writeback, cgroup: inode_switch_wbs() shouldn't give up on wb_switch_rwsem trylock...
[linux-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
cc395d7f
TH
39struct wb_completion {
40 atomic_t cnt;
41};
42
c4a77a6c
JA
43/*
44 * Passed into wb_writeback(), essentially a subset of writeback_control
45 */
83ba7b07 46struct wb_writeback_work {
c4a77a6c
JA
47 long nr_pages;
48 struct super_block *sb;
0dc83bd3 49 unsigned long *older_than_this;
c4a77a6c 50 enum writeback_sync_modes sync_mode;
6e6938b6 51 unsigned int tagged_writepages:1;
52957fe1
HS
52 unsigned int for_kupdate:1;
53 unsigned int range_cyclic:1;
54 unsigned int for_background:1;
7747bd4b 55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 56 unsigned int auto_free:1; /* free on completion */
0e175a18 57 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 58
8010c3b6 59 struct list_head list; /* pending work list */
cc395d7f 60 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
61};
62
cc395d7f
TH
63/*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
a2f48706
TT
76/*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
7ccf19a8
NP
88static inline struct inode *wb_inode(struct list_head *head)
89{
c7f54084 90 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
91}
92
15eb77a0
WF
93/*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98#define CREATE_TRACE_POINTS
99#include <trace/events/writeback.h>
100
774016b2
SW
101EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
d6c10f1f
TH
103static bool wb_io_lists_populated(struct bdi_writeback *wb)
104{
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
112 return true;
113 }
114}
115
116static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117{
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 120 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 123 }
d6c10f1f
TH
124}
125
126/**
c7f54084 127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
bbbc3c1c 130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 131 *
c7f54084 132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
c7f54084 136static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
137 struct bdi_writeback *wb,
138 struct list_head *head)
139{
140 assert_spin_locked(&wb->list_lock);
141
c7f54084 142 list_move(&inode->i_io_list, head);
d6c10f1f
TH
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150}
151
152/**
c7f54084 153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
c7f54084 160static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
161 struct bdi_writeback *wb)
162{
163 assert_spin_locked(&wb->list_lock);
164
c7f54084 165 list_del_init(&inode->i_io_list);
d6c10f1f
TH
166 wb_io_lists_depopulated(wb);
167}
168
f0054bb1 169static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 170{
f0054bb1
TH
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
175}
176
4a3a485b
TE
177static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179{
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186}
187
f0054bb1
TH
188static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
6585027a 190{
5634cc2a 191 trace_writeback_queue(wb, work);
6585027a 192
cc395d7f
TH
193 if (work->done)
194 atomic_inc(&work->done->cnt);
4a3a485b
TE
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
f0054bb1 204 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
205}
206
cc395d7f
TH
207/**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
218static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220{
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223}
224
703c2708
TH
225#ifdef CONFIG_CGROUP_WRITEBACK
226
55a694df
TH
227/*
228 * Parameters for foreign inode detection, see wbc_detach_inode() to see
229 * how they're used.
230 *
231 * These paramters are inherently heuristical as the detection target
232 * itself is fuzzy. All we want to do is detaching an inode from the
233 * current owner if it's being written to by some other cgroups too much.
234 *
235 * The current cgroup writeback is built on the assumption that multiple
236 * cgroups writing to the same inode concurrently is very rare and a mode
237 * of operation which isn't well supported. As such, the goal is not
238 * taking too long when a different cgroup takes over an inode while
239 * avoiding too aggressive flip-flops from occasional foreign writes.
240 *
241 * We record, very roughly, 2s worth of IO time history and if more than
242 * half of that is foreign, trigger the switch. The recording is quantized
243 * to 16 slots. To avoid tiny writes from swinging the decision too much,
244 * writes smaller than 1/8 of avg size are ignored.
245 */
2a814908
TH
246#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
247#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 248#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
249#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
250
251#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
252#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
253 /* each slot's duration is 2s / 16 */
254#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
255 /* if foreign slots >= 8, switch */
256#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
257 /* one round can affect upto 5 slots */
6444f47e 258#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 259
a1a0e23e
TH
260static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
261static struct workqueue_struct *isw_wq;
262
21c6321f
TH
263void __inode_attach_wb(struct inode *inode, struct page *page)
264{
265 struct backing_dev_info *bdi = inode_to_bdi(inode);
266 struct bdi_writeback *wb = NULL;
267
268 if (inode_cgwb_enabled(inode)) {
269 struct cgroup_subsys_state *memcg_css;
270
271 if (page) {
272 memcg_css = mem_cgroup_css_from_page(page);
273 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
274 } else {
275 /* must pin memcg_css, see wb_get_create() */
276 memcg_css = task_get_css(current, memory_cgrp_id);
277 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
278 css_put(memcg_css);
279 }
280 }
281
282 if (!wb)
283 wb = &bdi->wb;
284
285 /*
286 * There may be multiple instances of this function racing to
287 * update the same inode. Use cmpxchg() to tell the winner.
288 */
289 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
290 wb_put(wb);
291}
9b0eb69b 292EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 293
87e1d789
TH
294/**
295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296 * @inode: inode of interest with i_lock held
297 *
298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
299 * held on entry and is released on return. The returned wb is guaranteed
300 * to stay @inode's associated wb until its list_lock is released.
301 */
302static struct bdi_writeback *
303locked_inode_to_wb_and_lock_list(struct inode *inode)
304 __releases(&inode->i_lock)
305 __acquires(&wb->list_lock)
306{
307 while (true) {
308 struct bdi_writeback *wb = inode_to_wb(inode);
309
310 /*
311 * inode_to_wb() association is protected by both
312 * @inode->i_lock and @wb->list_lock but list_lock nests
313 * outside i_lock. Drop i_lock and verify that the
314 * association hasn't changed after acquiring list_lock.
315 */
316 wb_get(wb);
317 spin_unlock(&inode->i_lock);
318 spin_lock(&wb->list_lock);
87e1d789 319
aaa2cacf 320 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
321 if (likely(wb == inode->i_wb)) {
322 wb_put(wb); /* @inode already has ref */
323 return wb;
324 }
87e1d789
TH
325
326 spin_unlock(&wb->list_lock);
614a4e37 327 wb_put(wb);
87e1d789
TH
328 cpu_relax();
329 spin_lock(&inode->i_lock);
330 }
331}
332
333/**
334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335 * @inode: inode of interest
336 *
337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338 * on entry.
339 */
340static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 __acquires(&wb->list_lock)
342{
343 spin_lock(&inode->i_lock);
344 return locked_inode_to_wb_and_lock_list(inode);
345}
346
682aa8e1
TH
347struct inode_switch_wbs_context {
348 struct inode *inode;
349 struct bdi_writeback *new_wb;
350
351 struct rcu_head rcu_head;
352 struct work_struct work;
353};
354
7fc5854f
TH
355static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
356{
357 down_write(&bdi->wb_switch_rwsem);
358}
359
360static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361{
362 up_write(&bdi->wb_switch_rwsem);
363}
364
682aa8e1
TH
365static void inode_switch_wbs_work_fn(struct work_struct *work)
366{
367 struct inode_switch_wbs_context *isw =
368 container_of(work, struct inode_switch_wbs_context, work);
369 struct inode *inode = isw->inode;
7fc5854f 370 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
371 struct address_space *mapping = inode->i_mapping;
372 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 373 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
374 XA_STATE(xas, &mapping->i_pages, 0);
375 struct page *page;
d10c8095 376 bool switched = false;
682aa8e1 377
7fc5854f
TH
378 /*
379 * If @inode switches cgwb membership while sync_inodes_sb() is
380 * being issued, sync_inodes_sb() might miss it. Synchronize.
381 */
382 down_read(&bdi->wb_switch_rwsem);
383
682aa8e1
TH
384 /*
385 * By the time control reaches here, RCU grace period has passed
386 * since I_WB_SWITCH assertion and all wb stat update transactions
387 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 388 * synchronizing against the i_pages lock.
d10c8095 389 *
b93b0163 390 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
391 * gives us exclusion against all wb related operations on @inode
392 * including IO list manipulations and stat updates.
682aa8e1 393 */
d10c8095
TH
394 if (old_wb < new_wb) {
395 spin_lock(&old_wb->list_lock);
396 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
397 } else {
398 spin_lock(&new_wb->list_lock);
399 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
400 }
682aa8e1 401 spin_lock(&inode->i_lock);
b93b0163 402 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
403
404 /*
405 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 406 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
407 */
408 if (unlikely(inode->i_state & I_FREEING))
409 goto skip_switch;
410
411 /*
412 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
413 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 414 * pages actually under writeback.
d10c8095 415 */
04edf02c
MW
416 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
417 if (PageDirty(page)) {
3e8f399d
NB
418 dec_wb_stat(old_wb, WB_RECLAIMABLE);
419 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
420 }
421 }
422
04edf02c
MW
423 xas_set(&xas, 0);
424 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
425 WARN_ON_ONCE(!PageWriteback(page));
426 dec_wb_stat(old_wb, WB_WRITEBACK);
427 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
428 }
429
430 wb_get(new_wb);
431
432 /*
433 * Transfer to @new_wb's IO list if necessary. The specific list
434 * @inode was on is ignored and the inode is put on ->b_dirty which
435 * is always correct including from ->b_dirty_time. The transfer
436 * preserves @inode->dirtied_when ordering.
437 */
c7f54084 438 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
439 struct inode *pos;
440
c7f54084 441 inode_io_list_del_locked(inode, old_wb);
d10c8095 442 inode->i_wb = new_wb;
c7f54084 443 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
444 if (time_after_eq(inode->dirtied_when,
445 pos->dirtied_when))
446 break;
c7f54084 447 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
448 } else {
449 inode->i_wb = new_wb;
450 }
682aa8e1 451
d10c8095 452 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
453 inode->i_wb_frn_winner = 0;
454 inode->i_wb_frn_avg_time = 0;
455 inode->i_wb_frn_history = 0;
d10c8095
TH
456 switched = true;
457skip_switch:
682aa8e1
TH
458 /*
459 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
460 * ensures that the new wb is visible if they see !I_WB_SWITCH.
461 */
462 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
463
b93b0163 464 xa_unlock_irq(&mapping->i_pages);
682aa8e1 465 spin_unlock(&inode->i_lock);
d10c8095
TH
466 spin_unlock(&new_wb->list_lock);
467 spin_unlock(&old_wb->list_lock);
682aa8e1 468
7fc5854f
TH
469 up_read(&bdi->wb_switch_rwsem);
470
d10c8095
TH
471 if (switched) {
472 wb_wakeup(new_wb);
473 wb_put(old_wb);
474 }
682aa8e1 475 wb_put(new_wb);
d10c8095
TH
476
477 iput(inode);
682aa8e1 478 kfree(isw);
a1a0e23e
TH
479
480 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
481}
482
483static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
484{
485 struct inode_switch_wbs_context *isw = container_of(rcu_head,
486 struct inode_switch_wbs_context, rcu_head);
487
488 /* needs to grab bh-unsafe locks, bounce to work item */
489 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 490 queue_work(isw_wq, &isw->work);
682aa8e1
TH
491}
492
493/**
494 * inode_switch_wbs - change the wb association of an inode
495 * @inode: target inode
496 * @new_wb_id: ID of the new wb
497 *
498 * Switch @inode's wb association to the wb identified by @new_wb_id. The
499 * switching is performed asynchronously and may fail silently.
500 */
501static void inode_switch_wbs(struct inode *inode, int new_wb_id)
502{
503 struct backing_dev_info *bdi = inode_to_bdi(inode);
504 struct cgroup_subsys_state *memcg_css;
505 struct inode_switch_wbs_context *isw;
506
507 /* noop if seems to be already in progress */
508 if (inode->i_state & I_WB_SWITCH)
509 return;
510
6444f47e
TH
511 /* avoid queueing a new switch if too many are already in flight */
512 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
513 return;
514
682aa8e1
TH
515 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
516 if (!isw)
6444f47e 517 return;
682aa8e1
TH
518
519 /* find and pin the new wb */
520 rcu_read_lock();
521 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
522 if (memcg_css)
523 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
524 rcu_read_unlock();
525 if (!isw->new_wb)
526 goto out_free;
527
528 /* while holding I_WB_SWITCH, no one else can update the association */
529 spin_lock(&inode->i_lock);
1751e8a6 530 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
531 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
532 inode_to_wb(inode) == isw->new_wb) {
533 spin_unlock(&inode->i_lock);
534 goto out_free;
535 }
682aa8e1 536 inode->i_state |= I_WB_SWITCH;
74524955 537 __iget(inode);
682aa8e1
TH
538 spin_unlock(&inode->i_lock);
539
682aa8e1
TH
540 isw->inode = inode;
541
542 /*
543 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
544 * the RCU protected stat update paths to grab the i_page
545 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
546 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
547 */
548 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
549
550 atomic_inc(&isw_nr_in_flight);
6444f47e 551 return;
682aa8e1
TH
552
553out_free:
554 if (isw->new_wb)
555 wb_put(isw->new_wb);
556 kfree(isw);
557}
558
b16b1deb
TH
559/**
560 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
561 * @wbc: writeback_control of interest
562 * @inode: target inode
563 *
564 * @inode is locked and about to be written back under the control of @wbc.
565 * Record @inode's writeback context into @wbc and unlock the i_lock. On
566 * writeback completion, wbc_detach_inode() should be called. This is used
567 * to track the cgroup writeback context.
568 */
569void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
570 struct inode *inode)
571{
dd73e4b7
TH
572 if (!inode_cgwb_enabled(inode)) {
573 spin_unlock(&inode->i_lock);
574 return;
575 }
576
b16b1deb 577 wbc->wb = inode_to_wb(inode);
2a814908
TH
578 wbc->inode = inode;
579
580 wbc->wb_id = wbc->wb->memcg_css->id;
581 wbc->wb_lcand_id = inode->i_wb_frn_winner;
582 wbc->wb_tcand_id = 0;
583 wbc->wb_bytes = 0;
584 wbc->wb_lcand_bytes = 0;
585 wbc->wb_tcand_bytes = 0;
586
b16b1deb
TH
587 wb_get(wbc->wb);
588 spin_unlock(&inode->i_lock);
e8a7abf5
TH
589
590 /*
591 * A dying wb indicates that the memcg-blkcg mapping has changed
592 * and a new wb is already serving the memcg. Switch immediately.
593 */
594 if (unlikely(wb_dying(wbc->wb)))
595 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 596}
9b0eb69b 597EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
598
599/**
2a814908
TH
600 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
601 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
602 *
603 * To be called after a writeback attempt of an inode finishes and undoes
604 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
605 *
606 * As concurrent write sharing of an inode is expected to be very rare and
607 * memcg only tracks page ownership on first-use basis severely confining
608 * the usefulness of such sharing, cgroup writeback tracks ownership
609 * per-inode. While the support for concurrent write sharing of an inode
610 * is deemed unnecessary, an inode being written to by different cgroups at
611 * different points in time is a lot more common, and, more importantly,
612 * charging only by first-use can too readily lead to grossly incorrect
613 * behaviors (single foreign page can lead to gigabytes of writeback to be
614 * incorrectly attributed).
615 *
616 * To resolve this issue, cgroup writeback detects the majority dirtier of
617 * an inode and transfers the ownership to it. To avoid unnnecessary
618 * oscillation, the detection mechanism keeps track of history and gives
619 * out the switch verdict only if the foreign usage pattern is stable over
620 * a certain amount of time and/or writeback attempts.
621 *
622 * On each writeback attempt, @wbc tries to detect the majority writer
623 * using Boyer-Moore majority vote algorithm. In addition to the byte
624 * count from the majority voting, it also counts the bytes written for the
625 * current wb and the last round's winner wb (max of last round's current
626 * wb, the winner from two rounds ago, and the last round's majority
627 * candidate). Keeping track of the historical winner helps the algorithm
628 * to semi-reliably detect the most active writer even when it's not the
629 * absolute majority.
630 *
631 * Once the winner of the round is determined, whether the winner is
632 * foreign or not and how much IO time the round consumed is recorded in
633 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
634 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
635 */
636void wbc_detach_inode(struct writeback_control *wbc)
637{
2a814908
TH
638 struct bdi_writeback *wb = wbc->wb;
639 struct inode *inode = wbc->inode;
dd73e4b7
TH
640 unsigned long avg_time, max_bytes, max_time;
641 u16 history;
2a814908
TH
642 int max_id;
643
dd73e4b7
TH
644 if (!wb)
645 return;
646
647 history = inode->i_wb_frn_history;
648 avg_time = inode->i_wb_frn_avg_time;
649
2a814908
TH
650 /* pick the winner of this round */
651 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
652 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
653 max_id = wbc->wb_id;
654 max_bytes = wbc->wb_bytes;
655 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
656 max_id = wbc->wb_lcand_id;
657 max_bytes = wbc->wb_lcand_bytes;
658 } else {
659 max_id = wbc->wb_tcand_id;
660 max_bytes = wbc->wb_tcand_bytes;
661 }
662
663 /*
664 * Calculate the amount of IO time the winner consumed and fold it
665 * into the running average kept per inode. If the consumed IO
666 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
667 * deciding whether to switch or not. This is to prevent one-off
668 * small dirtiers from skewing the verdict.
669 */
670 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
671 wb->avg_write_bandwidth);
672 if (avg_time)
673 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
674 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
675 else
676 avg_time = max_time; /* immediate catch up on first run */
677
678 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
679 int slots;
680
681 /*
682 * The switch verdict is reached if foreign wb's consume
683 * more than a certain proportion of IO time in a
684 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
685 * history mask where each bit represents one sixteenth of
686 * the period. Determine the number of slots to shift into
687 * history from @max_time.
688 */
689 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
690 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
691 history <<= slots;
692 if (wbc->wb_id != max_id)
693 history |= (1U << slots) - 1;
694
695 /*
696 * Switch if the current wb isn't the consistent winner.
697 * If there are multiple closely competing dirtiers, the
698 * inode may switch across them repeatedly over time, which
699 * is okay. The main goal is avoiding keeping an inode on
700 * the wrong wb for an extended period of time.
701 */
682aa8e1
TH
702 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
703 inode_switch_wbs(inode, max_id);
2a814908
TH
704 }
705
706 /*
707 * Multiple instances of this function may race to update the
708 * following fields but we don't mind occassional inaccuracies.
709 */
710 inode->i_wb_frn_winner = max_id;
711 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
712 inode->i_wb_frn_history = history;
713
b16b1deb
TH
714 wb_put(wbc->wb);
715 wbc->wb = NULL;
716}
9b0eb69b 717EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 718
2a814908 719/**
34e51a5e 720 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
721 * @wbc: writeback_control of the writeback in progress
722 * @page: page being written out
723 * @bytes: number of bytes being written out
724 *
725 * @bytes from @page are about to written out during the writeback
726 * controlled by @wbc. Keep the book for foreign inode detection. See
727 * wbc_detach_inode().
728 */
34e51a5e
TH
729void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
730 size_t bytes)
2a814908 731{
66311422 732 struct cgroup_subsys_state *css;
2a814908
TH
733 int id;
734
735 /*
736 * pageout() path doesn't attach @wbc to the inode being written
737 * out. This is intentional as we don't want the function to block
738 * behind a slow cgroup. Ultimately, we want pageout() to kick off
739 * regular writeback instead of writing things out itself.
740 */
27b36d8f 741 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
742 return;
743
66311422
TH
744 css = mem_cgroup_css_from_page(page);
745 /* dead cgroups shouldn't contribute to inode ownership arbitration */
746 if (!(css->flags & CSS_ONLINE))
747 return;
748
749 id = css->id;
2a814908
TH
750
751 if (id == wbc->wb_id) {
752 wbc->wb_bytes += bytes;
753 return;
754 }
755
756 if (id == wbc->wb_lcand_id)
757 wbc->wb_lcand_bytes += bytes;
758
759 /* Boyer-Moore majority vote algorithm */
760 if (!wbc->wb_tcand_bytes)
761 wbc->wb_tcand_id = id;
762 if (id == wbc->wb_tcand_id)
763 wbc->wb_tcand_bytes += bytes;
764 else
765 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
766}
34e51a5e 767EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 768
703c2708
TH
769/**
770 * inode_congested - test whether an inode is congested
60292bcc 771 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
772 * @cong_bits: mask of WB_[a]sync_congested bits to test
773 *
774 * Tests whether @inode is congested. @cong_bits is the mask of congestion
775 * bits to test and the return value is the mask of set bits.
776 *
777 * If cgroup writeback is enabled for @inode, the congestion state is
778 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
779 * associated with @inode is congested; otherwise, the root wb's congestion
780 * state is used.
60292bcc
TH
781 *
782 * @inode is allowed to be NULL as this function is often called on
783 * mapping->host which is NULL for the swapper space.
703c2708
TH
784 */
785int inode_congested(struct inode *inode, int cong_bits)
786{
5cb8b824
TH
787 /*
788 * Once set, ->i_wb never becomes NULL while the inode is alive.
789 * Start transaction iff ->i_wb is visible.
790 */
aaa2cacf 791 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 792 struct bdi_writeback *wb;
2e898e4c
GT
793 struct wb_lock_cookie lock_cookie = {};
794 bool congested;
5cb8b824 795
2e898e4c 796 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 797 congested = wb_congested(wb, cong_bits);
2e898e4c 798 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 799 return congested;
703c2708
TH
800 }
801
802 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
803}
804EXPORT_SYMBOL_GPL(inode_congested);
805
f2b65121
TH
806/**
807 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
808 * @wb: target bdi_writeback to split @nr_pages to
809 * @nr_pages: number of pages to write for the whole bdi
810 *
811 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
812 * relation to the total write bandwidth of all wb's w/ dirty inodes on
813 * @wb->bdi.
814 */
815static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
816{
817 unsigned long this_bw = wb->avg_write_bandwidth;
818 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
819
820 if (nr_pages == LONG_MAX)
821 return LONG_MAX;
822
823 /*
824 * This may be called on clean wb's and proportional distribution
825 * may not make sense, just use the original @nr_pages in those
826 * cases. In general, we wanna err on the side of writing more.
827 */
828 if (!tot_bw || this_bw >= tot_bw)
829 return nr_pages;
830 else
831 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
832}
833
db125360
TH
834/**
835 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
836 * @bdi: target backing_dev_info
837 * @base_work: wb_writeback_work to issue
838 * @skip_if_busy: skip wb's which already have writeback in progress
839 *
840 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
841 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
842 * distributed to the busy wbs according to each wb's proportion in the
843 * total active write bandwidth of @bdi.
844 */
845static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
846 struct wb_writeback_work *base_work,
847 bool skip_if_busy)
848{
b817525a 849 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
850 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
851 struct bdi_writeback, bdi_node);
db125360
TH
852
853 might_sleep();
db125360
TH
854restart:
855 rcu_read_lock();
b817525a 856 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
857 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
858 struct wb_writeback_work fallback_work;
859 struct wb_writeback_work *work;
860 long nr_pages;
861
b817525a
TH
862 if (last_wb) {
863 wb_put(last_wb);
864 last_wb = NULL;
865 }
866
006a0973
TH
867 /* SYNC_ALL writes out I_DIRTY_TIME too */
868 if (!wb_has_dirty_io(wb) &&
869 (base_work->sync_mode == WB_SYNC_NONE ||
870 list_empty(&wb->b_dirty_time)))
871 continue;
872 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
873 continue;
874
8a1270cd
TH
875 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
876
877 work = kmalloc(sizeof(*work), GFP_ATOMIC);
878 if (work) {
879 *work = *base_work;
880 work->nr_pages = nr_pages;
881 work->auto_free = 1;
882 wb_queue_work(wb, work);
883 continue;
db125360 884 }
8a1270cd
TH
885
886 /* alloc failed, execute synchronously using on-stack fallback */
887 work = &fallback_work;
888 *work = *base_work;
889 work->nr_pages = nr_pages;
890 work->auto_free = 0;
891 work->done = &fallback_work_done;
892
893 wb_queue_work(wb, work);
894
b817525a
TH
895 /*
896 * Pin @wb so that it stays on @bdi->wb_list. This allows
897 * continuing iteration from @wb after dropping and
898 * regrabbing rcu read lock.
899 */
900 wb_get(wb);
901 last_wb = wb;
902
8a1270cd
TH
903 rcu_read_unlock();
904 wb_wait_for_completion(bdi, &fallback_work_done);
905 goto restart;
db125360
TH
906 }
907 rcu_read_unlock();
b817525a
TH
908
909 if (last_wb)
910 wb_put(last_wb);
db125360
TH
911}
912
a1a0e23e
TH
913/**
914 * cgroup_writeback_umount - flush inode wb switches for umount
915 *
916 * This function is called when a super_block is about to be destroyed and
917 * flushes in-flight inode wb switches. An inode wb switch goes through
918 * RCU and then workqueue, so the two need to be flushed in order to ensure
919 * that all previously scheduled switches are finished. As wb switches are
920 * rare occurrences and synchronize_rcu() can take a while, perform
921 * flushing iff wb switches are in flight.
922 */
923void cgroup_writeback_umount(void)
924{
925 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
926 /*
927 * Use rcu_barrier() to wait for all pending callbacks to
928 * ensure that all in-flight wb switches are in the workqueue.
929 */
930 rcu_barrier();
a1a0e23e
TH
931 flush_workqueue(isw_wq);
932 }
933}
934
935static int __init cgroup_writeback_init(void)
936{
937 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
938 if (!isw_wq)
939 return -ENOMEM;
940 return 0;
941}
942fs_initcall(cgroup_writeback_init);
943
f2b65121
TH
944#else /* CONFIG_CGROUP_WRITEBACK */
945
7fc5854f
TH
946static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
947static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
948
87e1d789
TH
949static struct bdi_writeback *
950locked_inode_to_wb_and_lock_list(struct inode *inode)
951 __releases(&inode->i_lock)
952 __acquires(&wb->list_lock)
953{
954 struct bdi_writeback *wb = inode_to_wb(inode);
955
956 spin_unlock(&inode->i_lock);
957 spin_lock(&wb->list_lock);
958 return wb;
959}
960
961static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
962 __acquires(&wb->list_lock)
963{
964 struct bdi_writeback *wb = inode_to_wb(inode);
965
966 spin_lock(&wb->list_lock);
967 return wb;
968}
969
f2b65121
TH
970static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
971{
972 return nr_pages;
973}
974
db125360
TH
975static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
976 struct wb_writeback_work *base_work,
977 bool skip_if_busy)
978{
979 might_sleep();
980
006a0973 981 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 982 base_work->auto_free = 0;
db125360
TH
983 wb_queue_work(&bdi->wb, base_work);
984 }
985}
986
703c2708
TH
987#endif /* CONFIG_CGROUP_WRITEBACK */
988
e8e8a0c6
JA
989/*
990 * Add in the number of potentially dirty inodes, because each inode
991 * write can dirty pagecache in the underlying blockdev.
992 */
993static unsigned long get_nr_dirty_pages(void)
994{
995 return global_node_page_state(NR_FILE_DIRTY) +
996 global_node_page_state(NR_UNSTABLE_NFS) +
997 get_nr_dirty_inodes();
998}
999
1000static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1001{
c00ddad3
TH
1002 if (!wb_has_dirty_io(wb))
1003 return;
1004
aac8d41c
JA
1005 /*
1006 * All callers of this function want to start writeback of all
1007 * dirty pages. Places like vmscan can call this at a very
1008 * high frequency, causing pointless allocations of tons of
1009 * work items and keeping the flusher threads busy retrieving
1010 * that work. Ensure that we only allow one of them pending and
85009b4f 1011 * inflight at the time.
aac8d41c 1012 */
85009b4f
JA
1013 if (test_bit(WB_start_all, &wb->state) ||
1014 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1015 return;
1016
85009b4f
JA
1017 wb->start_all_reason = reason;
1018 wb_wakeup(wb);
c5444198 1019}
d3ddec76 1020
c5444198 1021/**
9ecf4866
TH
1022 * wb_start_background_writeback - start background writeback
1023 * @wb: bdi_writback to write from
c5444198
CH
1024 *
1025 * Description:
6585027a 1026 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1027 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1028 * some IO is happening if we are over background dirty threshold.
1029 * Caller need not hold sb s_umount semaphore.
c5444198 1030 */
9ecf4866 1031void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1032{
6585027a
JK
1033 /*
1034 * We just wake up the flusher thread. It will perform background
1035 * writeback as soon as there is no other work to do.
1036 */
5634cc2a 1037 trace_writeback_wake_background(wb);
9ecf4866 1038 wb_wakeup(wb);
1da177e4
LT
1039}
1040
a66979ab
DC
1041/*
1042 * Remove the inode from the writeback list it is on.
1043 */
c7f54084 1044void inode_io_list_del(struct inode *inode)
a66979ab 1045{
87e1d789 1046 struct bdi_writeback *wb;
f758eeab 1047
87e1d789 1048 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1049 inode_io_list_del_locked(inode, wb);
52ebea74 1050 spin_unlock(&wb->list_lock);
a66979ab
DC
1051}
1052
6c60d2b5
DC
1053/*
1054 * mark an inode as under writeback on the sb
1055 */
1056void sb_mark_inode_writeback(struct inode *inode)
1057{
1058 struct super_block *sb = inode->i_sb;
1059 unsigned long flags;
1060
1061 if (list_empty(&inode->i_wb_list)) {
1062 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1063 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1064 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1065 trace_sb_mark_inode_writeback(inode);
1066 }
6c60d2b5
DC
1067 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1068 }
1069}
1070
1071/*
1072 * clear an inode as under writeback on the sb
1073 */
1074void sb_clear_inode_writeback(struct inode *inode)
1075{
1076 struct super_block *sb = inode->i_sb;
1077 unsigned long flags;
1078
1079 if (!list_empty(&inode->i_wb_list)) {
1080 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1081 if (!list_empty(&inode->i_wb_list)) {
1082 list_del_init(&inode->i_wb_list);
1083 trace_sb_clear_inode_writeback(inode);
1084 }
6c60d2b5
DC
1085 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1086 }
1087}
1088
6610a0bc
AM
1089/*
1090 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1091 * furthest end of its superblock's dirty-inode list.
1092 *
1093 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1094 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1095 * the case then the inode must have been redirtied while it was being written
1096 * out and we don't reset its dirtied_when.
1097 */
f758eeab 1098static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1099{
03ba3782 1100 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1101 struct inode *tail;
6610a0bc 1102
7ccf19a8 1103 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1104 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1105 inode->dirtied_when = jiffies;
1106 }
c7f54084 1107 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1108}
1109
c986d1e2 1110/*
66f3b8e2 1111 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1112 */
f758eeab 1113static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1114{
c7f54084 1115 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1116}
1117
1c0eeaf5
JE
1118static void inode_sync_complete(struct inode *inode)
1119{
365b94ae 1120 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1121 /* If inode is clean an unused, put it into LRU now... */
1122 inode_add_lru(inode);
365b94ae 1123 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1124 smp_mb();
1125 wake_up_bit(&inode->i_state, __I_SYNC);
1126}
1127
d2caa3c5
JL
1128static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1129{
1130 bool ret = time_after(inode->dirtied_when, t);
1131#ifndef CONFIG_64BIT
1132 /*
1133 * For inodes being constantly redirtied, dirtied_when can get stuck.
1134 * It _appears_ to be in the future, but is actually in distant past.
1135 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1136 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1137 */
1138 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1139#endif
1140 return ret;
1141}
1142
0ae45f63
TT
1143#define EXPIRE_DIRTY_ATIME 0x0001
1144
2c136579 1145/*
0e2f2b23 1146 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1147 * @delaying_queue to @dispatch_queue.
2c136579 1148 */
e84d0a4f 1149static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1150 struct list_head *dispatch_queue,
0ae45f63 1151 int flags,
ad4e38dd 1152 struct wb_writeback_work *work)
2c136579 1153{
0ae45f63
TT
1154 unsigned long *older_than_this = NULL;
1155 unsigned long expire_time;
5c03449d
SL
1156 LIST_HEAD(tmp);
1157 struct list_head *pos, *node;
cf137307 1158 struct super_block *sb = NULL;
5c03449d 1159 struct inode *inode;
cf137307 1160 int do_sb_sort = 0;
e84d0a4f 1161 int moved = 0;
5c03449d 1162
0ae45f63
TT
1163 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1164 older_than_this = work->older_than_this;
a2f48706
TT
1165 else if (!work->for_sync) {
1166 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1167 older_than_this = &expire_time;
1168 }
2c136579 1169 while (!list_empty(delaying_queue)) {
7ccf19a8 1170 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1171 if (older_than_this &&
1172 inode_dirtied_after(inode, *older_than_this))
2c136579 1173 break;
c7f54084 1174 list_move(&inode->i_io_list, &tmp);
a8855990 1175 moved++;
0ae45f63
TT
1176 if (flags & EXPIRE_DIRTY_ATIME)
1177 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1178 if (sb_is_blkdev_sb(inode->i_sb))
1179 continue;
cf137307
JA
1180 if (sb && sb != inode->i_sb)
1181 do_sb_sort = 1;
1182 sb = inode->i_sb;
5c03449d
SL
1183 }
1184
cf137307
JA
1185 /* just one sb in list, splice to dispatch_queue and we're done */
1186 if (!do_sb_sort) {
1187 list_splice(&tmp, dispatch_queue);
e84d0a4f 1188 goto out;
cf137307
JA
1189 }
1190
5c03449d
SL
1191 /* Move inodes from one superblock together */
1192 while (!list_empty(&tmp)) {
7ccf19a8 1193 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1194 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1195 inode = wb_inode(pos);
5c03449d 1196 if (inode->i_sb == sb)
c7f54084 1197 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1198 }
2c136579 1199 }
e84d0a4f
WF
1200out:
1201 return moved;
2c136579
FW
1202}
1203
1204/*
1205 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1206 * Before
1207 * newly dirtied b_dirty b_io b_more_io
1208 * =============> gf edc BA
1209 * After
1210 * newly dirtied b_dirty b_io b_more_io
1211 * =============> g fBAedc
1212 * |
1213 * +--> dequeue for IO
2c136579 1214 */
ad4e38dd 1215static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1216{
e84d0a4f 1217 int moved;
0ae45f63 1218
f758eeab 1219 assert_spin_locked(&wb->list_lock);
4ea879b9 1220 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1221 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1222 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1223 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1224 if (moved)
1225 wb_io_lists_populated(wb);
ad4e38dd 1226 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1227}
1228
a9185b41 1229static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1230{
9fb0a7da
TH
1231 int ret;
1232
1233 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1234 trace_writeback_write_inode_start(inode, wbc);
1235 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1236 trace_writeback_write_inode(inode, wbc);
1237 return ret;
1238 }
03ba3782 1239 return 0;
08d8e974 1240}
08d8e974 1241
1da177e4 1242/*
169ebd90
JK
1243 * Wait for writeback on an inode to complete. Called with i_lock held.
1244 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1245 */
169ebd90
JK
1246static void __inode_wait_for_writeback(struct inode *inode)
1247 __releases(inode->i_lock)
1248 __acquires(inode->i_lock)
01c03194
CH
1249{
1250 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1251 wait_queue_head_t *wqh;
1252
1253 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1254 while (inode->i_state & I_SYNC) {
1255 spin_unlock(&inode->i_lock);
74316201
N
1256 __wait_on_bit(wqh, &wq, bit_wait,
1257 TASK_UNINTERRUPTIBLE);
250df6ed 1258 spin_lock(&inode->i_lock);
58a9d3d8 1259 }
01c03194
CH
1260}
1261
169ebd90
JK
1262/*
1263 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1264 */
1265void inode_wait_for_writeback(struct inode *inode)
1266{
1267 spin_lock(&inode->i_lock);
1268 __inode_wait_for_writeback(inode);
1269 spin_unlock(&inode->i_lock);
1270}
1271
1272/*
1273 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1274 * held and drops it. It is aimed for callers not holding any inode reference
1275 * so once i_lock is dropped, inode can go away.
1276 */
1277static void inode_sleep_on_writeback(struct inode *inode)
1278 __releases(inode->i_lock)
1279{
1280 DEFINE_WAIT(wait);
1281 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1282 int sleep;
1283
1284 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1285 sleep = inode->i_state & I_SYNC;
1286 spin_unlock(&inode->i_lock);
1287 if (sleep)
1288 schedule();
1289 finish_wait(wqh, &wait);
1290}
1291
ccb26b5a
JK
1292/*
1293 * Find proper writeback list for the inode depending on its current state and
1294 * possibly also change of its state while we were doing writeback. Here we
1295 * handle things such as livelock prevention or fairness of writeback among
1296 * inodes. This function can be called only by flusher thread - noone else
1297 * processes all inodes in writeback lists and requeueing inodes behind flusher
1298 * thread's back can have unexpected consequences.
1299 */
1300static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1301 struct writeback_control *wbc)
1302{
1303 if (inode->i_state & I_FREEING)
1304 return;
1305
1306 /*
1307 * Sync livelock prevention. Each inode is tagged and synced in one
1308 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1309 * the dirty time to prevent enqueue and sync it again.
1310 */
1311 if ((inode->i_state & I_DIRTY) &&
1312 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1313 inode->dirtied_when = jiffies;
1314
4f8ad655
JK
1315 if (wbc->pages_skipped) {
1316 /*
1317 * writeback is not making progress due to locked
1318 * buffers. Skip this inode for now.
1319 */
1320 redirty_tail(inode, wb);
1321 return;
1322 }
1323
ccb26b5a
JK
1324 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1325 /*
1326 * We didn't write back all the pages. nfs_writepages()
1327 * sometimes bales out without doing anything.
1328 */
1329 if (wbc->nr_to_write <= 0) {
1330 /* Slice used up. Queue for next turn. */
1331 requeue_io(inode, wb);
1332 } else {
1333 /*
1334 * Writeback blocked by something other than
1335 * congestion. Delay the inode for some time to
1336 * avoid spinning on the CPU (100% iowait)
1337 * retrying writeback of the dirty page/inode
1338 * that cannot be performed immediately.
1339 */
1340 redirty_tail(inode, wb);
1341 }
1342 } else if (inode->i_state & I_DIRTY) {
1343 /*
1344 * Filesystems can dirty the inode during writeback operations,
1345 * such as delayed allocation during submission or metadata
1346 * updates after data IO completion.
1347 */
1348 redirty_tail(inode, wb);
0ae45f63 1349 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1350 inode->dirtied_when = jiffies;
c7f54084 1351 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1352 } else {
1353 /* The inode is clean. Remove from writeback lists. */
c7f54084 1354 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1355 }
1356}
1357
01c03194 1358/*
4f8ad655
JK
1359 * Write out an inode and its dirty pages. Do not update the writeback list
1360 * linkage. That is left to the caller. The caller is also responsible for
1361 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1362 */
1363static int
cd8ed2a4 1364__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1365{
1da177e4 1366 struct address_space *mapping = inode->i_mapping;
251d6a47 1367 long nr_to_write = wbc->nr_to_write;
01c03194 1368 unsigned dirty;
1da177e4
LT
1369 int ret;
1370
4f8ad655 1371 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1372
9fb0a7da
TH
1373 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1374
1da177e4
LT
1375 ret = do_writepages(mapping, wbc);
1376
26821ed4
CH
1377 /*
1378 * Make sure to wait on the data before writing out the metadata.
1379 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1380 * I/O completion. We don't do it for sync(2) writeback because it has a
1381 * separate, external IO completion path and ->sync_fs for guaranteeing
1382 * inode metadata is written back correctly.
26821ed4 1383 */
7747bd4b 1384 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1385 int err = filemap_fdatawait(mapping);
1da177e4
LT
1386 if (ret == 0)
1387 ret = err;
1388 }
1389
5547e8aa
DM
1390 /*
1391 * Some filesystems may redirty the inode during the writeback
1392 * due to delalloc, clear dirty metadata flags right before
1393 * write_inode()
1394 */
250df6ed 1395 spin_lock(&inode->i_lock);
9c6ac78e 1396
5547e8aa 1397 dirty = inode->i_state & I_DIRTY;
a2f48706 1398 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1399 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1400 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1401 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1402 unlikely(time_after(jiffies,
1403 (inode->dirtied_time_when +
1404 dirtytime_expire_interval * HZ)))) {
1405 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1406 trace_writeback_lazytime(inode);
1407 }
1408 } else
1409 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1410 inode->i_state &= ~dirty;
9c6ac78e
TH
1411
1412 /*
1413 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1414 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1415 * either they see the I_DIRTY bits cleared or we see the dirtied
1416 * inode.
1417 *
1418 * I_DIRTY_PAGES is always cleared together above even if @mapping
1419 * still has dirty pages. The flag is reinstated after smp_mb() if
1420 * necessary. This guarantees that either __mark_inode_dirty()
1421 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1422 */
1423 smp_mb();
1424
1425 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1426 inode->i_state |= I_DIRTY_PAGES;
1427
250df6ed 1428 spin_unlock(&inode->i_lock);
9c6ac78e 1429
0ae45f63
TT
1430 if (dirty & I_DIRTY_TIME)
1431 mark_inode_dirty_sync(inode);
26821ed4 1432 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1433 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1434 int err = write_inode(inode, wbc);
1da177e4
LT
1435 if (ret == 0)
1436 ret = err;
1437 }
4f8ad655
JK
1438 trace_writeback_single_inode(inode, wbc, nr_to_write);
1439 return ret;
1440}
1441
1442/*
1443 * Write out an inode's dirty pages. Either the caller has an active reference
1444 * on the inode or the inode has I_WILL_FREE set.
1445 *
1446 * This function is designed to be called for writing back one inode which
1447 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1448 * and does more profound writeback list handling in writeback_sb_inodes().
1449 */
aaf25593
TH
1450static int writeback_single_inode(struct inode *inode,
1451 struct writeback_control *wbc)
4f8ad655 1452{
aaf25593 1453 struct bdi_writeback *wb;
4f8ad655
JK
1454 int ret = 0;
1455
1456 spin_lock(&inode->i_lock);
1457 if (!atomic_read(&inode->i_count))
1458 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1459 else
1460 WARN_ON(inode->i_state & I_WILL_FREE);
1461
1462 if (inode->i_state & I_SYNC) {
1463 if (wbc->sync_mode != WB_SYNC_ALL)
1464 goto out;
1465 /*
169ebd90
JK
1466 * It's a data-integrity sync. We must wait. Since callers hold
1467 * inode reference or inode has I_WILL_FREE set, it cannot go
1468 * away under us.
4f8ad655 1469 */
169ebd90 1470 __inode_wait_for_writeback(inode);
4f8ad655
JK
1471 }
1472 WARN_ON(inode->i_state & I_SYNC);
1473 /*
f9b0e058
JK
1474 * Skip inode if it is clean and we have no outstanding writeback in
1475 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1476 * function since flusher thread may be doing for example sync in
1477 * parallel and if we move the inode, it could get skipped. So here we
1478 * make sure inode is on some writeback list and leave it there unless
1479 * we have completely cleaned the inode.
4f8ad655 1480 */
0ae45f63 1481 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1482 (wbc->sync_mode != WB_SYNC_ALL ||
1483 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1484 goto out;
1485 inode->i_state |= I_SYNC;
b16b1deb 1486 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1487
cd8ed2a4 1488 ret = __writeback_single_inode(inode, wbc);
1da177e4 1489
b16b1deb 1490 wbc_detach_inode(wbc);
aaf25593
TH
1491
1492 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1493 spin_lock(&inode->i_lock);
4f8ad655
JK
1494 /*
1495 * If inode is clean, remove it from writeback lists. Otherwise don't
1496 * touch it. See comment above for explanation.
1497 */
0ae45f63 1498 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1499 inode_io_list_del_locked(inode, wb);
4f8ad655 1500 spin_unlock(&wb->list_lock);
1c0eeaf5 1501 inode_sync_complete(inode);
4f8ad655
JK
1502out:
1503 spin_unlock(&inode->i_lock);
1da177e4
LT
1504 return ret;
1505}
1506
a88a341a 1507static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1508 struct wb_writeback_work *work)
d46db3d5
WF
1509{
1510 long pages;
1511
1512 /*
1513 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1514 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1515 * here avoids calling into writeback_inodes_wb() more than once.
1516 *
1517 * The intended call sequence for WB_SYNC_ALL writeback is:
1518 *
1519 * wb_writeback()
1520 * writeback_sb_inodes() <== called only once
1521 * write_cache_pages() <== called once for each inode
1522 * (quickly) tag currently dirty pages
1523 * (maybe slowly) sync all tagged pages
1524 */
1525 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1526 pages = LONG_MAX;
1a12d8bd 1527 else {
a88a341a 1528 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1529 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1530 pages = min(pages, work->nr_pages);
1531 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1532 MIN_WRITEBACK_PAGES);
1533 }
d46db3d5
WF
1534
1535 return pages;
1536}
1537
f11c9c5c
ES
1538/*
1539 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1540 *
d46db3d5 1541 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1542 *
1543 * NOTE! This is called with wb->list_lock held, and will
1544 * unlock and relock that for each inode it ends up doing
1545 * IO for.
f11c9c5c 1546 */
d46db3d5
WF
1547static long writeback_sb_inodes(struct super_block *sb,
1548 struct bdi_writeback *wb,
1549 struct wb_writeback_work *work)
1da177e4 1550{
d46db3d5
WF
1551 struct writeback_control wbc = {
1552 .sync_mode = work->sync_mode,
1553 .tagged_writepages = work->tagged_writepages,
1554 .for_kupdate = work->for_kupdate,
1555 .for_background = work->for_background,
7747bd4b 1556 .for_sync = work->for_sync,
d46db3d5
WF
1557 .range_cyclic = work->range_cyclic,
1558 .range_start = 0,
1559 .range_end = LLONG_MAX,
1560 };
1561 unsigned long start_time = jiffies;
1562 long write_chunk;
1563 long wrote = 0; /* count both pages and inodes */
1564
03ba3782 1565 while (!list_empty(&wb->b_io)) {
7ccf19a8 1566 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1567 struct bdi_writeback *tmp_wb;
edadfb10
CH
1568
1569 if (inode->i_sb != sb) {
d46db3d5 1570 if (work->sb) {
edadfb10
CH
1571 /*
1572 * We only want to write back data for this
1573 * superblock, move all inodes not belonging
1574 * to it back onto the dirty list.
1575 */
f758eeab 1576 redirty_tail(inode, wb);
edadfb10
CH
1577 continue;
1578 }
1579
1580 /*
1581 * The inode belongs to a different superblock.
1582 * Bounce back to the caller to unpin this and
1583 * pin the next superblock.
1584 */
d46db3d5 1585 break;
edadfb10
CH
1586 }
1587
9843b76a 1588 /*
331cbdee
WL
1589 * Don't bother with new inodes or inodes being freed, first
1590 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1591 * kind writeout is handled by the freer.
1592 */
250df6ed 1593 spin_lock(&inode->i_lock);
9843b76a 1594 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1595 spin_unlock(&inode->i_lock);
fcc5c222 1596 redirty_tail(inode, wb);
7ef0d737
NP
1597 continue;
1598 }
cc1676d9
JK
1599 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1600 /*
1601 * If this inode is locked for writeback and we are not
1602 * doing writeback-for-data-integrity, move it to
1603 * b_more_io so that writeback can proceed with the
1604 * other inodes on s_io.
1605 *
1606 * We'll have another go at writing back this inode
1607 * when we completed a full scan of b_io.
1608 */
1609 spin_unlock(&inode->i_lock);
1610 requeue_io(inode, wb);
1611 trace_writeback_sb_inodes_requeue(inode);
1612 continue;
1613 }
f0d07b7f
JK
1614 spin_unlock(&wb->list_lock);
1615
4f8ad655
JK
1616 /*
1617 * We already requeued the inode if it had I_SYNC set and we
1618 * are doing WB_SYNC_NONE writeback. So this catches only the
1619 * WB_SYNC_ALL case.
1620 */
169ebd90
JK
1621 if (inode->i_state & I_SYNC) {
1622 /* Wait for I_SYNC. This function drops i_lock... */
1623 inode_sleep_on_writeback(inode);
1624 /* Inode may be gone, start again */
ead188f9 1625 spin_lock(&wb->list_lock);
169ebd90
JK
1626 continue;
1627 }
4f8ad655 1628 inode->i_state |= I_SYNC;
b16b1deb 1629 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1630
a88a341a 1631 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1632 wbc.nr_to_write = write_chunk;
1633 wbc.pages_skipped = 0;
250df6ed 1634
169ebd90
JK
1635 /*
1636 * We use I_SYNC to pin the inode in memory. While it is set
1637 * evict_inode() will wait so the inode cannot be freed.
1638 */
cd8ed2a4 1639 __writeback_single_inode(inode, &wbc);
250df6ed 1640
b16b1deb 1641 wbc_detach_inode(&wbc);
d46db3d5
WF
1642 work->nr_pages -= write_chunk - wbc.nr_to_write;
1643 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1644
1645 if (need_resched()) {
1646 /*
1647 * We're trying to balance between building up a nice
1648 * long list of IOs to improve our merge rate, and
1649 * getting those IOs out quickly for anyone throttling
1650 * in balance_dirty_pages(). cond_resched() doesn't
1651 * unplug, so get our IOs out the door before we
1652 * give up the CPU.
1653 */
1654 blk_flush_plug(current);
1655 cond_resched();
1656 }
1657
aaf25593
TH
1658 /*
1659 * Requeue @inode if still dirty. Be careful as @inode may
1660 * have been switched to another wb in the meantime.
1661 */
1662 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1663 spin_lock(&inode->i_lock);
0ae45f63 1664 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1665 wrote++;
aaf25593 1666 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1667 inode_sync_complete(inode);
0f1b1fd8 1668 spin_unlock(&inode->i_lock);
590dca3a 1669
aaf25593
TH
1670 if (unlikely(tmp_wb != wb)) {
1671 spin_unlock(&tmp_wb->list_lock);
1672 spin_lock(&wb->list_lock);
1673 }
1674
d46db3d5
WF
1675 /*
1676 * bail out to wb_writeback() often enough to check
1677 * background threshold and other termination conditions.
1678 */
1679 if (wrote) {
1680 if (time_is_before_jiffies(start_time + HZ / 10UL))
1681 break;
1682 if (work->nr_pages <= 0)
1683 break;
8bc3be27 1684 }
1da177e4 1685 }
d46db3d5 1686 return wrote;
f11c9c5c
ES
1687}
1688
d46db3d5
WF
1689static long __writeback_inodes_wb(struct bdi_writeback *wb,
1690 struct wb_writeback_work *work)
f11c9c5c 1691{
d46db3d5
WF
1692 unsigned long start_time = jiffies;
1693 long wrote = 0;
38f21977 1694
f11c9c5c 1695 while (!list_empty(&wb->b_io)) {
7ccf19a8 1696 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1697 struct super_block *sb = inode->i_sb;
9ecc2738 1698
eb6ef3df 1699 if (!trylock_super(sb)) {
0e995816 1700 /*
eb6ef3df 1701 * trylock_super() may fail consistently due to
0e995816
WF
1702 * s_umount being grabbed by someone else. Don't use
1703 * requeue_io() to avoid busy retrying the inode/sb.
1704 */
1705 redirty_tail(inode, wb);
edadfb10 1706 continue;
f11c9c5c 1707 }
d46db3d5 1708 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1709 up_read(&sb->s_umount);
f11c9c5c 1710
d46db3d5
WF
1711 /* refer to the same tests at the end of writeback_sb_inodes */
1712 if (wrote) {
1713 if (time_is_before_jiffies(start_time + HZ / 10UL))
1714 break;
1715 if (work->nr_pages <= 0)
1716 break;
1717 }
f11c9c5c 1718 }
66f3b8e2 1719 /* Leave any unwritten inodes on b_io */
d46db3d5 1720 return wrote;
66f3b8e2
JA
1721}
1722
7d9f073b 1723static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1724 enum wb_reason reason)
edadfb10 1725{
d46db3d5
WF
1726 struct wb_writeback_work work = {
1727 .nr_pages = nr_pages,
1728 .sync_mode = WB_SYNC_NONE,
1729 .range_cyclic = 1,
0e175a18 1730 .reason = reason,
d46db3d5 1731 };
505a666e 1732 struct blk_plug plug;
edadfb10 1733
505a666e 1734 blk_start_plug(&plug);
f758eeab 1735 spin_lock(&wb->list_lock);
424b351f 1736 if (list_empty(&wb->b_io))
ad4e38dd 1737 queue_io(wb, &work);
d46db3d5 1738 __writeback_inodes_wb(wb, &work);
f758eeab 1739 spin_unlock(&wb->list_lock);
505a666e 1740 blk_finish_plug(&plug);
edadfb10 1741
d46db3d5
WF
1742 return nr_pages - work.nr_pages;
1743}
03ba3782 1744
03ba3782
JA
1745/*
1746 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1747 *
03ba3782
JA
1748 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1749 * dirtying-time in the inode's address_space. So this periodic writeback code
1750 * just walks the superblock inode list, writing back any inodes which are
1751 * older than a specific point in time.
66f3b8e2 1752 *
03ba3782
JA
1753 * Try to run once per dirty_writeback_interval. But if a writeback event
1754 * takes longer than a dirty_writeback_interval interval, then leave a
1755 * one-second gap.
66f3b8e2 1756 *
03ba3782
JA
1757 * older_than_this takes precedence over nr_to_write. So we'll only write back
1758 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1759 */
c4a77a6c 1760static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1761 struct wb_writeback_work *work)
66f3b8e2 1762{
e98be2d5 1763 unsigned long wb_start = jiffies;
d46db3d5 1764 long nr_pages = work->nr_pages;
0dc83bd3 1765 unsigned long oldest_jif;
a5989bdc 1766 struct inode *inode;
d46db3d5 1767 long progress;
505a666e 1768 struct blk_plug plug;
66f3b8e2 1769
0dc83bd3
JK
1770 oldest_jif = jiffies;
1771 work->older_than_this = &oldest_jif;
38f21977 1772
505a666e 1773 blk_start_plug(&plug);
e8dfc305 1774 spin_lock(&wb->list_lock);
03ba3782
JA
1775 for (;;) {
1776 /*
d3ddec76 1777 * Stop writeback when nr_pages has been consumed
03ba3782 1778 */
83ba7b07 1779 if (work->nr_pages <= 0)
03ba3782 1780 break;
66f3b8e2 1781
aa373cf5
JK
1782 /*
1783 * Background writeout and kupdate-style writeback may
1784 * run forever. Stop them if there is other work to do
1785 * so that e.g. sync can proceed. They'll be restarted
1786 * after the other works are all done.
1787 */
1788 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1789 !list_empty(&wb->work_list))
aa373cf5
JK
1790 break;
1791
38f21977 1792 /*
d3ddec76
WF
1793 * For background writeout, stop when we are below the
1794 * background dirty threshold
38f21977 1795 */
aa661bbe 1796 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1797 break;
38f21977 1798
1bc36b64
JK
1799 /*
1800 * Kupdate and background works are special and we want to
1801 * include all inodes that need writing. Livelock avoidance is
1802 * handled by these works yielding to any other work so we are
1803 * safe.
1804 */
ba9aa839 1805 if (work->for_kupdate) {
0dc83bd3 1806 oldest_jif = jiffies -
ba9aa839 1807 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1808 } else if (work->for_background)
0dc83bd3 1809 oldest_jif = jiffies;
028c2dd1 1810
5634cc2a 1811 trace_writeback_start(wb, work);
e8dfc305 1812 if (list_empty(&wb->b_io))
ad4e38dd 1813 queue_io(wb, work);
83ba7b07 1814 if (work->sb)
d46db3d5 1815 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1816 else
d46db3d5 1817 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1818 trace_writeback_written(wb, work);
028c2dd1 1819
e98be2d5 1820 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1821
1822 /*
e6fb6da2
WF
1823 * Did we write something? Try for more
1824 *
1825 * Dirty inodes are moved to b_io for writeback in batches.
1826 * The completion of the current batch does not necessarily
1827 * mean the overall work is done. So we keep looping as long
1828 * as made some progress on cleaning pages or inodes.
03ba3782 1829 */
d46db3d5 1830 if (progress)
71fd05a8
JA
1831 continue;
1832 /*
e6fb6da2 1833 * No more inodes for IO, bail
71fd05a8 1834 */
b7a2441f 1835 if (list_empty(&wb->b_more_io))
03ba3782 1836 break;
71fd05a8
JA
1837 /*
1838 * Nothing written. Wait for some inode to
1839 * become available for writeback. Otherwise
1840 * we'll just busyloop.
1841 */
bace9248
TE
1842 trace_writeback_wait(wb, work);
1843 inode = wb_inode(wb->b_more_io.prev);
1844 spin_lock(&inode->i_lock);
1845 spin_unlock(&wb->list_lock);
1846 /* This function drops i_lock... */
1847 inode_sleep_on_writeback(inode);
1848 spin_lock(&wb->list_lock);
03ba3782 1849 }
e8dfc305 1850 spin_unlock(&wb->list_lock);
505a666e 1851 blk_finish_plug(&plug);
03ba3782 1852
d46db3d5 1853 return nr_pages - work->nr_pages;
03ba3782
JA
1854}
1855
1856/*
83ba7b07 1857 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1858 */
f0054bb1 1859static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1860{
83ba7b07 1861 struct wb_writeback_work *work = NULL;
03ba3782 1862
f0054bb1
TH
1863 spin_lock_bh(&wb->work_lock);
1864 if (!list_empty(&wb->work_list)) {
1865 work = list_entry(wb->work_list.next,
83ba7b07
CH
1866 struct wb_writeback_work, list);
1867 list_del_init(&work->list);
03ba3782 1868 }
f0054bb1 1869 spin_unlock_bh(&wb->work_lock);
83ba7b07 1870 return work;
03ba3782
JA
1871}
1872
6585027a
JK
1873static long wb_check_background_flush(struct bdi_writeback *wb)
1874{
aa661bbe 1875 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1876
1877 struct wb_writeback_work work = {
1878 .nr_pages = LONG_MAX,
1879 .sync_mode = WB_SYNC_NONE,
1880 .for_background = 1,
1881 .range_cyclic = 1,
0e175a18 1882 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1883 };
1884
1885 return wb_writeback(wb, &work);
1886 }
1887
1888 return 0;
1889}
1890
03ba3782
JA
1891static long wb_check_old_data_flush(struct bdi_writeback *wb)
1892{
1893 unsigned long expired;
1894 long nr_pages;
1895
69b62d01
JA
1896 /*
1897 * When set to zero, disable periodic writeback
1898 */
1899 if (!dirty_writeback_interval)
1900 return 0;
1901
03ba3782
JA
1902 expired = wb->last_old_flush +
1903 msecs_to_jiffies(dirty_writeback_interval * 10);
1904 if (time_before(jiffies, expired))
1905 return 0;
1906
1907 wb->last_old_flush = jiffies;
cdf01dd5 1908 nr_pages = get_nr_dirty_pages();
03ba3782 1909
c4a77a6c 1910 if (nr_pages) {
83ba7b07 1911 struct wb_writeback_work work = {
c4a77a6c
JA
1912 .nr_pages = nr_pages,
1913 .sync_mode = WB_SYNC_NONE,
1914 .for_kupdate = 1,
1915 .range_cyclic = 1,
0e175a18 1916 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1917 };
1918
83ba7b07 1919 return wb_writeback(wb, &work);
c4a77a6c 1920 }
03ba3782
JA
1921
1922 return 0;
1923}
1924
85009b4f
JA
1925static long wb_check_start_all(struct bdi_writeback *wb)
1926{
1927 long nr_pages;
1928
1929 if (!test_bit(WB_start_all, &wb->state))
1930 return 0;
1931
1932 nr_pages = get_nr_dirty_pages();
1933 if (nr_pages) {
1934 struct wb_writeback_work work = {
1935 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1936 .sync_mode = WB_SYNC_NONE,
1937 .range_cyclic = 1,
1938 .reason = wb->start_all_reason,
1939 };
1940
1941 nr_pages = wb_writeback(wb, &work);
1942 }
1943
1944 clear_bit(WB_start_all, &wb->state);
1945 return nr_pages;
1946}
1947
1948
03ba3782
JA
1949/*
1950 * Retrieve work items and do the writeback they describe
1951 */
25d130ba 1952static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1953{
83ba7b07 1954 struct wb_writeback_work *work;
c4a77a6c 1955 long wrote = 0;
03ba3782 1956
4452226e 1957 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1958 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 1959 trace_writeback_exec(wb, work);
83ba7b07 1960 wrote += wb_writeback(wb, work);
4a3a485b 1961 finish_writeback_work(wb, work);
03ba3782
JA
1962 }
1963
85009b4f
JA
1964 /*
1965 * Check for a flush-everything request
1966 */
1967 wrote += wb_check_start_all(wb);
1968
03ba3782
JA
1969 /*
1970 * Check for periodic writeback, kupdated() style
1971 */
1972 wrote += wb_check_old_data_flush(wb);
6585027a 1973 wrote += wb_check_background_flush(wb);
4452226e 1974 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1975
1976 return wrote;
1977}
1978
1979/*
1980 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1981 * reschedules periodically and does kupdated style flushing.
03ba3782 1982 */
f0054bb1 1983void wb_workfn(struct work_struct *work)
03ba3782 1984{
839a8e86
TH
1985 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1986 struct bdi_writeback, dwork);
03ba3782
JA
1987 long pages_written;
1988
f0054bb1 1989 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1990 current->flags |= PF_SWAPWRITE;
455b2864 1991
839a8e86 1992 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1993 !test_bit(WB_registered, &wb->state))) {
6467716a 1994 /*
f0054bb1 1995 * The normal path. Keep writing back @wb until its
839a8e86 1996 * work_list is empty. Note that this path is also taken
f0054bb1 1997 * if @wb is shutting down even when we're running off the
839a8e86 1998 * rescuer as work_list needs to be drained.
6467716a 1999 */
839a8e86 2000 do {
25d130ba 2001 pages_written = wb_do_writeback(wb);
839a8e86 2002 trace_writeback_pages_written(pages_written);
f0054bb1 2003 } while (!list_empty(&wb->work_list));
839a8e86
TH
2004 } else {
2005 /*
2006 * bdi_wq can't get enough workers and we're running off
2007 * the emergency worker. Don't hog it. Hopefully, 1024 is
2008 * enough for efficient IO.
2009 */
f0054bb1 2010 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2011 WB_REASON_FORKER_THREAD);
455b2864 2012 trace_writeback_pages_written(pages_written);
03ba3782
JA
2013 }
2014
f0054bb1 2015 if (!list_empty(&wb->work_list))
b8b78495 2016 wb_wakeup(wb);
6ca738d6 2017 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2018 wb_wakeup_delayed(wb);
455b2864 2019
839a8e86 2020 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2021}
2022
595043e5
JA
2023/*
2024 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2025 * write back the whole world.
2026 */
2027static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2028 enum wb_reason reason)
595043e5
JA
2029{
2030 struct bdi_writeback *wb;
2031
2032 if (!bdi_has_dirty_io(bdi))
2033 return;
2034
2035 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2036 wb_start_writeback(wb, reason);
595043e5
JA
2037}
2038
2039void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2040 enum wb_reason reason)
2041{
595043e5 2042 rcu_read_lock();
e8e8a0c6 2043 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2044 rcu_read_unlock();
2045}
2046
03ba3782 2047/*
9ba4b2df 2048 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2049 */
9ba4b2df 2050void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2051{
b8c2f347 2052 struct backing_dev_info *bdi;
03ba3782 2053
51350ea0
KK
2054 /*
2055 * If we are expecting writeback progress we must submit plugged IO.
2056 */
2057 if (blk_needs_flush_plug(current))
2058 blk_schedule_flush_plug(current);
2059
b8c2f347 2060 rcu_read_lock();
595043e5 2061 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2062 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2063 rcu_read_unlock();
1da177e4
LT
2064}
2065
a2f48706
TT
2066/*
2067 * Wake up bdi's periodically to make sure dirtytime inodes gets
2068 * written back periodically. We deliberately do *not* check the
2069 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2070 * kernel to be constantly waking up once there are any dirtytime
2071 * inodes on the system. So instead we define a separate delayed work
2072 * function which gets called much more rarely. (By default, only
2073 * once every 12 hours.)
2074 *
2075 * If there is any other write activity going on in the file system,
2076 * this function won't be necessary. But if the only thing that has
2077 * happened on the file system is a dirtytime inode caused by an atime
2078 * update, we need this infrastructure below to make sure that inode
2079 * eventually gets pushed out to disk.
2080 */
2081static void wakeup_dirtytime_writeback(struct work_struct *w);
2082static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2083
2084static void wakeup_dirtytime_writeback(struct work_struct *w)
2085{
2086 struct backing_dev_info *bdi;
2087
2088 rcu_read_lock();
2089 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2090 struct bdi_writeback *wb;
001fe6f6 2091
b817525a 2092 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2093 if (!list_empty(&wb->b_dirty_time))
2094 wb_wakeup(wb);
a2f48706
TT
2095 }
2096 rcu_read_unlock();
2097 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2098}
2099
2100static int __init start_dirtytime_writeback(void)
2101{
2102 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2103 return 0;
2104}
2105__initcall(start_dirtytime_writeback);
2106
1efff914
TT
2107int dirtytime_interval_handler(struct ctl_table *table, int write,
2108 void __user *buffer, size_t *lenp, loff_t *ppos)
2109{
2110 int ret;
2111
2112 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2113 if (ret == 0 && write)
2114 mod_delayed_work(system_wq, &dirtytime_work, 0);
2115 return ret;
2116}
2117
03ba3782
JA
2118static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2119{
2120 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2121 struct dentry *dentry;
2122 const char *name = "?";
2123
2124 dentry = d_find_alias(inode);
2125 if (dentry) {
2126 spin_lock(&dentry->d_lock);
2127 name = (const char *) dentry->d_name.name;
2128 }
2129 printk(KERN_DEBUG
2130 "%s(%d): dirtied inode %lu (%s) on %s\n",
2131 current->comm, task_pid_nr(current), inode->i_ino,
2132 name, inode->i_sb->s_id);
2133 if (dentry) {
2134 spin_unlock(&dentry->d_lock);
2135 dput(dentry);
2136 }
2137 }
2138}
2139
2140/**
0117d427
MCC
2141 * __mark_inode_dirty - internal function
2142 *
2143 * @inode: inode to mark
2144 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2145 *
2146 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2147 * mark_inode_dirty_sync.
1da177e4 2148 *
03ba3782
JA
2149 * Put the inode on the super block's dirty list.
2150 *
2151 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2152 * dirty list only if it is hashed or if it refers to a blockdev.
2153 * If it was not hashed, it will never be added to the dirty list
2154 * even if it is later hashed, as it will have been marked dirty already.
2155 *
2156 * In short, make sure you hash any inodes _before_ you start marking
2157 * them dirty.
1da177e4 2158 *
03ba3782
JA
2159 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2160 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2161 * the kernel-internal blockdev inode represents the dirtying time of the
2162 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2163 * page->mapping->host, so the page-dirtying time is recorded in the internal
2164 * blockdev inode.
1da177e4 2165 */
03ba3782 2166void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2167{
03ba3782 2168 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2169 int dirtytime;
2170
2171 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2172
03ba3782
JA
2173 /*
2174 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2175 * dirty the inode itself
2176 */
0e11f644 2177 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2178 trace_writeback_dirty_inode_start(inode, flags);
2179
03ba3782 2180 if (sb->s_op->dirty_inode)
aa385729 2181 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2182
2183 trace_writeback_dirty_inode(inode, flags);
03ba3782 2184 }
0ae45f63
TT
2185 if (flags & I_DIRTY_INODE)
2186 flags &= ~I_DIRTY_TIME;
2187 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2188
2189 /*
9c6ac78e
TH
2190 * Paired with smp_mb() in __writeback_single_inode() for the
2191 * following lockless i_state test. See there for details.
03ba3782
JA
2192 */
2193 smp_mb();
2194
0ae45f63
TT
2195 if (((inode->i_state & flags) == flags) ||
2196 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2197 return;
2198
2199 if (unlikely(block_dump))
2200 block_dump___mark_inode_dirty(inode);
2201
250df6ed 2202 spin_lock(&inode->i_lock);
0ae45f63
TT
2203 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2204 goto out_unlock_inode;
03ba3782
JA
2205 if ((inode->i_state & flags) != flags) {
2206 const int was_dirty = inode->i_state & I_DIRTY;
2207
52ebea74
TH
2208 inode_attach_wb(inode, NULL);
2209
0ae45f63
TT
2210 if (flags & I_DIRTY_INODE)
2211 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2212 inode->i_state |= flags;
2213
2214 /*
2215 * If the inode is being synced, just update its dirty state.
2216 * The unlocker will place the inode on the appropriate
2217 * superblock list, based upon its state.
2218 */
2219 if (inode->i_state & I_SYNC)
250df6ed 2220 goto out_unlock_inode;
03ba3782
JA
2221
2222 /*
2223 * Only add valid (hashed) inodes to the superblock's
2224 * dirty list. Add blockdev inodes as well.
2225 */
2226 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2227 if (inode_unhashed(inode))
250df6ed 2228 goto out_unlock_inode;
03ba3782 2229 }
a4ffdde6 2230 if (inode->i_state & I_FREEING)
250df6ed 2231 goto out_unlock_inode;
03ba3782
JA
2232
2233 /*
2234 * If the inode was already on b_dirty/b_io/b_more_io, don't
2235 * reposition it (that would break b_dirty time-ordering).
2236 */
2237 if (!was_dirty) {
87e1d789 2238 struct bdi_writeback *wb;
d6c10f1f 2239 struct list_head *dirty_list;
a66979ab 2240 bool wakeup_bdi = false;
253c34e9 2241
87e1d789 2242 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2243
0747259d
TH
2244 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2245 !test_bit(WB_registered, &wb->state),
2246 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2247
2248 inode->dirtied_when = jiffies;
a2f48706
TT
2249 if (dirtytime)
2250 inode->dirtied_time_when = jiffies;
d6c10f1f 2251
0e11f644 2252 if (inode->i_state & I_DIRTY)
0747259d 2253 dirty_list = &wb->b_dirty;
a2f48706 2254 else
0747259d 2255 dirty_list = &wb->b_dirty_time;
d6c10f1f 2256
c7f54084 2257 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2258 dirty_list);
2259
0747259d 2260 spin_unlock(&wb->list_lock);
0ae45f63 2261 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2262
d6c10f1f
TH
2263 /*
2264 * If this is the first dirty inode for this bdi,
2265 * we have to wake-up the corresponding bdi thread
2266 * to make sure background write-back happens
2267 * later.
2268 */
0747259d
TH
2269 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2270 wb_wakeup_delayed(wb);
a66979ab 2271 return;
1da177e4 2272 }
1da177e4 2273 }
250df6ed
DC
2274out_unlock_inode:
2275 spin_unlock(&inode->i_lock);
03ba3782
JA
2276}
2277EXPORT_SYMBOL(__mark_inode_dirty);
2278
e97fedb9
DC
2279/*
2280 * The @s_sync_lock is used to serialise concurrent sync operations
2281 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2282 * Concurrent callers will block on the s_sync_lock rather than doing contending
2283 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2284 * has been issued up to the time this function is enter is guaranteed to be
2285 * completed by the time we have gained the lock and waited for all IO that is
2286 * in progress regardless of the order callers are granted the lock.
2287 */
b6e51316 2288static void wait_sb_inodes(struct super_block *sb)
03ba3782 2289{
6c60d2b5 2290 LIST_HEAD(sync_list);
03ba3782
JA
2291
2292 /*
2293 * We need to be protected against the filesystem going from
2294 * r/o to r/w or vice versa.
2295 */
b6e51316 2296 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2297
e97fedb9 2298 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2299
2300 /*
6c60d2b5
DC
2301 * Splice the writeback list onto a temporary list to avoid waiting on
2302 * inodes that have started writeback after this point.
2303 *
2304 * Use rcu_read_lock() to keep the inodes around until we have a
2305 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2306 * the local list because inodes can be dropped from either by writeback
2307 * completion.
2308 */
2309 rcu_read_lock();
2310 spin_lock_irq(&sb->s_inode_wblist_lock);
2311 list_splice_init(&sb->s_inodes_wb, &sync_list);
2312
2313 /*
2314 * Data integrity sync. Must wait for all pages under writeback, because
2315 * there may have been pages dirtied before our sync call, but which had
2316 * writeout started before we write it out. In which case, the inode
2317 * may not be on the dirty list, but we still have to wait for that
2318 * writeout.
03ba3782 2319 */
6c60d2b5
DC
2320 while (!list_empty(&sync_list)) {
2321 struct inode *inode = list_first_entry(&sync_list, struct inode,
2322 i_wb_list);
250df6ed 2323 struct address_space *mapping = inode->i_mapping;
03ba3782 2324
6c60d2b5
DC
2325 /*
2326 * Move each inode back to the wb list before we drop the lock
2327 * to preserve consistency between i_wb_list and the mapping
2328 * writeback tag. Writeback completion is responsible to remove
2329 * the inode from either list once the writeback tag is cleared.
2330 */
2331 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2332
2333 /*
2334 * The mapping can appear untagged while still on-list since we
2335 * do not have the mapping lock. Skip it here, wb completion
2336 * will remove it.
2337 */
2338 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2339 continue;
2340
2341 spin_unlock_irq(&sb->s_inode_wblist_lock);
2342
250df6ed 2343 spin_lock(&inode->i_lock);
6c60d2b5 2344 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2345 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2346
2347 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2348 continue;
250df6ed 2349 }
03ba3782 2350 __iget(inode);
250df6ed 2351 spin_unlock(&inode->i_lock);
6c60d2b5 2352 rcu_read_unlock();
03ba3782 2353
aa750fd7
JN
2354 /*
2355 * We keep the error status of individual mapping so that
2356 * applications can catch the writeback error using fsync(2).
2357 * See filemap_fdatawait_keep_errors() for details.
2358 */
2359 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2360
2361 cond_resched();
2362
6c60d2b5
DC
2363 iput(inode);
2364
2365 rcu_read_lock();
2366 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2367 }
6c60d2b5
DC
2368 spin_unlock_irq(&sb->s_inode_wblist_lock);
2369 rcu_read_unlock();
e97fedb9 2370 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2371}
2372
f30a7d0c
TH
2373static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2374 enum wb_reason reason, bool skip_if_busy)
1da177e4 2375{
cc395d7f 2376 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2377 struct wb_writeback_work work = {
6e6938b6
WF
2378 .sb = sb,
2379 .sync_mode = WB_SYNC_NONE,
2380 .tagged_writepages = 1,
2381 .done = &done,
2382 .nr_pages = nr,
0e175a18 2383 .reason = reason,
3c4d7165 2384 };
e7972912 2385 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2386
e7972912 2387 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2388 return;
cf37e972 2389 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2390
db125360 2391 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2392 wb_wait_for_completion(bdi, &done);
e913fc82 2393}
f30a7d0c
TH
2394
2395/**
2396 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2397 * @sb: the superblock
2398 * @nr: the number of pages to write
2399 * @reason: reason why some writeback work initiated
2400 *
2401 * Start writeback on some inodes on this super_block. No guarantees are made
2402 * on how many (if any) will be written, and this function does not wait
2403 * for IO completion of submitted IO.
2404 */
2405void writeback_inodes_sb_nr(struct super_block *sb,
2406 unsigned long nr,
2407 enum wb_reason reason)
2408{
2409 __writeback_inodes_sb_nr(sb, nr, reason, false);
2410}
3259f8be
CM
2411EXPORT_SYMBOL(writeback_inodes_sb_nr);
2412
2413/**
2414 * writeback_inodes_sb - writeback dirty inodes from given super_block
2415 * @sb: the superblock
786228ab 2416 * @reason: reason why some writeback work was initiated
3259f8be
CM
2417 *
2418 * Start writeback on some inodes on this super_block. No guarantees are made
2419 * on how many (if any) will be written, and this function does not wait
2420 * for IO completion of submitted IO.
2421 */
0e175a18 2422void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2423{
0e175a18 2424 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2425}
0e3c9a22 2426EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2427
17bd55d0 2428/**
8264c321 2429 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2430 * @sb: the superblock
8264c321 2431 * @reason: reason why some writeback work was initiated
17bd55d0 2432 *
8264c321 2433 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2434 */
8264c321 2435void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2436{
10ee27a0 2437 if (!down_read_trylock(&sb->s_umount))
8264c321 2438 return;
10ee27a0 2439
8264c321 2440 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2441 up_read(&sb->s_umount);
3259f8be 2442}
10ee27a0 2443EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2444
d8a8559c
JA
2445/**
2446 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2447 * @sb: the superblock
d8a8559c
JA
2448 *
2449 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2450 * super_block.
d8a8559c 2451 */
0dc83bd3 2452void sync_inodes_sb(struct super_block *sb)
d8a8559c 2453{
cc395d7f 2454 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2455 struct wb_writeback_work work = {
3c4d7165
CH
2456 .sb = sb,
2457 .sync_mode = WB_SYNC_ALL,
2458 .nr_pages = LONG_MAX,
2459 .range_cyclic = 0,
83ba7b07 2460 .done = &done,
0e175a18 2461 .reason = WB_REASON_SYNC,
7747bd4b 2462 .for_sync = 1,
3c4d7165 2463 };
e7972912 2464 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2465
006a0973
TH
2466 /*
2467 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2468 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2469 * bdi_has_dirty() need to be written out too.
2470 */
2471 if (bdi == &noop_backing_dev_info)
6eedc701 2472 return;
cf37e972
CH
2473 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2474
7fc5854f
TH
2475 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2476 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2477 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2478 wb_wait_for_completion(bdi, &done);
7fc5854f 2479 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2480
b6e51316 2481 wait_sb_inodes(sb);
1da177e4 2482}
d8a8559c 2483EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2484
1da177e4 2485/**
7f04c26d
AA
2486 * write_inode_now - write an inode to disk
2487 * @inode: inode to write to disk
2488 * @sync: whether the write should be synchronous or not
2489 *
2490 * This function commits an inode to disk immediately if it is dirty. This is
2491 * primarily needed by knfsd.
1da177e4 2492 *
7f04c26d 2493 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2494 */
1da177e4
LT
2495int write_inode_now(struct inode *inode, int sync)
2496{
1da177e4
LT
2497 struct writeback_control wbc = {
2498 .nr_to_write = LONG_MAX,
18914b18 2499 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2500 .range_start = 0,
2501 .range_end = LLONG_MAX,
1da177e4
LT
2502 };
2503
2504 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2505 wbc.nr_to_write = 0;
1da177e4
LT
2506
2507 might_sleep();
aaf25593 2508 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2509}
2510EXPORT_SYMBOL(write_inode_now);
2511
2512/**
2513 * sync_inode - write an inode and its pages to disk.
2514 * @inode: the inode to sync
2515 * @wbc: controls the writeback mode
2516 *
2517 * sync_inode() will write an inode and its pages to disk. It will also
2518 * correctly update the inode on its superblock's dirty inode lists and will
2519 * update inode->i_state.
2520 *
2521 * The caller must have a ref on the inode.
2522 */
2523int sync_inode(struct inode *inode, struct writeback_control *wbc)
2524{
aaf25593 2525 return writeback_single_inode(inode, wbc);
1da177e4
LT
2526}
2527EXPORT_SYMBOL(sync_inode);
c3765016
CH
2528
2529/**
c691b9d9 2530 * sync_inode_metadata - write an inode to disk
c3765016
CH
2531 * @inode: the inode to sync
2532 * @wait: wait for I/O to complete.
2533 *
c691b9d9 2534 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2535 *
2536 * Note: only writes the actual inode, no associated data or other metadata.
2537 */
2538int sync_inode_metadata(struct inode *inode, int wait)
2539{
2540 struct writeback_control wbc = {
2541 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2542 .nr_to_write = 0, /* metadata-only */
2543 };
2544
2545 return sync_inode(inode, &wbc);
2546}
2547EXPORT_SYMBOL(sync_inode_metadata);