writeback, cgroup: Adjust WB_FRN_TIME_CUT_DIV to accelerate foreign inode switching
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
cc395d7f
TH
39struct wb_completion {
40 atomic_t cnt;
41};
42
c4a77a6c
JA
43/*
44 * Passed into wb_writeback(), essentially a subset of writeback_control
45 */
83ba7b07 46struct wb_writeback_work {
c4a77a6c
JA
47 long nr_pages;
48 struct super_block *sb;
0dc83bd3 49 unsigned long *older_than_this;
c4a77a6c 50 enum writeback_sync_modes sync_mode;
6e6938b6 51 unsigned int tagged_writepages:1;
52957fe1
HS
52 unsigned int for_kupdate:1;
53 unsigned int range_cyclic:1;
54 unsigned int for_background:1;
7747bd4b 55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 56 unsigned int auto_free:1; /* free on completion */
0e175a18 57 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 58
8010c3b6 59 struct list_head list; /* pending work list */
cc395d7f 60 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
61};
62
cc395d7f
TH
63/*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
a2f48706
TT
76/*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
7ccf19a8
NP
88static inline struct inode *wb_inode(struct list_head *head)
89{
c7f54084 90 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
91}
92
15eb77a0
WF
93/*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98#define CREATE_TRACE_POINTS
99#include <trace/events/writeback.h>
100
774016b2
SW
101EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
d6c10f1f
TH
103static bool wb_io_lists_populated(struct bdi_writeback *wb)
104{
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
112 return true;
113 }
114}
115
116static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117{
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 120 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 123 }
d6c10f1f
TH
124}
125
126/**
c7f54084 127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
bbbc3c1c 130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 131 *
c7f54084 132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
c7f54084 136static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
137 struct bdi_writeback *wb,
138 struct list_head *head)
139{
140 assert_spin_locked(&wb->list_lock);
141
c7f54084 142 list_move(&inode->i_io_list, head);
d6c10f1f
TH
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150}
151
152/**
c7f54084 153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
c7f54084 160static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
161 struct bdi_writeback *wb)
162{
163 assert_spin_locked(&wb->list_lock);
164
c7f54084 165 list_del_init(&inode->i_io_list);
d6c10f1f
TH
166 wb_io_lists_depopulated(wb);
167}
168
f0054bb1 169static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 170{
f0054bb1
TH
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
175}
176
4a3a485b
TE
177static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179{
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186}
187
f0054bb1
TH
188static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
6585027a 190{
5634cc2a 191 trace_writeback_queue(wb, work);
6585027a 192
cc395d7f
TH
193 if (work->done)
194 atomic_inc(&work->done->cnt);
4a3a485b
TE
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
f0054bb1 204 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
205}
206
cc395d7f
TH
207/**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
218static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220{
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223}
224
703c2708
TH
225#ifdef CONFIG_CGROUP_WRITEBACK
226
55a694df
TH
227/*
228 * Parameters for foreign inode detection, see wbc_detach_inode() to see
229 * how they're used.
230 *
231 * These paramters are inherently heuristical as the detection target
232 * itself is fuzzy. All we want to do is detaching an inode from the
233 * current owner if it's being written to by some other cgroups too much.
234 *
235 * The current cgroup writeback is built on the assumption that multiple
236 * cgroups writing to the same inode concurrently is very rare and a mode
237 * of operation which isn't well supported. As such, the goal is not
238 * taking too long when a different cgroup takes over an inode while
239 * avoiding too aggressive flip-flops from occasional foreign writes.
240 *
241 * We record, very roughly, 2s worth of IO time history and if more than
242 * half of that is foreign, trigger the switch. The recording is quantized
243 * to 16 slots. To avoid tiny writes from swinging the decision too much,
244 * writes smaller than 1/8 of avg size are ignored.
245 */
2a814908
TH
246#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
247#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 248#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
249#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
250
251#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
252#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
253 /* each slot's duration is 2s / 16 */
254#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
255 /* if foreign slots >= 8, switch */
256#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
257 /* one round can affect upto 5 slots */
258
a1a0e23e
TH
259static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
260static struct workqueue_struct *isw_wq;
261
21c6321f
TH
262void __inode_attach_wb(struct inode *inode, struct page *page)
263{
264 struct backing_dev_info *bdi = inode_to_bdi(inode);
265 struct bdi_writeback *wb = NULL;
266
267 if (inode_cgwb_enabled(inode)) {
268 struct cgroup_subsys_state *memcg_css;
269
270 if (page) {
271 memcg_css = mem_cgroup_css_from_page(page);
272 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
273 } else {
274 /* must pin memcg_css, see wb_get_create() */
275 memcg_css = task_get_css(current, memory_cgrp_id);
276 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
277 css_put(memcg_css);
278 }
279 }
280
281 if (!wb)
282 wb = &bdi->wb;
283
284 /*
285 * There may be multiple instances of this function racing to
286 * update the same inode. Use cmpxchg() to tell the winner.
287 */
288 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
289 wb_put(wb);
290}
9b0eb69b 291EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 292
87e1d789
TH
293/**
294 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
295 * @inode: inode of interest with i_lock held
296 *
297 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
298 * held on entry and is released on return. The returned wb is guaranteed
299 * to stay @inode's associated wb until its list_lock is released.
300 */
301static struct bdi_writeback *
302locked_inode_to_wb_and_lock_list(struct inode *inode)
303 __releases(&inode->i_lock)
304 __acquires(&wb->list_lock)
305{
306 while (true) {
307 struct bdi_writeback *wb = inode_to_wb(inode);
308
309 /*
310 * inode_to_wb() association is protected by both
311 * @inode->i_lock and @wb->list_lock but list_lock nests
312 * outside i_lock. Drop i_lock and verify that the
313 * association hasn't changed after acquiring list_lock.
314 */
315 wb_get(wb);
316 spin_unlock(&inode->i_lock);
317 spin_lock(&wb->list_lock);
87e1d789 318
aaa2cacf 319 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
320 if (likely(wb == inode->i_wb)) {
321 wb_put(wb); /* @inode already has ref */
322 return wb;
323 }
87e1d789
TH
324
325 spin_unlock(&wb->list_lock);
614a4e37 326 wb_put(wb);
87e1d789
TH
327 cpu_relax();
328 spin_lock(&inode->i_lock);
329 }
330}
331
332/**
333 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
334 * @inode: inode of interest
335 *
336 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
337 * on entry.
338 */
339static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
340 __acquires(&wb->list_lock)
341{
342 spin_lock(&inode->i_lock);
343 return locked_inode_to_wb_and_lock_list(inode);
344}
345
682aa8e1
TH
346struct inode_switch_wbs_context {
347 struct inode *inode;
348 struct bdi_writeback *new_wb;
349
350 struct rcu_head rcu_head;
351 struct work_struct work;
352};
353
7fc5854f
TH
354static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
355{
356 down_write(&bdi->wb_switch_rwsem);
357}
358
359static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360{
361 up_write(&bdi->wb_switch_rwsem);
362}
363
682aa8e1
TH
364static void inode_switch_wbs_work_fn(struct work_struct *work)
365{
366 struct inode_switch_wbs_context *isw =
367 container_of(work, struct inode_switch_wbs_context, work);
368 struct inode *inode = isw->inode;
7fc5854f 369 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
370 struct address_space *mapping = inode->i_mapping;
371 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 372 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
373 XA_STATE(xas, &mapping->i_pages, 0);
374 struct page *page;
d10c8095 375 bool switched = false;
682aa8e1 376
7fc5854f
TH
377 /*
378 * If @inode switches cgwb membership while sync_inodes_sb() is
379 * being issued, sync_inodes_sb() might miss it. Synchronize.
380 */
381 down_read(&bdi->wb_switch_rwsem);
382
682aa8e1
TH
383 /*
384 * By the time control reaches here, RCU grace period has passed
385 * since I_WB_SWITCH assertion and all wb stat update transactions
386 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 387 * synchronizing against the i_pages lock.
d10c8095 388 *
b93b0163 389 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
390 * gives us exclusion against all wb related operations on @inode
391 * including IO list manipulations and stat updates.
682aa8e1 392 */
d10c8095
TH
393 if (old_wb < new_wb) {
394 spin_lock(&old_wb->list_lock);
395 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
396 } else {
397 spin_lock(&new_wb->list_lock);
398 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
399 }
682aa8e1 400 spin_lock(&inode->i_lock);
b93b0163 401 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
402
403 /*
404 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 405 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
406 */
407 if (unlikely(inode->i_state & I_FREEING))
408 goto skip_switch;
409
410 /*
411 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
412 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 413 * pages actually under writeback.
d10c8095 414 */
04edf02c
MW
415 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
416 if (PageDirty(page)) {
3e8f399d
NB
417 dec_wb_stat(old_wb, WB_RECLAIMABLE);
418 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
419 }
420 }
421
04edf02c
MW
422 xas_set(&xas, 0);
423 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
424 WARN_ON_ONCE(!PageWriteback(page));
425 dec_wb_stat(old_wb, WB_WRITEBACK);
426 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
427 }
428
429 wb_get(new_wb);
430
431 /*
432 * Transfer to @new_wb's IO list if necessary. The specific list
433 * @inode was on is ignored and the inode is put on ->b_dirty which
434 * is always correct including from ->b_dirty_time. The transfer
435 * preserves @inode->dirtied_when ordering.
436 */
c7f54084 437 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
438 struct inode *pos;
439
c7f54084 440 inode_io_list_del_locked(inode, old_wb);
d10c8095 441 inode->i_wb = new_wb;
c7f54084 442 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
443 if (time_after_eq(inode->dirtied_when,
444 pos->dirtied_when))
445 break;
c7f54084 446 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
447 } else {
448 inode->i_wb = new_wb;
449 }
682aa8e1 450
d10c8095 451 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
452 inode->i_wb_frn_winner = 0;
453 inode->i_wb_frn_avg_time = 0;
454 inode->i_wb_frn_history = 0;
d10c8095
TH
455 switched = true;
456skip_switch:
682aa8e1
TH
457 /*
458 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
459 * ensures that the new wb is visible if they see !I_WB_SWITCH.
460 */
461 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
462
b93b0163 463 xa_unlock_irq(&mapping->i_pages);
682aa8e1 464 spin_unlock(&inode->i_lock);
d10c8095
TH
465 spin_unlock(&new_wb->list_lock);
466 spin_unlock(&old_wb->list_lock);
682aa8e1 467
7fc5854f
TH
468 up_read(&bdi->wb_switch_rwsem);
469
d10c8095
TH
470 if (switched) {
471 wb_wakeup(new_wb);
472 wb_put(old_wb);
473 }
682aa8e1 474 wb_put(new_wb);
d10c8095
TH
475
476 iput(inode);
682aa8e1 477 kfree(isw);
a1a0e23e
TH
478
479 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
480}
481
482static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
483{
484 struct inode_switch_wbs_context *isw = container_of(rcu_head,
485 struct inode_switch_wbs_context, rcu_head);
486
487 /* needs to grab bh-unsafe locks, bounce to work item */
488 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 489 queue_work(isw_wq, &isw->work);
682aa8e1
TH
490}
491
492/**
493 * inode_switch_wbs - change the wb association of an inode
494 * @inode: target inode
495 * @new_wb_id: ID of the new wb
496 *
497 * Switch @inode's wb association to the wb identified by @new_wb_id. The
498 * switching is performed asynchronously and may fail silently.
499 */
500static void inode_switch_wbs(struct inode *inode, int new_wb_id)
501{
502 struct backing_dev_info *bdi = inode_to_bdi(inode);
503 struct cgroup_subsys_state *memcg_css;
504 struct inode_switch_wbs_context *isw;
505
506 /* noop if seems to be already in progress */
507 if (inode->i_state & I_WB_SWITCH)
508 return;
509
7fc5854f
TH
510 /*
511 * Avoid starting new switches while sync_inodes_sb() is in
512 * progress. Otherwise, if the down_write protected issue path
513 * blocks heavily, we might end up starting a large number of
514 * switches which will block on the rwsem.
515 */
516 if (!down_read_trylock(&bdi->wb_switch_rwsem))
517 return;
518
682aa8e1
TH
519 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
520 if (!isw)
7fc5854f 521 goto out_unlock;
682aa8e1
TH
522
523 /* find and pin the new wb */
524 rcu_read_lock();
525 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
526 if (memcg_css)
527 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
528 rcu_read_unlock();
529 if (!isw->new_wb)
530 goto out_free;
531
532 /* while holding I_WB_SWITCH, no one else can update the association */
533 spin_lock(&inode->i_lock);
1751e8a6 534 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
535 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
536 inode_to_wb(inode) == isw->new_wb) {
537 spin_unlock(&inode->i_lock);
538 goto out_free;
539 }
682aa8e1 540 inode->i_state |= I_WB_SWITCH;
74524955 541 __iget(inode);
682aa8e1
TH
542 spin_unlock(&inode->i_lock);
543
682aa8e1
TH
544 isw->inode = inode;
545
546 /*
547 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
548 * the RCU protected stat update paths to grab the i_page
549 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
550 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
551 */
552 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
553
554 atomic_inc(&isw_nr_in_flight);
555
7fc5854f 556 goto out_unlock;
682aa8e1
TH
557
558out_free:
559 if (isw->new_wb)
560 wb_put(isw->new_wb);
561 kfree(isw);
7fc5854f
TH
562out_unlock:
563 up_read(&bdi->wb_switch_rwsem);
682aa8e1
TH
564}
565
b16b1deb
TH
566/**
567 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
568 * @wbc: writeback_control of interest
569 * @inode: target inode
570 *
571 * @inode is locked and about to be written back under the control of @wbc.
572 * Record @inode's writeback context into @wbc and unlock the i_lock. On
573 * writeback completion, wbc_detach_inode() should be called. This is used
574 * to track the cgroup writeback context.
575 */
576void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
577 struct inode *inode)
578{
dd73e4b7
TH
579 if (!inode_cgwb_enabled(inode)) {
580 spin_unlock(&inode->i_lock);
581 return;
582 }
583
b16b1deb 584 wbc->wb = inode_to_wb(inode);
2a814908
TH
585 wbc->inode = inode;
586
587 wbc->wb_id = wbc->wb->memcg_css->id;
588 wbc->wb_lcand_id = inode->i_wb_frn_winner;
589 wbc->wb_tcand_id = 0;
590 wbc->wb_bytes = 0;
591 wbc->wb_lcand_bytes = 0;
592 wbc->wb_tcand_bytes = 0;
593
b16b1deb
TH
594 wb_get(wbc->wb);
595 spin_unlock(&inode->i_lock);
e8a7abf5
TH
596
597 /*
598 * A dying wb indicates that the memcg-blkcg mapping has changed
599 * and a new wb is already serving the memcg. Switch immediately.
600 */
601 if (unlikely(wb_dying(wbc->wb)))
602 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 603}
9b0eb69b 604EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
605
606/**
2a814908
TH
607 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
608 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
609 *
610 * To be called after a writeback attempt of an inode finishes and undoes
611 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
612 *
613 * As concurrent write sharing of an inode is expected to be very rare and
614 * memcg only tracks page ownership on first-use basis severely confining
615 * the usefulness of such sharing, cgroup writeback tracks ownership
616 * per-inode. While the support for concurrent write sharing of an inode
617 * is deemed unnecessary, an inode being written to by different cgroups at
618 * different points in time is a lot more common, and, more importantly,
619 * charging only by first-use can too readily lead to grossly incorrect
620 * behaviors (single foreign page can lead to gigabytes of writeback to be
621 * incorrectly attributed).
622 *
623 * To resolve this issue, cgroup writeback detects the majority dirtier of
624 * an inode and transfers the ownership to it. To avoid unnnecessary
625 * oscillation, the detection mechanism keeps track of history and gives
626 * out the switch verdict only if the foreign usage pattern is stable over
627 * a certain amount of time and/or writeback attempts.
628 *
629 * On each writeback attempt, @wbc tries to detect the majority writer
630 * using Boyer-Moore majority vote algorithm. In addition to the byte
631 * count from the majority voting, it also counts the bytes written for the
632 * current wb and the last round's winner wb (max of last round's current
633 * wb, the winner from two rounds ago, and the last round's majority
634 * candidate). Keeping track of the historical winner helps the algorithm
635 * to semi-reliably detect the most active writer even when it's not the
636 * absolute majority.
637 *
638 * Once the winner of the round is determined, whether the winner is
639 * foreign or not and how much IO time the round consumed is recorded in
640 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
641 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
642 */
643void wbc_detach_inode(struct writeback_control *wbc)
644{
2a814908
TH
645 struct bdi_writeback *wb = wbc->wb;
646 struct inode *inode = wbc->inode;
dd73e4b7
TH
647 unsigned long avg_time, max_bytes, max_time;
648 u16 history;
2a814908
TH
649 int max_id;
650
dd73e4b7
TH
651 if (!wb)
652 return;
653
654 history = inode->i_wb_frn_history;
655 avg_time = inode->i_wb_frn_avg_time;
656
2a814908
TH
657 /* pick the winner of this round */
658 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
659 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
660 max_id = wbc->wb_id;
661 max_bytes = wbc->wb_bytes;
662 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
663 max_id = wbc->wb_lcand_id;
664 max_bytes = wbc->wb_lcand_bytes;
665 } else {
666 max_id = wbc->wb_tcand_id;
667 max_bytes = wbc->wb_tcand_bytes;
668 }
669
670 /*
671 * Calculate the amount of IO time the winner consumed and fold it
672 * into the running average kept per inode. If the consumed IO
673 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
674 * deciding whether to switch or not. This is to prevent one-off
675 * small dirtiers from skewing the verdict.
676 */
677 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
678 wb->avg_write_bandwidth);
679 if (avg_time)
680 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
681 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
682 else
683 avg_time = max_time; /* immediate catch up on first run */
684
685 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
686 int slots;
687
688 /*
689 * The switch verdict is reached if foreign wb's consume
690 * more than a certain proportion of IO time in a
691 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
692 * history mask where each bit represents one sixteenth of
693 * the period. Determine the number of slots to shift into
694 * history from @max_time.
695 */
696 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
697 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
698 history <<= slots;
699 if (wbc->wb_id != max_id)
700 history |= (1U << slots) - 1;
701
702 /*
703 * Switch if the current wb isn't the consistent winner.
704 * If there are multiple closely competing dirtiers, the
705 * inode may switch across them repeatedly over time, which
706 * is okay. The main goal is avoiding keeping an inode on
707 * the wrong wb for an extended period of time.
708 */
682aa8e1
TH
709 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
710 inode_switch_wbs(inode, max_id);
2a814908
TH
711 }
712
713 /*
714 * Multiple instances of this function may race to update the
715 * following fields but we don't mind occassional inaccuracies.
716 */
717 inode->i_wb_frn_winner = max_id;
718 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
719 inode->i_wb_frn_history = history;
720
b16b1deb
TH
721 wb_put(wbc->wb);
722 wbc->wb = NULL;
723}
9b0eb69b 724EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 725
2a814908 726/**
34e51a5e 727 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
728 * @wbc: writeback_control of the writeback in progress
729 * @page: page being written out
730 * @bytes: number of bytes being written out
731 *
732 * @bytes from @page are about to written out during the writeback
733 * controlled by @wbc. Keep the book for foreign inode detection. See
734 * wbc_detach_inode().
735 */
34e51a5e
TH
736void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
737 size_t bytes)
2a814908 738{
66311422 739 struct cgroup_subsys_state *css;
2a814908
TH
740 int id;
741
742 /*
743 * pageout() path doesn't attach @wbc to the inode being written
744 * out. This is intentional as we don't want the function to block
745 * behind a slow cgroup. Ultimately, we want pageout() to kick off
746 * regular writeback instead of writing things out itself.
747 */
27b36d8f 748 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
749 return;
750
66311422
TH
751 css = mem_cgroup_css_from_page(page);
752 /* dead cgroups shouldn't contribute to inode ownership arbitration */
753 if (!(css->flags & CSS_ONLINE))
754 return;
755
756 id = css->id;
2a814908
TH
757
758 if (id == wbc->wb_id) {
759 wbc->wb_bytes += bytes;
760 return;
761 }
762
763 if (id == wbc->wb_lcand_id)
764 wbc->wb_lcand_bytes += bytes;
765
766 /* Boyer-Moore majority vote algorithm */
767 if (!wbc->wb_tcand_bytes)
768 wbc->wb_tcand_id = id;
769 if (id == wbc->wb_tcand_id)
770 wbc->wb_tcand_bytes += bytes;
771 else
772 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
773}
34e51a5e 774EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 775
703c2708
TH
776/**
777 * inode_congested - test whether an inode is congested
60292bcc 778 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
779 * @cong_bits: mask of WB_[a]sync_congested bits to test
780 *
781 * Tests whether @inode is congested. @cong_bits is the mask of congestion
782 * bits to test and the return value is the mask of set bits.
783 *
784 * If cgroup writeback is enabled for @inode, the congestion state is
785 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
786 * associated with @inode is congested; otherwise, the root wb's congestion
787 * state is used.
60292bcc
TH
788 *
789 * @inode is allowed to be NULL as this function is often called on
790 * mapping->host which is NULL for the swapper space.
703c2708
TH
791 */
792int inode_congested(struct inode *inode, int cong_bits)
793{
5cb8b824
TH
794 /*
795 * Once set, ->i_wb never becomes NULL while the inode is alive.
796 * Start transaction iff ->i_wb is visible.
797 */
aaa2cacf 798 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 799 struct bdi_writeback *wb;
2e898e4c
GT
800 struct wb_lock_cookie lock_cookie = {};
801 bool congested;
5cb8b824 802
2e898e4c 803 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 804 congested = wb_congested(wb, cong_bits);
2e898e4c 805 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 806 return congested;
703c2708
TH
807 }
808
809 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
810}
811EXPORT_SYMBOL_GPL(inode_congested);
812
f2b65121
TH
813/**
814 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
815 * @wb: target bdi_writeback to split @nr_pages to
816 * @nr_pages: number of pages to write for the whole bdi
817 *
818 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
819 * relation to the total write bandwidth of all wb's w/ dirty inodes on
820 * @wb->bdi.
821 */
822static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
823{
824 unsigned long this_bw = wb->avg_write_bandwidth;
825 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
826
827 if (nr_pages == LONG_MAX)
828 return LONG_MAX;
829
830 /*
831 * This may be called on clean wb's and proportional distribution
832 * may not make sense, just use the original @nr_pages in those
833 * cases. In general, we wanna err on the side of writing more.
834 */
835 if (!tot_bw || this_bw >= tot_bw)
836 return nr_pages;
837 else
838 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
839}
840
db125360
TH
841/**
842 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
843 * @bdi: target backing_dev_info
844 * @base_work: wb_writeback_work to issue
845 * @skip_if_busy: skip wb's which already have writeback in progress
846 *
847 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
848 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
849 * distributed to the busy wbs according to each wb's proportion in the
850 * total active write bandwidth of @bdi.
851 */
852static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
853 struct wb_writeback_work *base_work,
854 bool skip_if_busy)
855{
b817525a 856 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
857 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
858 struct bdi_writeback, bdi_node);
db125360
TH
859
860 might_sleep();
db125360
TH
861restart:
862 rcu_read_lock();
b817525a 863 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
864 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
865 struct wb_writeback_work fallback_work;
866 struct wb_writeback_work *work;
867 long nr_pages;
868
b817525a
TH
869 if (last_wb) {
870 wb_put(last_wb);
871 last_wb = NULL;
872 }
873
006a0973
TH
874 /* SYNC_ALL writes out I_DIRTY_TIME too */
875 if (!wb_has_dirty_io(wb) &&
876 (base_work->sync_mode == WB_SYNC_NONE ||
877 list_empty(&wb->b_dirty_time)))
878 continue;
879 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
880 continue;
881
8a1270cd
TH
882 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
883
884 work = kmalloc(sizeof(*work), GFP_ATOMIC);
885 if (work) {
886 *work = *base_work;
887 work->nr_pages = nr_pages;
888 work->auto_free = 1;
889 wb_queue_work(wb, work);
890 continue;
db125360 891 }
8a1270cd
TH
892
893 /* alloc failed, execute synchronously using on-stack fallback */
894 work = &fallback_work;
895 *work = *base_work;
896 work->nr_pages = nr_pages;
897 work->auto_free = 0;
898 work->done = &fallback_work_done;
899
900 wb_queue_work(wb, work);
901
b817525a
TH
902 /*
903 * Pin @wb so that it stays on @bdi->wb_list. This allows
904 * continuing iteration from @wb after dropping and
905 * regrabbing rcu read lock.
906 */
907 wb_get(wb);
908 last_wb = wb;
909
8a1270cd
TH
910 rcu_read_unlock();
911 wb_wait_for_completion(bdi, &fallback_work_done);
912 goto restart;
db125360
TH
913 }
914 rcu_read_unlock();
b817525a
TH
915
916 if (last_wb)
917 wb_put(last_wb);
db125360
TH
918}
919
a1a0e23e
TH
920/**
921 * cgroup_writeback_umount - flush inode wb switches for umount
922 *
923 * This function is called when a super_block is about to be destroyed and
924 * flushes in-flight inode wb switches. An inode wb switch goes through
925 * RCU and then workqueue, so the two need to be flushed in order to ensure
926 * that all previously scheduled switches are finished. As wb switches are
927 * rare occurrences and synchronize_rcu() can take a while, perform
928 * flushing iff wb switches are in flight.
929 */
930void cgroup_writeback_umount(void)
931{
932 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
933 /*
934 * Use rcu_barrier() to wait for all pending callbacks to
935 * ensure that all in-flight wb switches are in the workqueue.
936 */
937 rcu_barrier();
a1a0e23e
TH
938 flush_workqueue(isw_wq);
939 }
940}
941
942static int __init cgroup_writeback_init(void)
943{
944 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
945 if (!isw_wq)
946 return -ENOMEM;
947 return 0;
948}
949fs_initcall(cgroup_writeback_init);
950
f2b65121
TH
951#else /* CONFIG_CGROUP_WRITEBACK */
952
7fc5854f
TH
953static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
954static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
955
87e1d789
TH
956static struct bdi_writeback *
957locked_inode_to_wb_and_lock_list(struct inode *inode)
958 __releases(&inode->i_lock)
959 __acquires(&wb->list_lock)
960{
961 struct bdi_writeback *wb = inode_to_wb(inode);
962
963 spin_unlock(&inode->i_lock);
964 spin_lock(&wb->list_lock);
965 return wb;
966}
967
968static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
969 __acquires(&wb->list_lock)
970{
971 struct bdi_writeback *wb = inode_to_wb(inode);
972
973 spin_lock(&wb->list_lock);
974 return wb;
975}
976
f2b65121
TH
977static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
978{
979 return nr_pages;
980}
981
db125360
TH
982static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
983 struct wb_writeback_work *base_work,
984 bool skip_if_busy)
985{
986 might_sleep();
987
006a0973 988 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 989 base_work->auto_free = 0;
db125360
TH
990 wb_queue_work(&bdi->wb, base_work);
991 }
992}
993
703c2708
TH
994#endif /* CONFIG_CGROUP_WRITEBACK */
995
e8e8a0c6
JA
996/*
997 * Add in the number of potentially dirty inodes, because each inode
998 * write can dirty pagecache in the underlying blockdev.
999 */
1000static unsigned long get_nr_dirty_pages(void)
1001{
1002 return global_node_page_state(NR_FILE_DIRTY) +
1003 global_node_page_state(NR_UNSTABLE_NFS) +
1004 get_nr_dirty_inodes();
1005}
1006
1007static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1008{
c00ddad3
TH
1009 if (!wb_has_dirty_io(wb))
1010 return;
1011
aac8d41c
JA
1012 /*
1013 * All callers of this function want to start writeback of all
1014 * dirty pages. Places like vmscan can call this at a very
1015 * high frequency, causing pointless allocations of tons of
1016 * work items and keeping the flusher threads busy retrieving
1017 * that work. Ensure that we only allow one of them pending and
85009b4f 1018 * inflight at the time.
aac8d41c 1019 */
85009b4f
JA
1020 if (test_bit(WB_start_all, &wb->state) ||
1021 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1022 return;
1023
85009b4f
JA
1024 wb->start_all_reason = reason;
1025 wb_wakeup(wb);
c5444198 1026}
d3ddec76 1027
c5444198 1028/**
9ecf4866
TH
1029 * wb_start_background_writeback - start background writeback
1030 * @wb: bdi_writback to write from
c5444198
CH
1031 *
1032 * Description:
6585027a 1033 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1034 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1035 * some IO is happening if we are over background dirty threshold.
1036 * Caller need not hold sb s_umount semaphore.
c5444198 1037 */
9ecf4866 1038void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1039{
6585027a
JK
1040 /*
1041 * We just wake up the flusher thread. It will perform background
1042 * writeback as soon as there is no other work to do.
1043 */
5634cc2a 1044 trace_writeback_wake_background(wb);
9ecf4866 1045 wb_wakeup(wb);
1da177e4
LT
1046}
1047
a66979ab
DC
1048/*
1049 * Remove the inode from the writeback list it is on.
1050 */
c7f54084 1051void inode_io_list_del(struct inode *inode)
a66979ab 1052{
87e1d789 1053 struct bdi_writeback *wb;
f758eeab 1054
87e1d789 1055 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1056 inode_io_list_del_locked(inode, wb);
52ebea74 1057 spin_unlock(&wb->list_lock);
a66979ab
DC
1058}
1059
6c60d2b5
DC
1060/*
1061 * mark an inode as under writeback on the sb
1062 */
1063void sb_mark_inode_writeback(struct inode *inode)
1064{
1065 struct super_block *sb = inode->i_sb;
1066 unsigned long flags;
1067
1068 if (list_empty(&inode->i_wb_list)) {
1069 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1070 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1071 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1072 trace_sb_mark_inode_writeback(inode);
1073 }
6c60d2b5
DC
1074 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1075 }
1076}
1077
1078/*
1079 * clear an inode as under writeback on the sb
1080 */
1081void sb_clear_inode_writeback(struct inode *inode)
1082{
1083 struct super_block *sb = inode->i_sb;
1084 unsigned long flags;
1085
1086 if (!list_empty(&inode->i_wb_list)) {
1087 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1088 if (!list_empty(&inode->i_wb_list)) {
1089 list_del_init(&inode->i_wb_list);
1090 trace_sb_clear_inode_writeback(inode);
1091 }
6c60d2b5
DC
1092 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1093 }
1094}
1095
6610a0bc
AM
1096/*
1097 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1098 * furthest end of its superblock's dirty-inode list.
1099 *
1100 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1101 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1102 * the case then the inode must have been redirtied while it was being written
1103 * out and we don't reset its dirtied_when.
1104 */
f758eeab 1105static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1106{
03ba3782 1107 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1108 struct inode *tail;
6610a0bc 1109
7ccf19a8 1110 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1111 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1112 inode->dirtied_when = jiffies;
1113 }
c7f54084 1114 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1115}
1116
c986d1e2 1117/*
66f3b8e2 1118 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1119 */
f758eeab 1120static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1121{
c7f54084 1122 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1123}
1124
1c0eeaf5
JE
1125static void inode_sync_complete(struct inode *inode)
1126{
365b94ae 1127 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1128 /* If inode is clean an unused, put it into LRU now... */
1129 inode_add_lru(inode);
365b94ae 1130 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1131 smp_mb();
1132 wake_up_bit(&inode->i_state, __I_SYNC);
1133}
1134
d2caa3c5
JL
1135static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1136{
1137 bool ret = time_after(inode->dirtied_when, t);
1138#ifndef CONFIG_64BIT
1139 /*
1140 * For inodes being constantly redirtied, dirtied_when can get stuck.
1141 * It _appears_ to be in the future, but is actually in distant past.
1142 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1143 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1144 */
1145 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1146#endif
1147 return ret;
1148}
1149
0ae45f63
TT
1150#define EXPIRE_DIRTY_ATIME 0x0001
1151
2c136579 1152/*
0e2f2b23 1153 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1154 * @delaying_queue to @dispatch_queue.
2c136579 1155 */
e84d0a4f 1156static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1157 struct list_head *dispatch_queue,
0ae45f63 1158 int flags,
ad4e38dd 1159 struct wb_writeback_work *work)
2c136579 1160{
0ae45f63
TT
1161 unsigned long *older_than_this = NULL;
1162 unsigned long expire_time;
5c03449d
SL
1163 LIST_HEAD(tmp);
1164 struct list_head *pos, *node;
cf137307 1165 struct super_block *sb = NULL;
5c03449d 1166 struct inode *inode;
cf137307 1167 int do_sb_sort = 0;
e84d0a4f 1168 int moved = 0;
5c03449d 1169
0ae45f63
TT
1170 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1171 older_than_this = work->older_than_this;
a2f48706
TT
1172 else if (!work->for_sync) {
1173 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1174 older_than_this = &expire_time;
1175 }
2c136579 1176 while (!list_empty(delaying_queue)) {
7ccf19a8 1177 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1178 if (older_than_this &&
1179 inode_dirtied_after(inode, *older_than_this))
2c136579 1180 break;
c7f54084 1181 list_move(&inode->i_io_list, &tmp);
a8855990 1182 moved++;
0ae45f63
TT
1183 if (flags & EXPIRE_DIRTY_ATIME)
1184 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1185 if (sb_is_blkdev_sb(inode->i_sb))
1186 continue;
cf137307
JA
1187 if (sb && sb != inode->i_sb)
1188 do_sb_sort = 1;
1189 sb = inode->i_sb;
5c03449d
SL
1190 }
1191
cf137307
JA
1192 /* just one sb in list, splice to dispatch_queue and we're done */
1193 if (!do_sb_sort) {
1194 list_splice(&tmp, dispatch_queue);
e84d0a4f 1195 goto out;
cf137307
JA
1196 }
1197
5c03449d
SL
1198 /* Move inodes from one superblock together */
1199 while (!list_empty(&tmp)) {
7ccf19a8 1200 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1201 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1202 inode = wb_inode(pos);
5c03449d 1203 if (inode->i_sb == sb)
c7f54084 1204 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1205 }
2c136579 1206 }
e84d0a4f
WF
1207out:
1208 return moved;
2c136579
FW
1209}
1210
1211/*
1212 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1213 * Before
1214 * newly dirtied b_dirty b_io b_more_io
1215 * =============> gf edc BA
1216 * After
1217 * newly dirtied b_dirty b_io b_more_io
1218 * =============> g fBAedc
1219 * |
1220 * +--> dequeue for IO
2c136579 1221 */
ad4e38dd 1222static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1223{
e84d0a4f 1224 int moved;
0ae45f63 1225
f758eeab 1226 assert_spin_locked(&wb->list_lock);
4ea879b9 1227 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1228 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1229 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1230 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1231 if (moved)
1232 wb_io_lists_populated(wb);
ad4e38dd 1233 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1234}
1235
a9185b41 1236static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1237{
9fb0a7da
TH
1238 int ret;
1239
1240 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1241 trace_writeback_write_inode_start(inode, wbc);
1242 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1243 trace_writeback_write_inode(inode, wbc);
1244 return ret;
1245 }
03ba3782 1246 return 0;
08d8e974 1247}
08d8e974 1248
1da177e4 1249/*
169ebd90
JK
1250 * Wait for writeback on an inode to complete. Called with i_lock held.
1251 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1252 */
169ebd90
JK
1253static void __inode_wait_for_writeback(struct inode *inode)
1254 __releases(inode->i_lock)
1255 __acquires(inode->i_lock)
01c03194
CH
1256{
1257 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1258 wait_queue_head_t *wqh;
1259
1260 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1261 while (inode->i_state & I_SYNC) {
1262 spin_unlock(&inode->i_lock);
74316201
N
1263 __wait_on_bit(wqh, &wq, bit_wait,
1264 TASK_UNINTERRUPTIBLE);
250df6ed 1265 spin_lock(&inode->i_lock);
58a9d3d8 1266 }
01c03194
CH
1267}
1268
169ebd90
JK
1269/*
1270 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1271 */
1272void inode_wait_for_writeback(struct inode *inode)
1273{
1274 spin_lock(&inode->i_lock);
1275 __inode_wait_for_writeback(inode);
1276 spin_unlock(&inode->i_lock);
1277}
1278
1279/*
1280 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1281 * held and drops it. It is aimed for callers not holding any inode reference
1282 * so once i_lock is dropped, inode can go away.
1283 */
1284static void inode_sleep_on_writeback(struct inode *inode)
1285 __releases(inode->i_lock)
1286{
1287 DEFINE_WAIT(wait);
1288 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1289 int sleep;
1290
1291 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1292 sleep = inode->i_state & I_SYNC;
1293 spin_unlock(&inode->i_lock);
1294 if (sleep)
1295 schedule();
1296 finish_wait(wqh, &wait);
1297}
1298
ccb26b5a
JK
1299/*
1300 * Find proper writeback list for the inode depending on its current state and
1301 * possibly also change of its state while we were doing writeback. Here we
1302 * handle things such as livelock prevention or fairness of writeback among
1303 * inodes. This function can be called only by flusher thread - noone else
1304 * processes all inodes in writeback lists and requeueing inodes behind flusher
1305 * thread's back can have unexpected consequences.
1306 */
1307static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1308 struct writeback_control *wbc)
1309{
1310 if (inode->i_state & I_FREEING)
1311 return;
1312
1313 /*
1314 * Sync livelock prevention. Each inode is tagged and synced in one
1315 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1316 * the dirty time to prevent enqueue and sync it again.
1317 */
1318 if ((inode->i_state & I_DIRTY) &&
1319 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1320 inode->dirtied_when = jiffies;
1321
4f8ad655
JK
1322 if (wbc->pages_skipped) {
1323 /*
1324 * writeback is not making progress due to locked
1325 * buffers. Skip this inode for now.
1326 */
1327 redirty_tail(inode, wb);
1328 return;
1329 }
1330
ccb26b5a
JK
1331 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1332 /*
1333 * We didn't write back all the pages. nfs_writepages()
1334 * sometimes bales out without doing anything.
1335 */
1336 if (wbc->nr_to_write <= 0) {
1337 /* Slice used up. Queue for next turn. */
1338 requeue_io(inode, wb);
1339 } else {
1340 /*
1341 * Writeback blocked by something other than
1342 * congestion. Delay the inode for some time to
1343 * avoid spinning on the CPU (100% iowait)
1344 * retrying writeback of the dirty page/inode
1345 * that cannot be performed immediately.
1346 */
1347 redirty_tail(inode, wb);
1348 }
1349 } else if (inode->i_state & I_DIRTY) {
1350 /*
1351 * Filesystems can dirty the inode during writeback operations,
1352 * such as delayed allocation during submission or metadata
1353 * updates after data IO completion.
1354 */
1355 redirty_tail(inode, wb);
0ae45f63 1356 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1357 inode->dirtied_when = jiffies;
c7f54084 1358 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1359 } else {
1360 /* The inode is clean. Remove from writeback lists. */
c7f54084 1361 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1362 }
1363}
1364
01c03194 1365/*
4f8ad655
JK
1366 * Write out an inode and its dirty pages. Do not update the writeback list
1367 * linkage. That is left to the caller. The caller is also responsible for
1368 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1369 */
1370static int
cd8ed2a4 1371__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1372{
1da177e4 1373 struct address_space *mapping = inode->i_mapping;
251d6a47 1374 long nr_to_write = wbc->nr_to_write;
01c03194 1375 unsigned dirty;
1da177e4
LT
1376 int ret;
1377
4f8ad655 1378 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1379
9fb0a7da
TH
1380 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1381
1da177e4
LT
1382 ret = do_writepages(mapping, wbc);
1383
26821ed4
CH
1384 /*
1385 * Make sure to wait on the data before writing out the metadata.
1386 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1387 * I/O completion. We don't do it for sync(2) writeback because it has a
1388 * separate, external IO completion path and ->sync_fs for guaranteeing
1389 * inode metadata is written back correctly.
26821ed4 1390 */
7747bd4b 1391 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1392 int err = filemap_fdatawait(mapping);
1da177e4
LT
1393 if (ret == 0)
1394 ret = err;
1395 }
1396
5547e8aa
DM
1397 /*
1398 * Some filesystems may redirty the inode during the writeback
1399 * due to delalloc, clear dirty metadata flags right before
1400 * write_inode()
1401 */
250df6ed 1402 spin_lock(&inode->i_lock);
9c6ac78e 1403
5547e8aa 1404 dirty = inode->i_state & I_DIRTY;
a2f48706 1405 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1406 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1407 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1408 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1409 unlikely(time_after(jiffies,
1410 (inode->dirtied_time_when +
1411 dirtytime_expire_interval * HZ)))) {
1412 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1413 trace_writeback_lazytime(inode);
1414 }
1415 } else
1416 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1417 inode->i_state &= ~dirty;
9c6ac78e
TH
1418
1419 /*
1420 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1421 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1422 * either they see the I_DIRTY bits cleared or we see the dirtied
1423 * inode.
1424 *
1425 * I_DIRTY_PAGES is always cleared together above even if @mapping
1426 * still has dirty pages. The flag is reinstated after smp_mb() if
1427 * necessary. This guarantees that either __mark_inode_dirty()
1428 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1429 */
1430 smp_mb();
1431
1432 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1433 inode->i_state |= I_DIRTY_PAGES;
1434
250df6ed 1435 spin_unlock(&inode->i_lock);
9c6ac78e 1436
0ae45f63
TT
1437 if (dirty & I_DIRTY_TIME)
1438 mark_inode_dirty_sync(inode);
26821ed4 1439 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1440 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1441 int err = write_inode(inode, wbc);
1da177e4
LT
1442 if (ret == 0)
1443 ret = err;
1444 }
4f8ad655
JK
1445 trace_writeback_single_inode(inode, wbc, nr_to_write);
1446 return ret;
1447}
1448
1449/*
1450 * Write out an inode's dirty pages. Either the caller has an active reference
1451 * on the inode or the inode has I_WILL_FREE set.
1452 *
1453 * This function is designed to be called for writing back one inode which
1454 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1455 * and does more profound writeback list handling in writeback_sb_inodes().
1456 */
aaf25593
TH
1457static int writeback_single_inode(struct inode *inode,
1458 struct writeback_control *wbc)
4f8ad655 1459{
aaf25593 1460 struct bdi_writeback *wb;
4f8ad655
JK
1461 int ret = 0;
1462
1463 spin_lock(&inode->i_lock);
1464 if (!atomic_read(&inode->i_count))
1465 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1466 else
1467 WARN_ON(inode->i_state & I_WILL_FREE);
1468
1469 if (inode->i_state & I_SYNC) {
1470 if (wbc->sync_mode != WB_SYNC_ALL)
1471 goto out;
1472 /*
169ebd90
JK
1473 * It's a data-integrity sync. We must wait. Since callers hold
1474 * inode reference or inode has I_WILL_FREE set, it cannot go
1475 * away under us.
4f8ad655 1476 */
169ebd90 1477 __inode_wait_for_writeback(inode);
4f8ad655
JK
1478 }
1479 WARN_ON(inode->i_state & I_SYNC);
1480 /*
f9b0e058
JK
1481 * Skip inode if it is clean and we have no outstanding writeback in
1482 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1483 * function since flusher thread may be doing for example sync in
1484 * parallel and if we move the inode, it could get skipped. So here we
1485 * make sure inode is on some writeback list and leave it there unless
1486 * we have completely cleaned the inode.
4f8ad655 1487 */
0ae45f63 1488 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1489 (wbc->sync_mode != WB_SYNC_ALL ||
1490 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1491 goto out;
1492 inode->i_state |= I_SYNC;
b16b1deb 1493 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1494
cd8ed2a4 1495 ret = __writeback_single_inode(inode, wbc);
1da177e4 1496
b16b1deb 1497 wbc_detach_inode(wbc);
aaf25593
TH
1498
1499 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1500 spin_lock(&inode->i_lock);
4f8ad655
JK
1501 /*
1502 * If inode is clean, remove it from writeback lists. Otherwise don't
1503 * touch it. See comment above for explanation.
1504 */
0ae45f63 1505 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1506 inode_io_list_del_locked(inode, wb);
4f8ad655 1507 spin_unlock(&wb->list_lock);
1c0eeaf5 1508 inode_sync_complete(inode);
4f8ad655
JK
1509out:
1510 spin_unlock(&inode->i_lock);
1da177e4
LT
1511 return ret;
1512}
1513
a88a341a 1514static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1515 struct wb_writeback_work *work)
d46db3d5
WF
1516{
1517 long pages;
1518
1519 /*
1520 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1521 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1522 * here avoids calling into writeback_inodes_wb() more than once.
1523 *
1524 * The intended call sequence for WB_SYNC_ALL writeback is:
1525 *
1526 * wb_writeback()
1527 * writeback_sb_inodes() <== called only once
1528 * write_cache_pages() <== called once for each inode
1529 * (quickly) tag currently dirty pages
1530 * (maybe slowly) sync all tagged pages
1531 */
1532 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1533 pages = LONG_MAX;
1a12d8bd 1534 else {
a88a341a 1535 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1536 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1537 pages = min(pages, work->nr_pages);
1538 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1539 MIN_WRITEBACK_PAGES);
1540 }
d46db3d5
WF
1541
1542 return pages;
1543}
1544
f11c9c5c
ES
1545/*
1546 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1547 *
d46db3d5 1548 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1549 *
1550 * NOTE! This is called with wb->list_lock held, and will
1551 * unlock and relock that for each inode it ends up doing
1552 * IO for.
f11c9c5c 1553 */
d46db3d5
WF
1554static long writeback_sb_inodes(struct super_block *sb,
1555 struct bdi_writeback *wb,
1556 struct wb_writeback_work *work)
1da177e4 1557{
d46db3d5
WF
1558 struct writeback_control wbc = {
1559 .sync_mode = work->sync_mode,
1560 .tagged_writepages = work->tagged_writepages,
1561 .for_kupdate = work->for_kupdate,
1562 .for_background = work->for_background,
7747bd4b 1563 .for_sync = work->for_sync,
d46db3d5
WF
1564 .range_cyclic = work->range_cyclic,
1565 .range_start = 0,
1566 .range_end = LLONG_MAX,
1567 };
1568 unsigned long start_time = jiffies;
1569 long write_chunk;
1570 long wrote = 0; /* count both pages and inodes */
1571
03ba3782 1572 while (!list_empty(&wb->b_io)) {
7ccf19a8 1573 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1574 struct bdi_writeback *tmp_wb;
edadfb10
CH
1575
1576 if (inode->i_sb != sb) {
d46db3d5 1577 if (work->sb) {
edadfb10
CH
1578 /*
1579 * We only want to write back data for this
1580 * superblock, move all inodes not belonging
1581 * to it back onto the dirty list.
1582 */
f758eeab 1583 redirty_tail(inode, wb);
edadfb10
CH
1584 continue;
1585 }
1586
1587 /*
1588 * The inode belongs to a different superblock.
1589 * Bounce back to the caller to unpin this and
1590 * pin the next superblock.
1591 */
d46db3d5 1592 break;
edadfb10
CH
1593 }
1594
9843b76a 1595 /*
331cbdee
WL
1596 * Don't bother with new inodes or inodes being freed, first
1597 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1598 * kind writeout is handled by the freer.
1599 */
250df6ed 1600 spin_lock(&inode->i_lock);
9843b76a 1601 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1602 spin_unlock(&inode->i_lock);
fcc5c222 1603 redirty_tail(inode, wb);
7ef0d737
NP
1604 continue;
1605 }
cc1676d9
JK
1606 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1607 /*
1608 * If this inode is locked for writeback and we are not
1609 * doing writeback-for-data-integrity, move it to
1610 * b_more_io so that writeback can proceed with the
1611 * other inodes on s_io.
1612 *
1613 * We'll have another go at writing back this inode
1614 * when we completed a full scan of b_io.
1615 */
1616 spin_unlock(&inode->i_lock);
1617 requeue_io(inode, wb);
1618 trace_writeback_sb_inodes_requeue(inode);
1619 continue;
1620 }
f0d07b7f
JK
1621 spin_unlock(&wb->list_lock);
1622
4f8ad655
JK
1623 /*
1624 * We already requeued the inode if it had I_SYNC set and we
1625 * are doing WB_SYNC_NONE writeback. So this catches only the
1626 * WB_SYNC_ALL case.
1627 */
169ebd90
JK
1628 if (inode->i_state & I_SYNC) {
1629 /* Wait for I_SYNC. This function drops i_lock... */
1630 inode_sleep_on_writeback(inode);
1631 /* Inode may be gone, start again */
ead188f9 1632 spin_lock(&wb->list_lock);
169ebd90
JK
1633 continue;
1634 }
4f8ad655 1635 inode->i_state |= I_SYNC;
b16b1deb 1636 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1637
a88a341a 1638 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1639 wbc.nr_to_write = write_chunk;
1640 wbc.pages_skipped = 0;
250df6ed 1641
169ebd90
JK
1642 /*
1643 * We use I_SYNC to pin the inode in memory. While it is set
1644 * evict_inode() will wait so the inode cannot be freed.
1645 */
cd8ed2a4 1646 __writeback_single_inode(inode, &wbc);
250df6ed 1647
b16b1deb 1648 wbc_detach_inode(&wbc);
d46db3d5
WF
1649 work->nr_pages -= write_chunk - wbc.nr_to_write;
1650 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1651
1652 if (need_resched()) {
1653 /*
1654 * We're trying to balance between building up a nice
1655 * long list of IOs to improve our merge rate, and
1656 * getting those IOs out quickly for anyone throttling
1657 * in balance_dirty_pages(). cond_resched() doesn't
1658 * unplug, so get our IOs out the door before we
1659 * give up the CPU.
1660 */
1661 blk_flush_plug(current);
1662 cond_resched();
1663 }
1664
aaf25593
TH
1665 /*
1666 * Requeue @inode if still dirty. Be careful as @inode may
1667 * have been switched to another wb in the meantime.
1668 */
1669 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1670 spin_lock(&inode->i_lock);
0ae45f63 1671 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1672 wrote++;
aaf25593 1673 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1674 inode_sync_complete(inode);
0f1b1fd8 1675 spin_unlock(&inode->i_lock);
590dca3a 1676
aaf25593
TH
1677 if (unlikely(tmp_wb != wb)) {
1678 spin_unlock(&tmp_wb->list_lock);
1679 spin_lock(&wb->list_lock);
1680 }
1681
d46db3d5
WF
1682 /*
1683 * bail out to wb_writeback() often enough to check
1684 * background threshold and other termination conditions.
1685 */
1686 if (wrote) {
1687 if (time_is_before_jiffies(start_time + HZ / 10UL))
1688 break;
1689 if (work->nr_pages <= 0)
1690 break;
8bc3be27 1691 }
1da177e4 1692 }
d46db3d5 1693 return wrote;
f11c9c5c
ES
1694}
1695
d46db3d5
WF
1696static long __writeback_inodes_wb(struct bdi_writeback *wb,
1697 struct wb_writeback_work *work)
f11c9c5c 1698{
d46db3d5
WF
1699 unsigned long start_time = jiffies;
1700 long wrote = 0;
38f21977 1701
f11c9c5c 1702 while (!list_empty(&wb->b_io)) {
7ccf19a8 1703 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1704 struct super_block *sb = inode->i_sb;
9ecc2738 1705
eb6ef3df 1706 if (!trylock_super(sb)) {
0e995816 1707 /*
eb6ef3df 1708 * trylock_super() may fail consistently due to
0e995816
WF
1709 * s_umount being grabbed by someone else. Don't use
1710 * requeue_io() to avoid busy retrying the inode/sb.
1711 */
1712 redirty_tail(inode, wb);
edadfb10 1713 continue;
f11c9c5c 1714 }
d46db3d5 1715 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1716 up_read(&sb->s_umount);
f11c9c5c 1717
d46db3d5
WF
1718 /* refer to the same tests at the end of writeback_sb_inodes */
1719 if (wrote) {
1720 if (time_is_before_jiffies(start_time + HZ / 10UL))
1721 break;
1722 if (work->nr_pages <= 0)
1723 break;
1724 }
f11c9c5c 1725 }
66f3b8e2 1726 /* Leave any unwritten inodes on b_io */
d46db3d5 1727 return wrote;
66f3b8e2
JA
1728}
1729
7d9f073b 1730static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1731 enum wb_reason reason)
edadfb10 1732{
d46db3d5
WF
1733 struct wb_writeback_work work = {
1734 .nr_pages = nr_pages,
1735 .sync_mode = WB_SYNC_NONE,
1736 .range_cyclic = 1,
0e175a18 1737 .reason = reason,
d46db3d5 1738 };
505a666e 1739 struct blk_plug plug;
edadfb10 1740
505a666e 1741 blk_start_plug(&plug);
f758eeab 1742 spin_lock(&wb->list_lock);
424b351f 1743 if (list_empty(&wb->b_io))
ad4e38dd 1744 queue_io(wb, &work);
d46db3d5 1745 __writeback_inodes_wb(wb, &work);
f758eeab 1746 spin_unlock(&wb->list_lock);
505a666e 1747 blk_finish_plug(&plug);
edadfb10 1748
d46db3d5
WF
1749 return nr_pages - work.nr_pages;
1750}
03ba3782 1751
03ba3782
JA
1752/*
1753 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1754 *
03ba3782
JA
1755 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1756 * dirtying-time in the inode's address_space. So this periodic writeback code
1757 * just walks the superblock inode list, writing back any inodes which are
1758 * older than a specific point in time.
66f3b8e2 1759 *
03ba3782
JA
1760 * Try to run once per dirty_writeback_interval. But if a writeback event
1761 * takes longer than a dirty_writeback_interval interval, then leave a
1762 * one-second gap.
66f3b8e2 1763 *
03ba3782
JA
1764 * older_than_this takes precedence over nr_to_write. So we'll only write back
1765 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1766 */
c4a77a6c 1767static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1768 struct wb_writeback_work *work)
66f3b8e2 1769{
e98be2d5 1770 unsigned long wb_start = jiffies;
d46db3d5 1771 long nr_pages = work->nr_pages;
0dc83bd3 1772 unsigned long oldest_jif;
a5989bdc 1773 struct inode *inode;
d46db3d5 1774 long progress;
505a666e 1775 struct blk_plug plug;
66f3b8e2 1776
0dc83bd3
JK
1777 oldest_jif = jiffies;
1778 work->older_than_this = &oldest_jif;
38f21977 1779
505a666e 1780 blk_start_plug(&plug);
e8dfc305 1781 spin_lock(&wb->list_lock);
03ba3782
JA
1782 for (;;) {
1783 /*
d3ddec76 1784 * Stop writeback when nr_pages has been consumed
03ba3782 1785 */
83ba7b07 1786 if (work->nr_pages <= 0)
03ba3782 1787 break;
66f3b8e2 1788
aa373cf5
JK
1789 /*
1790 * Background writeout and kupdate-style writeback may
1791 * run forever. Stop them if there is other work to do
1792 * so that e.g. sync can proceed. They'll be restarted
1793 * after the other works are all done.
1794 */
1795 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1796 !list_empty(&wb->work_list))
aa373cf5
JK
1797 break;
1798
38f21977 1799 /*
d3ddec76
WF
1800 * For background writeout, stop when we are below the
1801 * background dirty threshold
38f21977 1802 */
aa661bbe 1803 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1804 break;
38f21977 1805
1bc36b64
JK
1806 /*
1807 * Kupdate and background works are special and we want to
1808 * include all inodes that need writing. Livelock avoidance is
1809 * handled by these works yielding to any other work so we are
1810 * safe.
1811 */
ba9aa839 1812 if (work->for_kupdate) {
0dc83bd3 1813 oldest_jif = jiffies -
ba9aa839 1814 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1815 } else if (work->for_background)
0dc83bd3 1816 oldest_jif = jiffies;
028c2dd1 1817
5634cc2a 1818 trace_writeback_start(wb, work);
e8dfc305 1819 if (list_empty(&wb->b_io))
ad4e38dd 1820 queue_io(wb, work);
83ba7b07 1821 if (work->sb)
d46db3d5 1822 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1823 else
d46db3d5 1824 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1825 trace_writeback_written(wb, work);
028c2dd1 1826
e98be2d5 1827 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1828
1829 /*
e6fb6da2
WF
1830 * Did we write something? Try for more
1831 *
1832 * Dirty inodes are moved to b_io for writeback in batches.
1833 * The completion of the current batch does not necessarily
1834 * mean the overall work is done. So we keep looping as long
1835 * as made some progress on cleaning pages or inodes.
03ba3782 1836 */
d46db3d5 1837 if (progress)
71fd05a8
JA
1838 continue;
1839 /*
e6fb6da2 1840 * No more inodes for IO, bail
71fd05a8 1841 */
b7a2441f 1842 if (list_empty(&wb->b_more_io))
03ba3782 1843 break;
71fd05a8
JA
1844 /*
1845 * Nothing written. Wait for some inode to
1846 * become available for writeback. Otherwise
1847 * we'll just busyloop.
1848 */
bace9248
TE
1849 trace_writeback_wait(wb, work);
1850 inode = wb_inode(wb->b_more_io.prev);
1851 spin_lock(&inode->i_lock);
1852 spin_unlock(&wb->list_lock);
1853 /* This function drops i_lock... */
1854 inode_sleep_on_writeback(inode);
1855 spin_lock(&wb->list_lock);
03ba3782 1856 }
e8dfc305 1857 spin_unlock(&wb->list_lock);
505a666e 1858 blk_finish_plug(&plug);
03ba3782 1859
d46db3d5 1860 return nr_pages - work->nr_pages;
03ba3782
JA
1861}
1862
1863/*
83ba7b07 1864 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1865 */
f0054bb1 1866static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1867{
83ba7b07 1868 struct wb_writeback_work *work = NULL;
03ba3782 1869
f0054bb1
TH
1870 spin_lock_bh(&wb->work_lock);
1871 if (!list_empty(&wb->work_list)) {
1872 work = list_entry(wb->work_list.next,
83ba7b07
CH
1873 struct wb_writeback_work, list);
1874 list_del_init(&work->list);
03ba3782 1875 }
f0054bb1 1876 spin_unlock_bh(&wb->work_lock);
83ba7b07 1877 return work;
03ba3782
JA
1878}
1879
6585027a
JK
1880static long wb_check_background_flush(struct bdi_writeback *wb)
1881{
aa661bbe 1882 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1883
1884 struct wb_writeback_work work = {
1885 .nr_pages = LONG_MAX,
1886 .sync_mode = WB_SYNC_NONE,
1887 .for_background = 1,
1888 .range_cyclic = 1,
0e175a18 1889 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1890 };
1891
1892 return wb_writeback(wb, &work);
1893 }
1894
1895 return 0;
1896}
1897
03ba3782
JA
1898static long wb_check_old_data_flush(struct bdi_writeback *wb)
1899{
1900 unsigned long expired;
1901 long nr_pages;
1902
69b62d01
JA
1903 /*
1904 * When set to zero, disable periodic writeback
1905 */
1906 if (!dirty_writeback_interval)
1907 return 0;
1908
03ba3782
JA
1909 expired = wb->last_old_flush +
1910 msecs_to_jiffies(dirty_writeback_interval * 10);
1911 if (time_before(jiffies, expired))
1912 return 0;
1913
1914 wb->last_old_flush = jiffies;
cdf01dd5 1915 nr_pages = get_nr_dirty_pages();
03ba3782 1916
c4a77a6c 1917 if (nr_pages) {
83ba7b07 1918 struct wb_writeback_work work = {
c4a77a6c
JA
1919 .nr_pages = nr_pages,
1920 .sync_mode = WB_SYNC_NONE,
1921 .for_kupdate = 1,
1922 .range_cyclic = 1,
0e175a18 1923 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1924 };
1925
83ba7b07 1926 return wb_writeback(wb, &work);
c4a77a6c 1927 }
03ba3782
JA
1928
1929 return 0;
1930}
1931
85009b4f
JA
1932static long wb_check_start_all(struct bdi_writeback *wb)
1933{
1934 long nr_pages;
1935
1936 if (!test_bit(WB_start_all, &wb->state))
1937 return 0;
1938
1939 nr_pages = get_nr_dirty_pages();
1940 if (nr_pages) {
1941 struct wb_writeback_work work = {
1942 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1943 .sync_mode = WB_SYNC_NONE,
1944 .range_cyclic = 1,
1945 .reason = wb->start_all_reason,
1946 };
1947
1948 nr_pages = wb_writeback(wb, &work);
1949 }
1950
1951 clear_bit(WB_start_all, &wb->state);
1952 return nr_pages;
1953}
1954
1955
03ba3782
JA
1956/*
1957 * Retrieve work items and do the writeback they describe
1958 */
25d130ba 1959static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1960{
83ba7b07 1961 struct wb_writeback_work *work;
c4a77a6c 1962 long wrote = 0;
03ba3782 1963
4452226e 1964 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1965 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 1966 trace_writeback_exec(wb, work);
83ba7b07 1967 wrote += wb_writeback(wb, work);
4a3a485b 1968 finish_writeback_work(wb, work);
03ba3782
JA
1969 }
1970
85009b4f
JA
1971 /*
1972 * Check for a flush-everything request
1973 */
1974 wrote += wb_check_start_all(wb);
1975
03ba3782
JA
1976 /*
1977 * Check for periodic writeback, kupdated() style
1978 */
1979 wrote += wb_check_old_data_flush(wb);
6585027a 1980 wrote += wb_check_background_flush(wb);
4452226e 1981 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1982
1983 return wrote;
1984}
1985
1986/*
1987 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1988 * reschedules periodically and does kupdated style flushing.
03ba3782 1989 */
f0054bb1 1990void wb_workfn(struct work_struct *work)
03ba3782 1991{
839a8e86
TH
1992 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1993 struct bdi_writeback, dwork);
03ba3782
JA
1994 long pages_written;
1995
f0054bb1 1996 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1997 current->flags |= PF_SWAPWRITE;
455b2864 1998
839a8e86 1999 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2000 !test_bit(WB_registered, &wb->state))) {
6467716a 2001 /*
f0054bb1 2002 * The normal path. Keep writing back @wb until its
839a8e86 2003 * work_list is empty. Note that this path is also taken
f0054bb1 2004 * if @wb is shutting down even when we're running off the
839a8e86 2005 * rescuer as work_list needs to be drained.
6467716a 2006 */
839a8e86 2007 do {
25d130ba 2008 pages_written = wb_do_writeback(wb);
839a8e86 2009 trace_writeback_pages_written(pages_written);
f0054bb1 2010 } while (!list_empty(&wb->work_list));
839a8e86
TH
2011 } else {
2012 /*
2013 * bdi_wq can't get enough workers and we're running off
2014 * the emergency worker. Don't hog it. Hopefully, 1024 is
2015 * enough for efficient IO.
2016 */
f0054bb1 2017 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2018 WB_REASON_FORKER_THREAD);
455b2864 2019 trace_writeback_pages_written(pages_written);
03ba3782
JA
2020 }
2021
f0054bb1 2022 if (!list_empty(&wb->work_list))
b8b78495 2023 wb_wakeup(wb);
6ca738d6 2024 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2025 wb_wakeup_delayed(wb);
455b2864 2026
839a8e86 2027 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2028}
2029
595043e5
JA
2030/*
2031 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2032 * write back the whole world.
2033 */
2034static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2035 enum wb_reason reason)
595043e5
JA
2036{
2037 struct bdi_writeback *wb;
2038
2039 if (!bdi_has_dirty_io(bdi))
2040 return;
2041
2042 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2043 wb_start_writeback(wb, reason);
595043e5
JA
2044}
2045
2046void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2047 enum wb_reason reason)
2048{
595043e5 2049 rcu_read_lock();
e8e8a0c6 2050 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2051 rcu_read_unlock();
2052}
2053
03ba3782 2054/*
9ba4b2df 2055 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2056 */
9ba4b2df 2057void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2058{
b8c2f347 2059 struct backing_dev_info *bdi;
03ba3782 2060
51350ea0
KK
2061 /*
2062 * If we are expecting writeback progress we must submit plugged IO.
2063 */
2064 if (blk_needs_flush_plug(current))
2065 blk_schedule_flush_plug(current);
2066
b8c2f347 2067 rcu_read_lock();
595043e5 2068 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2069 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2070 rcu_read_unlock();
1da177e4
LT
2071}
2072
a2f48706
TT
2073/*
2074 * Wake up bdi's periodically to make sure dirtytime inodes gets
2075 * written back periodically. We deliberately do *not* check the
2076 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2077 * kernel to be constantly waking up once there are any dirtytime
2078 * inodes on the system. So instead we define a separate delayed work
2079 * function which gets called much more rarely. (By default, only
2080 * once every 12 hours.)
2081 *
2082 * If there is any other write activity going on in the file system,
2083 * this function won't be necessary. But if the only thing that has
2084 * happened on the file system is a dirtytime inode caused by an atime
2085 * update, we need this infrastructure below to make sure that inode
2086 * eventually gets pushed out to disk.
2087 */
2088static void wakeup_dirtytime_writeback(struct work_struct *w);
2089static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2090
2091static void wakeup_dirtytime_writeback(struct work_struct *w)
2092{
2093 struct backing_dev_info *bdi;
2094
2095 rcu_read_lock();
2096 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2097 struct bdi_writeback *wb;
001fe6f6 2098
b817525a 2099 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2100 if (!list_empty(&wb->b_dirty_time))
2101 wb_wakeup(wb);
a2f48706
TT
2102 }
2103 rcu_read_unlock();
2104 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2105}
2106
2107static int __init start_dirtytime_writeback(void)
2108{
2109 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2110 return 0;
2111}
2112__initcall(start_dirtytime_writeback);
2113
1efff914
TT
2114int dirtytime_interval_handler(struct ctl_table *table, int write,
2115 void __user *buffer, size_t *lenp, loff_t *ppos)
2116{
2117 int ret;
2118
2119 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2120 if (ret == 0 && write)
2121 mod_delayed_work(system_wq, &dirtytime_work, 0);
2122 return ret;
2123}
2124
03ba3782
JA
2125static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2126{
2127 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2128 struct dentry *dentry;
2129 const char *name = "?";
2130
2131 dentry = d_find_alias(inode);
2132 if (dentry) {
2133 spin_lock(&dentry->d_lock);
2134 name = (const char *) dentry->d_name.name;
2135 }
2136 printk(KERN_DEBUG
2137 "%s(%d): dirtied inode %lu (%s) on %s\n",
2138 current->comm, task_pid_nr(current), inode->i_ino,
2139 name, inode->i_sb->s_id);
2140 if (dentry) {
2141 spin_unlock(&dentry->d_lock);
2142 dput(dentry);
2143 }
2144 }
2145}
2146
2147/**
0117d427
MCC
2148 * __mark_inode_dirty - internal function
2149 *
2150 * @inode: inode to mark
2151 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2152 *
2153 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2154 * mark_inode_dirty_sync.
1da177e4 2155 *
03ba3782
JA
2156 * Put the inode on the super block's dirty list.
2157 *
2158 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2159 * dirty list only if it is hashed or if it refers to a blockdev.
2160 * If it was not hashed, it will never be added to the dirty list
2161 * even if it is later hashed, as it will have been marked dirty already.
2162 *
2163 * In short, make sure you hash any inodes _before_ you start marking
2164 * them dirty.
1da177e4 2165 *
03ba3782
JA
2166 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2167 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2168 * the kernel-internal blockdev inode represents the dirtying time of the
2169 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2170 * page->mapping->host, so the page-dirtying time is recorded in the internal
2171 * blockdev inode.
1da177e4 2172 */
03ba3782 2173void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2174{
03ba3782 2175 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2176 int dirtytime;
2177
2178 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2179
03ba3782
JA
2180 /*
2181 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2182 * dirty the inode itself
2183 */
0e11f644 2184 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2185 trace_writeback_dirty_inode_start(inode, flags);
2186
03ba3782 2187 if (sb->s_op->dirty_inode)
aa385729 2188 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2189
2190 trace_writeback_dirty_inode(inode, flags);
03ba3782 2191 }
0ae45f63
TT
2192 if (flags & I_DIRTY_INODE)
2193 flags &= ~I_DIRTY_TIME;
2194 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2195
2196 /*
9c6ac78e
TH
2197 * Paired with smp_mb() in __writeback_single_inode() for the
2198 * following lockless i_state test. See there for details.
03ba3782
JA
2199 */
2200 smp_mb();
2201
0ae45f63
TT
2202 if (((inode->i_state & flags) == flags) ||
2203 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2204 return;
2205
2206 if (unlikely(block_dump))
2207 block_dump___mark_inode_dirty(inode);
2208
250df6ed 2209 spin_lock(&inode->i_lock);
0ae45f63
TT
2210 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2211 goto out_unlock_inode;
03ba3782
JA
2212 if ((inode->i_state & flags) != flags) {
2213 const int was_dirty = inode->i_state & I_DIRTY;
2214
52ebea74
TH
2215 inode_attach_wb(inode, NULL);
2216
0ae45f63
TT
2217 if (flags & I_DIRTY_INODE)
2218 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2219 inode->i_state |= flags;
2220
2221 /*
2222 * If the inode is being synced, just update its dirty state.
2223 * The unlocker will place the inode on the appropriate
2224 * superblock list, based upon its state.
2225 */
2226 if (inode->i_state & I_SYNC)
250df6ed 2227 goto out_unlock_inode;
03ba3782
JA
2228
2229 /*
2230 * Only add valid (hashed) inodes to the superblock's
2231 * dirty list. Add blockdev inodes as well.
2232 */
2233 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2234 if (inode_unhashed(inode))
250df6ed 2235 goto out_unlock_inode;
03ba3782 2236 }
a4ffdde6 2237 if (inode->i_state & I_FREEING)
250df6ed 2238 goto out_unlock_inode;
03ba3782
JA
2239
2240 /*
2241 * If the inode was already on b_dirty/b_io/b_more_io, don't
2242 * reposition it (that would break b_dirty time-ordering).
2243 */
2244 if (!was_dirty) {
87e1d789 2245 struct bdi_writeback *wb;
d6c10f1f 2246 struct list_head *dirty_list;
a66979ab 2247 bool wakeup_bdi = false;
253c34e9 2248
87e1d789 2249 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2250
0747259d
TH
2251 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2252 !test_bit(WB_registered, &wb->state),
2253 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2254
2255 inode->dirtied_when = jiffies;
a2f48706
TT
2256 if (dirtytime)
2257 inode->dirtied_time_when = jiffies;
d6c10f1f 2258
0e11f644 2259 if (inode->i_state & I_DIRTY)
0747259d 2260 dirty_list = &wb->b_dirty;
a2f48706 2261 else
0747259d 2262 dirty_list = &wb->b_dirty_time;
d6c10f1f 2263
c7f54084 2264 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2265 dirty_list);
2266
0747259d 2267 spin_unlock(&wb->list_lock);
0ae45f63 2268 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2269
d6c10f1f
TH
2270 /*
2271 * If this is the first dirty inode for this bdi,
2272 * we have to wake-up the corresponding bdi thread
2273 * to make sure background write-back happens
2274 * later.
2275 */
0747259d
TH
2276 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2277 wb_wakeup_delayed(wb);
a66979ab 2278 return;
1da177e4 2279 }
1da177e4 2280 }
250df6ed
DC
2281out_unlock_inode:
2282 spin_unlock(&inode->i_lock);
03ba3782
JA
2283}
2284EXPORT_SYMBOL(__mark_inode_dirty);
2285
e97fedb9
DC
2286/*
2287 * The @s_sync_lock is used to serialise concurrent sync operations
2288 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2289 * Concurrent callers will block on the s_sync_lock rather than doing contending
2290 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2291 * has been issued up to the time this function is enter is guaranteed to be
2292 * completed by the time we have gained the lock and waited for all IO that is
2293 * in progress regardless of the order callers are granted the lock.
2294 */
b6e51316 2295static void wait_sb_inodes(struct super_block *sb)
03ba3782 2296{
6c60d2b5 2297 LIST_HEAD(sync_list);
03ba3782
JA
2298
2299 /*
2300 * We need to be protected against the filesystem going from
2301 * r/o to r/w or vice versa.
2302 */
b6e51316 2303 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2304
e97fedb9 2305 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2306
2307 /*
6c60d2b5
DC
2308 * Splice the writeback list onto a temporary list to avoid waiting on
2309 * inodes that have started writeback after this point.
2310 *
2311 * Use rcu_read_lock() to keep the inodes around until we have a
2312 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2313 * the local list because inodes can be dropped from either by writeback
2314 * completion.
2315 */
2316 rcu_read_lock();
2317 spin_lock_irq(&sb->s_inode_wblist_lock);
2318 list_splice_init(&sb->s_inodes_wb, &sync_list);
2319
2320 /*
2321 * Data integrity sync. Must wait for all pages under writeback, because
2322 * there may have been pages dirtied before our sync call, but which had
2323 * writeout started before we write it out. In which case, the inode
2324 * may not be on the dirty list, but we still have to wait for that
2325 * writeout.
03ba3782 2326 */
6c60d2b5
DC
2327 while (!list_empty(&sync_list)) {
2328 struct inode *inode = list_first_entry(&sync_list, struct inode,
2329 i_wb_list);
250df6ed 2330 struct address_space *mapping = inode->i_mapping;
03ba3782 2331
6c60d2b5
DC
2332 /*
2333 * Move each inode back to the wb list before we drop the lock
2334 * to preserve consistency between i_wb_list and the mapping
2335 * writeback tag. Writeback completion is responsible to remove
2336 * the inode from either list once the writeback tag is cleared.
2337 */
2338 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2339
2340 /*
2341 * The mapping can appear untagged while still on-list since we
2342 * do not have the mapping lock. Skip it here, wb completion
2343 * will remove it.
2344 */
2345 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2346 continue;
2347
2348 spin_unlock_irq(&sb->s_inode_wblist_lock);
2349
250df6ed 2350 spin_lock(&inode->i_lock);
6c60d2b5 2351 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2352 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2353
2354 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2355 continue;
250df6ed 2356 }
03ba3782 2357 __iget(inode);
250df6ed 2358 spin_unlock(&inode->i_lock);
6c60d2b5 2359 rcu_read_unlock();
03ba3782 2360
aa750fd7
JN
2361 /*
2362 * We keep the error status of individual mapping so that
2363 * applications can catch the writeback error using fsync(2).
2364 * See filemap_fdatawait_keep_errors() for details.
2365 */
2366 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2367
2368 cond_resched();
2369
6c60d2b5
DC
2370 iput(inode);
2371
2372 rcu_read_lock();
2373 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2374 }
6c60d2b5
DC
2375 spin_unlock_irq(&sb->s_inode_wblist_lock);
2376 rcu_read_unlock();
e97fedb9 2377 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2378}
2379
f30a7d0c
TH
2380static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2381 enum wb_reason reason, bool skip_if_busy)
1da177e4 2382{
cc395d7f 2383 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2384 struct wb_writeback_work work = {
6e6938b6
WF
2385 .sb = sb,
2386 .sync_mode = WB_SYNC_NONE,
2387 .tagged_writepages = 1,
2388 .done = &done,
2389 .nr_pages = nr,
0e175a18 2390 .reason = reason,
3c4d7165 2391 };
e7972912 2392 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2393
e7972912 2394 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2395 return;
cf37e972 2396 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2397
db125360 2398 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2399 wb_wait_for_completion(bdi, &done);
e913fc82 2400}
f30a7d0c
TH
2401
2402/**
2403 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2404 * @sb: the superblock
2405 * @nr: the number of pages to write
2406 * @reason: reason why some writeback work initiated
2407 *
2408 * Start writeback on some inodes on this super_block. No guarantees are made
2409 * on how many (if any) will be written, and this function does not wait
2410 * for IO completion of submitted IO.
2411 */
2412void writeback_inodes_sb_nr(struct super_block *sb,
2413 unsigned long nr,
2414 enum wb_reason reason)
2415{
2416 __writeback_inodes_sb_nr(sb, nr, reason, false);
2417}
3259f8be
CM
2418EXPORT_SYMBOL(writeback_inodes_sb_nr);
2419
2420/**
2421 * writeback_inodes_sb - writeback dirty inodes from given super_block
2422 * @sb: the superblock
786228ab 2423 * @reason: reason why some writeback work was initiated
3259f8be
CM
2424 *
2425 * Start writeback on some inodes on this super_block. No guarantees are made
2426 * on how many (if any) will be written, and this function does not wait
2427 * for IO completion of submitted IO.
2428 */
0e175a18 2429void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2430{
0e175a18 2431 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2432}
0e3c9a22 2433EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2434
17bd55d0 2435/**
8264c321 2436 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2437 * @sb: the superblock
8264c321 2438 * @reason: reason why some writeback work was initiated
17bd55d0 2439 *
8264c321 2440 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2441 */
8264c321 2442void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2443{
10ee27a0 2444 if (!down_read_trylock(&sb->s_umount))
8264c321 2445 return;
10ee27a0 2446
8264c321 2447 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2448 up_read(&sb->s_umount);
3259f8be 2449}
10ee27a0 2450EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2451
d8a8559c
JA
2452/**
2453 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2454 * @sb: the superblock
d8a8559c
JA
2455 *
2456 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2457 * super_block.
d8a8559c 2458 */
0dc83bd3 2459void sync_inodes_sb(struct super_block *sb)
d8a8559c 2460{
cc395d7f 2461 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2462 struct wb_writeback_work work = {
3c4d7165
CH
2463 .sb = sb,
2464 .sync_mode = WB_SYNC_ALL,
2465 .nr_pages = LONG_MAX,
2466 .range_cyclic = 0,
83ba7b07 2467 .done = &done,
0e175a18 2468 .reason = WB_REASON_SYNC,
7747bd4b 2469 .for_sync = 1,
3c4d7165 2470 };
e7972912 2471 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2472
006a0973
TH
2473 /*
2474 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2475 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2476 * bdi_has_dirty() need to be written out too.
2477 */
2478 if (bdi == &noop_backing_dev_info)
6eedc701 2479 return;
cf37e972
CH
2480 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2481
7fc5854f
TH
2482 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2483 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2484 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2485 wb_wait_for_completion(bdi, &done);
7fc5854f 2486 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2487
b6e51316 2488 wait_sb_inodes(sb);
1da177e4 2489}
d8a8559c 2490EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2491
1da177e4 2492/**
7f04c26d
AA
2493 * write_inode_now - write an inode to disk
2494 * @inode: inode to write to disk
2495 * @sync: whether the write should be synchronous or not
2496 *
2497 * This function commits an inode to disk immediately if it is dirty. This is
2498 * primarily needed by knfsd.
1da177e4 2499 *
7f04c26d 2500 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2501 */
1da177e4
LT
2502int write_inode_now(struct inode *inode, int sync)
2503{
1da177e4
LT
2504 struct writeback_control wbc = {
2505 .nr_to_write = LONG_MAX,
18914b18 2506 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2507 .range_start = 0,
2508 .range_end = LLONG_MAX,
1da177e4
LT
2509 };
2510
2511 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2512 wbc.nr_to_write = 0;
1da177e4
LT
2513
2514 might_sleep();
aaf25593 2515 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2516}
2517EXPORT_SYMBOL(write_inode_now);
2518
2519/**
2520 * sync_inode - write an inode and its pages to disk.
2521 * @inode: the inode to sync
2522 * @wbc: controls the writeback mode
2523 *
2524 * sync_inode() will write an inode and its pages to disk. It will also
2525 * correctly update the inode on its superblock's dirty inode lists and will
2526 * update inode->i_state.
2527 *
2528 * The caller must have a ref on the inode.
2529 */
2530int sync_inode(struct inode *inode, struct writeback_control *wbc)
2531{
aaf25593 2532 return writeback_single_inode(inode, wbc);
1da177e4
LT
2533}
2534EXPORT_SYMBOL(sync_inode);
c3765016
CH
2535
2536/**
c691b9d9 2537 * sync_inode_metadata - write an inode to disk
c3765016
CH
2538 * @inode: the inode to sync
2539 * @wait: wait for I/O to complete.
2540 *
c691b9d9 2541 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2542 *
2543 * Note: only writes the actual inode, no associated data or other metadata.
2544 */
2545int sync_inode_metadata(struct inode *inode, int wait)
2546{
2547 struct writeback_control wbc = {
2548 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2549 .nr_to_write = 0, /* metadata-only */
2550 };
2551
2552 return sync_inode(inode, &wbc);
2553}
2554EXPORT_SYMBOL(sync_inode_metadata);