lock);
2070
1bc36b64
JK
2071 /*
2072 * Kupdate and background works are special and we want to
2073 * include all inodes that need writing. Livelock avoidance is
2074 * handled by these works yielding to any other work so we are
2075 * safe.
2076 */
ba9aa839 2077 if (work->for_kupdate) {
f9cae926 2078 dirtied_before = jiffies -
ba9aa839 2079 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 2080 } else if (work->for_background)
f9cae926 2081 dirtied_before = jiffies;
028c2dd1 2082
5634cc2a 2083 trace_writeback_start(wb, work);
e8dfc305 2084 if (list_empty(&wb->b_io))
f9cae926 2085 queue_io(wb, work, dirtied_before);
83ba7b07 2086 if (work->sb)
d46db3d5 2087 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 2088 else
d46db3d5 2089 progress = __writeback_inodes_wb(wb, work);
5634cc2a 2090 trace_writeback_written(wb, work);
028c2dd1 2091
03ba3782 2092 /*
e6fb6da2
WF
2093 * Did we write something? Try for more
2094 *
2095 * Dirty inodes are moved to b_io for writeback in batches.
2096 * The completion of the current batch does not necessarily
2097 * mean the overall work is done. So we keep looping as long
2098 * as made some progress on cleaning pages or inodes.
03ba3782 2099 */
2816ea2a
YA
2100 if (progress) {
2101 spin_unlock(&wb->list_lock);
71fd05a8 2102 continue;
2816ea2a
YA
2103 }
2104
71fd05a8 2105 /*
e6fb6da2 2106 * No more inodes for IO, bail
71fd05a8 2107 */
2816ea2a
YA
2108 if (list_empty(&wb->b_more_io)) {
2109 spin_unlock(&wb->list_lock);
03ba3782 2110 break;
2816ea2a
YA
2111 }
2112
71fd05a8
JA
2113 /*
2114 * Nothing written. Wait for some inode to
2115 * become available for writeback. Otherwise
2116 * we'll just busyloop.
2117 */
bace9248
TE
2118 trace_writeback_wait(wb, work);
2119 inode = wb_inode(wb->b_more_io.prev);
2120 spin_lock(&inode->i_lock);
2121 spin_unlock(&wb->list_lock);
2122 /* This function drops i_lock... */
2123 inode_sleep_on_writeback(inode);
03ba3782 2124 }
505a666e 2125 blk_finish_plug(&plug);
03ba3782 2126
d46db3d5 2127 return nr_pages - work->nr_pages;
03ba3782
JA
2128}
2129
2130/*
83ba7b07 2131 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 2132 */
f0054bb1 2133static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 2134{
83ba7b07 2135 struct wb_writeback_work *work = NULL;
03ba3782 2136
f87904c0 2137 spin_lock_irq(&wb->work_lock);
f0054bb1
TH
2138 if (!list_empty(&wb->work_list)) {
2139 work = list_entry(wb->work_list.next,
83ba7b07
CH
2140 struct wb_writeback_work, list);
2141 list_del_init(&work->list);
03ba3782 2142 }
f87904c0 2143 spin_unlock_irq(&wb->work_lock);
83ba7b07 2144 return work;
03ba3782
JA
2145}
2146
6585027a
JK
2147static long wb_check_background_flush(struct bdi_writeback *wb)
2148{
aa661bbe 2149 if (wb_over_bg_thresh(wb)) {
6585027a
JK
2150
2151 struct wb_writeback_work work = {
2152 .nr_pages = LONG_MAX,
2153 .sync_mode = WB_SYNC_NONE,
2154 .for_background = 1,
2155 .range_cyclic = 1,
0e175a18 2156 .reason = WB_REASON_BACKGROUND,
6585027a
JK
2157 };
2158
2159 return wb_writeback(wb, &work);
2160 }
2161
2162 return 0;
2163}
2164
03ba3782
JA
2165static long wb_check_old_data_flush(struct bdi_writeback *wb)
2166{
2167 unsigned long expired;
2168 long nr_pages;
2169
69b62d01
JA
2170 /*
2171 * When set to zero, disable periodic writeback
2172 */
2173 if (!dirty_writeback_interval)
2174 return 0;
2175
03ba3782
JA
2176 expired = wb->last_old_flush +
2177 msecs_to_jiffies(dirty_writeback_interval * 10);
2178 if (time_before(jiffies, expired))
2179 return 0;
2180
2181 wb->last_old_flush = jiffies;
cdf01dd5 2182 nr_pages = get_nr_dirty_pages();
03ba3782 2183
c4a77a6c 2184 if (nr_pages) {
83ba7b07 2185 struct wb_writeback_work work = {
c4a77a6c
JA
2186 .nr_pages = nr_pages,
2187 .sync_mode = WB_SYNC_NONE,
2188 .for_kupdate = 1,
2189 .range_cyclic = 1,
0e175a18 2190 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2191 };
2192
83ba7b07 2193 return wb_writeback(wb, &work);
c4a77a6c 2194 }
03ba3782
JA
2195
2196 return 0;
2197}
2198
85009b4f
JA
2199static long wb_check_start_all(struct bdi_writeback *wb)
2200{
2201 long nr_pages;
2202
2203 if (!test_bit(WB_start_all, &wb->state))
2204 return 0;
2205
2206 nr_pages = get_nr_dirty_pages();
2207 if (nr_pages) {
2208 struct wb_writeback_work work = {
2209 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2210 .sync_mode = WB_SYNC_NONE,
2211 .range_cyclic = 1,
2212 .reason = wb->start_all_reason,
2213 };
2214
2215 nr_pages = wb_writeback(wb, &work);
2216 }
2217
2218 clear_bit(WB_start_all, &wb->state);
2219 return nr_pages;
2220}
2221
2222
03ba3782
JA
2223/*
2224 * Retrieve work items and do the writeback they describe
2225 */
25d130ba 2226static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2227{
83ba7b07 2228 struct wb_writeback_work *work;
c4a77a6c 2229 long wrote = 0;
03ba3782 2230
4452226e 2231 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2232 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2233 trace_writeback_exec(wb, work);
83ba7b07 2234 wrote += wb_writeback(wb, work);
4a3a485b 2235 finish_writeback_work(wb, work);
03ba3782
JA
2236 }
2237
85009b4f
JA
2238 /*
2239 * Check for a flush-everything request
2240 */
2241 wrote += wb_check_start_all(wb);
2242
03ba3782
JA
2243 /*
2244 * Check for periodic writeback, kupdated() style
2245 */
2246 wrote += wb_check_old_data_flush(wb);
6585027a 2247 wrote += wb_check_background_flush(wb);
4452226e 2248 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2249
2250 return wrote;
2251}
2252
2253/*
2254 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2255 * reschedules periodically and does kupdated style flushing.
03ba3782 2256 */
f0054bb1 2257void wb_workfn(struct work_struct *work)
03ba3782 2258{
839a8e86
TH
2259 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2260 struct bdi_writeback, dwork);
03ba3782
JA
2261 long pages_written;
2262
68f23b89 2263 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
455b2864 2264
839a8e86 2265 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2266 !test_bit(WB_registered, &wb->state))) {
6467716a 2267 /*
f0054bb1 2268 * The normal path. Keep writing back @wb until its
839a8e86 2269 * work_list is empty. Note that this path is also taken
f0054bb1 2270 * if @wb is shutting down even when we're running off the
839a8e86 2271 * rescuer as work_list needs to be drained.
6467716a 2272 */
839a8e86 2273 do {
25d130ba 2274 pages_written = wb_do_writeback(wb);
839a8e86 2275 trace_writeback_pages_written(pages_written);
f0054bb1 2276 } while (!list_empty(&wb->work_list));
839a8e86
TH
2277 } else {
2278 /*
2279 * bdi_wq can't get enough workers and we're running off
2280 * the emergency worker. Don't hog it. Hopefully, 1024 is
2281 * enough for efficient IO.
2282 */
f0054bb1 2283 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2284 WB_REASON_FORKER_THREAD);
455b2864 2285 trace_writeback_pages_written(pages_written);
03ba3782
JA
2286 }
2287
f0054bb1 2288 if (!list_empty(&wb->work_list))
b8b78495 2289 wb_wakeup(wb);
6ca738d6 2290 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2291 wb_wakeup_delayed(wb);
03ba3782
JA
2292}
2293
595043e5
JA
2294/*
2295 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2296 * write back the whole world.
2297 */
2298static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2299 enum wb_reason reason)
595043e5
JA
2300{
2301 struct bdi_writeback *wb;
2302
2303 if (!bdi_has_dirty_io(bdi))
2304 return;
2305
2306 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2307 wb_start_writeback(wb, reason);
595043e5
JA
2308}
2309
2310void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2311 enum wb_reason reason)
2312{
595043e5 2313 rcu_read_lock();
e8e8a0c6 2314 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2315 rcu_read_unlock();
2316}
2317
03ba3782 2318/*
9ba4b2df 2319 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2320 */
9ba4b2df 2321void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2322{
b8c2f347 2323 struct backing_dev_info *bdi;
03ba3782 2324
51350ea0
KK
2325 /*
2326 * If we are expecting writeback progress we must submit plugged IO.
2327 */
aa8dccca 2328 blk_flush_plug(current->plug, true);
51350ea0 2329
b8c2f347 2330 rcu_read_lock();
595043e5 2331 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2332 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2333 rcu_read_unlock();
1da177e4
LT
2334}
2335
a2f48706
TT
2336/*
2337 * Wake up bdi's periodically to make sure dirtytime inodes gets
2338 * written back periodically. We deliberately do *not* check the
2339 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2340 * kernel to be constantly waking up once there are any dirtytime
2341 * inodes on the system. So instead we define a separate delayed work
2342 * function which gets called much more rarely. (By default, only
2343 * once every 12 hours.)
2344 *
2345 * If there is any other write activity going on in the file system,
2346 * this function won't be necessary. But if the only thing that has
2347 * happened on the file system is a dirtytime inode caused by an atime
2348 * update, we need this infrastructure below to make sure that inode
2349 * eventually gets pushed out to disk.
2350 */
2351static void wakeup_dirtytime_writeback(struct work_struct *w);
2352static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2353
2354static void wakeup_dirtytime_writeback(struct work_struct *w)
2355{
2356 struct backing_dev_info *bdi;
2357
2358 rcu_read_lock();
2359 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2360 struct bdi_writeback *wb;
001fe6f6 2361
b817525a 2362 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2363 if (!list_empty(&wb->b_dirty_time))
2364 wb_wakeup(wb);
a2f48706
TT
2365 }
2366 rcu_read_unlock();
2367 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2368}
2369
2370static int __init start_dirtytime_writeback(void)
2371{
2372 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2373 return 0;
2374}
2375__initcall(start_dirtytime_writeback);
2376
1efff914 2377int dirtytime_interval_handler(struct ctl_table *table, int write,
9ca48e20 2378 void *buffer, size_t *lenp, loff_t *ppos)
1efff914
TT
2379{
2380 int ret;
2381
2382 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2383 if (ret == 0 && write)
2384 mod_delayed_work(system_wq, &dirtytime_work, 0);
2385 return ret;
2386}
2387
03ba3782 2388/**
35d14f27 2389 * __mark_inode_dirty - internal function to mark an inode dirty
0117d427
MCC
2390 *
2391 * @inode: inode to mark
35d14f27
EB
2392 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2393 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2394 * with I_DIRTY_PAGES.
0117d427 2395 *
35d14f27
EB
2396 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2397 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
1da177e4 2398 *
35d14f27
EB
2399 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2400 * instead of calling this directly.
03ba3782 2401 *
35d14f27
EB
2402 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2403 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2404 * even if they are later hashed, as they will have been marked dirty already.
03ba3782 2405 *
35d14f27 2406 * In short, ensure you hash any inodes _before_ you start marking them dirty.
1da177e4 2407 *
03ba3782
JA
2408 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2409 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2410 * the kernel-internal blockdev inode represents the dirtying time of the
2411 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2412 * page->mapping->host, so the page-dirtying time is recorded in the internal
2413 * blockdev inode.
1da177e4 2414 */
03ba3782 2415void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2416{
03ba3782 2417 struct super_block *sb = inode->i_sb;
35d14f27 2418 int dirtytime = 0;
10e14073 2419 struct bdi_writeback *wb = NULL;
0ae45f63
TT
2420
2421 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2422
e2728c56 2423 if (flags & I_DIRTY_INODE) {
cbfecb92
LC
2424 /*
2425 * Inode timestamp update will piggback on this dirtying.
2426 * We tell ->dirty_inode callback that timestamps need to
2427 * be updated by setting I_DIRTY_TIME in flags.
2428 */
2429 if (inode->i_state & I_DIRTY_TIME) {
2430 spin_lock(&inode->i_lock);
2431 if (inode->i_state & I_DIRTY_TIME) {
2432 inode->i_state &= ~I_DIRTY_TIME;
2433 flags |= I_DIRTY_TIME;
2434 }
2435 spin_unlock(&inode->i_lock);
2436 }
2437
35d14f27
EB
2438 /*
2439 * Notify the filesystem about the inode being dirtied, so that
2440 * (if needed) it can update on-disk fields and journal the
2441 * inode. This is only needed when the inode itself is being
2442 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2443 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2444 */
9fb0a7da 2445 trace_writeback_dirty_inode_start(inode, flags);
03ba3782 2446 if (sb->s_op->dirty_inode)
cbfecb92
LC
2447 sb->s_op->dirty_inode(inode,
2448 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
9fb0a7da 2449 trace_writeback_dirty_inode(inode, flags);
e2728c56 2450
35d14f27 2451 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63 2452 flags &= ~I_DIRTY_TIME;
35d14f27
EB
2453 } else {
2454 /*
2455 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2456 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2457 * in one call to __mark_inode_dirty().)
2458 */
2459 dirtytime = flags & I_DIRTY_TIME;
2460 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
e2728c56 2461 }
03ba3782
JA
2462
2463 /*
9c6ac78e
TH
2464 * Paired with smp_mb() in __writeback_single_inode() for the
2465 * following lockless i_state test. See there for details.
03ba3782
JA
2466 */
2467 smp_mb();
2468
cbfecb92 2469 if ((inode->i_state & flags) == flags)
03ba3782
JA
2470 return;
2471
250df6ed 2472 spin_lock(&inode->i_lock);
03ba3782
JA
2473 if ((inode->i_state & flags) != flags) {
2474 const int was_dirty = inode->i_state & I_DIRTY;
2475
52ebea74
TH
2476 inode_attach_wb(inode, NULL);
2477
03ba3782
JA
2478 inode->i_state |= flags;
2479
10e14073
JS
2480 /*
2481 * Grab inode's wb early because it requires dropping i_lock and we
2482 * need to make sure following checks happen atomically with dirty
2483 * list handling so that we don't move inodes under flush worker's
2484 * hands.
2485 */
2486 if (!was_dirty) {
2487 wb = locked_inode_to_wb_and_lock_list(inode);
2488 spin_lock(&inode->i_lock);
2489 }
2490
03ba3782 2491 /*
5afced3b
JK
2492 * If the inode is queued for writeback by flush worker, just
2493 * update its dirty state. Once the flush worker is done with
2494 * the inode it will place it on the appropriate superblock
2495 * list, based upon its state.
03ba3782 2496 */
5afced3b 2497 if (inode->i_state & I_SYNC_QUEUED)
10e14073 2498 goto out_unlock;
03ba3782
JA
2499
2500 /*
2501 * Only add valid (hashed) inodes to the superblock's
2502 * dirty list. Add blockdev inodes as well.
2503 */
2504 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2505 if (inode_unhashed(inode))
10e14073 2506 goto out_unlock;
03ba3782 2507 }
a4ffdde6 2508 if (inode->i_state & I_FREEING)
10e14073 2509 goto out_unlock;
03ba3782
JA
2510
2511 /*
2512 * If the inode was already on b_dirty/b_io/b_more_io, don't
2513 * reposition it (that would break b_dirty time-ordering).
2514 */
2515 if (!was_dirty) {
d6c10f1f 2516 struct list_head *dirty_list;
a66979ab 2517 bool wakeup_bdi = false;
253c34e9 2518
03ba3782 2519 inode->dirtied_when = jiffies;
a2f48706
TT
2520 if (dirtytime)
2521 inode->dirtied_time_when = jiffies;
d6c10f1f 2522
0e11f644 2523 if (inode->i_state & I_DIRTY)
0747259d 2524 dirty_list = &wb->b_dirty;
a2f48706 2525 else
0747259d 2526 dirty_list = &wb->b_dirty_time;
d6c10f1f 2527
c7f54084 2528 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2529 dirty_list);
2530
0747259d 2531 spin_unlock(&wb->list_lock);
10e14073 2532 spin_unlock(&inode->i_lock);
0ae45f63 2533 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2534
d6c10f1f
TH
2535 /*
2536 * If this is the first dirty inode for this bdi,
2537 * we have to wake-up the corresponding bdi thread
2538 * to make sure background write-back happens
2539 * later.
2540 */
f56753ac
CH
2541 if (wakeup_bdi &&
2542 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
0747259d 2543 wb_wakeup_delayed(wb);
a66979ab 2544 return;
1da177e4 2545 }
1da177e4 2546 }
10e14073
JS
2547out_unlock:
2548 if (wb)
2549 spin_unlock(&wb->list_lock);
250df6ed 2550 spin_unlock(&inode->i_lock);
03ba3782
JA
2551}
2552EXPORT_SYMBOL(__mark_inode_dirty);
2553
e97fedb9
DC
2554/*
2555 * The @s_sync_lock is used to serialise concurrent sync operations
2556 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2557 * Concurrent callers will block on the s_sync_lock rather than doing contending
2558 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2559 * has been issued up to the time this function is enter is guaranteed to be
2560 * completed by the time we have gained the lock and waited for all IO that is
2561 * in progress regardless of the order callers are granted the lock.
2562 */
b6e51316 2563static void wait_sb_inodes(struct super_block *sb)
03ba3782 2564{
6c60d2b5 2565 LIST_HEAD(sync_list);
03ba3782
JA
2566
2567 /*
2568 * We need to be protected against the filesystem going from
2569 * r/o to r/w or vice versa.
2570 */
b6e51316 2571 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2572
e97fedb9 2573 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2574
2575 /*
6c60d2b5
DC
2576 * Splice the writeback list onto a temporary list to avoid waiting on
2577 * inodes that have started writeback after this point.
2578 *
2579 * Use rcu_read_lock() to keep the inodes around until we have a
2580 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2581 * the local list because inodes can be dropped from either by writeback
2582 * completion.
2583 */
2584 rcu_read_lock();
2585 spin_lock_irq(&sb->s_inode_wblist_lock);
2586 list_splice_init(&sb->s_inodes_wb, &sync_list);
2587
2588 /*
2589 * Data integrity sync. Must wait for all pages under writeback, because
2590 * there may have been pages dirtied before our sync call, but which had
2591 * writeout started before we write it out. In which case, the inode
2592 * may not be on the dirty list, but we still have to wait for that
2593 * writeout.
03ba3782 2594 */
6c60d2b5
DC
2595 while (!list_empty(&sync_list)) {
2596 struct inode *inode = list_first_entry(&sync_list, struct inode,
2597 i_wb_list);
250df6ed 2598 struct address_space *mapping = inode->i_mapping;
03ba3782 2599
6c60d2b5
DC
2600 /*
2601 * Move each inode back to the wb list before we drop the lock
2602 * to preserve consistency between i_wb_list and the mapping
2603 * writeback tag. Writeback completion is responsible to remove
2604 * the inode from either list once the writeback tag is cleared.
2605 */
2606 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2607
2608 /*
2609 * The mapping can appear untagged while still on-list since we
2610 * do not have the mapping lock. Skip it here, wb completion
2611 * will remove it.
2612 */
2613 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2614 continue;
2615
2616 spin_unlock_irq(&sb->s_inode_wblist_lock);
2617
250df6ed 2618 spin_lock(&inode->i_lock);
6c60d2b5 2619 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2620 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2621
2622 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2623 continue;
250df6ed 2624 }
03ba3782 2625 __iget(inode);
250df6ed 2626 spin_unlock(&inode->i_lock);
6c60d2b5 2627 rcu_read_unlock();
03ba3782 2628
aa750fd7
JN
2629 /*
2630 * We keep the error status of individual mapping so that
2631 * applications can catch the writeback error using fsync(2).
2632 * See filemap_fdatawait_keep_errors() for details.
2633 */
2634 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2635
2636 cond_resched();
2637
6c60d2b5
DC
2638 iput(inode);
2639
2640 rcu_read_lock();
2641 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2642 }
6c60d2b5
DC
2643 spin_unlock_irq(&sb->s_inode_wblist_lock);
2644 rcu_read_unlock();
e97fedb9 2645 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2646}
2647
f30a7d0c
TH
2648static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2649 enum wb_reason reason, bool skip_if_busy)
1da177e4 2650{
5b9cce4c
TH
2651 struct backing_dev_info *bdi = sb->s_bdi;
2652 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2653 struct wb_writeback_work work = {
6e6938b6
WF
2654 .sb = sb,
2655 .sync_mode = WB_SYNC_NONE,
2656 .tagged_writepages = 1,
2657 .done = &done,
2658 .nr_pages = nr,
0e175a18 2659 .reason = reason,
3c4d7165 2660 };
d8a8559c 2661
e7972912 2662 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2663 return;
cf37e972 2664 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2665
db125360 2666 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2667 wb_wait_for_completion(&done);
e913fc82 2668}
f30a7d0c
TH
2669
2670/**
2671 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2672 * @sb: the superblock
2673 * @nr: the number of pages to write
2674 * @reason: reason why some writeback work initiated
2675 *
2676 * Start writeback on some inodes on this super_block. No guarantees are made
2677 * on how many (if any) will be written, and this function does not wait
2678 * for IO completion of submitted IO.
2679 */
2680void writeback_inodes_sb_nr(struct super_block *sb,
2681 unsigned long nr,
2682 enum wb_reason reason)
2683{
2684 __writeback_inodes_sb_nr(sb, nr, reason, false);
2685}
3259f8be
CM
2686EXPORT_SYMBOL(writeback_inodes_sb_nr);
2687
2688/**
2689 * writeback_inodes_sb - writeback dirty inodes from given super_block
2690 * @sb: the superblock
786228ab 2691 * @reason: reason why some writeback work was initiated
3259f8be
CM
2692 *
2693 * Start writeback on some inodes on this super_block. No guarantees are made
2694 * on how many (if any) will be written, and this function does not wait
2695 * for IO completion of submitted IO.
2696 */
0e175a18 2697void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2698{
0e175a18 2699 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2700}
0e3c9a22 2701EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2702
17bd55d0 2703/**
8264c321 2704 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2705 * @sb: the superblock
8264c321 2706 * @reason: reason why some writeback work was initiated
17bd55d0 2707 *
8264c321 2708 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2709 */
8264c321 2710void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2711{
10ee27a0 2712 if (!down_read_trylock(&sb->s_umount))
8264c321 2713 return;
10ee27a0 2714
8264c321 2715 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2716 up_read(&sb->s_umount);
3259f8be 2717}
10ee27a0 2718EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2719
d8a8559c
JA
2720/**
2721 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2722 * @sb: the superblock
d8a8559c
JA
2723 *
2724 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2725 * super_block.
d8a8559c 2726 */
0dc83bd3 2727void sync_inodes_sb(struct super_block *sb)
d8a8559c 2728{
5b9cce4c
TH
2729 struct backing_dev_info *bdi = sb->s_bdi;
2730 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2731 struct wb_writeback_work work = {
3c4d7165
CH
2732 .sb = sb,
2733 .sync_mode = WB_SYNC_ALL,
2734 .nr_pages = LONG_MAX,
2735 .range_cyclic = 0,
83ba7b07 2736 .done = &done,
0e175a18 2737 .reason = WB_REASON_SYNC,
7747bd4b 2738 .for_sync = 1,
3c4d7165
CH
2739 };
2740
006a0973
TH
2741 /*
2742 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2743 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2744 * bdi_has_dirty() need to be written out too.
2745 */
2746 if (bdi == &noop_backing_dev_info)
6eedc701 2747 return;
cf37e972
CH
2748 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2749
7fc5854f
TH
2750 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2751 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2752 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2753 wb_wait_for_completion(&done);
7fc5854f 2754 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2755
b6e51316 2756 wait_sb_inodes(sb);
1da177e4 2757}
d8a8559c 2758EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2759
1da177e4 2760/**
7f04c26d
AA
2761 * write_inode_now - write an inode to disk
2762 * @inode: inode to write to disk
2763 * @sync: whether the write should be synchronous or not
2764 *
2765 * This function commits an inode to disk immediately if it is dirty. This is
2766 * primarily needed by knfsd.
1da177e4 2767 *
7f04c26d 2768 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2769 */
1da177e4
LT
2770int write_inode_now(struct inode *inode, int sync)
2771{
1da177e4
LT
2772 struct writeback_control wbc = {
2773 .nr_to_write = LONG_MAX,
18914b18 2774 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2775 .range_start = 0,
2776 .range_end = LLONG_MAX,
1da177e4
LT
2777 };
2778
f56753ac 2779 if (!mapping_can_writeback(inode->i_mapping))
49364ce2 2780 wbc.nr_to_write = 0;
1da177e4
LT
2781
2782 might_sleep();
aaf25593 2783 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2784}
2785EXPORT_SYMBOL(write_inode_now);
2786
c3765016 2787/**
c691b9d9 2788 * sync_inode_metadata - write an inode to disk
c3765016
CH
2789 * @inode: the inode to sync
2790 * @wait: wait for I/O to complete.
2791 *
c691b9d9 2792 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2793 *
2794 * Note: only writes the actual inode, no associated data or other metadata.
2795 */
2796int sync_inode_metadata(struct inode *inode, int wait)
2797{
2798 struct writeback_control wbc = {
2799 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2800 .nr_to_write = 0, /* metadata-only */
2801 };
2802
5662c967 2803 return writeback_single_inode(inode, &wbc);
c3765016
CH
2804}
2805EXPORT_SYMBOL(sync_inode_metadata);